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Localized Stable Manifolds for Whiskered
Tori in Coupled Map Lattices with Decaying
Interaction
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Abstract. In this paper we consider lattice systems coupled by local
interactions. We prove invariant manifold theorems for whiskered tori
(we recall that whiskered tori are quasi-periodic solutions with exponen-
tially contracting and expanding directions in the linearized system). The
invariant manifolds we construct generalize the usual (strong) (un)stable
manifolds and allow us to consider also non-resonant manifolds. We show
that if the whiskered tori are localized near a collection of specific sites,
then so are the invariant manifolds. We recall that the existence of local-
ized whiskered tori has recently been proven for symplectic maps and
flows in Fontich et al. (J Diff Equ, 2012), but our results do not need
that the systems are symplectic. For simplicity we will present first the
main results for maps, but we will show that the result for maps imply
the results for flows. It is also true that the results for flows can be proved
directly following the same ideas.

1. Introduction

In this paper we study stable manifold theorems in coupled map lattices.
We recall that coupled map lattices are copies of a dynamical system at
each point in the lattice coupled by some local interaction. They have been
extensively studied as models in neuroscience, chemistry and other disciplines
[2–4,7,12,15,20,22,27,28,33].

The goal of this paper is to prove invariant manifold theorems for local-
ized whiskered tori. We recall that whiskered tori are quasi-periodic solutions
such that the linearized dynamics around them have exponentially expanding
(or contracting) directions. In this paper we refer to quasi-periodic as solutions
whose frequency vector is possibly infinite dimensional (sometimes in the liter-
ature solutions with an infinite dimensional frequency vector are called almost
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periodic solutions). On the other side of the spectrum, periodic solutions are
a particular case of quasi-periodic with our definition. See Definition 4 for a
precise definition of a whiskered torus.

We say that the whiskered tori are “localized” when the oscillations are
concentrated near a specific collection of sites (which we allow to be finite or
infinite, see Definition 4). The existence of localized whiskered tori has been
proved (under some hypotheses) for symplectic maps and flows in [19] (e.g. for
coupled pendula or Fermi–Pasta–Ulam systems [21]). Our framework allows
us to deal with general Hamiltonian systems with infinite degrees of freedom
with long range (including infinite range) localized interactions.

A very paradigmatic example of our framework are Hamiltonian systems,
(appearing as discretizations of Klein–Gordon equations) whose energy is given
by

H(q, p) =
∑

n∈ZN

(
1
2
p2

n + W (qn)
)

+
∑

j∈ZN

∑

n∈ZN

Vj(qn − qn+j) (1)

where we have assumed that the system

q̈ + W ′(q) = 0 (2)

has a hyperbolic fixed point. This assumption yields whiskered tori for the
uncoupled system, i.e. the system without the interacting terms Vj(qn −qn+j).
Moreover, suppose that the coupling potentials Vk satisfy

‖Vk‖C2
ρ

≤ CV Γ(k) (3)

where Γ : Z
N → R is a decay function, a notion quantifying fast decay defined

in Sect. 2.2. Finite range interactions (e.g. the Frenkel–Kontorova model) of
any arbitrary range are included in this example. The key novelty is we are able
to use the decay properties assumed on the flow or map to construct invariant
manifolds constructed with decay properties: The manifolds are parameterized
by a function W such that

∣∣∣∣
∂Wi

∂xj

∣∣∣∣ (4)

decays as the lattice site i ∈ Z
N gets further away from the excited sites, or

if i is very different from j. See Sect. 2.2.2 for precise definitions of localized
embeddings.

In [19] it was shown that a whiskered torus with decay exists for the
coupled system under the assumption that an approximate whiskered torus
exists. In particular, when the coupling is small, the tori of the uncoupled
system persist. In this paper, we assume that a whiskered torus exists and
show that they have stable and unstable manifolds that are localized near the
torus. The methods of this paper allow one to construct whiskers in the tori
produced in [19].
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Another model very similar in spirit is the coupled standard map intro-
duced and explored numerically in [29]. The model was also considered in [19]
and the existence of localized quasi-periodic whiskered solutions was estab-
lished for certain values of the regime. The paper [29] presents numerical
evidence of analogues of Arnol’d diffusion, which served as motivation to
understand the stable and unstable manifolds of whiskered tori in these sys-
tems. A natural step, which we have not yet taken is to study the global
properties of the manifolds whose existence is established here.

We note, however, that in this paper we can consider more general sys-
tems since we do not need the assumption that the dynamics preserves a
symplectic form. Localized quasi-periodic solutions happen also in coupled
dissipative systems with limit cycles. Such localized excitations have been con-
sidered in neuroscience [14,25] and in other disciplines [11,31,32]. Our results
also apply in the dissipative context and, according to our definition, periodic
solutions are a particular case of quasi-periodic.

The main result of this paper is an invariant manifold theorem for such
localized whiskered tori. We show that corresponding to some spectral sub-
spaces in the linearization, one can find smooth manifolds of initial conditions
which converge to the quasi-periodic solutions. The invariant manifold theorem
we prove includes as particular cases the classical stable and unstable mani-
fold theorems or the strong (un)stable manifolds theorems. We just need some
non-resonance conditions in the spectrum. This allows us to make sense of the
slow manifold in some cases. We also prove smooth dependence on parameters,
which could serve to develop a perturbation theory.

One motivation for the construction of whiskered tori is that they sep-
arate asymptotic dynamics. Transverse intersections of stable and unstable
manifolds of whiskered tori were constructed for specific examples in [1] and
conjectured to be a generic mechanism of transport in phase space and global
instability. The mechanism in [1] has proven to be robust in its goal for finite
dimensional systems. (see, for example, [10] for a review with references to the
original literature in recent developments). One can hope that similar effects
happen in lattice systems and this paper is a step towards the implementation
of the [1] program in coupled map lattices. Studies of the Arnold mechanism
in coupled map lattices were undertaken in [29].

In the applied literature there are quite a number of phenomena (e.g.
“bursting” [6], “spiking” [23], “transfer of energy” [13,36]) which indeed are
reminiscent of homoclinic chaos in infinite dimensions. We think it would be
interesting to clarify mathematically these issues. The localization properties
of invariant manifolds has relevance for the study of statistical mechanics.

Stable and unstable manifolds, of general sets also play a role in the
study of spatio-temporal chaos [5]. In this paper we consider only manifolds
of quasi-periodic orbits since the manifolds are more differentiable. Some dif-
ferent results for more general sets can be found in [17].

This paper is organized as follows: Sect. 2 consists of technical definitions
for the setup of our results. In particular, we define the phase space we use,
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localized interactions, and analytic embeddings of localized whiskered tori and
stable and unstable manifolds.

In Sect. 3 we provide statements of our results. We start by stating The-
orem 1, which assumes a more classical notion of a whiskered torus. Then we
state Theorem 2, which, given our methods, is a natural generalization of The-
orem 1. Theorems 1 and 2 are results for discrete maps on lattices. In Sect. 3.2
we show that Theorem 1 implies an analogous result for flows on lattices, which
is the content of Theorem 3. Section 4 contains a proof of Theorem 2.

2. Preliminaries: the Phase Space and Functions With Decay

In this section we introduce several technical definitions that follow the setup in
[16,17,19]. This section can be used as a reference. The central idea is to make
precise the notion that objects are localized by imposing that the derivatives of
a component with respect to a variable are small if the distance between index
of the component and the variable is large. To avoid unnecessary repetitions,
but to maintain some readability, we note that the definitions of Sects. 2.1, 2.2,
and 2.2.1 are the same as in [16,17,19] (even if we suppress the references to
symplectic forms,etc. in [19]). The subsequent sections are new. In particular,
we need some extra definitions to deal with infinite dimensional tori and the
embeddings of the invariant manifolds associated to the tori as such objects
were not considered in [16,17,19].

We need two sets of definitions of localized objects: diffeomorphisms and
the embeddings giving the parameterization of the invariant manifolds. An
important technical notion introduced in [26] is that of a “decay function”.

With the technical definitions defined in Sects. 2.1–2.2.3, we will see that
some (but not all) of the techniques from finite dimensional systems generalize
to the infinite dimensional setting of coupled map lattices. Of course, some
features have to be significantly different. For example, coupled map lattices
may have uncountably many periodic points which are uniformly hyperbolic,
as well as other features that are impossible in finite dimensional differentiable
systems in a compact manifold. Hence, one has to give up either differentia-
bility or local compactness of phase space. Several compromises are possible
and, it is possible to give topologies that keep compactness but give up differ-
entiability, which is convenient for ergodic arguments (see e.g. [27,35]). Since
in this paper we will be performing a geometric analysis, the set-up of this
paper emphasizes differentiability.

To keep the differentiability assumption, it is natural to model phase
space in �∞, but since �∞ is not reflexive, this opens some new difficulties,
which we will have to overcome.

In what follows, we use the notation �∞(ZN ;X) to denote the space of
bounded sequences of elements in a Banach space X indexed by Z

N

�∞(ZN ;X) =
{

(xi)|xi ∈ X, sup
i∈ZN

‖xi‖ < ∞
}

. (5)
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2.1. The Phase Space

In this section we will define the phase space of the system we will be consid-
ering.

The phase space for each lattice site will be M = T
l×R

d, where T = R/Z.
This choice of M is done for convenience since T has straight-forward com-
plex extensions and, since we are considering neighborhoods of quasi-periodic
solutions, it entails no loss of generality. The full phase space M for the entire
lattice system is a subset of

MZ
N

=
∏

j∈ZN

M (6)

consisting of bounded sequences of points in M . That is,

M = �∞(ZN ;M) =
{

x ∈ MZ
N

: sup
i∈ZN

|xi| < ∞
}

(7)

unless l = 0M will not be a Banach space, but will be a Banach manifold.
Unless otherwise specified we will write �∞(ZN ) to mean �∞(ZN ;M).

The space M has a natural notion of distance, which is given by

d(x, y) = sup
i∈ZN

d(xi, yi). (8)

Although M is a manifold, since T
l is a Euclidean space (i.e. we can iden-

tify the tangent space at each point with R
l) the tangent space of M can be

identified with �∞.
Since we want to consider analytic functions defined on M it is natural

to consider the complexification of M, which is given by

MC =

⎧
⎨

⎩z ∈
∏

j∈ZN

MC : sup
i∈ZN

|zi| < ∞

⎫
⎬

⎭ . (9)

Unless otherwise specified, we will be working with MC and omit the super-
script C. We use the �∞ norm to allow for components of the tori to be uniform
in size irrespective of the lattice site. Using, for example, the �2 norm would
require that the components of the tori vanish at infinity. The �∞ norm is
also convenient for the notion of decaying interaction we use in the following
sections. In this paper, we will consider only analytic function and not Cr

functions.

2.2. Decay Functions and Corresponding Function Spaces

We will now discuss suitable notions of decaying interactions, and the appropri-
ate function spaces that are used throughout the paper. As mentioned before,
we will assume that the coupling of the lattice sites is localized. To make this
notion more precise, we will use the notion of a decay function as done in
[16,17,19,26].
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Definition 1. A function Γ : Z
N → R+ is a decay function provided that
∑

j∈ZN

Γ(j) ≤ 1

∑

j∈ZN

Γ(i − j)Γ(j − k) ≤ Γ(i − k), i, k ∈ Z
N

(10)

Given a decay function Γ we consider several spaces of functions that
“decay like Γ”. We will have two types of functions: the ones that give the
dynamics and functions for the parameterization of invariant objects. Roughly,
the idea of spaces of functions with decay is that the influence of site i on site
j is bounded by CΓ(i− j). The influence is measured as the size of the partial
derivative of the i-th component with respect to the j-th variable.

2.2.1. Function Spaces for the Dynamics. In this section we will discuss the
function spaces relevant for the map F that governs the dynamics of the lattice.

First, we consider the Banach space of decay linear operators that are
represented by their matrix elements

LΓ(�∞(ZN )) =
{

A ∈ L(�∞(ZN )) : for every i, j ∈ Z
N∃Aij ∈ L(M),

(Au)i =
∑

j∈ZN Aijuj , supi,j∈ZN Γ(i − j)−1|Aij | < ∞

}

(11)

where L(�∞(ZN )) denotes the usual space of continuous linear maps from
�∞(ZN ) to itself. A norm on LΓ(�∞(ZN )) is given by

‖A‖Γ = sup
i,j∈ZN

Γ(i − j)−1|Aij |.

Remark 1. As emphasized in [16], not all bounded linear operators from
�∞(ZN ) can be represented by their matrix elements. For example consider
the linear closed subspace E0 = {v ∈ �∞(Z)| lim|j|→∞ vj exists } of �∞(Z, R)
and the bounded linear functional f : E0 → Z defined by

f(v) = lim
|j|→∞

vj . (12)

The linear operator f is bounded, having operator norm equal to 1. By the
Hahn–Banach theorem we can extend f to a bounded linear functional L on
all of �∞(Z) which also has norm 1. The matrix elements of L are zero, yet
certainly L is a non-zero functional.

When we consider functions in complex domains, the derivatives are
understood to be complex derivatives. When we consider functions from a
Banach space, the derivatives are understood to be the strong derivatives.

The space of C1 functions on a open set B ⊂ M that decay like Γ is

C1
Γ(B) =

{
F : B → M : F ∈ C1(B),DF (x) ∈ C0(B,LΓ(�∞(ZN )))

supx∈B ‖F (x)‖ < ∞, supx∈B ‖DF (x)‖Γ < ∞

}
. (13)

The space C1
Γ(B) is a Banach space with the norm

‖F‖C1
Γ

= max
(

sup
x∈B

‖F (x)‖, sup
x∈B

‖DF (x)‖Γ

)
.
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Definition 2. Let B be an open set of M. We say that F : B → M is analytic
and decays like Γ if it is in C1

Γ(Ur), where Ur is a complex neighborhood of B.

We will also need to consider the space Lk(�∞(ZN )) of k-multilinear maps
that are represented by their matrix elements, that is B ∈ Lk(�∞(ZN )) if and
only if we can write

(B(x1, . . . , xk))i =
∑

(i1,...,ik)∈(ZN )k

Bi,i1,...,ik
x1

i1 · · · xk
ik

(14)

where i, i1, . . . , ik ∈ Z
N , (x1, . . . , xk) ∈(�∞(ZN ))k and Bi,i1,...,ik

∈ Lk(M,M).
Given a decay function Γ, we will consider the space Lk

Γ(�∞(ZN )) of k-multi-
linear maps given by their matrix elements that decay like Γ, that is all maps
B ∈ Lk(�∞(ZN )) such that

|Bi,i1,...,ik
| ≤ C min(Γ(i − i1), . . . ,Γ(i − ik)) (15)

for some C > 0. A norm on Lk
Γ(�∞(ZN )) is given by

‖B‖Γ = sup
i,i1,...,ik∈ZN

|Bi,i1,...,ik
|max(Γ−1(i − i1), . . . ,Γ−1(i − ik)). (16)

Lemma 1. (1) If A,B ∈ LΓ(�∞(ZN )) then AB ∈ LΓ(�∞(ZN )) and

‖AB‖Γ ≤ ‖A‖Γ‖B‖Γ.

(2) More generally, if A ∈ Lk
Γ(�∞(ZN )) and Bj ∈ Lnj

Γ (�∞(ZN )) for
1 ≤ j ≤ k. Then the contraction AB1 · · · Bk ∈ Ln1+···+nk

Γ (�∞(ZN )) de-
fined by AB1 · · · Bk(v1, . . . , vk) = A(B1v1, . . . Bkvk) where vi ∈ �∞(ZN )ni

satisfies

‖AB1 · · · Bk‖Γ ≤ ‖A‖Γ‖B1‖Γ · · · ‖Bk‖Γ.

This has already been proven in [16]. �

2.2.2. Function Spaces for Embeddings of Manifolds. In this section we will
consider spaces of localized vectors and embeddings of invariant manifolds that
are used in the paper. We start by discussing the notion of localized vectors
and associated multilinear maps. The tori considered in [19] are mainly finite
dimensional tori and eventually take limits to obtain infinite dimensional tori.
We however, work with infinite dimensional tori from the start and therefore
state carefully notions of analytic embedding for infinite dimensional tori and
their stable manifolds.

In general, we will consider a collection c ⊂ Z
N of “excited states”. We

will write c = {ck}k∈K ⊂ Z
N , where K is a subset of N used to index the

elements of c. The set K can either be K = {1, 2, . . . , ...n} for finitely many
excited sites, or K = {1, 2, . . .} for infinitely many.

Definition 3. Given a decay function and a collection of sites c = {ck}k∈K ⊂ Z
N

for some index set K,we define

‖v‖c,Γ = sup
i∈ZN

inf
k∈K

|vi|Γ−1(i − ck) (17)
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we denote

�∞
c,Γ =

{
v ∈ �∞(ZN )|‖v‖c,Γ ≤ ∞

}
. (18)

That is, �∞
c,Γ is the space of vectors localized at the lattice sites ck, k ∈ K.

We denote by Lc,Γ the space of linear operators on �∞
c,Γ such that

(Av)i =
∑

j∈ZN

Aijvj

|Aij | ≤ C min
(

sup
k∈K

Γ(i − ck),Γ(i − j)
)

.

(19)

We denote by ‖A‖c,Γ the best constant C above, i.e.

‖A‖c,Γ = max

(
sup

i,j∈ZN

|Aij |Γ−1(i − j), sup
i,j∈ZN

inf
k∈K

|Aij |Γ−1(i − ck)

)
. (20)

Finally, we denote by Lk
c,Γ the space of k-multilinear operators B on �∞

c,Γ such
that

|Bi,i1,...,ik
| ≤ C min

(
sup
k∈K

Γ(i − ck),Γ(i − i1), . . . ,Γ(i − ik)
)

(21)

for some C > 0. A norm on Lk
c,Γ(�∞(ZN )) is given by the best constant C

above, that is,

‖B‖c,Γ = sup
i,i1,...,ik∈ZN

|Bi,i1,...,ik
|

·max
(

Γ−1(i − i1), . . . ,Γ−1(i − ik), inf
k∈K

Γ−1(i − ck)
)

(22)

We will consider the space Sk
ρ,c,Γ of “localized” multilinear maps param-

eterized by θ. To this end, we let ρ = {ρn : n ∈ [0,#K], ρn > 0} be a sequence
of radii where #K is the cardinality of c (which can be infinite) and let Dρ =
{θ ∈ (Cl)#K/(Zl)#K : | Im(θn)| < ρn}.

The elements M(θ) in the space Sk
ρ,c,Γ are multilinear maps on the space

of localized vectors �∞
c,Γ that depend analytically by θ ∈ Dρ, which we assume

to take the form

M(θ) =
#K∑

n≥0

M (n)(θ1, . . . , θn). (23)

We will assume that each M (n) is complex differentiable in the strip Dρn
and

we define the norm of M by

‖M‖ρ,c,Γ =
#K∑

n≥0

‖M (n)‖ρn,c,Γ (24)

where

‖M (n)‖ρn,c,Γ = sup
θ∈Dρn

‖M (n)(θ)‖c,Γ. (25)
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We now define the space Sk
ρ,c,Γ by

Sk
ρ,c,Γ = {M : Dρ → Lk

c,Γ : M ∈ C1
Γ, ‖M(θ)‖ρ,c,Γ < ∞}. (26)

In similar spirit to Lemma 1, we have the following result for composi-
tions of multilinear functions acting on the space of localized vectors. See [16]
for the proof.

Lemma 2. (1) If A,B ∈ Lc,Γ(�∞(ZN )) then AB ∈ Lc,Γ(�∞(ZN )) and

‖AB‖c,Γ ≤ ‖A‖c,Γ‖B‖c,Γ

(2) More generally, if A ∈ Lk
c,Γ(�∞(ZN )) and Bj ∈ Lnj

c,Γ(�∞(ZN )) for
1 ≤ j ≤ k. Then the contraction AB1 · · · Bk defined by AB1 · · · Bk(v1, . . . ,
vk) = A(B1v1, . . . Bkvk) where vi ∈ �∞(ZN )ni is in Ln1+···+nk

c,Γ (�∞(ZN ))
and

‖AB1 · · · Bk‖c,Γ ≤ ‖A‖c,Γ‖B1‖c,Γ · · · ‖Bk‖c,Γ

(3) if A ∈ Sk
ρ,c,Γ(�∞(ZN )) and Bj ∈ S

nj

ρ,c,Γ(�∞(ZN )) for 1 ≤ j ≤ k. Then the

contraction AB1 · · · Bk ∈ Sn1+···+nk

ρ,c,Γ (�∞(ZN )) and

‖AB1 · · · Bk‖ρ,c,Γ ≤ ‖A‖ρ,c,Γ‖B1‖ρ,c,Γ · · · ‖Bk‖ρ,cΓ.

�
Now we consider the space of analytic embeddings K : Dρ → M that

are localized near infinitely many lattice sites. The reader should think of the
function K as giving the parameterization of the torus. We will assume that
each component (K)i, i ∈ Z

N of K takes the form

(K)i(θ) =
#K∑

n≥0

(K(n))i(θ1, . . . , θn) (27)

where (K(n))i is a finite dimensional analytic function and we give a norm to
(K)i by

‖(K)i‖ρ =
#K∑

n≥0

‖(K(n))i‖ρn
(28)

‖K‖ρ,c,Γ = sup
i∈ZN

min
k∈K

Γ−1(i − ck)‖Ki‖ρ. (29)

We now come to the definition of the space of analytic localized embeddings
of a torus, namely the space

Aρ,c,Γ((Tl)#K) = {K : Dρ → M : K is analytic in Dρ,K ∈ C0(Dρ),

‖K‖ρ,c,Γ < ∞} (30)

Before defining an embedding of the stable manifold of a torus, we will
need to consider the notion of a whiskered embedding of a torus localized near
a collection c of sites, which is either finite or infinite, and “decays like Γ”.
Definition 4 is based on the growth and decay rates of the cocycle generated
by DF ◦ K(θ), where K is the embedding of the torus under consideration.
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This is a generalization of the notion of a whiskered embedding in [19]. In
Sect. 2.2.3, we provide a notion of hyperbolicity based on the spectral prop-
erties of operators associated to DK and establish the equivalence of the two
definitions.

Definition 4 (Growth and decay rate formulation of hyperbolicity). Let ρ =
{ρn|n, ρn ≥ 0} be a sequence of radii, c = {ck}k∈K a collection of sites indexed
by K, ω ∈

(
R

l
)#K a frequency vector, Γ a decay function and a map F : M →

M ∈ C1
Γ. We say that K : Dρ → M ∈ Aρ,c,Γ is a whiskered embedding for F

when we have:

1) The tangent space has an invariant splitting

TK(θ)M = Es
K(θ) ⊕ Ec

K(θ) ⊕ Eu
K(θ) (31)

where Es,c,u
K(θ) satisfy DF (K(θ))Es,c,u

θ = Es,c,u
θ+ω .

2) The projections Πs,c,u
K(θ) associated to this splitting are in S1

ρ,c,Γ.
3) The splitting (31) is characterized by asymptotic growth conditions: Let

Tω : Dρ → Dρ be defined by Tω(θ) = θ + ω and suppose that there are
0 < μ1, μ2 < 1, μ3 > 1 such that μ1μ3 < 1, μ2μ3 < 1 and Ch > 0 such
that for all n ≥ 1, θ ∈ Dρ

‖DF ◦ K ◦ Tn−1
ω × · · · × DF ◦ Kv‖ρ,c,Γ

≤ Chμn
1‖v‖ρ,c,Γ ⇐⇒ v ∈ Es

K(θ). (32)

‖DF−1 ◦ K ◦ Tn−1
ω × · · · × DF−1 ◦ Kv‖ρ,c,Γ

≤ Chμn
2‖v‖ρ,c,Γ ⇐⇒ v ∈ Eu

K(θ) (33)

‖DF ◦ K ◦ Tn−1
ω × · · · × DF ◦ Kv‖ρ,c,Γ ≤ Chμn

3‖v‖ρ,c,Γ

and
‖DF−1 ◦ K ◦ Tn−1

ω × · · · × DF−1 ◦ Kv‖ρ,c,Γ ≤ Chμn
3‖v‖ρ,c,Γ

⇐⇒ v ∈ Ec
K(θ). (34)

Remark 2. The notion of a whiskered torus considered in this paper is slightly
more general that the one considered in [19]. Even if the torus is finite dimen-
sional, we can allow for Ec

K(θ) to be infinite, which is not done in [19]. Also, we
work directly with infinite dimensional tori, whereas in [19] infinite dimensional
tori are obtained by taking limits of tori of increasing dimension. However, the
proofs of the results in this paper do not require that the map F is symplectic
and hence it is natural to consider a more general notion of a whiskered torus.
However, Definition 4 does have the same flavor as the whiskered tori as con-
structed in [19] in the sense the the conditions for a torus to be whiskered are
on growth and decay rates. It is important to note that we also allow some of
the subspaces Ec,s,u to be empty.

Moreover, in [19] a quasi-Newton method is implemented to construct the
whiskered tori, and as a result in [19] it is assumed that the frequency vector ω
is Diophantine. In this paper, no small divisors are encountered in the method
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Figure 1. The left corresponds to the parameter space with
its associated idealized dynamics modeling the actual stable
manifold for F depicted on the right. The parameterization
W sends the idealized parameter space into the phase space
and preserves the canonical dynamics of rotation along the
torus and contraction, given by a polynomial bundle map P ,
along the fibers

used. Thus, since we are already assuming the existence of whiskered torus,
we do not impose any Diophantine assumptions on ω.

We now describe the notion of an embedding W of the stable manifold
of a localized whiskered torus. Figure 1 depicts the embedding of the stable
manifold of a whiskered torus.

We will assume that the parameterization W of the stable manifold is an
analytic bundle map whose domain is the stable bundle Es and range is the
tangent bundle of the phase space TM. We recall that given two bundles Πx :
X → (Tl)#K and Πy : Y → (Tl)#K, a bundle map is a map φ : X → Y that
takes fibers to fibers, that is if we fix θ on the torus φ(Π−1

x (θ)) ⊂ Π−1
y (φ(θ, 0)).

In the specific case of the parameterization W , we assume that we have a
family Wθ : Es

K(θ) → V (θ) of maps depending on θ ∈ Dρ. Defining analyticity
of bundle maps is done locally: for each (θ0, s

θ
0) ∈ Es, we can trivialize the

bundle by identifying different fibers Es
K(θ). In such a trivial neighborhood we

can remove the dependence of the fibers on θ and deal with a function W (θ, s)
where θ lies in a neighborhood of θ0 and s in a neighborhood of the origin
of Es

K(θ0)
. We will assume, in a trivialized neighborhood of (θ0, s

θ
0) that each

component (W )i, i ∈ Z
N of W takes the form

(W )i =
m=#K,n=dim(Es

0 )∑

m,n≥0

Wm,n
i (θ1, . . . , θm, s1, . . . sn). (35)

where Wm,n
i (θ1, . . . , θm, s1, . . . sn) is an analytic function of finitely many vari-

ables.
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We then give each component (W )i, defined globally, the sup norm

‖(W )i‖ :=
m=#K,n=dim(Es

0 )∑

m,n≥0

‖Wm,n‖ρ
1
,ρ2 . (36)

A norm on W is then given by

‖W‖ρ
1
,ρ2,c,Γ = sup

i∈Zd

min
k∈K

Γ−1(i − ck)‖(W )i‖ρ
1
,ρ2 . (37)

One question that arises is that this norm may depend on the trivialization
of the bundle Es. We point out that different trivializations lead to equivalent
norms. Of course, this contraction properties of operators may change, but we
will show that our argument applies when we consider norms associated in
balls of small diameter.

We will denote the space Bρ
1
,ρ2 to be a neighborhood of the zero section

of the bundle Es, that is

Bρ
1
,ρ2 = {(θ, sθ) : |θn| ≤ ρn, for every n ≥ 0 and |sθ| < ρ2}. (38)

The space Aρ
1
,ρ2,c,Γ(Bρ

1
,ρ2 , V (θ)) of analytic localized bundle maps Wθ defined

in a neighborhood Bρ
1
,ρ2 of the zero section of bundle Es is thus given by

Aρ
1
,ρ2,c,Γ(Bρ2 , V (θ)) =

{
W : Bρ

1
,ρ2 → M : ‖W‖ρ

1
,ρ2,c,Γ < ∞

}
. (39)

Remark 3. We chose to take the parameterization W of the stable manifold
of a whiskered torus to be a bundle map since not every vector bundle over
a torus is trivial, and examples of non-trivial bundles arise naturally (see [18]
for finite dimensional examples where non-trivial bundles arise naturally).

For the embeddings of the tori K we can assume non-uniform radius ρ

for the domain of analyticity of K
(n)
i . The methods of this paper allow us to

prove that we can choose an embedding of the stable manifold which has an
expansion as in (35) for which the domain of analyticity in the s variable is
uniform among W (n), which is why are definitions of the embeddings W have
a uniform domain in s.

2.2.3. Spectral Formulation of Hyperbolicity. In this section we describe a
more general notion of hyperbolicity than the one in Definition 4 based on
spectral properties of operators associated to DK. One can weaken the hypoth-
esis that K is a whiskered embedding by considering the more general notion
of non-resonant subspaces, similar to what is done in [8].

To this end, let A,B : (Tl)#K → �∞
c,Γ be in S1

ρ,c,Γ and consider the oper-

ators Lω
B , Rk,ω

A acting on the space Sk
ρ,c,Γ defined by

(Lω
BM)(θ)(x1, . . . , xk) = B(θ)M(θ − ω)(x1, . . . , xk)

(Rk,ω
A M)(θ)(x, . . . , xk) = M(θ)(x1, . . . , A(θ − ω)xk, . . . , xk).

(40)

Instead of assuming that K is a whiskered embedding in the sense of Definition
4, one can replace condition 3) in Definition 4 by:
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3∗) Spec(LAc) ⊂ {μ−1 ≤ |z| ≤ μ3}
Spec(LAs) ⊂ {0 ≤ |z| ≤ μ1}
Spec(LAu) ⊂ {0 ≤ |z| ≤ μ−1

2 }
Remark 4. We emphasize that in definition 3∗) we assume the existence of
the invariant bundles and consider the spectrum of the operators restricted to
them. In the papers [24,30] one considers more general definitions of hyperbo-
licity in which one just assumes that Spec(LAu) has a gap in an annulus. The
main difficulty in proving the equivalence of this general definition with 3∗) is
that one has to show that the spectral projections corresponding to the two
components of Spec(LA) correspond to projections over a bundle. This is not
too difficult to establish, but we will not consider it here.

Lemma 3. The rate formulation in Definition 4 implies the spectral formula-
tion 3∗).

Lemma 3 is a consequence of the observation that if we consider the
equation for β given α

(LAs)β − zβ = α (41)

we can obtain a solution

β =
∑

j=0

z−j [(LAs)]jα. (42)

Since [(LAs)]j is multiplication by As(θ + (j − 1)ω) · · · As(θ) and shifting, we
see that the rate conditions imply that if |z| > μ1, then the series in (42)
converges absolutely. Then, one can justify the reordering of terms so that the
series indeed is a solution.

We also have a converse:

Lemma 4. If a system satisfies 3∗) it also satisfies 3).

Lemma 4 follows from the Spectral Radius Formula (see Theorem 10.13
in [34]), which states that

lim
n→∞ ‖(LA)n‖1/n = ρ(LA) (43)

where ρ(A) is the spectral radius of LA. Indeed, the formula (43) is valid for
any bounded linear operator in a Banach space.

From Eq. (43) it follows that, for every ε > 0

‖Ln
Av‖ ≤ Cε(ρ(LA) + ε)n‖v‖. (44)

This is the desired conclusion.
We emphasize that we have assumed that the invariant bundle exists.

3. Statement of Results

We state two versions of the invariant manifold theorem for localized
whiskered tori, one with assumptions on growth and decay rates, and another
version based on the spectral formulation of hyperbolicity and non-resonance
conditions.
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In [19] it was shown that given an approximate whiskered embedding, a
true one exists nearby. In [19], their notion of a whiskered torus is similar to
Definition 4, and hence it is desirable to state a theorem that applies directly
to the tori constructed in [19]. This is the content of Theorem 1.

We also state a more general theorem, namely an invariant manifold asso-
ciated to an invariant space of the cocycle generated by DF ◦K. We will assume
that the spectrum of DF ◦ K restricted to this space satisfies some “non-res-
onance” conditions [see Eqs. (58) and (60)]. These non-resonance conditions
are automatically satisfied by the classical (strong) (un)stable manifolds, but
they are also satisfied by other submanifolds. In particular, we can make sense
of the slow manifolds in some cases. This is the version of the stable manifold
theorem we will prove and is the content of Theorem 2. The proof of Theo-
rem 2 follows the ideas in [8,9], where a proof of the stable manifold is given
for fixed points and for invariant manifolds in the context of general Banach
spaces. Note that, by definition, a whiskered torus is not necessarily normally
hyperbolic. Indeed, in the symplectic case, there are neutral directions not
tangent to the torus (c.f. Definition 4).

First, we will consider a map F : M → M that has a whiskered embed-
ding of a torus K and prove that it has a stable and unstable manifold, writ-
ten W s(K((Tl)#K)) and Wu(K((Tl)#K)), respectively. The stable manifold
of K((Tl)#K) is characterized by the following: for each θ ∈ (Tl)#K there is a
manifold

W s
K(θ) = {x ∈ M|d(Fn(x), Fn(K(θ + nω))) ≤ Cx,θμ

n
1 , n ≥ 0}

Wu
K(θ) = {x ∈ M|d(Fn(x), Fn(K(θ + nω))) ≤ Cx,θμ

n
1 , n ≤ 0} (45)

and then W s,u(K(Td)#K) are given by

W s((Tl)#K) =
⋃

θ∈(Tl)#K
W s

K(θ)

Wu((Tl)#K) =
⋃

θ∈(Tl)#K
Wu

K(θ)

(46)

W s
K(θ) and Wu

K(θ) are called the stable and unstable fibers of the stable and
unstable manifold.

We will prove that there is a parameterization Wθ ∈ Aρ
1
,ρ2,c,Γ

(Bρ
1
,ρ2 , TK(θ)M) of the local stable manifold (by local we mean in a neigh-

borhood of the origin in the s variable). We will construct W by solving the
functional equation for W and P

F (W (θ, s)) = W (θ + ω, P (θ, s)) (47)

where F and ω are given. The function P is a polynomial in s that describes
what the dynamics are in the stable direction and is in Aρ

1
,ρ2,c,Γ(Bρ

1
,ρ2 , E

s
K(θ)).

The following result is a theorem for discrete maps of the lattice to itself.
In Sect. 3.2 we show how to extend Theorem 1 in the case of whiskered tori
for flows on lattices.
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Theorem 1. Let F : M → M be a map belonging to C1
Γ(B) for any ball B ⊂ M

and some decay function Γ and let K : Dρ
1

→ M ∈ Aρ
1
,c,Γ((Tl)#K) be an

analytic whiskered embedding for F . Suppose that F has a complex analytic
extension to a neighborhood of the torus K((Tl)#K), i.e. there exists ρ2 such
that F is analytic on

{z ∈ M||z − K(θ)| ≤ ρ2 for some θ with | Im (θn)| < ρ1,n for all n}. (48)

Define A(θ) := DF (K(θ)) and the operators Ac,s,u(θ), all of which act on the
space of localized vectors �∞

c,Γ, by

Ac,s,u(θ) := Πc,s,u
K(θ+ω)DF (K(θ))|Ec,s,u

K(θ)
. (49)

We assume that for some integer L we have:

‖As ◦ TLω · · · As‖ρ
1
,c,Γ max(1, ‖A−1‖ρ

1
,c,Γ) < 1 (50)

where Tω(θ) = θ + ω.
Furthermore, assume that: A(θ) is invertible for any θ ∈ Dρ

1
with

A(θ)−1 being uniformly bounded in θ ∈ Dρ. Under these assumptions,
we can find analytic maps W ∈ Aρ

1
,ρ2,c,Γ(Bρ

1
,ρ2 , TK(θ)M) and

P ∈ Aρ
1
,ρ2,c,Γ(Bρ

1
,ρ2 , E

s
K(θ)), P is a polynomial in s, the equation

F (W (θ, s)) = W (θ + ω, P (θ, s)) (51)

holds in Bρ
1
,ρ2 and

W (θ, 0) = K(θ) (52)
P (θ, 0) = 0 DP (θ, 0) = As(θ). (53)

Finally, the stable fiber W s
K(θ) := W ({θ}×Bs

ρ2
) is the unique analytic invariant

manifold that is tangent to the linear subspace Es
K(θ) where Bs

ρ2
is a neighbor-

hood of the origin of Es
K(θ). As a consequence of Eq. (51) the stable fibers satisfy

the invariance property that

F (W s
K(θ)) ⊂ W s

K(θ+ω). (54)

We can generalize the assumptions of Theorem 1 to include non-reso-
nant manifolds. More specifically, instead of assuming that K is a whiskered
embedding as in Definition 4, one can assume spectral properties related DK.

Theorem 2. Let F : M → M be a map belonging to C1
Γ(B) for any ball B ⊂ M

and some decay function Γ and let K : Dρ
1

→ M ∈ Aρ
1
,c,Γ((Tl)#K) be an

analytic embedding for of a torus for F .
Furthermore, suppose that F has a complex analytic extension in a neigh-

borhood of the torus K((Tl)#K), i.e. there exists ρ2 such that F is analytic on

{z ∈ M||z − K(θ)| ≤ ρ2 for some θ with | Im (θn)| < ρ1,n for all n}. (55)

Define A(θ) := DF (K(θ)) and the operators Ac,s,u(θ), all of which act on the
space of localized vectors �∞

c,Γ, by

Ac,s,u(θ) := Πc,s,u
K(θ+ω)DF (K(θ))|Ec,s,u

K(θ)
. (56)
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We will assume that:
1) A(θ) is invertible for any θ ∈ Dρ

1
.

2) The tangent space splits as

TK(θ)M = Es
K(θ) ⊕ Ec

K(θ) ⊕ Eu
K(θ) (57)

where Es,c,u
K(θ) satisfy:

3) The projections Πs,c,u
K(θ) associated to this splitting are in S1

ρ
1
,c,Γ.

4) Spec(Lω
As) ⊂ {z ∈ C : |z| < 1}, where Lω

As is the transfer operator defined
in Sect. 2.2.3.

5) We have the following non-resonance condition on the transfer operators
L and R

Spec(Lω
(Ac⊕u), S

i
ρ
1
,c,Γ) ∩

(
Spec(R1,ω

As , Si
ρ
1
,c,Γ)

)i

= ∅ (58)

for i = 1, . . . , L, where L is large enough so that it satisfies
(
Spec(Lω

(Ac⊕u), S
k
ρ
1
,c,Γ))

)−1

Spec(R1,ω
As , Sk

ρ
1
,c,Γ))k ⊂ {z ∈ C||z| < 1} (59)

for all k > L.
Then we have conclusions (51)–(53) of Theorem 1. Moreover, if we sup-

pose that

(Spec(Rω
As , Si

ρ
1
,c,Γ))i ∩ Spec(Lω

As , Si
ρ
1
,c,Γ) = ∅ (60)

for 1 ≤ i ≤ L, then we can chose P to be linear.
Finally, the stable fiber W s

K(θ) := W ({θ} × Bs
ρ2

) is the unique analytic
invariant manifold that is tangent to the linear subspace Es

K(θ) and as a con-
sequence of Eq. (51) the stable fibers satisfy the invariance property that

F (W s
K(θ)) ⊂ W s

K(θ+ω). (61)

Remark 5. The number L introduced in 5), can always be found because the
spectral properties assumed of Lω

As imply that the norm of the shifted product
goes to 0 as k goes to infinity. Hence, we can find a value L such that it remains
below 1. For i > L, note that assumption 5) on non-resonance becomes trivial.

Remark 6. Note that if K is a whiskered embedding for F , then K satisfies
assumptions 2–5. We will prove Theorem 2, which generalizes Theorem 1, in
Sect. 4. Theorem 1 is the most natural theorem to state on the existence of
localized stable manifolds for the whiskered tori constructed in [19]. Theorem
2 yields also non-resonant manifolds, slow manifolds, and gives conditions that
allow to choose P linear, namely condition 60.

Moreover, the fact that P satisfies DP (θ, 0) = As(θ) implies that
W (Bρ

1
,ρ2) satisfies Eq. (45).

Although the statement of Theorem 2 only gives the stable manifold for a
whiskered embedding, we can use Theorem 2 to construct the unstable mani-
fold Wu((Tl)#K) by noting that the unstable manifold for the torus K((Tl)#K)
under the map F is simply the stable manifold for K((Tl)#K) under the map
F−1.
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The stable fibers W s
K(θ) also satisfy the usual graph property, namely

that W s
K(θ) is, in a neighborhood of K(θ), a graph over Es

K(θ). Indeed, since
Theorem 2 implies that

TK(θ)W
s
K(θ) = Es

K(θ) (62)

and hence if we write W = (W s,W c⊕u), where W s = Πs
K(θ)W and W c⊕u

K(θ) =
Πc⊕u

K(θ)W , then (62) implies that DsW
s(θ, 0) is invertible and hence by the

implicit function theorem W s(θ, s) is invertible in s in a neighborhood of s = 0.
Thus, if Hθ(s) := W c⊕u ◦ (W s)−1 then the point (s,H(s)) is in the image of
W , which means that W s

K(θ) is the graph of Hθ. One of the main conclusions
of Theorem 2 is that the function whose graph is the stable manifold has decay
properties.

3.1. Non-Uniqueness of (W, P )
The parameterization W and the function P of Theorems 1 and 2 are not
unique as the theorems are stated, though the image of W is unique. The ori-
gin of non-uniqueness comes from the fact that if the pair (W,P ) satisfies the
conclusions of Theorem 2 then a change of coordinates in the stable direction
will yield another solution. More precisely, if Qθ : Es

θ → Es
θ is a polynomial

bundle map satisfying Qθ(0) = 0 and DQθ(0) = Id and we let W̃θ = Wθ ◦ Qθ

and P̃θ =
(
Q−1

θ+ω ◦ Pθ ◦ Qθ

)≤L
where

(
Q−1

θ+ω ◦ Pθ ◦ Qθ

)≤L
denotes the trunca-

tion of Q−1
θ+ω ◦ Pθ ◦ Qθ up to order L then the pair (W̃ , P̃ ) is also satisfies the

conclusions of Theorem 2.
The following Lemma states that if one specifies certain conditions on

the first order term of P and the first L order terms on W determine uniquely
the higher order terms of W and P .

Lemma 5. Under the setup of Theorem 1 or Theorem 2 the fibers W ({θ}×Bs
ρ2

)
are unique in the sense that any localized analytic invariant manifold tangent
to Es

K(θ) coincides with W ({θ} × Bs
ρ2

) in a neighborhood of K(θ). Moreover,
suppose that we have polynomial bundle maps W≤L and P of degree L in s
that satisfy

F ◦ W≤L(θ, s) = W≤L(θ + ω, P (θ, s)) + o(|s|L). (63)

Then there is a unique W> such that the pair (W≤L + W>, P ) satisfies the
conclusion of Theorem 2. Thus, if we specify the solution up to order L, the
higher order terms are unique. The non-uniqueness of the low-order terms can
be classified as follows: suppose the following:

1) W (θ, 0) = K(θ)
2) DW (θ, 0) is specified
3) P (θ, 0) = 0 and DP (θ, 0) = As(θ)
4) W s

i,θ = 0, where W s
i,θ := Πs

K(θ)D
i
sW (θ, 0).

Then the parameterization W and the polynomial P are unique.
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As mentioned in Sect. 4.4, Lemma 5 is a direct consequence of our proof
of Theorem 2. A consequence of Lemma 5 is the following lemma that reduces
proving Theorem 2 for the map Fn instead of F , which is useful since we have
better estimates on Fn compared to F . Moreover, the ideas of the proof of
Lemma 6 are used to prove the result for flows in Sect. 3.2.

Lemma 6. Suppose that, for the map Fn, the pair (W,P ) satisfy the conclu-
sions of Theorem 2 and is the unique pair satisfying the hypotheses of Lemma 5.
Then there is a bundle map R that is a polynomial in the variable s and the
pair (W,R) satisfies the conclusions of Theorem 2 for the map F , in particular
we have that

F ◦ W (θ, s) = W (θ + ω,R(θ, s)). (64)

Proof. We write

R(θ, s) =
L∑

i=1

Rθ,i(s, . . . , s) (65)

and then solve for each Rθ,i by matching powers. For the zeroth and first order
terms we take R(θ, 0) = 0 and DR(θ, 0) = As(θ).

Using the fact that Rθ := R(θ, ·) is invertible in a neighborhood of s = 0
we can rewrite Eq. (64) to solve for the higher order terms

F ◦ W (θ,R−1
θ (s)) = W (θ + ω, s). (66)

This form is more convenient since we will exploit the uniqueness result of
Lemma 5 to find R such that the left satisfies the hypotheses of Lemma 5.
Note that R−1

θ : Es
θ+ω → Es

θ is a bundle map.
Taking i derivatives of Eq. (66) for i = 2, . . . L we obtain

− DF ◦ Wθ,1

(
As

θ+ω

)−1
Rθ,i((As(θ))−1)⊗i + rθ,i = Wθ,i. (67)

Where rθ,i is a term involving F, W , their derivatives, and derivatives of R of
order i − 1 or smaller. We have also used the chain rule to relate Di

(
R−1

θ

)
to

DiRθ If we project Eq. (67) on the stable subspace we obtain

− As(θ + ω)Wθ,1

(
As

θ+ω

)−1
Rθ,i((As(θ))−1)⊗i = −Πs

θrθ,i. (68)

Since all the terms on the left not involving Rθ,i are invertible, it follows
that we can solve for Rθ,i. We then conclude that F ◦ W (θ,R−1

θ (s)) satisfies
the uniqueness assumptions that W also satisfies, and thus F ◦ W (θ, s) =
W (θ + ω,Rθ(s)). �

3.2. Stable Manifolds for Flows

In this section we will extend Theorem 1 to the case of flows for lattice systems.
In [19] it was proven that a decay vector field X ∈ Cr

Γ(B) generates a
flow {St}t∈R such that St is a decay diffeomorphism for all t. More precisely,
we have
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Proposition 1. Let X be a C1 vector field on an open subset B ⊂ M and
consider the differential equation

ẋ = X(x). (69)

Let B1 ⊂ B be an open set such that d(B1,Bc) = η > 0.
Then there exist T > 0 such that for all initial conditions x0 ∈ B1 there is

a unique solution St of the Cauchy problem corresponding to Eq. (69) defined
for |t| < T . We denote by St(x0) = xt. By uniqueness, we have that St+s =
St ◦Ss when all the maps are defined and the composition makes sense. More-
over
(1) For all t ∈ (−T, T ), St : B1 → B is a diffeomorphism onto its image.
(2) If X ∈ C1

Γ(B1) then St ∈ C1
Γ(B1) for all t ∈ (−T, T ). Moreover, there

exist C, μ > 0 such that

‖DSt(x)‖Γ ≤ Ceμt (70)

for x ∈ B1 and t ∈ (−T, T ). When B = M we have T = ∞.

Note that C1
Γ functions are uniformly bounded, which is important to

point out especially in the case B is unbounded, e.g. when B = M. Without
the assumption that the vector field is uniformly bounded, we would not be
able to chose T = ∞ in the case B = M.

Now that we have Proposition 1, we explain how to extend Theorem 1 in
the case for flows. Let X be a analytic vector field with decay in C1

Γ(B1). The
notion of a whiskered torus for a flow is that we have an analytic embedding
K : Dρ → �∞(ZN ) in Aρ,c,Γ such that

St ◦ K(θ) = K(θ + tω). (71)

Or, equivalently, if one takes the derivative of Eq. (71) with respect to t at
t = 0 one obtains an equivalent equation in terms of the vector field X

X ◦ K(θ) = ∂ωK(θ) := DK(θ)ω (72)

which is the equation that is solved in [19]. We now state the definition of a
localized whiskered torus for the flow St.

Definition 5 (Whiskered tori for flows). Let ρ = {ρn|n, ρn ≥ 0} be a sequence
of radii, ω ∈ R

∞ a frequency vector, c = {cn ∈ Z
n|n ≥ 0} a collection of

lattice sites, Γ a decay function and a vector field X that is in C1
Γ(B) for

every ball B of M. Suppose that the flow St exists for all time t. We say that
K : Dρ → M ∈ Aρ,c,Γ is a whiskered embedding for the flow St when we have:
1) The tangent has an invariant splitting

TK(θ)M = Es
K(θ) ⊕ Ec

K(θ) ⊕ Eu
K(θ) (73)

where Es,c,u
K(θ) satisfy DK(θ)Es,c,u

θ = Es,c,u
θ+tω. Moreover, we also assume

2) The projections Πs,c,u
K(θ) associated to this splitting are in S1

ρ,c,Γ.
3) The splitting (31) is characterized by asymptotic growth conditions:

Define A(θ, t) := DSt(K(θ)) and

As,c,u(θ, t) := A(θ, t)|Es,c,u
θ

. (74)
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We assume that there are 0 < μ1, μ2 < 1, μ3 > 1 such that μ1μ3 < 1,
μ2μ3 < 1 and Ch > 0 such that for all n ≥ 1 θ ∈ Dρ

‖As(θ, t)As(θ, t0)−1‖ρ
1
,ρ2,c,Γ ≤ Che−μ1(t−t0)for t > t0 ≥ 0

‖Au(θ, t)Au(θ, t0)−1‖ρ
1
,ρ2,c,Γ ≤ Cheμ2(t−t0)for t < t0 ≤ 0

‖Ac(θ, t)Ac(θ, t0)−1‖ρ
1
,ρ2,c,Γ ≤ Cheμ3|t−t0|for all t0, t.

(75)

We now state the analogous invariant manifold theorem in the case of
flows, which is a straight-forward consequence of Theorem 1.

Theorem 3. Let X : M → M be a vector field belonging to C1
Γ(B) for any ball

B ⊂ M and and some decay function Γ. By Proposition 1 the flow St exists
and is a decay diffeomorphism for an interval (−T, T ), we will assume that
T = ∞.

Suppose that K : Dρ
1

→ M ∈ Aρ
1
,c,Γ((Tl)#K) is an analytic whiskered

embedding for St. Suppose that X has a complex analytic extension in a neigh-
borhood of the torus K((Tl)#K), i.e. there exists ρ2 such that X is analytic on

{z ∈ M||z − K(θ)| ≤ ρ2 for some θ with | Im (θn)| < ρ1,n for all n}. (76)

Define A(θ, t) := DSt(K(θ)) and the operators Ac,s,u(θ, t), all of which act on
the space of localized vectors �∞

c,Γ, by

Ac,s,u(θ, t) := Πc,s,u
K(θ+ω)DSt(K(θ))|Ec,s,u

K(θ)
. (77)

Since the embedding is whiskered, we know that for some integer L and time t

‖As(·, t)‖L+1
ρ
1
,c,Γ‖A−1(·, t)‖ρ

1
,c,Γ < 1. (78)

We will assume that: A(θ, t) is invertible for any θ ∈ Dρ
1

and the
norm of A−1(θ, t) is uniformly controlled in θ. Under these assumptions,
we can find analytic maps W ∈ Aρ

1
,ρ2,c,Γ(Bρ

1
,ρ2 , TK(θ)M) and

P ∈ Aρ
1
,ρ2,c,Γ(Bρ

1
,ρ2 , E

s
K(θ)). The equation

St(W (θ, s)) = W (θ + tω, P (θ, s)) (79)

holds in Bρ
1
,ρ2 and

W (θ, 0) = K(θ) (80)
P (θ, 0) = 0 DP (θ, 0) = As(θ, t). (81)

Finally, the stable fiber W s
K(θ) := W ({θ} × Bs

ρ2
) is the unique analytic invari-

ant manifold that is tangent to the linear subspace Es
K(θ) and as a consequence

of Eq. (79) the stable fibers satisfy the invariance property that

St(W s
K(θ)) = W s

K(θ+tω). (82)

Remark 7. The proof of Theorem 3 only requires that St0 satisfies the con-
ditions of Theorem 2 for a time t0. We chose to state 3 the way we did since
it uses the same notion of a whiskered torus in the case of flows for lattice
systems with localized interactions considered in [19].
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Proof. Our assumptions imply that K is a whiskered embedding for St0 for
some t0. Let (W, P̃ ) satisfy the conclusion of Theorem 2 for the map St0 . In
particular we have

St0 ◦ W (θ, s) = W (θ + t0ω, P̃ (θ, s)). (83)

Applying St to Eq. (83) gives

St0(St ◦ W (θ, s)) = (St ◦ W )(θ + t0ω, P̃ (θ, s)). (84)

By the same argument given in Lemma 6 we can find a polynomial P in s such
that

St ◦ W (θ, s) = W (θ + tω, P (θ, s)). (85)

�

4. Proof of Theorem 2

We will prove Theorem 2 for Fn for fixed n > 0 instead of F itself. The reason
we do this is because we have better estimates on DFn. For example, we are
assuming that

Spec(Lω
As) ⊂ {z ∈ C : |z| < 1}. (86)

And so by the Spectral Radius Formula

‖ (Lω
As)n ‖ρ,c,Γ ≤ Cε(ρ(Lω

As) + ε)n. (87)

However, when comparing the map Fn and F note that

Lω
As(Fn) = (Lω

As(F ))n
. (88)

Hence it follows that Lω
As(Fn), and therefore As(Fn), is a contraction.

Moreover, the stable manifold of the whiskered torus K is the same for
the map Fn and F , that is

W s
K(θ)(F

n) = W s
K(θ+nω)(F ). (89)

Equation (89) is a consequence of Corollary (6) in Sect. 3.1.
We will write the solution as

W (θ, s) = W≤ + W> =
L∑

i=0

Wθ,i(s, . . . , s) + W>

P (θ, s) =
L∑

i=0

Pθ,i(s, . . . , s)

(90)

where Wθ,i, Pθ,i are homogeneous polynomials in s, which is to say that they
are i-multi-linear functions in s and we also assume W> vanishes up to order
L in s.
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4.1. Finding the Low-Order Terms

We first find W≤ and P by matching powers in this section and then in
Sects. 4.2 and 4.3 we find W> using a fixed point argument.

Proposition 2. Assuming the hypotheses of Theorem 1, we can find polynomials
in s

W≤ =
L∑

i=1

Wi,θ(s, . . . , s)

P =
L∑

i=1

Pi,θ(s, . . . , s).

(91)

where Wi,θ, Pi,θ are homogeneous polynomials of degree i in Si
ρ
1
,c,Γ. W≤

and P are of degree not larger than L, are in Aρ
1
,ρ2,c,Γ(Bρ

1
,ρ2 , TK(θ)M)

and Aρ
1
,ρ2,c,Γ(Bρ2 , E

s
K(θ)), respectively for any ρ2 > 0 and ρ

1
satisfying

K ∈ Aρ
1
,c,Γ and

F (W≤(θ, s)) = W≤(θ + ω, P≤(θ, s)) + o(|s|L). (92)

Finally, we also have that

W (θ, 0) = K(θ) (93)
P (θ, 0) = 0 DP (θ, 0) = As(θ). (94)

To prove Proposition 2 we will use the following

Lemma 7. Let A,B : (Tl)#K × �∞
c,Γ → �∞

c,Γ be in S1
ρ,c,Γ and consider the oper-

ators Lω
B , Rk

A and Lω
k,A,B acting on the space Sk

ρ,c,Γ that are defined by

(Lω
BM)(θ)(x1, . . . , xk) = B(θ)M(θ − ω)(x1, . . . , xk)

(Rk,ω
A M)(θ)(x, . . . , xk) = M(θ)(x1, . . . , A(θ − ω)xk, . . . , xk)

(Lω
k,A,BM)(θ)(x1, . . . , xk) = B(θ)M(θ − ω)(A(θ − 2ω)x1, . . . , A(θ − 2ω)xk).

(95)

We have the following spectral inclusion

Spec(Lω
k,A,B , Sk

ρ,c,Γ) ⊂ Spec(Lω
B , Sk

ρ,c,Γ)Spec(R1,ω
A , Sk

ρ,c,Γ)k. (96)

Moreover, we also have that 1 /∈ Spec(Lω
k,As,(Ac⊕u)−1).

Remark 8. Lemma 7 is an important way in which our proof differs from
[8]. In the present work, Lemma 7 states that we are able to deduce
spectral properties about Lω

k,A,B knowing the spectral properties of Lω
B

and R1,ω
A .

In contrast, since the main theorems in [8] are stated for fixed points and
normally hyperbolic invariant manifolds and not whiskered tori, the analogue
of Lemma 7 used in [8] is easier to state. Indeed, Proposition 3.2 in [8] relates
the spectrum of certain operators LB , Lk,A,B and Rk

A in terms of the spectrum
of A and B directly. More specifically, the operators considered in [8] do not
depend on θ, and this allows [8] to prove Spec(Lk,A,B) ⊂ Spec(B)( Spec(A))k.
In our case one cannot directly relate the spectrum of Lω

k,A,B to the spectrum of
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A and B. Nevertheless, Lemma 7 in the present paper is sufficient for our pur-
poses since the crucial property that is needed to prove an inductive result such
as Proposition 2 both in this paper and in [8] is that 1 /∈ Spec(Lω

k,As,(Ac⊕u)−1).

Proof of Lemma 7. The fact that the range of Lω
B ,Rk,ω

B ,Lω
k,A,B lies in Sk

ρ
1
,c,Γ

follows from Lemma 2. Notice that Lω
n,A,B = Lω

BR1,ω
A · · · Rk,ω

A , and moreover
the operators Lω

B ,Rk,ω
A commute. Moreover, Spec(Rk,ω

A ) = Spec(R1,ω
A ). Hence

using the general fact that Spec(AB) ⊂ Spec(A)Spec(B) for any commuting
elements of a Banach algebra [34], we obtain

Spec(Lω
k,A,B , Sk

ρ,c,Γ) ⊂ Spec(Lω
B , Sk

ρ,c,Γ)Spec(R1,ω
A , Sk

ρ,c,Γ)k.

Finally, to show that 1 /∈ Spec(Lω
k,As,(Ac⊕u)−1), it suffices to show, by (96)

that

λc⊕u �= λs
1 · · · λs

k (97)

where λc⊕u ∈ Spec(Lω
(Ac⊕u)−1 , Sk

ρ,c,Γ) and λs
i ∈ Spec(R1,ω

As , Sk
ρ,c,Γ),

i = 1, . . . , k. Since we are working with Fn and not F , we have λs
i ≤ Ch(μ1)n

and 1
2Ch(μ3)n ≤ λc⊕u Thus if λc⊕u = λs

1 · · · λs
k, then 1

2Ch(μ3)n ≤ Ck
h(μ1)kn, that

is

1
2Ck+1

h

≤ (μ3μ
k
1)n. (98)

However, (μ3μ
k
1)n → 0 as n → ∞ since μ1μ3 < 1, which is a contradiction. �

Proof of Proposition 2. That we can solve for the i = 0, 1 terms is, as we now
explain, a consequence of our assumption that K is a whiskered embedding.
More precisely, to solve for Wθ,0, Pθ,0 we substitute (90) into (51) and evaluate
at s = 0, and we obtain

F ◦ Wθ,0 = Wθ+ω,0 ◦ Pθ,0. (99)

Which is solved by taking Wθ,0 = K(θ) and Pθ,0 = 0.
To solve for Wθ,1, Pθ,1 we differentiate (51) at a point (θ, 0) to obtain

DF ◦ Wθ,1 = Wθ+ω,1Pθ,1. (100)

To solve (100) it suffices to take Wθ,1(s) = (s, 0, 0) and Pθ,1 = As(θ), both
of which are in S1

ρ
1
,c,Γ. Note that this choice for Wθ,1 is not unique since,

for instance, we could have also chosen Wθ,1(s) = σ(s, 0, 0), for non-zero real
number σ.

For i > 1, we will solve for Wi,θ, Piθ inductively. Taking the ith derivative
of (51) we obtain

DF (K(θ))Wθ,i + ri = Wθ+ω,iP
⊗i
θ,1 + Wθ+ω,1Pθ,i

= Wθ+ω,i(As(θ))⊗i + Pθ,i (101)
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where ri is a polynomial expression in Wθ,j , Pθ,j , j ≤ i−1, and F and its deriv-
atives up to order i. The fact that each term in (101) belongs to Sk

ρ
1
,c,Γ is a

consequence of Lemma 2. We will consider the projections of the equations onto
Es

K(θ) and Ec
K(θ)⊕Eu

K(θ). If we let W s
i,θ = Πs

K(θ)Wi,θ,W
c⊕u
i,θ = Πc

K(θ)⊕Πu
K(θ)Wi,θ

and similarly for Pi and ri, then the projected equations become

As(θ)W s
i,θ − W s

i,θ+ω(As(θ))⊗i − Pi,θ = −rs
i

Ac⊕u(θ)W c⊕u
i,θ − W c⊕u

i,θ+ω(As(θ))⊗i = −rc⊕u
i .

(102)

The first of these equations can be solved by taking W s
i,θ = 0 and P s

i,θ =
ri, while the second equation requires a bit more work. We first start by rewrit-
ing the equation as

LAc⊕uW c⊕u
i,θ − Lω

i,As,IdW c⊕u
i,θ = −rc⊕u

i . (103)

Thus, if we show that LAc⊕u − Lω
i,As,Id is invertible then we can con-

clude that choosing W s
i,θ = 0 allows us to uniquely determine W c⊕u

i,θ . Using
the general fact that ((LB)−1W )(θ) = (B(θ))−1W (θ) we have

LAc⊕u − Lω
i,As,Id = LAc⊕u

(
Id − Lω

i,(As),(Ac⊕u)−1

)
. (104)

Thus, by Lemma 7 and the assumptions of Theorem 2 imply that
1 /∈ Spec(Lω

i,(As),(Ac⊕u)−1), it follows that LAc⊕u − Lω
i,As,Id is invertible. �

4.2. Formulation as a Fixed Point Problem

In this section we will use the fact that we can write W = W≤ + W>, where
W> vanishes up to order L in the variable s. We will solve an equivalent form
of (51), namely if we let G(θ, s) = F (K(θ) + s), then we will solve

G(θ, W̃ (θ, s)) = G(θ, 0) + W̃ (θ + ω, P (θ, s)). (105)

Where W̃ (θ, 0) = 0 for all θ. Note that W̃ solves (105) if and only if W :=
K(θ) + W̃ solve (51). The advantage of working with (105) is that there is a
nice scaling of this equation that is not present in (51). Namely if we consider
Gδ(θ, s) := 1

δ G(θ, δs) and similarly for W̃ and P we have that (105) holds in
a δ neighborhood Bρ

1
,δ of the zero section of Es if and only if

Gδ(θ, W̃ δ(θ, s)) = Gδ(θ, 0) + W̃ δ(θ + ω, P δ(θ, s)) (106)

holds in unit ball bundle Bρ
1
,1 of Es. This is motivated by the following obser-

vation: we only want to scale only in the directions not tangent to the torus,
that is we only want to scale the s variable. This has a natural interpretation
for G, W̃ and P since they formally depends on s and θ and we can there-
fore scale only the s variable, but since F is formally defined on the entire
phase space, any scaling F δ of F will results in scaling both s and θ in the
composition F δ ◦ W δ.

This choice of scaling also has the following crucial property: let
N(θ, s) := G(θ, s) − G(θ, 0) − DsG(θ, 0)s. Then ‖Di

sN‖C0(Bρ1,1) → 0 as δ → 0
for any i = 0, 1 . . .. This will allow us to obtain better estimates when solving
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the fixed point equation we consider. Note also that the domain of analyticity
of G is Bρ

1
,ρ2 while the domain of analyticity was

{z ∈ M||z − K(θ)| ≤ ρ2 for some θ with | Im (θn)| < ρ1,n for all n}.

Note that solving (51) up to order L is equivalent to solving (105) up
to order L. Thus we can assume that we have W̃≤ and P , polynomials in s
that solve (105) up to order L. Now we will write a fixed point equation for
a function W̃> such that W̃ := W̃≤ + W̃> solves (105). To this end, we note
that we have the following Taylor expansion for G

G(θ, W̃ (θ, s)) = G(θ, 0) + DsG(θ, 0)(W̃≤ + W̃>) + N(θ, W̃≤ + W̃>). (107)

Assuming that W̃ solves (105) then

G(θ, 0) + W̃ (θ + ω, P (θ, s))

= G(θ, 0) + DsG(θ, 0)(W̃≤ + W̃>) + N(θ, W̃≤ + W̃>). (108)

Rearranging terms and defining Qω := (Id, P ) ◦ (Tω, Id) we have

DF (K(θ))W̃> − W̃> ◦ Qω

= −N ◦ (0, W̃≤ + W̃>) − DF (K(θ))W̃≤ + W̃≤ ◦ Qω. (109)

If we define the operator S by

SH := DF (K(θ))H − H ◦ Qω (110)

then the idea to formulate the problem of finding W̃> via a fixed point argu-
ment becomes clear: If we can show that S is invertible then (109) becomes

W̃> = S−1[−N ◦ (θ, W̃≤ + W̃>) − DF (K(θ))W̃≤ + W̃≤ ◦ Qω]. (111)

4.2.1. The Invertibility of S. We start by defining an appropriate space of
functions in which W> lies to guarantee that S is invertible. Given a decay
function Γ and an positive integer � we will consider the norm on functions
that vanish up to order l in the variable s

‖H‖Ω
ρ

c,Γ,�
:= max

0≤i≤�+1
‖Di

sH‖C0
c,Γ(Bρ,1) (112)

and consider the space

Ω
ρ

c,Γ,� =

{
H : Bρ,1 → M : H is analytic on Bρ,1,

Dk
s H(, θ, 0) = 0 for k ≤ 0 ≤ � and ‖H‖Ω

ρ

c,Γ,�
< ∞

}
(113)

where by Ds we mean the derivative with respect to the s component.
Before showing that S is invertible we need to state a Proposition stating

that the composition of two functions in Ω
ρ

c,Γ,� is also in Ω
ρ

c,Γ,�. Proposition 3 is
a special case of the more general result stated for localized Cr functions with
decay in [16]. In the following proposition the Cr

ρ
1
,ρ2,c,Γ is defined in [16]. In

Sect. 2 we defined analytic and C1 function spaces, though did not explicitly
define Cr function spaces. In [16], Cr spaces are considered, and without going
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into the details, we mention that one has the space Cr
ρ
1
,ρ2,c,Γ with a norm given

by

‖f‖Cr
ρ1,ρ2,c,Γ

:= max
i=1,...,r

sup
(θ,s)∈Bρ1,ρ2

‖Dif‖C0
ρ1,ρ2,c,Γ

and refer the reader to Sects. 2.7–2.9 of [16] for details.

Proposition 3. If H ∈ Ω
ρ

c,Γ,� and P is an analytic polynomial bundle map,
P ∈ Cr

ρ
1
,ρ2,c,Γ and P (Bρ

1
,ρ2) ⊂ Bρ,1, then H ◦ P ∈ Ω

ρ

c,Γ,� and

‖H ◦ P‖Ω
ρ

c,Γ,�
≤ Cr(1 + ‖P‖r

Cr
ρ1,ρ2,c,Γ

)‖H‖Ω
ρ

c,Γ,�
(114)

�

As the following lemma shows, the operator S defined in Eq. (110) is
invertible on Ω

ρ

c,Γ,�.

Lemma 8. Under the assumptions of Theorem 1, the operator S preserves the
space Ω

ρ
1

c,Γ,L (i.e. x ∈ Ω
ρ
1

c,Γ,L implies that S(x) ∈ Ω
ρ
1

c,Γ,L). Moreover, the map
S : Ω

ρ
1

c,Γ,L → Ω
ρ
1

c,Γ,L is a bounded invertible operator, with a bounded inverse
and ‖S−1‖ can be bounded by a constant independent of the scaling parame-
ter δ.

Proof. We first need to check that S(H) ∈ Ω
ρ
1

c,Γ,L if H ∈ Ω
ρ
1

c,Γ,L. It is
clear that Di

s(SH)(θ, 0) = 0 for i = 1, . . . , L since H has this property
and Q(θ, 0) = 0. Moreover, we claim that the Ω

ρ
1

c,Γ,L norm of each term
defining S, namely DF (K(θ))H and H ◦ Qω, are finite. Indeed,
‖DF (K(θ))H‖

Ω
ρ1
c,Γ,L

< ∞ since the multiplicative factor of DF (K(θ)) is inde-
pendent of s and ‖DF (K(θ))‖ρ

1
,c,Γ < ∞.

For the H◦Qω term note that Qω(θ, 0) = 0 and DQω(θ, 0) = As(θ), which
is a contraction. Hence, for a small enough scaling parameter, the image of Qω

lies in the domain of H. and hence Proposition 3 implies that H ◦Qω ∈ Ω
ρ
1

c,Γ,L.
To prove the invertibility of S, we solve the equation

SH = η (115)

where H is the unknown and η is known. Equation (115) is equivalent to

H = A(θ)−1H ◦ Qω + A(θ)−1η. (116)

At least formally, we see that

H =
∞∑

j=0

A(θ)−j+1η ◦ Qj
ω (117)

is a solution. We justify that (117) is a solution by showing that
∞∑

j=0

‖A−(j+1)η ◦ Qj
ω‖

Ω
ρ1
c,Γ,L

≤ C‖η‖
Ω

ρ1
c,Γ,L

. (118)
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By the Faa-di-Bruno formula we have

Dk
s (η ◦ Qj

ω) =
k∑

i=0

∑

k1+···+ki=k

σi,k
k1,...,ki

([Di
sη] ◦ Qj

ω)Dk1
s Qj

ω · · · Dki
s Qj

ω (119)

where σi,k
k1,...,ki

are explicit combinatorial coefficients. Using (119) with k =
L+1 we will obtain the desired estimates. First, we need to estimate each term
and factor appearing in (119). Since Qω(θ, 0) = 0 and DQω(θ, 0) = As(θ) we
can, by our scaling assumptions, choose a scaling parameter and ε > 0 small
enough so that both

‖DQω‖C0
c,Γ(Bρ1,1) ≤ ‖As‖ρ

1
,c,Γ + ε < 1 (120)

and

‖DQω‖L+1
C0

c,Γ(Bρ1,1)
‖A−1‖ρ

1
,c,Γ ≤ (‖As‖ρ

1
,c,Γ + ε)L+1‖A−1‖ρ

1
,c,Γ (121)

Recall that (‖As‖ρ
1
,c,Γ)L+1‖A−1‖ρ

1
,c,Γ < 1 by our assumption on L. Since we

want estimates on DkQj
ω we use the fact that Q is a polynomial in s to say

that, for (θ, s) ∈ Bρ
1
,ρ2

‖DkQj
ω(θ, s)‖ρ

1
,c,Γ ≤ Ck(‖As‖ρ

1
,c,Γ + ε)j , (122)

for k = 0, 1, . . . , L and j = 0, 1, 2, . . . Now we need to estimate the factor
(Di

sη) ◦ Qj
ω. Since Di

sη(θ, 0) = 0 for i = 0, 1, . . . , L we have, by Taylor’s Theo-
rem

‖Di
sη‖C0

ρ1,ρ2,c,Γ
≤ C‖DL+1

s η‖C0
ρ1,1,c,Γ

ρL−k
2 . (123)

From (122) we deduce that the image of Bρ
1
,1 under the map Qj

ω is contained
in Bρ

1
,ρ2 where ρ2 = (‖A‖ρ

1
,c,Γ + ε)j . From (122) and (123) we deduce that

‖(Di
sη) ◦ Qj

ω‖C0
ρ1,1,c,Γ

≤ C‖DL+1
s η‖C0

ρ1,1,c,Γ
‖(‖A‖ρ

1
,c,Γ + ε)(L+1−i)j . (124)

Finally using (119), (122) and (124) we have

‖DL+1(A−(j+1)ηQj
ω)‖C0

ρ1,1,c,Γ

≤ C

L+1∑

i=0

‖DL+1
s η‖C0

ρ1,1,c,Γ
‖‖A−1‖j+1

ρ
1
,c,Γ(‖A‖ρ

1
,c,Γ+ε)(L+1−i)j(‖As‖ρ

1
,c,Γ+ε)ij

≤ C‖DL+1
s η‖C0

ρ1,1,c,Γ
[‖A−1‖ρ

1
,c,Γ(‖A‖ρ

1
,c,Γ + ε)L+1]j . (125)

Since (‖As‖ρ
1
,c,Γ)L+1‖A−1‖ρ

1
,c,Γ < 1 we conclude that (118) holds. �

4.3. Solving the Fixed Point Equation (111)

Now that we have shown that S is invertible, recall that we wish to solve the
equation

W̃> = T (W̃>) (126)
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where T is defined by

T (W̃>) = S−1[−N ◦ (θ, W̃≤ + W̃>) − DF (K(θ))W̃≤ + W̃≤ ◦ Qω]. (127)

The equation (127) is equivalent to the invariance equation (54) for
W = W≤ + W>, see (111). We now show that T is a contraction in Ω

ρ
1

c,Γ,L

defined in (113)

Lemma 9. Under the assumptions of Theorem 1 and under the scaling assump-
tions, T sends the closed ball of radius ρ2

3 , B ρ2
3

, of Ω
ρ
1

c,Γ,L into itself and is a

contraction. Therefore T has a fixed point W> in the closed unit ball of Ω
ρ
1

c,Γ,L.

Proof. First we show that T maps points in B ρ2
3

to Ω
ρ
1

c,Γ,L. The more refined
estimate that T maps B ρ2

3
to itself will be proven later. By choosing a small

enough scaling parameter, we can assume that W̃≤ is arbitrarily close to the
immersion into the stable subspaces Es

K(θ) and Qω to be arbitrarily close to
As. Thus if W̃> is in B ρ2

3
, then the image of W̃≤ + W̃> lies in the ball of

radius Bρ2 , and recall that N(θ, s) is assumed to be analytic on Bρ
1
,ρ2 . Thus,

by Proposition 3 we can conclude that N ◦ (θ, W̃≤ + W̃>) is in Ω
ρ
1

c,Γ,L.
The other terms DF (K(θ))W̃≤ is in Ω

ρ
1

c,Γ,L because the multiplying factor
of DF (K(θ)) does not depend on s, and since Qω(θ, 0) = 0 and DQω(θ, 0) =
As(θ) it follows that W≤ ◦ Qω is also in Ω

ρ
1

c,Γ,L.
We show that T is a contraction. For W̃> and W̃> + Δ in the closed

until ball of Ω
ρ
1

c,Γ,L. We have the increment formula

T (W̃> + Δ) − T (W̃>) =

1∫

0

d

dτ
[T (W̃> + τΔ)]dτ

= −
1∫

0

S−1DsN(θ, W̃≤ + W̃> + τΔ)Δdτ. (128)

Taking the (L + 1)-derivative of (128) in the s variable we obtain

‖T (W̃> + Δ) − T (W̃>)‖
Ω

ρ1
c,Γ,L

≤ C‖N‖CL+2
s

‖Δ‖
Ω

ρ1
c,Γ,L

. (129)

Since ‖N‖CL+2
s

→ 0 as the scaling parameter goes to zero, we conclude that
T is a contraction for sufficiently small values of the scaling parameter.

Now we show that T maps B ρ2
3

⊂ Ω
ρ
1

c,Γ,L into itself. For ‖W̃>‖
Ω

ρ1
c,Γ,L

≤ 1
we have

T (W̃>) = T (0) + (T (W̃>) − T (0))

= (S−1[−G(θ, W̃≤) + G(θ, 0) + W̃≤ ◦ Qω]) + (T (W̃>) − T (0)).
(130)

Since ‖S−1‖ is independent of the scaling parameter, we can say that the first
term can be made as small as we wish with a small enough scaling parameter,
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and the second term has norm smaller than ρ2
3 since W̃> does and T is a

contraction. �

4.4. Proof of Lemma 5

In this section we prove the Lemma 5 stated in Sect. 3.1. In the proof of
Proposition 2, we saw that there was a lack of uniqueness in solving for Wi,θ.
However, once we chose Wi,θ and Pi,θ for 1 = 1, . . . , L, then using a fixed point
argument we constructed W> such that the pair (W,P ) where W is given by

W =
L∑

i=1

Wi,θ + W> (131)

satisfies the conclusions of Theorem 2. Since W> was constructed using fixed
point argument, it is unique once the low order terms of W≤ and P have
been specified. That conditions 1–4 of Lemma 5 guarantee that W and P thus
follows from the proof of Proposition 2 and the fact that W> is unique.

Now we want show the uniqueness of the manifold itself. Let W be the
analytic solution of Eq. (51) constructed from Theorem 2 and write

Wθ = (W s
θ ,W c⊕u

θ ) = (Πs
K(θ)Wθ,Πc⊕u

K(θ)Wθ). (132)

Moreover, consider the Taylor series up to order L and write Wθ =
∑L

i Wi,θ +
W>. If we suppose that W s

1,θ = Πs
θ and W s

i,θ = 0 for i = 2, . . . , L, then the
proof of Proposition 2 implies that this choice of W s

i,θ, i = 1, . . . , L determines
uniquely W c⊕u

i,θ for i = 1, . . . , L, and the proof of Lemma 126 then implies that
W> is also determined uniquely by W s

i,θ, i = 1, . . . , L.
We use this observation to prove that the manifold W ({θ} × Bs

1) con-
structed in the proof of Theorem 1 is unique among all manifolds that are
invariant under F , tangent to Es

K(θ) and admit an analytic parameterization
that decay like Γ. Indeed, suppose that Vθ ∈ Aρ

1
,ρ2,c,Γ is an embedding of an

invariant manifold, the image of DVθ(0) is Es
K(θ) and the dependence on θ is

analytic. If we write Vθ = (V s
θ , V c⊕u

θ ), then by the implicit function theorem
we know that V s

θ is invertible in a neighborhood of the origin. Thus if we let
H = V c⊕u

θ ◦ (V s
θ )−1, then the image of Vθ is the same as the graph of H. Since

the graph of H is invariant we can conclude that

F c⊕u ◦ (Id,H) = H ◦ F s ◦ (Id,H). (133)

Thus, it follows that Eq. (51) holds if we take W = (Id,H) and R = F s ◦ W .
Moreover, W = (Id,H) satisfies W s

1,θ = Πs
θ and W s

i,θ = 0 for i = 2, . . . , L and
hence W coincides with the solution given in the proof of Theorem 1.
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[9] Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for
invariant manifolds. III. Overview and applications. J. Differ. Eq. 218(2), 444–
515 (2005)

[10] Delshams, A., de la Llave, R., Seara, T.M.: A geometric mechanism for diffusion
in Hamiltonian systems overcoming the large gap problem: heuristics and rigor-
ous verification on a model. Mem. Am. Math. Soc. 179(844), viii+141 (2006)

[11] Dauxois, T., Peyrard, M., Willis, C.R.: Localized breather-like solution in a
discrete Klein–Gordon model and application to DNA. Phys. D 57(3–4), 267–
282 (1992)

[12] Dauxois, T., Ruffo, S., Arimondo, E., Wilkens, M. (eds.): Dynamics and ther-
modynamics of systems with long-range interactions. Lecture Notes in Physics,
vol. 602. Springer, Berlin, 2002. Lectures from the conference held in Les Hou-
ches, February 18–22 (2002)
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