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Abstract Irrigation water requirements (IWR) are expected to be influenced by changes in the
climate variables driving water availability in the soil-plant system. Most of the agricultural
surface areas of the heterogeneous Swiss Rhone catchment are already exposed to drought.
Aiming at investigating future pressures on the water resources to fill the growing gap between
rain-fed and optimum water supply for cultivation, we downscaled and bias corrected 16
regional climate scenarios from the ENSEMBLES dataset for the period 1951–2050 using a
Quantile Mapping methodology calibrated with daily observations from 5 contrasting weather
stations. The data reveal an increased evaporative demand over the growing season for almost
all stations and scenarios (2021–2049 vs. 1981–2009). The picture is less clear for precipita-
tion, with a projected decrease or increase depending on the scenario, station and month. The
main results indicate that bias correction of climate scenarios not only reduces the remaining
error between baseline and observations but also enhances the change signal in seasonal IWR
estimates. This is due to a higher and more realistic sensitivity of IWR to the atmospheric
water budget, the slope of this relationship being steeper in the observations than in the
uncorrected data. The seasonal cycle of the IWR change signal shows different sensitivities
and climate drivers across crops (grassland and maize) and stations, but a consistent trend
towards an increase despite uncertainty. This increased water demand will have to be
reconciled with possibly decreased or shifted future water availability from glacier and snow
melt.
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1 Introduction

The European Alps are considered the ‘water tower of Europe’ because they act as the most
important freshwater supply of continental Europe (Viviroli and Weingartner 2008, Beniston
et al. 2011). At the same time, the Alpine region is an area extremely sensitive and vulnerable
to the influences of global changes, including global warming and changing human interven-
tions (Steininger and Weck-Hannemann 2002). In order to maintain the structure and multi-
functionality of alpine regions, it is essential to understand the sensitivities to projected future
changes, in different sectors involved in the utilization of alpine resources such as land and
water. There are a number of potential impacts on the agricultural sector in the course of future
climate change. For instance, Gobiet et al. (2013) expect about 0.25 °C warming per decade
until the mid of the 21st century and accelerated 0.36 °C warming per decade in the second half
of the century under the A1B greenhouse gas emission scenario (Nakicenovic et al. 2000).
They further expect that warming will probably be associated with changes in the seasonality
of precipitation, global radiation, and relative humidity, and more intense precipitation ex-
tremes and flooding potential in the colder part of the year. The conditions of currently record
breaking warm or hot winter or summer seasons, respectively, may become normal at the end
of the 21st century, and there is indication for droughts to become more severe in the future
(IPCC, 2012).

In the Swiss Rhone catchment, irrigation is an important agricultural issue because of the
rain-shadow effect during the summer. Over 400 mm water are currently required per year for
grassland irrigation in the driest area of the catchment. As summarized in Fuhrer et al. (2013),
irrigation has been the traditional response to the dry conditions, with the largest fraction
allocated to grasslands used for livestock, followed by orchards and vineyards. Increasing use
of irrigation to maintain crop, pasture and livestock productivity could generate more compe-
tition between different users of possibly declining water resources during the summer months
because of climate change. In order to design appropriate adaptation measures to cope with
these conflicting situations, improved estimates of changes in irrigation water requirements
(IWR) at the catchment and sub-catchment scales are required.

The present study is part of a project that aims at quantifying future potential IWR for the
Swiss Rhone catchment, which are expected to be influenced by changes in the climate
variables driving water availability in the soil-plant system (Fuhrer et al. 2013). The atmo-
spheric input variables for the soil water balance calculations were extracted from state-of-the-
art regional climate model (RCM) simulations from the EU-FP6 project ENSEMBLES. The
associated uncertainties are taken into account as far as possible by analyzing an appropriate
ensemble of RCM projections until the mid of the 21st century. Although the use of RCMs is
favorable compared to global climate models (GCMs), as the former are able to resolve
physical processes at finer spatial and temporal scales, they still do not fully capture the
orography and associated effects on meteorological elements in narrow alpine valleys and
feature substantial errors in reproducing present-day climate conditions (e.g., Frei et al. 2003;
Hagemann et al. 2004; Suklitsch et al. 2008, 2011). Since errors in climate simulations
substantially affect the assessment of climate change impacts (e.g., Fowler et al. 2007), it is
a crucial step to further adjust the output of RCMs to local climate conditions at specific
meteorological stations especially in the Alpine region with its large topographic variability. In
this study, this is achieved by applying a distribution based empirical-statistical error correction
and downscaling approach, thus combining both the advantages of dynamical and empirical-
statistical downscaling methods.

Using such adjusted RCM outputs as inputs for an algorithm computing crop and soil
specific IWR at the local scale with a daily time step, this study aims at investigating the effect
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of statistical post-processing of RCM output on the error in simulating present-day IWR and
further analyzing its impact on the plausibility of the projected IWR changes.

2 Data and methods

First we present the climate data as well as the scenario downscaling methodology
aiming at minimizing the remaining error between baseline and observations for a
reference period up to present-day conditions. Then we describe the selected stations
and chosen dataset nomenclature. Finally we give a short insight into the impact
modeling for which the corrected climate scenarios serve as input and introduce the
uncertainty analysis of irrigation projections.

2.1 Climate scenarios and required variables

The study is based on daily outputs from 16 RCMs using boundary conditions from 8
GCMs made available by the EU-FP6 project ENSEMBLES (http://www.ensembles-eu.
org) on a 25×25 km grid. The ensemble mainly addresses uncertainty in boundary
conditions (i.e. choice of the driving GCM) and RCM formulation (Boberg et al. 2010).
The ENSEMBLES multi-model dataset can be regarded as the currently most compre-
hensive information source for the evolution of climate over Europe in the 21st century.
The robustness of the ensemble has been demonstrated by Heinrich et al. (2013), who
showed that it covers the entire range of driving GCM uncertainty known from the
much larger CMIP3 ensemble (Meehl et al. 2007). All simulations are based on the
IPCC A1B greenhouse gas emission scenario (Nakicenovic et al. 2000). Compared with
other scenarios, the A1B scenario only leads to marginally different climate projections
over Europe during the first half of the 21st century (Prein et al. 2011); it can therefore
be regarded as representative of the climate that is expected until 2050, at least for the
three widely used emission scenarios from the IPCC AR4 report (A1B, B1, A2) (IPCC,
2007). In contrast, for the late-century (not analyzed here), the other two main emission
scenarios from the IPCC AR4 report, namely B1 and A2 (IPCC, 2007), lead to
significantly lower (B1) or higher temperatures (A2).

From the full set of 22 available simulations in ENSEMBLES, we extracted 16 scenarios
(see legend of Fig. 1b) as a homogeneous set in terms of starting date and available variables of
time series from 1950 to 2050. Note that for simplicity, in the following we refer to “scenarios”
as the realizations of the emission scenario A1B calculated by the 16 RCMs. Daily cumulated
precipitation (P), average 2-m air temperature, global radiation, relative humidity, wind and
atmospheric pressure at sea level were needed for the computation of the reference evapo-
transpiration (ET0).

Recently, a new set of regional climate simulations became available from the
EURO-CORDEX initiative (Jacob et al. 2013). These simulations for Europe downscale
the new CMIP5 global climate projections (Taylor et al. 2012) and the new represen-
tative concentration pathways (RCPs) (van Vuuren et al. 2011). At the time of the
analysis conducted in this paper, the EURO-CORDEX simulations were not yet avail-
able. However, a first analysis of the EURO-CORDEX results given in Jacob et al.
(2013) suggests that the large-scale patterns of changes in the EURO-CORDEX sim-
ulations are similar to those of ENSEMBLES. Therefore we expect that our conclusions
would qualitatively also hold if the study were repeated based on the EURO-CORDEX
climate simulations.

Climatic Change (2014) 127:521–534 523

http://www.ensembles-eu.org/
http://www.ensembles-eu.org/


2.2 Bias correction and downscaling of regional climate scenarios to the station scale

As RCMs are known to suffer from systematic errors (e.g., Frei et al. 2003; Hagemann et al.
2004; Suklitsch et al. 2008, 2011), an empirical-statistical bias correction and downscaling
approach via Quantile Mapping (QM; e.g., Dobler and Ahrens 2008; Piani et al. 2010; Yang
et al. 2010; Themessl et al. 2011a, b; Dosio et al. 2012) was applied to adjust and refine RCM
results towards the local-scale observations, using the daily observational data from 5
MeteoSwiss weather stations (Fig. 1a). The bias correction for this study was performed
within the framework of the EU-FP7 project ACQWA (http://www.acqwa.ch, Beniston et al.
2011) and is a purely empirical implementation of QM on daily basis, identical to the method
described by Themessl et al. (2011a, b) for temperature and precipitation, and by Wilcke et al.
(2013) for additional meteorological variables. It was already applied in other climate change
impact studies (Finger et al. 2012; Heinrich and Gobiet 2012, Fuhrer et al. 2013). QM adapts
simulated time series by adjusting the empirical cumulative frequency distributions of the
selected daily climate variables to the observed frequency distribution of the 29-year calibra-
tion period 1981–2009. This means that the bias-corrected model data have the same distri-
butional properties as the observed data over the calibration period, but the chronological
sequence of weather patterns originates from the RCM. The effective resolution of the RCMs
(e.g., Denis et al. 2002) was taken into account by considering the 4 grid cells nearest to the
location of each station. As bias correction was applied to the entire 100-year period 1951–
2050, we extrapolated the correction term of the most extreme value from the calibration
period, as applied in Themessl et al. (2011a, b), to allow values beyond the calibration range.
Compared to other bias correction methods like the delta change or scaling approaches (e.g.,
Deque 2007), QM has the advantage to be sensitive to some degree to different meteorological
situations by adjusting the entire distribution, and not only the mean of a variable. Implicitly,
changes in the temporal variability and extremes simulated by the climate model remain in the
date also after bias correction, although there are only very few evaluation studies available
regarding extremes (e.g., very briefly in Themessl et al. 2011a, b). In addition, some restric-
tions apply regarding very small scale spatial variability, if QM is used not only as bias
correction method, but also as downscaling method (Maraun 2013). However, Themessl et al.
(2011a, b) compared several bias correction methods and identified QM as being superior, and
Gudmundsson et al. 2012 showed that the parameter-free implementation of QM used here
outperforms other implementations.
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Fig. 1 a Location of the 5 selected MeteoSwiss weather stations within Canton Valais and Switzerland’s
topography. b Scatter plot: 29-year mean climate change signal (represented by P & ET0) between 1981–2009
and 2021–2049 (March to October sums [mm]), spread across stations (symbols), and scenarios (colors)
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2.3 Station selection, observations, and dataset nomenclature

Observed data for 1981–2009 are referred to in the following as “Obs”, scenario data extracted
from the bias-corrected time series for this same period as “Base”, and for the 29-year period
2021–2049 as “Future”. With “Error” we mean the difference “Base - Obs” and with
“Change” the difference “Future - Base”. The same nomenclature is used for climate impact
simulation results driven with these observed and scenario data. Scenario data extracted from
the original ENSEMBLES time series before bias-correction are referred to as “uncorrBase”,
“uncorrFuture”, “uncorrError” and “uncorrChange”. Inter-annual variability is not analyzed
here, i.e. we refer systematically to the 29-year mean over the Base and Future selected
periods.

Five weather stations from MeteoSwiss (Aigle/AIG, Sion/SIO, Visp/VIS, Montana/MON
and Ulrichen/ULR) were selected as in Smith et al. (2012) covering an elevation andWest-East
gradient representative for growing conditions of the main crops in the Swiss Rhone catchment
(Fig. 1a). The AIG station is the lowest and a good representative for a relatively humid
climate benefiting from twice as much precipitation over March to October as the VIS station,
which is representative for the driest climate in the catchment (mean Obs: 731 mm vs.
382 mm, Table 1).

2.4 Computation of evapo-transpiration and irrigation water requirement

Daily ET0 was computed for each station as in Smith et al. (2012), following recommendations
by Allen et al. (1998), and inserted into the vertical soil water balance Eq. 1. The difference P-
ET0 is known as the “atmospheric water budget”. It is a typical index of water deficit or excess
from an atmospheric point of view without consideration of soil and plant properties. The
ground layer modulates water supply from the soil (i.e. large/small water holding capacity) and
demand by the plant (i.e. more/less than the reference vegetation), inducing variable additional
water needs to fill the supply–demand gap.

The vertical soil water balance equation can be written as:

d

dt
Drð Þ ¼ − P−RO−DPð Þ−IWRþ Ks⋅Kc⋅ET 0 ð1Þ

where Dr is the actual soil water depletion, RO the surface runoff, and DP the deep
percolation. Ks is called the soil water stress factor and Kc the crop coefficient. All precipitation
in excess of the infiltration capacity (which is the difference between soil porosity and actual

Table 1 Synthesis: The first line gives in [mm] the past observed reference 1981–2009 climate (P & ET0) and
IWR (March-October sums for grassland, April-September for Maize), the second line the 29-year mean Change
average across scenarios (±standard deviation across scenarios) expressed in [mm]

AIG
maize

AIG
grassland

SIO
grassland

VIS
grassland

MON
grassland

ULR
grassland

P Obs [mm] Change [mm] 574
−8 (±40)

731
−1 (±36)

392
12 (±17)

382
22 (±18)

595
11 (±24)

789
24 (±40)

ETo Obs [mm] Change [mm] 532
24 (±23)

619
27 (±25)

770
39 (±32)

813
45 (±37)

656
40 (±32)

574
35 (±26)

Irrigation Obs [mm] Change [mm] 129
28 (±28)

152
30 (±31)

385
43 (±39)

441
45 (±39)

202
41 (±30)

137
32 (±28)
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water content) is removed as surface runoff and all water content in excess of field capacity is
removed as deep percolation.

IWR were simulated for each station as the amount of water necessary each day (consid-
ering 100 % irrigation efficiency, i.e. no losses through the application method) to maintain
root-zone moisture above a pre-defined threshold. In other words, irrigation is triggered
whenever Dr>Dr,trig to counteract the depletion and to bring back Ks to 1, that is, no stress,
implying no effect on evapotranspiration. This trigger threshold depends on soil type and crop
sensitivity to drought, and was chosen to correspond to a soil moisture allowing 80 % of
maximum crop-specific evaporative demand (Ks=0.8). The water balance of the root zone is
solved for a single soil layer of constant thickness across time. Kc is the ratio of maximum
crop-specific evaporative demand to ET0 and varies along the growing season according to a
dynamically simulated phenology. For a given variety of maize, the warmer the climate, the
shorter the growing season until harvest. For grassland (perennial crop), the warmer the
climate, the longer the growing season and, consequently, the larger the number of cuts or
possible grazing events per growing season. Further details and literature sources about ET0
and IWR computation are available in Smith et al. (2012) in section 3.3 (dealing with daily
point scale modeling) and references can also be found in section 5 for the evaluation of
seasonally and spatially aggregated values over the Swiss Rhone catchment.

To analyze the impact of climate change on IWR, the amount of missing water under rain-
fed growing conditions was estimated on a daily basis for maize at AIG and for grassland at all
5 stations (Fig. 1a). Simulations were driven by the 29-year observed and the 16 corrected and
uncorrected 100-year scenario time series described in the previous section. A range of 10 soil
water holding capacities was tested, but all examples below apply to a soil with 32.2 mm,
representing an average soil typical for the Swiss Rhone catchment (see Smith et al. 2012,
section 2).

3 Results and discussion

The main results described and discussed in the following 3 sections indicate that bias
correction not only improves the climate and impact model output in terms of the Error
between the Base and Obs but also affects the projected Change in seasonal irrigation
estimates. This is a novelty, as, to our knowledge, no other study has investigated this effect
specifically. The (corrected) change signal shows across all crops and stations a clear trend
towards an increase despite seasonal variations and the uncertainty due to the scenario spread.

3.1 Climate change signal spread

For station AIG, about half of the scenarios project a 29-year mean increase (up to +86 mm) in
seasonal P (Fig. 1b), the other half a decrease (down to −67 mm). This wide spread nearly
equally distributed around a Change in P by 0 mm thus indicates that although the projected
effect could be large, its sign is very uncertain at the seasonal level. For VIS, only 2 scenarios
project a decrease in P (down to −16 mm) whereas all others project an increase (up to +
49 mm), the extreme values not being systematically generated by the same scenarios for both
stations. The spread and related uncertainty around the amount of P Change is twice as large
for AIG than for VIS.

The picture is different when looking at the mean Change in ET0 (Fig. 1b): an increase is
projected for both stations by all but one scenario (−28 to +132 mm). Its amount and spread are
larger for VIS than for AIG, VIS already exhibiting a higher evaporative demand over March
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to October (mean Obs: 813 mm vs. 619 mm, Table 1). The overall projected ET0 increase due
to increased air temperature and radiation and reduced air humidity is consistent with results
obtained by Calanca et al. (2006), who recommended including the latter variables in regional
climate scenarios for impact studies. The maximum increase in ET0 (+132 mm) corresponds to
an increase in seasonally averaged 2-m air temperature of +1.6 °C, a global radiation increase
of +0.26 MJ/m2/day, and a decrease in relative humidity of −6.8 %, and the maximum
decrease in ET0 (−28 mm) corresponds to +0.2 °C, −0.60 MJ/m2/day and +1.1 %, respectively.

The maximum decrease in ET0 (Fig. 1b) results from the same scenario as the maximum
increase in P (+86 mm) and for the same station, whereas the maximum ET0 increase and
maximum P decrease (−67 mm) result from different scenarios and stations. Behind the +
58 mm ET0 increase of the point exhibiting the maximum P decrease in the triangle-like cloud,
changes are +1.8 °C, +0.36 MJ/m2/day and −1.9 %. By construction, ET0 increases with
increasing radiation and temperature and decreasing humidity, but the last numbers show that
the final pattern integrating all interacting variables, scenarios and stations is complex.

3.2 Bias correction effect on error and change in atmospheric water budget and IWR

First of all it was expected that Error, though very small in the individual climate variables
after bias correction (e.g., Themessl et al. 2011a, b; Wilcke et al. 2013), propagates in the
model chain from the input to the impact model output, IWR. The initial discrepancies
between uncorrBase and Obs datasets come from the global and regional climate modeling
upstream of the present study. Bias correction then reduces them, but water balance and
evapo-transpiration modeling combines them in a nonlinear way into a relative larger error
between simulated IWR driven by Base climate and IWR driven by Obs climate. On
average over the 29-year Base and Obs period, results reveal an underestimation of IWR
over March to October by about 20 mm for grassland at VIS and overestimation by 20 mm
at AIG (Fig. 2b & d, note that boxplots illustrate the variability across scenarios, and not
across years). However this Error is much smaller (i.e. factor 20 at VIS to −5 at AIG)
compared with the original underestimation of −400 and −100 mm, respectively, obtained
in simulations of IWR using the uncorrected climate scenarios. Instead of compensating for
each other, the large overestimation of P and underestimation of ET0 add up to an
uncorrError in P-ET0 of 1,400 mm at VIS and 800 mm at AIG (Fig. 2a & c). With bias
correction, this very large overestimation of the atmospheric water budget is reduced to
25 mm at VIS and 0 mm at AIG. However, a small Error remains after bias correction,
which can be related at least partly to the fact that we did not explicitly correct for auto-
correlation (sequence of weather events) and trends in the daily time series. These results
demonstrate that even if the meteorological variables are corrected separately and regardless
of inter-variable relations, they can successfully be used as joint inputs for an impact
model. More generally, this confirms results from Wilcke et al. (2013), who showed the
correlation between different meteorological variables is not significantly modified by QM.

The change signal for seasonal P-ET0, whether uncorrected or corrected, exhibits a decrease
for both stations (Fig. 2a-d), thus reflecting an increased atmospheric water deficit, and
associated increased IWR (on average over 29 years from the Base to Future period).
Across all scenarios, average IWR Change is positive and even larger than (for VIS), or nearly
equal to (for AIG), the standard deviation that represents an inter-scenario variability of 86 and
102 % (39/45 resp. 31/30, Table 1). The increase in atmospheric water deficit is mostly driven
by the increase in ET0, which is on average across scenarios larger than the increase in P
(Table 1). In the case of AIG, the decrease in P contributes to the larger deficit (Table 1). While
the amplitude of the Change in P-ET0 is reduced by a factor 2 with bias correction (Fig. 2a &
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c), the amplitude of the Change in IWR increases at VIS from 10 to 45 mm and from 25 to
30 mm at AIG (Fig. 2b & d, Table 1). This result indicates that bias correction leads to a higher
sensitivity of IWR to atmospheric water budget, especially at the warmest and driest station
VIS.

In the corrected data the average amplitude of grassland IWR Change represents 10 % of
the seasonal Obs mean at the dry station VIS, and 20 % at the more humid AIG (Table 1). The
coefficient of variation (CV, not shown) across the observed years 1981–2009 (including the
2003 heatwave) is 14 % around the IWR Obs mean of 441 mm at VIS and 26 % around the
mean of 152 mm at AIG (Table 1). At both stations, this variability across years is larger than
that across scenarios (uncertainty range). The CVof the 29-year mean IWR across scenarios in
the comparable “absolute” time series Base and Future is 2 and 9 % for VIS and 11 and 15 %
for AIG, respectively.

Despite spatio-temporal climate variability, i.e. differences between stations and between
years (individual years were simulated but not shown since the focus here was on 29-year
mean values and dataset properties affected by bias correction), changes from past to future,
scenario ensemble uncertainty and errors between observations and baselines, all data can be
fitted by a robust simple relationship linking IWR to P-ET0 (Fig. 2e). This is particularly the
case for the data generated from bias corrected inputs, i.e. the drier the station in terms of

Fig. 2 Box plots: median and spread across scenarios (5, 25, 75 & 95 % quantiles) of uncorrected & corrected
29-year mean Error & Change (uE, E, uC & C) in atmospheric water budget (P-ET0) a & c and grassland IWR
(March to October sums [mm]) b& d for station VIS a& b and AIG c& d. Beware of the factor 10 in the Y-axis
of uncorrError. Scatter plot e: 29-year mean grassland IWR relative to P-ET0 (March to October sums [mm]).
Robust pattern across stations (symbols) and uncorrected, corrected, Obs, Base and Future datasets (colors, all
scenarios included, that is: 16 points per color & symbol). The fit curve uses the “loess” smoothing function
applied to the Obs and corrected Base & Future datasets
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atmospheric water budget, the larger the amount of irrigation water required. For a given
station, if climate change induces a larger atmospheric water deficit as suggested by nearly all
scenarios, more irrigation water will be required. This increasing trend was also found for other
selected catchments in the country (Fuhrer 2012). The climate change impact appears to be
about as large as when moving on the smoothing line in Fig. 2e from one station to the next
drier one.

The uncorrected data is more scattered due to large differences between scenarios in the
skill of simulating present-day climate conditions. Moreover, no effect due to the location of
the stations is identifiable, which can be explained by the relatively coarse (effective) RCM
resolution. However, ignoring the scatter, these uncorrected data show many points on the
smoothing line expanded from the Obs and corrected Base and Future data, with 0 mm IWR,
independently of atmospheric water budget. This is understandable as no irrigation water is
required if P largely exceeds the evaporative demand ET0 (e.g. 1,000 mm, Fig. 2e). Departures
from the robust relationship arise from unrealistic precipitation regimes in a few scenarios.
Indeed, for a given soil, the precipitation regime can have a strong influence on additional
water needs. For instance, heavy rainfall events saturate the soil more quickly than the
evapotranspiration by plants depletes soil water and, consequently, excess water is lost as
runoff. This explains why some points indicate a non-zero IWR despite apparent water
availability from the atmospheric point of view. Outliers in Fig. 2e belong to scenarios
concerned with a flatter distribution of daily precipitation events (not shown) thus implying
more extremes.

Overall, Fig. 2e explains the results shown in Fig. 2a-d. Bias correction affects more
strongly the data for VIS, as it is the driest of the 5 selected stations and the climatically most
distant from the simulated humid conditions in the grid cell extracted from the original
ENSEMBLES database. The bias in IWR was larger than the climatic difference between
VIS and ULR, the most humid station, and as large as the IWR at VIS according to
observations (441 mm, Table 1). Thus, bias correction of daily climate inputs enables
switching from climate change insensitive non-irrigation demanding conditions to the more
realistic drought and climate change sensitive conditions at the base of the Rhone Valley. This
suggests that bias correction improves the plausibility of simulated climate change impacts on
daily and, hence, seasonally integrated IWR. This is important with respect to decisions taken
in terms of adaptation in agriculture to future climatic conditions, however, without providing
a satisfactory physical justification (Ehret et al. 2012). It should also be noted that by applying
bias corrections derived from present day to scenario simulations, an assumption is made on
the stationarity of the bias, which may lead to unwanted results at longer timescales, as
discussed by Haerter et al. (2011).

The existence of a robust and simple relationship between seasonal IWR and P-ET0
(Fig. 2e) remains valid across crops and soil water holding capacity levels, although only
one of the investigated cases is illustrated here. Inter-annual variability around the 29-year
mean also goes in the same direction (not shown) and was used together with spatial variability
in Smith et al. (2012, section 3.4) for calibrating the coefficients of a single statistical model
accounting for crop and soil specificities. The latter can be used to extrapolate seasonal IWR in
time and space (Smith et al. 2012, section 4). The results reported here show that data from
different scenarios, whether bias corrected or not, and periods (Base/Future) also fit into the
scheme. This seems reasonable since the relationship between IWR and P-ET0 is a simplified
representation of a single underlying mechanism, i.e. water consumption by plants, involving
many components formulated as a sequence of equations used in all IWR simulations. The few
models that do not fit the scheme before bias correction are those simulating P regimes not
representative for the study region. Intensity dependent bias correction via QM indeed
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improves the entire distribution of all daily meteorological variables and does not only simply
shift their mean from the original grid cell’s to the station’s conditions, which would not solve
problems with the soil water balance related to an overestimation of extremes.

3.3 Differential climate change impact and uncertainty across stations and crops

Differences in observed seasonal P, ET0 and IWR between VIS and AIG as well as differences
in the changes and uncertainty to be expected according to bias corrected scenarios were
already mentioned along with the description of Fig. 1b, 2, 3 and Table 1. Figure 3 gives an
insight into the intra-annual picture (average over 29 years) and introduces results obtained for
maize (at AIG), only grown in the lower part of the catchment, together with those for
grassland (at VIS), which is the dominant agricultural land use type across the catchment.

Whereas observed monthly P (50 mm) varies little over the year at VIS (Fig. 3a), it nearly
doubles from winter to summer at AIG with a peak in July of about 115 mm (Fig. 3b). At both
stations ET0 peaks in July together with temperature and radiation. At AIG ET0 equals the
increasing amount of P from April to July, while it exceeds it during 7 months at VIS, by up to
200 % in July. This generates a large atmospheric water deficit (−100 mm in July) at VIS
inducing accordingly high IWR. At AIG, although P exceeds ET0 in August-September, IWR
is still positive (as seen in Fig. 2e) due to water losses, with 50 mm being required at the
maximum in July. The shorter period of water shortage at AIG is not only due to more humid
climate but also to the shorter growing season of maize bounded by sowing and harvest, while
grassland covers the ground all year round, causing a difference in water demand in spring and
autumn.

Though no change (AIG, −1±36 mm, Table 1) or even an increase (VIS, +22±18 mm,
Table 1) is projected for P integrated over March to October (or April to September for maize,
AIG, −8±40 mm, Table 1), a decrease in July-August is consistent across scenarios for both
situations (down to an average of −20 mm at AIG, about −20 % of the Obs value), as shown
by the confidence interval being almost entirely below zero (Fig. 3c & d). The seasonally
integrated (Fig. 1b and Table 1) less dramatic future change signal (of unknown or opposite
sign for AIG and VIS, respectively) than on a monthly basis is due to the large uncertainty and
intra-annual variability.

Given the smaller uncertainty around ET0 change, we are confident in the all-year-round
trend toward an increase peaking in July at both stations (up to a median of +10 mm at VIS,
about +7 % of the Obs value) (Fig. 3e & f). Hence, for both situations the projected increase in
atmospheric water deficit, driven by the Change in ET0 at VIS and by the Change in P at AIG,
leads to increased IWR by more than +10 mm in July (that is by +15 % for grassland at VIS
and +30 % for maize at AIG, relative to the Obs amounts) (Fig. 3g & h). The most extreme
scenario (HC_HadRM3Q16_HadCM3Q16) predicts an increase exceeding +30 mm in July at
both stations while the least extreme (METNO_HIRHAM_BCM) predicts nearly no Change
in IWR, illustrating the large uncertainty in magnitude in spite of the robust positive sign. This
large spread in the projections of future IWR challenges decision making; while the need for
adaptive measures is given by the consistent sign of Change, the extent of the local measures to
be taken, such as investments in new irrigation infrastructure or switching to less-demanding
cultivars or land use types, depends on the absolute magnitude of Change, which remains
uncertain. Thus, decision making should weigh potential crop losses against costs of invest-
ments, and consider both negative and positive side-effects and externalities of measures
(Hallegatte 2009).

Simulated IWR Change values for grassland at AIG are larger than for maize because of
their integration over a longer growing season (Table 1). However, as mentioned above, IWR
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of maize can be larger at a monthly scale (not shown). The peak increase in IWR in July for
maize is partly compensated for by an apparent decrease in September due to a shorter cycle in
a warmer climate. As discussed in Fuhrer et al. (2013), harvest would occur approximately
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1 month earlier as the thermal requirements to reach maturity would be fulfilled more quickly.
The shift in the beginning of the season, as shown by the slight increase in IWR in May
(Fig. 3h), also contributes to the earlier harvest. The simulations assumed no change in crop
cultivar to adapt to higher temperatures. Such a measure would affect both the seasonal pattern
of and the absolute Change in IWR depending on the new crop cultivar’s water-use efficiency.
In the case of grassland, a warmer climate would extend the growing season length and enable
an increased number of cuts or a longer grazing period.

And finally, for irrigation planning, more detailed information based on spatially explicit
IWR simulations would be needed that also account for the efficiency of irrigation systems.
Such spatial information for shifts in IWR together with estimates of changes in water
availability from glacier and snow melt would be essential for designing an effective climate
change adaptation strategy. The related study by Fuhrer et al. (2013) using the same bias
corrected climate inputs provides a more extended assessment of implications of climate
change for agriculture using a selection of scenarios and stations.

4 Conclusions

The expected changes (2021–2049 vs. 1981–2009) and associated uncertainty range in the daily
precipitation and variables entering the Penman-Monteith reference evapo-transpiration (ET0) equa-
tion were analyzed.We quantified the impact of these changes on the projected IWR of grassland and
maize through simulations of the station, soil, and crop specific daily vertical water balance using the
spread of climate scenarios. Particular attention was paid in the process to the effect of the bias
correction of the scenarios on the plausibility of simulated climate and impact model outputs.

An increased evaporative demand over the growing season is projected for nearly all
stations and scenarios (ET0, −28 to +132 mm). The projections are less consistent for P, with
either a decrease or increase depending on the scenario, station and month (e.g., average
−20 % in July-August at one of the most humid stations, robust across scenarios). The seasonal
cycle of the change signal in IWR shows different sensitivities and drivers across crops and
stations, but in all cases a clear trend towards an increase despite uncertainty (e.g. from 0 to
over +30 mm more water needed in July).

It is demonstrated that bias correction of climate scenarios not only reduces the
remaining error between baseline and observations, but also enhances the change signal
in seasonal IWR estimates. This is due to a higher and more realistic sensitivity to the
atmospheric water budget, the slope of this relationship being steeper in the value range
of the observed and corrected baseline points than in that of the uncorrected data
points. Even if meteorological variables are corrected separately, they can be success-
fully used as joint input for an impact model and clearly improve the quality of its
outputs. This is remarkable, since it is frequently questioned, whether bias correction
methods such as QM degrade inter-variable relationships in a way, that the joint
application of bias corrected variables is not advisable. Our results clearly demonstrate
the success of bias correction for the chosen application.

We conclude that uncertainty around seasonal projected changes in IWR for stations in the
Swiss Rhone catchment is much reduced thanks to bias correction of regional climate
scenarios and actually smaller than inter-annual variability over the observed period 1981–
2009: the average signal (10 to 20 % more irrigation water needed) is larger and the spread
across scenarios is smaller, the former exceeding the latter after application of the presented
method. This means that bias corrected climate data of better quality can be used with more
confidence in further similar impact studies.
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