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Abstract A dynamic procedure is developed to compute the model coefficients in the
recently introduced modulated gradient models for both momentum and scalar fluxes. The
magnitudes of the subgrid-scale (SGS) stress and the SGS flux are estimated using the local
equilibrium hypothesis, and their structures (relative magnitude of each of the components)
are given by the normalized gradient terms, which are derived from the Taylor expansion
of the exact SGS stress/flux. Previously, the two model coefficients have been specified on
the basis of theoretical arguments. Here, we develop a dynamic SGS procedure, wherein
the model coefficients are computed dynamically according to the statistics of the resolved
turbulence, rather than provided a priori or ad hoc. Results show that the two dynamically
calculated coefficients have median values that are approximately constant throughout the
turbulent atmospheric boundary layer (ABL), and their fluctuations follow a near log-normal
distribution. These findings are consistent with the fact that, unlike eddy-viscosity/diffusivity
models, modulated gradient models have been found to yield satisfactory results even with
constant model coefficients. Results from large-eddy simulations of a neutral ABL and a
stable ABL using the new closure show good agreement with reference results, includ-
ing well-established theoretical predictions. For instance, the closure delivers the expected
surface-layer similarity profiles and power-law scaling of the power spectra of velocity and
scalar fluctuations. Further, the Lagrangian version of the model is tested in the neutral ABL
case, and gives satisfactory results.

Keywords Atmospheric boundary layer · Large-eddy simulation · Subgrid-scale modelling

1 Introduction

The high Reynolds-number turbulent atmospheric boundary layer (ABL) bears a wide range
of turbulent length scales, from millimetres to kilometres. It is difficult to develop a gen-
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430 H. Lu, F. Porté-Agel

eral and yet simple turbulence model for climate and mesoscale applications owing to the
complex physical processes involved in ABL flows. Since the pioneering work of Dear-
dorff (1970, 1972), large-eddy simulation (LES) has been employed as the most accurate
approach to simulate ABL turbulence. The physical basis for LES is the separation of the
flow into grid resolved and subgrid-scale (SGS) motions. This is achieved through the use
of a three-dimensional spatial filtering operation, denoted here as a tilde (∼). The resolved
motions contain most of the energy, and one can compute them numerically by solving the
LES governing equations, while the effects of the less energetic SGS motions are parame-
trized. Filtering the equations describing the conservation of momentum and scalar con-
centration (e.g., temperature) results in two extra terms: the SGS stress, τi j , and the SGS
flux, qi

τi j = ũi u j − ũi ũ j , (1)

and

qi = ˜uiθ − ũi˜θ, (2)

where τi j and qi must be closed in terms of the resolved velocity field ũi and the resolved
scalar field ˜θ .

Small-scale processes in ABL flows, which influence the vertical and horizontal exchange
of quantities between the surface and the atmosphere as well as the mixing within the
atmosphere, show great sensitivity to the model formulation (Holtslag 2006). The rep-
resentation of these processes using an SGS closure is non-trivial owing to the fact that
there exist many non-linear processes. Numerous SGS closures have been proposed since
the introduction of the first SGS stress model of Smagorinsky (1963). The Smagorinsky
model, as the most commonly used model, belongs to the family of eddy-viscosity and
eddy-diffusivity models. They are all based on two important assumptions: (i) the effects
of the SGS motions on the resolved motions are essentially energetic actions, so that the
modelling focuses primarily on the balance of the energy transfers between the two scale
ranges, and (ii) the energy-transfer mechanism is analogous to the molecular mechanism
represented by diffusion. The local equilibrium hypothesis is often adopted to determine
the model coefficients. In the context of ABL flows, the early eddy-viscosity/diffusivity
models have revealed that the mean modelled wind and temperature profiles in the sur-
face layer differ from those in experiments and observations following, for example, the
Monin–Obukhov similarity forms (e.g., Businger et al. 1971; Stull 1988). Specifically, the
non-dimensional vertical gradients of velocity and temperature could be overestimated by
more than 20 % in the surface layer. To try and resolve this issue, researchers have intro-
duced quite a few modifications. For instance, Mason (1989) and Mason and Thomson
(1992) used an ad hoc expression to provide appropriate SGS mixing lengths; Sullivan
et al. (1994) proposed a two-part eddy-viscosity/diffusivity model that includes contribu-
tions from the mean flow and the turbulent fluctuations near the surface; Kosović (1997)
proposed a non-linear modification that allows for a backward energy cascade; and Porté-
Agel et al. (2000) and Porté-Agel (2004) used a scale-dependent dynamic approach to com-
pute the model coefficients dynamically, while allowing for scale dependence of the coeffi-
cients.

A major drawback of eddy-viscosity/diffusivity models, found in a priori analyses of
fields obtained from experiments and simulations (Liu et al. 1994; Menon et al. 1996; Porté-
Agel et al. 2001; Higgins et al. 2003; Lu et al. 2007), is the low correlation between the
exact SGS term and the eddy-viscosity/diffusivity term. Khanna and Brasseur (1998), Juneja
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Dynamic Non-linear Closure for LES 431

and Brasseur (1999), and Porté-Agel et al. (2000) have also shown that, on coarse grids,
eddy-viscosity models may induce large errors because they are not able to account for
the strong flow anisotropy in the ABL surface layer. Further, eddy-viscosity models do not
have the same rotation transformation properties as the actual SGS stress tensor, which
is not material frame indifferent (MFI). Recent studies (Kobayashi and Shimomura 2001;
Horiuti 2006; Lu et al. 2007, 2008) have revisited the importance of the MFI consistency
of the modelling SGS stresses. In LES of mesoscale and large-scale atmospheric turbulence
including planetary rotation, eddy-viscosity models induce extra errors and yield unsatis-
factory results, such as the incapability of capturing cyclone-anticyclone asymmetry (Lu
et al. 2008). In addition, eddy-viscosity/diffusivity models are by construction fully dis-
sipative, and do not allow energy transfers from unresolved to resolved scales. However,
such inverse energy transfers are known to occur (Cambon et al. 1997; Smith and Waleffe
1999).

The variety of SGS models arises not only because the theoretical justifications are
arguable but also because LES solutions are sensitive to the given type of SGS models,
especially in the surface layer of ABL flows. In contrast to eddy-viscosity/diffusivity mod-
els, gradient models are derived from the Taylor series expansions of the SGS terms that
appear in the filtered conservation equations (Clark et al. 1979), do not locally assume the
same eddy viscosity/diffusivity for all directions, and make no use of prior knowledge of
the interactions between resolved motions and SGS motions. At the a priori level, gradient
models generally predict the structure of the exact SGS terms much more accurately than
eddy-viscosity/diffusivity models (and therefore are better able to capture anisotropic effects
and disequilibrium, e.g., Liu et al. 1994; Porté-Agel et al. 2001; Higgins et al. 2003; Lu et
al. 2007, 2008; Chamecki 2010). These features make gradient models attractive. However,
when implemented in simulations, traditional gradient schemes are not able to yield the cor-
rect levels of SGS production (energy transfer between resolved and SGS scales), and as a
result, simulations often become numerically unstable as reported in a variety of contexts
(e.g., Sagaut 2006).

A new SGS closure derived from gradient models has been recently introduced (Lu and
Porté-Agel 2010, 2013; Lu 2011). Simulation results obtained with the use of this new
closure show good agreement with well-established predictions and an evident improve-
ment over results obtained using traditional eddy-viscosity/diffusivity models. On the basis
of theoretical arguments, which are strictly valid only in the inertial subrange of high
Reynolds-number turbulence, the closure adopts constant values for the two model coef-
ficients. It is, however, arguable that one can effectively model a variety of phenomena
present in turbulent flows using two universal constants. A complementary and perhaps
more reasonable approach is the dynamic procedure (Germano et al. 1991; Lilly 1992),
which is becoming more prevalent in simulations for determining coefficients. Basically,
the approach adopts the assumption of scale invariance by applying the coefficients opti-
mised from the resolved scales to the SGS range, accomplished by applying a test filter
at a scale slightly larger than the resolved scale (˜�). Thus, the model coefficients can be
determined on the basis of the resolved flow field without a priori or ad hoc specifica-
tions.

In this paper, we present the development of a dynamic non-linear SGS closure in Sect.
2. We test the performance of the new closure in high Reynolds-number simulations of
a neutrally stratified ABL case and a stably stratified ABL case. Section 3 describes the
governing equations and common numerical set-up, while Sects. 4 and 6 present the LES
results. Section 8 summarizes the main results.
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2 Dynamic SGS Closure Coupling with a Passive Scalar

The non-linear model formulations introduced by Lu and Porté-Agel (2010, 2013) for the
SGS stress tensor, τi j = ũi u j − ũi ũ j , and for the SGS flux vector, qi = ˜uiθ − ũi˜θ , can be
written as

τi j = 2ksgs

(

˜Gi j

˜Gkk

)

, (3)

and

qi = |q|
(

˜Gθ,i

|˜Gθ |
)

. (4)

The method separates the modelling into two elements: the normalized gradient terms serve
to model the structure (relative magnitude of each component); and a separate approach is
needed for the SGS kinetic energy, ksgs = 1

2 τi i , and the magnitude of the SGS flux vector,
|q|. To account for the grid anisotropy in the study (˜�x , ˜�y and ˜�z are not equal), we

define ˜Gi j = ˜�2
x

12
∂ ũi
∂x

∂ ũ j
∂x + ˜�2

y
12

∂ ũi
∂y

∂ ũ j
∂y + ˜�2

z
12

∂ ũi
∂z

∂ ũ j
∂z , and ˜Gθ,i = ˜�2

x
12

∂ ũi
∂x

∂˜θ
∂x + ˜�2

y
12

∂ ũi
∂y

∂˜θ
∂y +

˜�2
z

12
∂ ũi
∂z

∂˜θ
∂z , and compute the gradient vector’s magnitude with the Euclidean norm |˜Gθ | =

√

˜G2
θ,1 + ˜G2

θ,2 + ˜G2
θ,3. To close the approach, one needs to evaluate the magnitudes ksgs and

|q|. Even though a previous approach (Chumakov and Rutland 2005) places much emphasis
on the scalar field, it is desirable, owing to the definition of the SGS flux vector as shown in Eq.
2, that the SGS flux magnitude encompasses both the velocity and the scalar fields. Therefore
the flux magnitude is modelled as the multiplication of an SGS velocity scale and an SGS
scalar concentration scale |q| = usgsθsgs (Lu and Porté-Agel 2013). It is straightforward to
assume that the SGS velocity scale is proportional to the square root of the SGS kinetic energy,
usgs = C

√

ksgs. Further, one can identify the value of ksgs by using the resolved velocities
on the basis of the local equilibrium hypothesis, which assumes a balance between the SGS

kinetic energy production P (P = −τi j
∂ ũi
∂x j

= −τi j˜Si j , where ˜Si j = 1
2

(

∂ ũi
∂x j

+ ∂ ũ j
∂xi

)

is the

resolved strain rate tensor) and dissipation rate ε. A classical evaluation of kinetic energy

dissipation is ε = Cε
k3/2

sgs
˜�

. Simulations allow for no negative dissipation rate, the so-called
clipping, leading to

ksgs = H (P)
4˜�2

C2
ε

(

− ˜Gi j

˜Gkk

˜Si j

)2

, (5)

where H(x) is the Heaviside step function defined as H(x) = 0 if x < 0 and H(x) = 1 if
x ≥ 0. To predict the SGS scalar concentration scale, again we adopt the local equilibrium
hypothesis, which assumes a balance between the SGS scalar variance production, Pθ =
−qi

∂˜θ
∂xi

, and the SGS scalar variance dissipation rate εθ . A classical evaluation of the SGS

scalar variance dissipation rate is εθ = Cεθ
θ2

sgsusgs

˜�
. Using the proposed model formulation,

together with the local equilibrium hypothesis, one obtains θsgs = ˜�
Cεθ

(

− ˜Gθ,i

|˜Gθ |
∂˜θ
∂xi

)

. The SGS

scalar variance dissipation rate is always non-negative, thus

θsgs = H (Pθ )
˜�

Cεθ

(

− ˜Gθ,i

|˜Gθ |
∂˜θ

∂xi

)

. (6)
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Finally, one obtains the following equation for the magnitude of the SGS flux

|q| = H (Pθ ) H (P)
2
√

2˜�2

CεCεθ

(

− ˜Gθ,i

|˜Gθ |
∂˜θ

∂xi

)

(

− ˜Gi j

˜Gkk

˜Si j

)

, (7)

where C = √
2 (usgs =

√

(

ũi ui − ũi ũi
) = √

2 ksgs) has been assumed. Constant coefficients
(Cε and Cεθ ) were used in previous simulations (Lu and Porté-Agel 2010, 2013; Lu 2011).
Even though results turned out to be reasonably satisfactory, it should be noted that the selected
constant values rest on theoretical arguments that are strictly valid only in the inertial subrange
of high Reynolds-number turbulence. Further, for complex flows, it may not be possible to
find universal constants that are appropriate for the entire domain at all times.

A more systematic way to compute the SGS model coefficients is to use the so-called
dynamic procedure, which is based on the Germano identities (Germano et al. 1991; Lilly
1992) for the SGS stress tensor and the SGS flux vector,

Li j = Ti j − τ i j = ũi ũ j − ũi ũ j , (8)

and

Ki = Qi − qi = ũi˜θ − ũi˜θ, (9)

where Ti j = ũi u j − ũi ũ j and Qi = ˜uiθ − ũi˜θ are the stress and the flux at a test-filter
scale � = α˜� (typically α = 2). Li j and Ki can be evaluated on the basis of the resolved
scales. Applying the dynamic procedure to the modulated gradient model, Ti j and Qi are
determined by

Ti j = 8

C2
ε

α2
˜�2

(

− ˜Gmn

˜Gkk

˜Smn

)2 (

˜Gi j

˜Gll

)

, (10)

Qi = 2
√

2α2
˜�2

CεθCε

(

− ˜Gθ, j

|˜Gθ |
∂˜θ

∂x j

) (

− ˜Gmn

˜Gkk

˜Smn

) (

− ˜Gθ,i

|˜Gθ |

)

. (11)

In order not to confuse the clipping procedure with the dynamic procedure and numerically
leave more clippings in the flow, we do not consider clipping here. Hence, the Germano
identities (Eqs. 8 and 9) can be re-written as

Ti j − τ i j = 1

C2
ε

Mi j , (12)

and

Qi − qi = 1

CεθCε

Xi , (13)

where

Mi j = 8α2
˜�2

(

− ˜Gmn

˜Gkk

˜Smn

)2 (

˜Gi j

˜Gll

)

− 8˜�2
(

− ˜Gmn

˜Gkk

˜Smn

)2
(

˜Gi j

˜Gll

)

, (14)
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and

Xi = 2
√

2α2
˜�2

(

− ˜Gθ, j

|˜Gθ |
∂˜θ

∂x j

) (

− ˜Gmn

˜Gkk

˜Smn

) (

− ˜Gθ,i

|˜Gθ |

)

−2
√

2˜�2

(

− ˜Gθ, j

|˜Gθ |
∂˜θ

∂x j

)

(

− ˜Gmn

˜Gkk

˜Smn

) (

− ˜Gθ,i

|˜Gθ |
)

. (15)

Minimising the error associated with the use of the model formulation (Eqs. 3 and 4) in the
Germano identity (Eqs. 8 and 9) over all independent components (Lilly 1992), one obtains
the evaluation expressions for Cε and Cεθ

(Cε)
−2 = Li j Mi j

Mi j Mi j
, (16)

and

(CεθCε)
−1 = Ki Xi

X j X j
. (17)

In practice, the above equations do not guarantee positive values for (Cε)
−2 and (CεθCε)

−1,
where positive values are necessary to ensure numerical stability. When negative coefficient
values are encountered, following Lu and Porté-Agel (2010, 2013), we assign Cε = 1 and
Cεθ = 1.

3 Numerical Simulations

Previous studies (e.g., Andren et al. 1994; Sullivan et al. 1994) have stated that the discrepancy
between simulation results and surface-layer similarity theory becomes more evident as
surface buoyancy forcing decreases. In this regard, one should expect a larger impact of
the SGS formulation in neutral and stable cases than in convective (unstable) cases. Here,
we focus on two cases: one involves neutral stability conditions, and the other involves
stably stratified conditions. Also, because the simulated flows have high Reynolds numbers
(commonly O(108) or larger), no near-wall viscous processes are resolved, and the viscous
terms are neglected in the governing equations.

We use a modified LES code that has been used for previous studies (e.g., Albertson and
Parlange 1999; Porté-Agel et al. 2000; Porté-Agel 2004; Stoll and Porté-Agel 2006a,b, 2008;
Lu and Porté-Agel 2010). The code solves the filtered equations of continuity, conservation
of momentum and scalar transport

∂ ũi

∂xi
= 0, (18)

∂ ũi

∂t
+ ∂ ũi ũ j

∂x j
= − ∂ p̃

∂xi
− ∂τi j

∂x j
+ ˜fi , (19)

∂˜θ

∂t
+ ũi

∂˜θ

∂xi
= −∂qi

∂xi
, (20)

where (̃u1, ũ2, ũ3) = (̃u, ṽ, w̃) are the components of the resolved velocity field, ˜θ is the
resolved scalar, p̃ is the effective pressure, and ˜fi is a forcing term. In the stable case, the

buoyancy force and the Coriolis force would be included as ˜fi = δi3g
˜θ−〈˜θ〉H

	0
+ fcεi j3ũ j ,
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where ˜θ represents the resolved potential temperature, 	0 is the reference temperature, 〈·〉H
denotes a horizontal average, g is the acceleration due to gravity, fc is the Coriolis parameter,
δi j is the Kronecker delta, and εi jk is the alternating unit tensor.

The simulated ABL is horizontally homogeneous, horizontal directions are discretized
pseudo-spectrally, and vertical derivatives are approximated with second-order central dif-
ferences. The height of the computational domain is H , and the horizontal dimensions are
Lx and L y ; the domain is divided into Nx , Ny , and Nz uniformly spaced grid points. The
grid planes are staggered in the vertical direction with the first vertical velocity plane at a
distance ˜�z = H

Nz−1 from the surface, and the first horizontal velocity plane ˜�z/2 from
the surface. At the bottom, the instantaneous wall stresses are computed through the appli-
cation of the Monin–Obukhov similarity theory (Porté-Agel et al. 2000; Porté-Agel 2004):

τi3|w = −u2∗
ũi

U (z) = −
(

U (z) κ
ln (z/z0)−ΨM

)2 ũi
U (z) , where κ is the von Kármán constant, u∗ is the

friction velocity, z0 is the roughness length, ΨM is the stability correction for momentum,
and U (z) is the plane-averaged resolved horizontal velocity. We compute the filter size using

a common formulation ˜� = 3
√

˜�x ˜�y ˜�z , where ˜�x = Lx/Nx and ˜�y = L y/Ny . The
corresponding aliasing errors are corrected in the non-linear terms according to the 3/2 rule
(e.g., Canuto et al. 1988). The time advancement is carried out using a second-order accurate
Adams–Bashforth scheme (e.g., Canuto et al. 1988).

4 Neutral Atmospheric Boundary Layer

We adopt a classical numerical set-up used for previous model assessment studies (e.g., Porté-
Agel et al. 2000; Porté-Agel 2004; Lu and Porté-Agel 2010). The height of the computational
domain is H = 1,000 m, and the horizontal dimensions of the simulated volume are Lx =
L y = 2π H . We carried out simulations with resolutions of Nx × Ny × Nz = 32 × 32 ×
32, 48 × 48 × 48, 64 × 64 × 64, 96 × 96 × 96, and 128 × 128 × 128. The simulated flow is
driven by a constant pressure gradient −u2∗/H in the x-direction. We take u∗ = 0.45 m s−1

and z0 = 0.1 m, which is similar to the set-up in some previous studies (e.g., Andren et al.
1994; Porté-Agel et al. 2000; Lu and Porté-Agel 2010). The upper boundary conditions are
∂ ũ/∂z = 0, ∂ṽ/∂z = 0, w̃ = 0 and ∂˜θ/∂z = 0. At the bottom, neutral stability results in
ΨM = 0. A passive scalar field, similar to that simulated in previous studies (e.g., Andren et
al. 1994; Kong et al. 2000; Porté-Agel 2004; Lu and Porté-Agel 2013), is introduced into the
simulations by imposing a constant downward surface flux q3|w = −u∗θ∗.

We have collected mean and turbulent statistics after achieving statistically steady states.
In the presentation, we denote the horizontal and time average as 〈·〉, and the fluctuation of an
arbitrary resolved variable ˜f as ˜f ′ = ˜f − 〈

˜f
〉

; on certain occasions, we take the simulations
of 643 node and 1283 node as base cases to present results.

4.1 First-Order Measurements

A longstanding problem in the LES of ABL flows is that the mean wind and temperature
profiles differ from the similarity forms in the surface layer. In this subsection, we compare our
numerical results with the predictions from similarity theory to gain a better understanding
of the performance of the new closure.

The logarithmic profile, which was first published by Von Kármán in 1931, is a semi-
empirical relationship used to describe the vertical distribution of horizontal wind speed above
the surface within a turbulent boundary layer. The profile states that the mean streamwise
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(a) (b)

Fig. 1 Non-dimensional vertical gradient of a the mean resolved streamwise velocity and b the mean resolved
scalar concentration obtained from simulations of the neutral ABL case. The dashed line corresponds to the
classical similarity profile. The left/right corner plots are a zoomed view of the surface layer and they have a
log scale in the vertical direction

velocity at a certain point in a turbulent boundary layer is proportional to the logarithm of the
distance from that point to the wall. Established later, the Monin–Obukhov similarity theory,
which includes thermal effects, has been experimentally confirmed in a number of field
experiments (e.g., Businger et al. 1971), and represents one of the most firmly established
results against which new SGS models should be compared. An example of the wind-speed
profile in neutral cases can be written as the well-known logarithmic formulation: 〈̃u〉 =
u∗
κ

ln
(

z
z0

)

. Aerodynamic roughness, z0, is necessarily non-zero because the log law does

not apply to the viscous and roughness sublayers. The log law is a good approximation to
the velocity profile in the surface layer, which occupies the lowest 10 % of the ABL. A
rigorous way to evaluate model performance is to examine the values of the non-dimensional
vertical gradients of the resolved streamwise velocity as a function of vertical position. The
non-dimensional vertical gradient of the mean resolved streamwise velocity is defined as

ΦM =
(

κz

u∗

)

∂ 〈̃u〉
∂z

. (21)

On the basis of experimental results and dimensional analysis (e.g., von Kármán 1931;
Businger et al. 1971; Stull 1988), it has been found that, in neutral cases, ΦM = 1 holds
for all z in the surface layer. In this way, the logarithmic-layer mismatch can be manifested
more clearly and can help quantitatively evaluate model performance. Andren et al. (1994)
performed an extensive comparison of various LES codes using the standard Smagorinsky
model with wall damping and other eddy-viscosity models. In the surface layer, their values
of ΦM were mostly >1.2, and some simulations yielded ΦM ≈ 2. Many studies (Mason and
Thomson 1992; Sullivan et al. 1994; Kosović 1997; Chow et al. 2005) have revealed similar
overshoots in ΦM reaching over 1.5 for the standard Smagorinsky model. It appears that the
standard Smagorinsky model is too dissipative, removing too much kinetic energy from the
resolved field and generating a near-linear profile in the surface layer, which bears a large
value of ΦM. Figure 1a presents the non-dimensional vertical gradient of the mean resolved
streamwise velocity obtained from different resolution simulations using the new closure.
The new closure slightly underestimates at the third and fourth grid points (with the lowest
value being about 0.85), but overall yields a value of ΦM that remains close to 1 in the surface
layer, indicative of the expected logarithmic velocity profile.
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(a) (b)

Fig. 2 Probability density functions of the dynamically calculated coefficients, a Cε and b Cεθ , obtained at
different heights within the neutral ABL and overall

For the scalar counterpart, one may examine the values of the non-dimensional vertical
gradients of the mean resolved scalar concentration as a function of vertical position. That
non-dimensional scalar gradient is defined as

Φθ =
(

κz

θ∗

)

∂
〈

˜θ
〉

∂z
. (22)

It has been well documented (e.g., Businger et al. 1971; Stull 1988) that, in neutral cases,
Φθ = 0.74 holds for all z in the surface layer. According to several studies (e.g., Mason and
Thomson 1992; Andren et al. 1994; Lu and Porté-Agel 2013), standard SGS models yield
values of Φθ that are significantly larger than 0.74 (some over 1.5). Figure 1b presents the
non-dimensional vertical gradient of the mean resolved scalar concentration obtained from
different resolution simulations using the new closure. The new closure slightly overestimates
only at the second grid point (with the highest value being about 0.85), but overall yields a
value of Φθ that remains close to 0.74 in the surface layer.

Further, we investigate the statistical characteristics of two model coefficients: Cε and Cεθ .
Figure 2 shows the probability density functions (PDFs) of two model coefficients obtained
from the 1283 simulation. We present results obtained at four different levels as examples,
and bold grey lines represent PDFs of values over all levels. The PDFs of Cε and Cεθ show
good consistency at all levels. In contrast, the PDFs of the Smagorinsky coefficient, CS, show
visible differences at different heights in the ABL (Bou-Zeid et al. 2005; Stoll and Porté-Agel
2006b, 2008).

Two subplots in Fig. 2 use a logarithmic scale for the x-axis, and reveal that the fluctuations
of Cε and Cεθ follow a near log-normal distribution. For a log-normal distribution, the
arithmetic mean overestimates the peak location; thus the averaged property is more readily
treated by the use of the geometric mean (the geometric mean of a log-normal distribution is
equal to its median) than the arithmetic mean. We adopt a procedure similar to that used in
other studies (Stoll and Porté-Agel 2006b), and plot the median values of Cε and Cεθ versus
z/H in Fig. 3. Overall, the two dynamically calculated coefficients have averaged values
that are approximately constant throughout the turbulent boundary layer. Recall that Cε = 1
and Cεθ = 1 (Lu and Porté-Agel 2010, 2013) are reasonable values, even when based on
theoretical arguments strictly validated only in the inertial subrange of high Reynolds-number
turbulence.
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(a) (b)

Fig. 3 Averaged values of the dynamically calculated coefficients, a Cε and b Cεθ , obtained from different
resolution simulations of the neutral ABL case

4.2 Power Spectra

It is important to test the ability of LES to accurately reproduce the main spectral character-
istics of the resolved field. Spectra of velocity fields in turbulent boundary layers are known
to exhibit three distinct spectral scaling regions: the energy-production range, the inertial
subrange and the dissipation subrange. In the case of LES of the high Reynolds-number
boundary layer, the dissipation subrange is not resolved and, therefore, is not considered
here. It is well known (e.g., Perry et al. 1986; Saddoughi and Veeravalli 1994; Katul and Chu
1998; Venugopal et al. 2003) that the energy spectra of the three wind components satisfy
the Kolmogorov −5/3 power law in the inertial subrange, i.e., the range of relatively small,
isotropic scales that satisfy k1z � 1, where k1 is the streamwise wavenumber. Also, labora-
tory and field measurements (e.g., Perry et al. 1986; Katul and Chu 1998; Kunkel and Marusic
2006) of boundary-layer turbulence show that, in the energy-production range corresponding
to scales larger than the distance to the surface (k1z � 1) and smaller than the integral scale,
spectra of the streamwise velocity component are often proportional to k−1

1 .
Previous LES studies have examined model performance regarding energy spectra, and

limitations have been found for traditional SGS models. The spectra of the streamwise veloc-
ity obtained using the standard Smagorinsky model decay faster than the expected −1 power
law in the surface layer (e.g., Andren et al. 1994; Kosović 1997; Porté-Agel et al. 2000).
Within the constraints of the Smagorinsky model, this type of spectrum implies that the
model dissipates kinetic energy at an excessive rate. The resulting spectra obtained using the
dynamic Smagorinsky model, on the other hand, decay too slowly (the spectrum slope is close
to −0.5) in the surface layer (Porté-Agel et al. 2000), likely due to the fact that the dynamic
procedure samples scales near and beyond the local integral scale, at which the assumption
of scale invariance of the coefficient (on which the model relies) breaks down, leading to an
underestimation of the Smagorinsky coefficient near the surface (Porté-Agel et al. 2000). The
lower coefficient then yields a lower energy dissipation rate and a pile-up of energy at high
wavenumbers. Also, it was found that, in the inertial subrange, the dynamic Smagorinsky
model may yield a streamwise velocity spectrum slope shallower (close to −0.8) than −5/3
(Piomelli 1993).

Figures 4 and 5 show the normalized spectra of the simulated streamwise and verti-
cal velocity components, computed at different heights. Spectra are calculated from one-

123



Dynamic Non-linear Closure for LES 439

(a) (b)

Fig. 4 Averaged non-dimensional 1-D spectra of a the streamwise velocity component and b the vertical
velocity component obtained from the 643 simulation of the neutral ABL case. Heights (z/H ) increase
approximately from 0.008 to 0.5. The slopes of −1 and −5/3 are also shown

(a) (b)

Fig. 5 Averaged non-dimensional 1-D spectra of a the streamwise velocity component and b the vertical
velocity component obtained from the 1283 simulation of the neutral ABL case. Heights (z/H ) increase
approximately from 0.004 to 0.5. The slopes of −1 and −5/3 are also shown

dimensional Fourier transforms of the velocity component and then are averaged both hori-
zontally and in time. The streamwise wavenumber is normalized by height, and the spectrum
magnitude is normalized by u2∗z. It should be noted that the spectra of the spanwise velocity
component (not shown here) are similar to the spectra of the streamwise velocity compo-
nent. Clearly, in the inertial subrange (k1z � 1) all the normalized spectra show a better
collapse comparing with results obtained using the standard Smagorinsky model, and are in
good agreement with the −5/3 power law. For scales larger than the distance to the surface
(k1z � 1), the slope of the spectra of the streamwise velocity component is slightly lower than
−1 (close to −0.7). The spectra of the vertical velocity component differ from the spectra
of the streamwise velocity component. There is no clear −1 power-law region; instead the
spectra are flat in the surface layer. This finding is consistent with the expected distribution
supported by theoretical (e.g., Townsend 1976; Perry et al. 1986) and experimental studies
(e.g., Perry et al. 1986; Katul and Chu 1998). It should also be noted that, at the lowest
computational levels, the spectra of both velocity components show an overly steep slope
at the smallest resolved scales. At last, as expected in LES, the increase of grid resolution
yields an extension of the resolved portion of the inertial subrange.
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(a) (b)

Fig. 6 Averaged non-dimensional 1-D spectra of the resolved scalar concentration obtained from a the 643

simulation of the neutral ABL case; and b the 1283 simulation of the neutral ABL case. Heights (z/H ) increase
approximately from, a 0.008 to 0.5 or b 0.004 to 0.5. The slope −5/3 is also shown

The power spectrum of a scalar field is known to exhibit an inertial subrange and a
dissipation subrange. In the inertial range, the spectrum follows the classical −5/3 power-law
scaling (e.g., Sagaut 2006); as with the velocity spectrum in a neutral ABL flow, the inertial
subrange should extend for the range of relatively small scales corresponding to k1 � z−1.
Figure 6 shows the non-dimensional 1-D power spectra obtained from the simulations using
the new closure at two resolutions (643 and 1283). The new approach is evidently capable
of achieving the −5/3 power-law scaling in the inertial subrange. Also, as expected in LES,
the increase of grid resolution will yield an extension of the resolved portion of the inertial
subrange.

4.3 Second-Order Statistics

Averaging (both horizontally and in time) the streamwise momentum equation yields ∂ 〈̃u w̃〉
∂z +

∂〈τxz〉
∂z = − ∂〈 p̃〉

∂x , where 〈̃u w̃〉 is the mean resolved shear stress and 〈τxz〉 is the mean SGS
shear stress. Since the simulated flow is driven by a constant pressure gradient, in the absence
of viscous stresses, the normalized (by u2∗) mean total turbulent stress grows linearly from
a value of −1 at the surface to a value of zero at the top of the boundary layer. Because
〈w̃〉 = 0, it is easy to prove that 〈̃u w̃〉 equals

〈

ũ′ w̃′〉. Mean resolved shear stress should be
negative indicating an overall tendency that faster (̃u′ > 0) fluid parcels are moving downward
(w̃′ < 0) and slower (̃u′ < 0) fluid parcels are moving upward (w̃′ > 0). Figure 7a shows
the vertical distribution of the normalized total and partial (resolved and SGS) shear stresses
obtained from the 1283 baseline simulation and the normalized SGS stresses obtained from
two coarser grids (643 and 963). As expected, the coarser resolution simulations yield SGS
stresses that are larger in magnitude than the higher resolution counterparts. The distribution
of total turbulent stress is indeed consistent with the expected linear behaviour. The result
also serves as a confirmation of stationarity and momentum conservation of the scheme.

Figure 7b shows the vertical distributions of the normalized total and partial wall-normal
fluxes obtained from the 1283 simulation, and also includes the normalized SGS stresses and
SGS fluxes obtained from two coarser grids (643 and 963). Similarly, the coarser resolution
simulations yield the SGS fluxes that are larger in magnitude than the higher resolution coun-
terparts. The similarity between the characteristics of the total turbulent stress and the total
turbulent flux has been reported by direct numerical simulation (DNS) studies (e.g., Kim and
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(a) (b)

Fig. 7 Vertical distributions, in the neutral ABL, of the normalized total and partial (SGS and resolved): a
shear stresses and b wall-normal fluxes

Moin 1987), indicating that productions of scalar fluctuations also take place intermittently
just as that of velocity fluctuations. Also the near-linear feature of the total turbulent flux is
in good agreement with both DNS results (e.g., Kim and Moin 1987; Kong et al. 2000) in
the logarithmic region, and LES results (e.g., Porté-Agel 2004; Lu and Porté-Agel 2013) of
a neutral ABL flow.

5 Active Scalar Modification

We now turn to the case of coupling with an active scalar (i.e. with a field that has feedback
effects on the velocity field), leading to a two-way coupling between the momentum and
the scalar equations. We place the emphasis on buoyancy effects. Reviews (e.g., Sagaut
2006) show that interscale energy transfers in flows are strongly affected in both stable and
unstable stratification cases. This is the reason most scalar models are derived in relation
to a simplified kinetic energy balance equation that includes buoyancy effects. One obtains
the balance by neglecting all diffusive and convective effects, yielding an extended local
equilibrium assumption

ε = −τi j˜Si j + g

	0
q3. (23)

Recall ε = Cε
k3/2

sgs
˜�

and that q3 is modelled as
√

2ksgsθsgs

(

˜Gθ,3

|˜Gθ |
)

based on Eq. 4; thus, one

obtains

Cε

k3/2
sgs

˜�
= −2ksgs

(

˜Gi j

˜Gkk

)

˜Si j + g

	0

√

2ksgsθsgs

(

˜Gθ,3

|˜Gθ |
)

. (24)

This equation bears three solutions; we do not consider ksgs = 0, and also we exclude
another solution,1 since it is the solution formed from ksgs = 0 and results in an opposite
trend of buoyancy effects (for instance, stably stratification should lower the SGS kinetic
energy). Thus, one can arrive at the modified model expression for the SGS kinetic energy

1 The solution is ksgs = ˜�2

C2
ε

⎡

⎣

(

− ˜Gi j
˜Gkk

˜Si j

)

−
√

(

− ˜Gi j
˜Gkk

˜Si j

)2
+ √

2 Cε
˜�

g
	0

θsgs

(

˜Gθ,3
|˜Gθ |

)

⎤

⎦

2

.
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by substituting ˜�
Cεθ

(

− ˜Gθ,i

|˜Gθ |
∂˜θ
∂xi

)

for θsgs,

ksgs = ˜�2

C2
ε

⎡

⎢

⎣

(

− ˜Gi j

˜Gkk

˜Si j

)

+
√

√

√

√

(

− ˜Gi j

˜Gkk

˜Si j

)2

+
√

2Cεg

Cεθ	0

(

− ˜Gθ,i

|˜Gθ |
∂˜θ

∂xi

) (

˜Gθ,3

|˜Gθ |
)

⎤

⎥

⎦

2

.

(25)

It is difficult to propose a dynamic procedure because the model coefficients Cε and Cεθ are
coupled in this expression, and so we adopt the previous simple approach, Cε/Cεθ = √

2Sc
(Lu and Porté-Agel 2013). Tests (e.g., Jiménez et al. 2001) have shown that the Schmidt
number (or the Prandtl number depending on the physical significance of the scalar field)
leads to satisfactory results. When clipping is included, the SGS kinetic energy is written as

ksgs = H (P)
˜�2

C2
ε

[(

− ˜Gi j

˜Gkk

˜Si j

)

+
√

√

√

√

(

− ˜Gi j

˜Gkk

˜Si j

)2

+ H (Pθ )
2Scg

	0

(

− ˜Gθ,i

|˜Gθ |
∂˜θ

∂xi

)(

˜Gθ,3

|˜Gθ |
)

⎤

⎥

⎦

2

. (26)

The modified Mi j term for determining coefficients, shown in Eq. 16, is written as

Mi j = 2α2
˜�

2

[(

− ˜Gmn

˜Gkk

˜Smn

)

+
√

√

√

√

(

− ˜Gmn

˜Gkk

˜Smn

)2

+ 2Scg

	0

(

− ˜Gθ, j

|˜Gθ |
∂˜θ

∂x j

) (

˜Gθ,3

|˜Gθ |

)
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⎥

⎦

2
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˜Gll

)

−2˜�2
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− ˜Gmn

˜Gkk

˜Smn

)

+
√

√

√

√

(

− ˜Gmn
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˜Smn
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+ 2Scg
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|˜Gθ |
∂˜θ
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)

(

˜Gθ,3

|˜Gθ |
)

⎤

⎦

2
(

˜Gi j

˜Gll

)

.

(27)

We adopt Sc = 0.71 in this study, which is the Prandtl number of air near 20 ◦C.

6 Stable Atmospheric Boundary Layer

We implement the new closure in a horizontally homogeneous stable boundary layer (SBL)
case. The set-up is based on a LES intercomparison study as part of the Global Energy and
Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS) initiative. This LES
intercomparison case study, described in detail in Beare et al. (2006), represents a typical
moderately stable, quasi-equilibrium ABL, similar to those commonly observed over polar
regions and equilibrium nighttime conditions over land in mid latitudes. In summary, the
boundary layer is driven by an imposed, uniform geostrophic wind of Ug = 8 m s−1; the
Coriolis parameter is set to fc = 1.39×10−4 rad s−1; the initial potential temperature profile
consists of a mixed layer (with potential temperature 265 K) up to 100 m with an overlying
inversion of strength 0.01 K m−1, and the surface (ground level) potential temperature is
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(a) (b)

Fig. 8 Mean a wind speed and b potential temperature obtained from different resolution simulations of the
GABLS case

reduced at a prescribed surface cooling rate of 0.25 K h−1. The height of the computational
domain is H = 400 m. As suggested by Stoll and Porté-Agel (2008), to provide a larger
range of scales (better able to capture larger buoyancy waves), the horizontal domain is twice
the horizontal domain used in Beare et al. (2006), thus Lx = L y = 800 m. We carried out
simulations with resolutions of Nx × Ny × Nz = 64 × 64 × 64, 80 × 80 × 80, 96 × 96 × 96,
and 128×128×128. In contrast to the constant surface flux imposed in the neutral ABL case,
the surface heat flux is computed through the application of surface-layer similarity theory:

q3|w = u∗κ(θs−˜θ)
ln (z/z0)−ΨH

, where θs is the surface (ground level) potential temperature, and ΨH is
the stability correction for heat. Following the recommendations of the GABLS study, we
adopt the roughness length z0 = 0.1 m, ΨM = −4.8z/L and ΨH = −7.8z/L , where L is the
Obukhov length. A Rayleigh damping layer above 300 m is used following the GABLS case
description. More details can be found in Beare and MacVean (2004), Beare et al. (2006),
Basu and Porté-Agel (2006), Stoll and Porté-Agel (2008), Lu and Porté-Agel (2011, 2013).

6.1 Wind Speed and Potential Temperature

Figure 8 shows the mean profiles of the resolved wind speed and potential temperature,
where averaging is performed both horizontally and over the last hour of simulation. Current
simulation results are also directly compared with the 803 simulation results performed by
Basu and Porté-Agel (2006). A low-level jet appears clearly near the top of the boundary layer,
as predicted by Nieuwstadt’s theoretical model (Nieuwstadt 1985) and observed previously
in simulations (e.g., Beare et al. 2006; Basu and Porté-Agel 2006; Stoll and Porté-Agel
2008; Lu and Porté-Agel 2013). Also in agreement with other GABLS simulation results, an
increase in resolution leads to a general decrease in the boundary-layer depth, an enhancement
of positive curvature in the potential temperature profile in the interior of the SBL, and an
increase in jet strength. Interestingly, a 643 resolution is sufficient for the new model to yield
a boundary-layer depth similar to that of the 803 simulation performed using a local dynamic
model (Basu and Porté-Agel 2006).

The Ekman spiral refers to wind or current profile near a horizontal boundary in which the
flow direction rotates as one moves away from the boundary. The laminar solution produces
a surface wind parallel to the surface-stress vector and at 45◦ to the geostrophic wind, a flow
angle that is somewhat larger than that observed in real conditions. Figure 9 shows a surface
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Fig. 9 Wind hodographs
obtained from different resolution
simulations of the GABLS case

(a) (b)

Fig. 10 Non-dimensional a velocity gradient and b temperature gradient obtained from different resolution
simulations of the GABLS case. The solid and dashed lines correspond to the formulations according to Eqs.
29 and 30

flow angle of approximately 35◦, which is in good agreement with most SBL cases (e.g.,
Kosović and Curry 2000; Basu and Porté-Agel 2006).

In SBL simulations, the non-dimensional velocity gradient, ΦM, and the non-dimensional
temperature gradient, Φθ , are key parameters for surface parametrizations in large-scale
models and in assessments of SGS models. Owing to the existence of the non-zero mean
spanwise velocity component, the definition in Eq. 21 is modified as

ΦM = κz

u∗

√

(

∂ 〈̃u〉
∂z

)2

+
(

∂ 〈̃v〉
∂z

)2

, (28)

and in the surface layer, ΦM and Φθ are usually parametrized as functions of z/L . In
Fig. 10, we plot the ΦM and Φθ results and compare them with the formulations proposed
by Businger et al. (1971)

ΦM = 1 + 4.7
z

L
, (29a)

Φθ = 0.74 + 4.7
z

L
, (29b)
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(a) (b)

Fig. 11 Probability density functions of the dynamically calculated coefficients, a Cε and b Cεθ , obtained at
different heights within the GABLS case and overall

and by Beljaars and Holtslag (1991)

ΦM = 1 + z

L

(

a + be− dz
L

(

1 + c − dz

L

))

, (30a)

Φθ = 1 + z

L

(

a

√

1 + 2

3

az

L
+ be− dz

L

(

1 + c − dz

L

)

)

, (30b)

where the coefficients are a = 1, b = 2/3, c = 5 and d = 0.35. The points are from the lowest
40 m of the simulation domain. In general, all the simulation results agree quite well with the
empirical relations. The non-dimensional velocity gradient is slightly underestimated for the
lowest two to three grid points. With the coupling of the velocity field and the scalar field, the
computed non-dimensional scalar gradient matches the similarity profiles remarkably well.
In the surface layer, the results have better agreement with Eq. 29 than with Eq. 30.

Figure 11 shows the PDFs of the two model coefficients obtained from the 1283 simulation.
The results are presented for four different heights and also for the whole boundary layer (bold
grey lines in Fig. 11). It is clear that the PDFs of Cε and Cεθ in the GABLS case simulations
are even more consistent at all levels than those in the neutral ABL case as shown in Fig. 2.

Figure 12 shows the median values of Cε and Cεθ versus z. Overall, the two dynamically-
calculated coefficients have averaged values that are approximately constant throughout the
turbulent boundary layer. Again, recall that Cε = 1 and Cεθ = 1 in the GABLS case
simulations (Lu and Porté-Agel 2013) are reasonable values, even when these values are
based on theoretical arguments.

6.2 Turbulent Fluxes

It is important to investigate the normalized flux profiles as shown in Fig. 13. Nieuwstadt’s
analytical model (Nieuwstadt 1985) predicts that the total buoyancy flux, if normalized by
its surface value, should be a linear function of z/δ, where the boundary-layer depth δ is
defined as (1/0.95) times the height where the horizontally averaged flux falls to 5 % of its
surface value (Beare et al. 2006); likewise, the total normalized momentum should follow a
3/2 power law with z/δ. The intercomparison study of Beare et al. (2006) and the studies
of Basu and Porté-Agel (2006), Stoll and Porté-Agel (2008) and Lu and Porté-Agel (2013)
all reproduced the profiles to a high degree of accuracy. It is clear that our results follow the
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(a) (b)

Fig. 12 Averaged values of the dynamically calculated coefficients, a Cε and b Cεθ , obtained from different
resolution simulations of the GABLS case

(a) (b)

Fig. 13 Mean normalized total a momentum flux profiles and b buoyancy flux profiles obtained from different
resolution simulations of the GABLS case

theoretical predictions quite closely at all resolutions, and the performance of the new model
is slightly better compared with the results obtained using the non-dynamic closure of Lu
and Porté-Agel (2013).

7 Lagrangian Dynamic Model

Lagrangian averaging (Meneveau et al. 1996) is a commonly used method for overcoming
the intermittency of the coefficient resulting from purely local dynamic determinations. Also,
Lagrangian dynamic models are well suited for the simulation of heterogeneous turbulent
flows. This section presents the results of the Lagrangian version of the model in the neutral
ABL case.

Following the flow backward along fluid path lines, the Lagrangian average of any quantity
A(x, t) at time t and spatial position x is defined as: 〈A〉L = ∫ t

−∞ A W dt ′, where W (t − t ′)
is a weighting function controlling the importance of events backwards along the path line.

123



Dynamic Non-linear Closure for LES 447

(a) (b)

Fig. 14 Non-dimensional vertical gradient of a the mean resolved streamwise velocity and b the mean resolved
scalar concentration obtained from simulations of the neutral ABL case. The dashed line corresponds to the
classical similarity profile. The left/right corner plot is a zoomed view of the surface layer and it has a log
scale in the vertical direction

The expressions for Cε and Cεθ can be written as

(Cε)
−2 =

〈

Li j Mi j
〉

L
〈

Mi j Mi j
〉

L
, (31)

and

(CεθCε)
−2 = 〈Ki Xi 〉L

〈Xi Xi 〉L
. (32)

For the weighting function, a common choice is the exponential formulation, W (t − t ′) =
(1/T )e−(t−t ′)/T . Based on previous studies (Meneveau et al. 1996; Bou-Zeid et al. 2005; Stoll
and Porté-Agel 2006b), the time scale T is chosen as T = 1.5˜�

(〈

Li j Mi j
〉

L
〈

Mi j Mi j
〉

L
)−1/8

for Eq. 31 and T = 1.5σθ
˜� (〈Ki Xi 〉L 〈Xi Xi 〉L)−1/4 for Eq. 32, where σθ is the standard

deviation of the scalar concentration fluctuations. The Lagrangian average offers the practical
advantage of allocating less weight to the recent history if the current values of Li j Mi j and
Ki Xi are negative. As a result, the values of

〈

Li j Mi j
〉

L and 〈Ki Xi 〉L are seldom negative.
Further, when the SGS production is negative, the coefficient is not in use, and also the
correlations between Li j and Mi j and between Ki and Xi are weak. To address these issues
and also to avoid sharp jumps in the coefficients, when backscatter occurs, we locally assign
Li j Mi j = Mi j Mi j and Ki Xi = Xi Xi , which is based on the constant values used previously
(Lu and Porté-Agel 2010, 2013).

The values of ΦM and Φθ resulting from the Lagrangian version of the model are presented
in Fig. 14. Overall, the model yields a value of ΦM that remains close to 1, and a value of Φθ

that remains close to 0.74, indicative of the expected similarity profiles. The non-dimensional
gradients are slightly overestimated for the second lowest grid point, but the deficiencies are
compensated at the third lowest grid point.

Figure 15 shows the normalized spectra obtained from the 1283 simulation, noting that the
model is evidently capable of achieving the −5/3 power-law scaling in the inertial subrange.
The streamwise velocity spectra are slightly improved comparing with those obtained using
the standard modulated gradient model (Lu and Porté-Agel 2010) and the dynamic model,
which show slightly excessive dissipation near the surface.
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(a) (b)

Fig. 15 Averaged non-dimensional 1-D spectra of a the streamwise velocity component and b the resolved
scalar concentration obtained from the 1283 simulation of the neutral ABL case. Heights (z/H ) increase
approximately from 0.004 to 0.5. The slopes of −1 and −5/3 are also shown

(a) (b)

Fig. 16 Probability density functions of the dynamically calculated coefficients, a Cε and b Cεθ , obtained at
different heights within the neutral ABL and overall

(a) (b)

Fig. 17 Averaged values of the dynamically calculated coefficients a Cε and b Cεθ , obtained from different
resolution simulations of the neutral ABL case
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The PDFs of the coefficients, shown in Fig. 16, are very similar at all levels and reveal
that the fluctuations follow a near log-normal distribution. Figure 17 shows that, overall, the
dynamically calculated coefficients have averaged values that are approximately constant
throughout the turbulent boundary layer.

8 Summary

We have developed a dynamic non-linear SGS closure for LES. The complete SGS model
bears most of the desirable characteristics of a non-viscosity gradient SGS stress model (Lu
and Porté-Agel 2010; Lu 2011) and a non-diffusivity SGS flux model (Lu and Porté-Agel
2013). In contrast to the original model, the proposed closure is tuning-free because it uses
the Germano identity (Germano et al. 1991; Lilly 1992) between the resolved (Leonard)
stresses/fluxes and the SGS stresses/fluxes to dynamically compute the two model coeffi-
cients.

It is well known that in the surface layer of the ABL, where SGS motions contribute to
a large fraction of the total turbulent fluxes, LES is rather sensitive to SGS parametrization.
Traditional closures yield deviations from the Monin–Obukhov similarity forms in the sur-
face layer. The deviations are readily observed in the wind-speed and temperature profiles,
and to a greater extent in their dimensionless vertical derivatives. The potential of the new
closure is presented in simulations of a well-established neutrally stratified ABL case and
a well-known stably stratified ABL case. Overall, numerical results are in good agreement
with reference results (based on observations, well-established empirical formulations and
theoretical predictions of a variety of flow statistics).

This study also reveals that the PDFs of Cε and Cεθ are near log-normal, and median values
of the two model coefficients are approximately constant (close to the theoretical values)
throughout the turbulent boundary layer. The latter explains the reason why, in previous ABL
simulations and simulations of other types of fluid flow (Lu and Porté-Agel 2010, 2013;
Lu 2011; Cheng and Porté-Agel 2013), satisfactory results were achieved using constant
coefficients. This gives the closure an advantage over the standard Smagorinsky model,
which bears the issue that the optimum value of the constant model coefficient, Cs, varies
greatly depending on the local flow conditions.

Despite the good performance exhibited by the new closure, it is based on the assumption
of local equilibrium. Possible future modifications of the model include the development
and testing of alternative ways of computing the magnitude of the SGS flux (e.g., solving
additional equations for both the SGS kinetic energy and the SGS scalar variance).
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