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résistance de cisaillement

O. Tietje • P. Fitze • H. R. Schneider

Received: 2 July 2012 / Accepted: 3 September 2013 / Published online: 28 September 2013

� The authors and IOS Press, All rights reserved.* 2011

Abstract The stability of a slope is governed by the

spatial average of the shear strength over the extent of

the failure surface. In Eurocode 7 the average soil

properties are taken into account by defining the

characteristic soil parameter as being ‘‘a cautious

estimate of the value affecting the occurrence of the

limit state’’ and further stating that this value should be

based on, among other factors, ‘‘the extent of the zone

of ground governing the behavior of the geotechnical

structure at the limit state being considered’’. To

completely quantify the characteristic shear strength

along a failure surface, three statistical values are

required: the arithmetic mean, the variance and the

spatial correlation. The mean soil properties and to a

lesser degree the variance (or equivalently the stan-

dard deviation or the coefficient of variation) are

known and used by most geotechnical engineers for

the selection of characteristic soil properties. The scale

of fluctuation, however, is not generally used. The

scale of fluctuation is a measure of the soil spatial

variability and can be understood as the range within

which soil properties are correlated and beyond which

they are statistically uncorrelated. This paper investi-

gates the influence of the variability of shear strength

on the reliability of slopes based on simulated

autocorrelated random fields created by the turning

bands method. In particular, the influence of the length

of the failure surface on the characteristic value is

investigated. Numerical Monte Carlo analyses verify

the validity of a simplified practical approach pre-

sented to determine the characteristic soil properties

according to Eurocode 7.

Résumé La stabilité d’un versant est régnée par la

moyenne spatiale de la résistance de cisaillement sur

l’extension de la surface coulissante. Dans l’Eurocode

7 une moyenne des propriétés du sol est tenue compte,

par définir le paramètre caractéristique du sol comme

‘‘une estimation prudent de la valeur, qui concerne

l’apparition de l’état limité’’ et puis, que cette valeur

devrait, entre autres facteurs, être basée sur ‘‘l’impli-

cation de l’extension de la zone du sol régné du

comportement de la structure géotechnique dans l’état

limité’’. Pour pouvoir quantifier complètement les

caractéristiques de la résistance de cisaillement le

long de la surface coulissante, il y en a besoin de trois

valeurs: la valeur moyenne arithmétique, la variance

et la corrélation spatiale. La valeur moyenne des

propriétés du sol, et dans une moindre mesure la
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variance (ou bien aussi l’écart normal ou le coefficient

de variation) sont connus et utilisés d’une majorité des

ingénieurs en géotechnique pour sélectionner des

propriétés caractéristiques du sol. La corrélation

spatiale n’est pas beaucoup utilisée en général. C’est

une mesure pour l’échelle de fluctuation, par exemple

la marge entre les propriété du sol qui sont en

corrélation et au-delà quelles ne sont statistiquement

pas en corrélation. Cette mémoire recherche l’influ-

ence de la variabilité de la résistance de cisaillement

sur la fiabilité d’un versant, basé sur des prélèvements

simulés en autocorrélation avec la turning bands

method. L’influence de la longueur de la surface

coulissant sur la valeur caractéristique est en partic-

ulier recherchée. L’analyse numérique de Monte

Carlo vérifie la validité d’une approche plus simple et

plus pratique, présenté pour déterminer les caractéris-

tiques des propriétés du sol selon l’Eurocode 7.

Keywords Slope stability � Characteristic

value � Eurocode 7 � Spatial variability � Monte

Carlo analysis � Random fields

1 Introduction

The assessment of slope stability involves the essential

task of selecting geotechnical parameters represented

by their characteristic values according to Eurocode 7

(EN 1997-1). No guidance is offered in Eurocode 7 to

quantitatively determine characteristic values for

practical applications. Therefore considerable diffi-

culties exist in selecting characteristic values that take

into account both data and model uncertainty.

Parameter uncertainty relates to the basic availability

of data, transformation uncertainty, measurement errors

and statistical errors derived from the measured values,

the statistical interdependence of soil parameters (cor-

relation) and the spatial variability (e.g. Christian et al.

1994; Phoon and Kulhawy 1999). Model uncertainty

relates to the assumed conditions used in the different

calculation methods and is neglected here.

Characteristic values according to Eurocode 7 are

dependent, among other factors, on the extent of the

failure surface, which in turn influences the variance

of soil properties.

In this paper the influence of the spatial variability

of soil when estimating the characteristic value and

its implications on slope stability is investigated.

Numerical Monte Carlo analyses are employed to

verify the validity of a simplified practical approach

presented to determine the characteristic soil proper-

ties according to Eurocode 7.

2 Materials and Methods

2.1 Description of Cases

In order to assess the different methods for estimating

the characteristic values of soil properties, two typical

slope stability examples are introduced. The method of

slices (Fellenius 1936) is employed with a constant

unit weight c as well as a constant slope angle and

dimensions.

The first example represents a saturated clay slope

with a mean undrained shear strength of cu = 40 kPa

(friction angle / = 0�). The slope angle is 26.57� and

the distance of the failure surface perpendicular to the

slope surface is limited to 20 m as shown in Fig. 1.

The second example (see Fig. 2) represents a slope

with an angle of 36.87�, consisting of a clayey sand

with a mean friction angle of / = 30� and a mean

cohesion of c = 8 kPa.

The statistical parameters describing the inherent

soil variability, which are: the mean l, the coefficient

of variation CV (=r/l), the vertical correlation length

qv, the horizontal scale of fluctuation dh (see Sect. 2.3

for qv and dh), and the anisotropy ratio (i.e. qh/qv) for

the two examples, are shown in Table 1 (cohesion c)

and Table 2 (friction angle /) and are based on (Phoon

and Kulhawy 1999).

2.2 Calculation of the Global Factor of Safety

The computation of the global factor of safety FS of a

slope is based on:

Fig. 1 Example 1, undrained clay slope (Fs = 1.171)
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• Estimating of the characteristic values xk of

cohesion and friction angle as the 5 % confidence

limit for estimating the average of n measurements

of a normally distributed population (t is the 5 %

percentile of Student’s t-distribution with

n degrees of freedom) (e.g. Schneider 1997; Orr

and Breysse 2008; Bond and Harris 2008):

xk ¼ lx �
t
ffiffiffi

n
p rx ¼ lx 1� t

ffiffiffi

n
p CVw

� �

ð1Þ

• Calculating the global factor of safety FS using:

FS ¼
cLþ tan uð Þc

R

H cos að Þdx

c
R

H sin að Þdx
ð2Þ

In Eq. (2) L is the length of the failure plane, H the

vertical depth of the failure plane from the surface

and a the angle of the failure plane relative to the

horizontal.

• Find the minimum global factor of safety among

all possible slip surfaces

FS;min ¼ min FSgf ð3Þ

A simplified equation for determining the characteris-

tic value according to Eq. (1), which gives good values

in practical terms (implicitly valid for about L=d equal to

about 8–10) was found by (Schneider 1997). Thereby,

the characteristic value could be calculated as:

xk ¼ lx � 0:5rx ¼ lx 1� 0:5CVð Þ ð4Þ

2.3 Spatial Variability

Spatial variability describes the variation of geo-

technical parameters in one, two, or three spatial

dimensions. It is assumed that measurements are

correlated if the distance between two locations is

small, and are uncorrelated or statistically indepen-

dent, respectively, if the distance between two loca-

tions is large. A mathematical function that describes

the (auto) correlation r(h) is given by:

r hð Þ ¼ exp �h=qð Þ ð5Þ
This exponential autocorrelation function is a

function of the distance between two locations, h,

and the correlation length, q. In geotechnical applica-

tions the scale of fluctuation (Vanmarcke 1983) is

mostly used which is defined as d = 2q for this

particular auto-correlation function (i.e. the exponen-

tial model) and leads to

r hð Þ ¼ exp �2h=dð Þ ð6Þ
The scale of fluctuation of geotechnical parame-

ters shows a dependency on direction, namely on

the vertical and the horizontal distances, due to a

soil’s deposition and loading history. It is implicitly

assumed that the autocorrelation function is separa-

ble (i.e. it is expressed as a product of the autocor-

relation functions in each direction), as usually done.

Table 1 Statistical parameters for cohesion

Cohesion Example 1 Example 2

l 40 kPa 8 kPa

CV 0–0.45 0–0.45

qv 0.5–? m 0.5–? m

dv 1–? m 1–? m

qh/qv = dh/dv 10 10

Typically, CVc is 0.3 and qv,c is 0.5–1 m and dv,c is 1–2 m,

respectively

Table 2 Statistical parameters of the friction angle

Friction angle (�) Example 1 Example 2

l 0 30�
CV – 0–0.2

qv – 0.5–? m

dv – 1–? m

qh/qv = dh/dv – 10

Typically, CV/ is 0.1 and qv,/ is 0.5–1 m and dv,c is 1–2 m,

respectively

Fig. 2 Example 2, slope in clayey sand (Fs = 1.155)
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This produces two exponential autocorrelation func-

tions; one with the horizontal and one with the

vertical correlation lengths. The ratio of the horizon-

tal and the vertical correlation lengths qh=qv is called

the anisotropy ratio.

2.4 Simplified formula regarding spatial

variability

A major difficulty in assessing the characteristic value

according to EN 1997-1 is to account for ‘‘the zone of

ground affecting the limit state’’.

In a zone larger than the scale of fluctuation the

spatially variable properties tend to ‘‘average out’’,

whereas within a distance smaller than the scale of

fluctuation the spatial average varies considerably, in an

extreme case by as much as the variance of the samples

(Vanmarcke 1977).The averaging out occurs because of

an increasing probability that high property values are

balanced by low property values at other points (NRC

1995), when the correlation (i.e. the scale of fluctuation)

decreases and/or the size (length, area, volume) of the

failure mechanism increases. This effect is known as

variance reduction due to spatial averaging.

Thus, the effect of the scale of fluctuation depends

on the size of the investigated area, or in this context

on the length of the failure surface L.

Taking into account the spatial variability in a

simplified way, the characteristic value as defined in

Eurocode 7 can be estimated by Eqs. (7a, 7b)

xk ¼ lx 1� 1:645 � CV �
ffiffiffi

d
L

r

 !

ð7aÞ

xk ¼ lx 1� 1:645 � CV � Cð Þ ð7bÞ

where d is the scale of fluctuation, L is the length of the

governing failure mechanism, C2 = d/L is the vari-

ance reduction factor, and 1.645 is the 5 % fractile of

the normal probability distribution. Equation (7a) is

valid for L� d. For the case of L� d; d
L
¼ 1 (Van-

marcke 1983). Note that Eqs. (7a, 7b) only accounts

for the inherent variability, whereas Eq. (1) accounts

for the statistical uncertainty. The two uncertainties

can be linked in the following simplified equation:

xk ¼ lx 1� 1:645 � CV �
ffiffiffiffiffiffiffiffiffiffiffi

d
L
þ 1

n

r

 !

ð8Þ

In Eq. (8) it is assumed, that a large population of

data or expert knowledge is available, so that the

Student t distribution converges to the standard normal

distribution. More details on the derivation of the

equation are given in (Schneider 2010).

With the focus of this paper on the quantification of

the effect of spatial variability on slope stability, no

statistical measurement error is introduced in Example

1 and 2. The consequence of this aussumption is that

Eq. (8) converges to Eqs. (7a, 7b), because 1/n in

Eq. (1) approaches zero for the above assumption. The

Eqs. (7a, 7b) and (8) however still account for the

inherent variability, whereas Eq. (1), which accounts

only for statistical error, reduces to xk = lk, irrespec-

tive of the coefficient of variation.

In a situation where the lognormal distribution is

appropriate (e.g. when the coefficient of variation CV is

larger than about 0.3 or when available information

indicates that the lognormal distribution is more adequate)

Eq. (9) can be used to estimate the characteristic value:

xk ¼ lx

0:193

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 1þd
L
CV2ð Þ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d
L

CV2

q ð9Þ

With this characteristic value a first-order approxima-

tion of the 5 % percentile of the global factor of safety

can be obtained.

2.5 Conditions of Spatial Averaging

Spatial averaging is only possible if the governing

failure mechanism is capable of redistributing forces

or stresses along failure surfaces.

True cohesion is often not ductile, i.e. brittle (is lost

after small strains) and the amount mobilized on the

failure surface depends on stress history and stress

level. Cohesion can therefore not generally be aver-

aged because the strains acting on the failure surface

generally vary along the failure surface. Many prac-

titioners are well aware of this fact and will conse-

quently neglect cohesion in most slope stability

calculations. Despite this fact, in the calculations here

it is assumed for generality that the cohesion is

redistributed on the failure surface.

For the frictional resistance, the same general

remarks as for cohesion apply. For more details refer

to (Schneider and Fitze 2011).
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3 Methodology and Results

3.1 Anisotropic Spatially Variable Slip Surfaces

The variance reduction factor C2 along the slip surface

of an anisotropic soil can be described as:

C2 ¼ dv

Lv

for
dv

Lv

\
dh

Lh

; otherwise C2 ¼ dh

Lh

ð10Þ

where Lv = Lv1 ? Lv2. See Figs. 1 and 2 for the

definitions of L.

3.2 Calculation methodology

Equations (1), (4), (7a, 7b) and (9) are used to estimate

the characteristic values in order to determine the 5 %

fractile for the global factor of safety. Additionally,

Monte Carlo (MC) analyses with the soil described by

autocorrelated random fields (Matheron 1973; Tietje

and Richter 1992; Mantoglou 1987) are performed to

compute the 5 %-fractile for the global factor of safety

as well. The autocorrelated random fields are gener-

ated with the turning bands method. A 2-dimensional

standard normal distribution is produced for a spatially

dependent random variable Z. Each realization of Z is

then transformed to obtain a lognormal distribution of

the generated parameter field. Thus the logarithm of

the generated parameter field is spatially correlated

with correlation function of Eq. (5) and the correlation

length or the scale of fluctuation, respectively (Fig. 3).

Figures 4, 5, 6 and 7 show the results of the

following three different MC-methods, Methods 1, 2

and 3, to obtain the 5 %-fractile of the factor of safety

(Fs) as well as the results obtained using the three

simplified Eqs. (1), (4), and (9) for comparison. The

main features of the three methods and the three

equations are:

• Method 1 MC analysis with a spatially homoge-

neous soil, but accounts for spatial variability

because the reduced variance (CV �
ffiffiffiffiffiffiffiffi

d=L
p

) is used

as input in the MC analysis. For Examples 1 and 2

a fixed midpoint and radius of the failure surface

was determined with average values of c and /.

• Method 2 MC analysis with (auto)correlated

random fields. Each MC run creates a spatially

variable random soil with a correlation length q.

Method 2 uses the fixed midpoint and radius of the

failure surface determined in Method 1, although

the spatial variability could imply a different

failure surface in each MC run.

• Method 3 MC analysis with correlated random

fields and a search for the critical failure surface

according to Eq. (3) in each MC run. Method 3

selects as the failure surface the circle for which

the generated soil shows the most unfavourable

strength.

• Equation (1) neglects spatial variability as

n (degrees of freedom, resp. number of measure-

ments) is assumed to be infinite so that xk = lk.

n approaches infinite, because of the assumption of

a negligible statistical error. Note: Eq. (1) is only

able to account for the statistical uncertainty

(estimates the 5 %-fractile of the average of a

population). It does not account for the inherent

variability inside a population.

• Equation (4)—as a rule of thumb—accounts for

both statistical error and the spatial variability.

However the uncertainty is only roughly

accounted for by just using the CV and neglecting

the correlation structure (d) and the length (L) of

the governing failure mechanism.

• Equation (9), and also Eqs. (7a, 7b), account

explicitly for the spatial variability and the size of

the governing failure mechanism. They calculate

the variance reduction simply by dividing the scale

of the fluctuation (d) by the size (L) of the

governing failure mechanism. In these compari-

sons, Eq. (9) was used.

Because all other methods or equations can be

derived from Method 3 by means of simplification,

this method is used as the reference method for the

comparison.

3.3 Comparative Results

For both examples a sensitivity analysis is presented.

Figure 4 (Example 1) and Fig. 6 (Example 2) show the

sensitivity of the methods for calculatingthe 5 %-

fractile of the global Fs value to the coefficient of

variation, when the vertical scale of fluctuation is fixed

(dv = 2 m). Figure 5 (Example 1) and Fig. 7 (Exam-

ple 2) show the sensitivity of the methods for

calculating the 5 %-fractile of the global Fs value to

the vertical scale of fluctuation, when the coefficient of

variation is fixed.
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Using Eq. (1), with the assumtion of 1/n = 0, the

global factor of safety Fs calculated by Eq. (2) is

overestimated, especially if CV is large and/or the scale

of fluctuation is large (see Figs. 4 and 5). It should be

noted here that the global factors of safety Fs presented in

this paper are meant to be used for a relative comparison

of the different methods. By no means do the absolute

values of Fs imply the slope to be safe or unsafe.

Using Eq. (4) in Eq. (2) results in an global Fs value

that is slightly lower than the reference (Method 3) and

thus is slightly conservative for a typical scale of

fluctuation (2 m) and for the governing failure mech-

anism assumed here. However for a large correlation

length and/or a small governing failure mechanism,

Eq. (4) might overestimate the global Fs. (Figs. 5 or 7).

Using Eqs. (7a, 7b) and (9) in Eq. (2) yields very good

results. The simple variance reduction used for the circular

slip surface (Eq. (10)) is slightly conservative. The results

show that there is a little difference in the Fs values obtained

using Eqs. (7a, 7b) or (9) and the reference Method 3.

The results of Example 1 and 2 are very similar. In

Example 2 both, / and c, are spatially variable and are

Fig. 3 Random fields in

Example 2: dark zones with

weak cohesion, light zones

with strong cohesion. Upper

part with correlation length

1 m, lower part with

correlation length 3 m, right

slopes isotropic, left slopes

with anisotropy ratio 10

Fig. 4 Example 1: 5 %-fractile of global Fs as a function of

CVc (dv = 2 m)

Fig. 5 Example 1: 5 %-fractile of global Fs as a function of dv

(CV = 0.3)
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uncorrelated. Thus the critical slip surfaces deter-

mined in each MC run in Method 3 are not much

different from the one critical slip surface used in

Method 2.

4 Conclusions

The numerical investigations show that the risk of

slope failure depends not only the variability of the soil

properties, but also on the scale of fluctuation of the

soil properties and the extent of the failure mechanism.

The cross-correlation between the strength parameters

(i.e. angle of internal friction and cohesion) has been

neglected in this study.

The variance of the cohesion and friction angle is

reduced due to spatial averaging, if d/L decreases. A

higher variance reduction due to spatial averaging

leads to higher characteristic values and larger factor

of safety respectively and vice versa. Equations (7a,

7b) and (9) explicitly account for spatial variability

through the scale of fluctuation (i.e. the autocorrela-

tion) and the size of the governing failure mechanism.

The validity of Eqs. (7a, 7b) and (9) has been proven

by independent MC-analyses.
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