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Abstract Kramkov and Sîrbu (Ann. Appl. Probab., 16:2140–2194, 2006; Stoch. Proc.
Appl., 117:1606–1620, 2007) have shown that first-order approximations of power utility-
based prices and hedging strategies for a small number of claims can be computed by solving
a mean-variance hedging problem under a specific equivalent martingale measure and rel-
ative to a suitable numeraire. For power utilities, we propose an alternative representation
that avoids the change of numeraire. More specifically, we characterize the relevant quanti-
ties using semimartingale characteristics similarly as in Černý and Kallsen (Ann. Probab.,
35:1479–1531, 2007) for mean-variance hedging. These results are illustrated by applying
them to exponential Lévy processes and stochastic volatility models of Barndorff-Nielsen and
Shephard type (J. R. Stat. Soc. B, 63:167–241, 2001). We find that asymptotic utility-based
hedges are virtually independent of the investor’s risk aversion. Moreover, the price adjust-
ments compared to the Black–Scholes model turn out to be almost linear in the investor’s
risk aversion, and surprisingly small unless very high levels of risk aversion are considered.
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1 Introduction

In incomplete markets, derivative prices cannot generally be based on perfect replication. A
number of alternatives have been suggested in the literature, relying, e.g., on superreplication,
mean-variance hedging, calibration of parametric families, utility-based concepts, or ad-
hoc approaches. This paper focuses on utility indifference prices as studied by Hodges and
Neuberger [17] and many others. They make sense for over-the-counter trades of a fixed
quantity of contingent claims. Suppose that a client approaches a potential seller in order
to buy q European-style contingent claims maturing at T . The seller is supposed to be a
utility maximizer with given preference structure. She will enter into the contract only if her
maximal expected utility is increased by the trade. The utility indifference price is the lowest
acceptable premium for the seller. If the trade is made, the seller’s optimal position in the
underlyings changes due to the presence of the option. This adjustment in the optimal portfolio
process is called utility-based hedging strategy for the claim. Both the utility indifference
price and the corresponding utility-based hedging strategy are typically hard to compute
even if relatively simple incomplete market models are considered. A reasonable way out for
practical purposes is to consider approximations for small q , i.e., the limiting structure for
small numbers of contingent claims. Extending earlier work on the limiting price, Kramkov
and Sîrbu [32,33] show that first-order approximations of the utility indifference price and the
utility-based hedging strategy can be expressed in terms of a Galtchouk–Kunita–Watanabe
(GKW) decomposition of the claim after changing both the numeraire and the underlying
probability measure.

From a slightly different perspective one may say that Kramkov and Sîrbu [32,33] relate
utility indifference pricing and hedging asymptotically to some mean-variance hedging
problem. In this representation, the L2-distance between payoff and terminal wealth of
approximating portfolios needs to be considered relative to both a new numeraire and a
new probability measure.

This differs from related results for exponential utility (see [3,28,34]), where no numeraire
change is necessary. In the present study, we show that the numeraire change can also be
avoided for power utilities, which constitute the most popular and tractable ones on the
positive real line, i.e., in the setup of [32,33]. This allows to examine directly how the
dynamics of the underlying change to account for utility-based rather than mean-variance
hedging, and also allows to apply directly a number of explicit resp. numerical results from the
literature. The key idea is to consider an equivalent mean-variance hedging problem relative
to the original numeraire but under yet another probability measure. More specifically, the
solution of [32,33] for a contingent claim H corresponds to a quadratic hedging problem of
the form

min
c,ϕ

EQ$

((
c + ϕ • ST − H

NT

)2
)

(1.1)

with some numeraire process N and some martingale measure Q$. If we define a new measure
Pe via

d Pe

d Q$
:= 1/N 2

T

EQ$(1/N 2
T )
,

the mean-variance hedging problem (1.1) can evidently be rewritten as

EQ$(1/N 2
T )min

c,ϕ
EPe

(
(c + ϕ • ST − H)2)

)
, (1.2)
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where we minimize again over some a set of initial endowments c and trading strategies ϕ.
Replacing (1.1) by (1.2) constitutes the key idea underlying our approach. For a related tran-
sition in the quadratic hedging literature compare [16] with and [6,39,42] without numeraire
change. Since the stock is not a martingale in the reformulation (1.2), the Galtchouk-Kunita-
Watanabe decomposition does not lead to the solution. Instead, representations as in [42] or,
more generally, [6] can be used to obtain concrete formulas, which are provided in Theo-
rem 4.7 of this paper. On a rigorous mathematical level, we do not consider mean-variance
hedging problems because the expression in Theorem 4.7 is the solution to such a hedging
problem only under additional regularity which does not hold in general. Instead, we show
in a more direct fashion that the solution of [32,33] can be expressed as in Theorem 4.7.

In order to illustrate the applicability of our results and shed light on the role of the
investor’s risk aversion for power utility-based pricing and hedging, we consider exponential
Lévy processes and the stochastic volatility model of Barndorff-Nielsen and Shephard [2]
as examples. For these processes, all technical assumptions can be verified directly in terms
of the model parameters. Moreover, results for the related mean-variance hedging problem
(cf. [5,18,27,30]) can be adapted to obtain first-order approximations to utility-based prices
and hedging strategies explicitly up to some numerical integrations. Using parameters esti-
mated from an equity index time series, we find that the asymptotic utility-based hedging
strategies are virtually independent of the investor’s risk aversion, which holds exactly for
exponential investors. Moreover, the risk premia per option sold turn out to be almost linear
in the investor’s (absolute) risk aversion, which again holds exactly for exponential utilities.
Hence, these examples suggest very similar pricing and hedging implications of both expo-
nential and power utilities: risk aversion barely influences the optimal hedges, and enters
linearly into the first-order risk-premia. Similarly as in [14,13] in the context of basis risk,
we find that the price adjustments are negligibly small for the levels of risk aversion typically
considered in the literature. In particular, surprisingly high levels of risk aversion are needed
to obtain bid- and ask prices below and above the Black–Scholes price, respectively.

The remainder of the paper is organized as follows. After briefly recalling the general the-
ory of power utility-based pricing and hedging in Sect. 2, we review the asymptotic results
of Kramkov and Sîrbu [32,33]. As a byproduct we derive a feedback formula for the utility-
based hedging strategy. Subsequently, we develop our alternative representation in Sect. 4.
Throughout, we explain how to apply the general theory to exponential Lévy processes and
the stochastic volatility model of Barndorff-Nielsen and Shephard [2]. A concrete numeri-
cal example is considered in Sect. 6. Finally, the appendix summarizes notions and results
concerning semimartingale calculus for the convenience of the reader.

Unexplained notation is generally used as in the monograph of Jacod and Shiryaev [21]. In
particular, for a semimartingale X , we denote by L(X) the predictable X -integrable processes
and by ϕ • X the stochastic integral of ϕ ∈ L(X) with respect to X . We write E (X) for the
stochastic exponential of a semimartingale X and denote by L (Z) := 1

Z−
• Z the stochastic

logarithm of a semimartingale Z satisfying Z , Z− �= 0. For semimartingales X and Y ,
〈X, Y 〉 represents the predictable compensator of [X, Y ], provided that the latter is a special
semimartingale (cf. [20, p. 37]). Finally, we write c−1 for the Moore-Penrose pseudoinverse
of a matrix or matrix-valued process c (cf. [1]) and denote by Ed the identity matrix on R

d .

2 Utility-based pricing and hedging

Our mathematical framework for a frictionless market model is as follows. Fix a terminal
time T > 0 and a filtered probability space (�,F , (Ft )t∈[0,T ], P) in the sense of [21, I.1.2].
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For ease of exposition, we assume that FT = F and F0 = {∅,�} up to null sets, i.e., all
F0-measurable random variables are almost surely constant.

We consider a securities market which consists of d + 1 assets, a bond and d stocks. As
is common in Mathematical Finance, we work in discounted terms. This means we suppose
that the bond has constant value 1 and denote by S = (S1, . . . , Sd) the discounted price
process of the d stocks in terms of multiples of the bond. The process S is assumed to be an
R

d -valued semimartingale.

Example 2.1 1. Throughout this article, we will illustrate our results by considering one-
dimensional exponential Lévy models. This means that d = 1 and S = S0E (X) for
a constant S0 > 0 and a Lévy process X with Lévy-Khintchine triplet (bX , cX , F X )

relative to some truncation function h on R. We write

ψ X (z) = zbX + 1

2
z2cX +

∫
(ezx − 1 − zh(x))F X (dx)

for the corresponding Lévy exponent, i.e., the function ψ X : iRd → C such that
E(ez Xt ) = exp(tψ X (z)). When considering exponential Lévy models, we will always
assume S > 0, which is equivalent to �X > −1 resp. the support of F X being concen-
trated on (−1,∞).

2. We will also consider the stochastic volatility model of Barndorff-Nielsen and Shephard
[2] (henceforth BNS model). Here d = 1 and the return process X driving S = S0E (X)
is modelled as

d Xt = μyt dt + √
yt dWt , X0 = 0,

for a constant μ ∈ R, a standard Brownian motion W , and an independent Lévy-driven
Ornstein-Uhlenbeck process y. The latter is given as the solution to the SDE

dyt = −λyt dt + d Zt , y0 > 0,

with some constant λ > 0 and an increasing Lévy process Z with Lévy-Khintchine triplet
(bZ , 0, F Z ) relative to a truncation function h on R.

Self-financing trading strategies are described by R
d -valued predictable stochastic

processes ϕ = (ϕ1, . . . , ϕd), where ϕi
t denotes the number of shares of security i held

at time t . We consider an investor whose preferences are modelled by a power utility function
u(x) = x1−p/(1 − p) with constant relative risk aversion p ∈ R+\{0, 1}. Given an initial
endowment v > 0, the investor solves the pure investment problem

U (v) := sup
ϕ∈�(v)

E(u(v + ϕ • ST )), (2.1)

where the set �(v) of admissible strategies for initial endowment v is given by

�(v) := {ϕ ∈ L(S) : v + ϕ • S ≥ 0}.
To ensure that the optimization problem (2.1) is well-posed, we make the following two

standard assumptions.

Assumption 2.2 There exists an equivalent local martingale measure, i.e., a probability
measure Q ∼ P such that S is a local Q-martingale.

Assumption 2.3 The maximal expected utility in the pure investment problem (2.1) is finite,
i.e., U (v) < ∞.
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Example 2.4 1. In a univariate exponential Lévy model S = S0E (X) > 0, Assumption
2.2 is satisfied if X is neither a.s. decreasing nor a.s. increasing. In this case, by [37,
Corollary 3.7], Assumption 2.3 holds if and only if

∫
{|x |>1} x1−p F X (dx) < ∞, i.e., if

and only if the return process X has finite (1 − p)-th moments.
2. By [26, Theorem 3.3], Assumptions 2.2 and 2.3 are always satisfied in the BNS model

if the investor’s risk aversion p is bigger than 1. For p ∈ (0, 1), they hold provided that
∞∫

1

exp

(
1 − p

2p
μ2 1 − e−λT

λ
z

)
F Z (dz) < ∞, (2.2)

i.e., if sufficiently large exponential moments of the driving Lévy process Z exist.

In view of [31, Theorem 2.2], Assumptions 2.2 and 2.3 imply that the supremum in (2.1)
is attained for some strategy ϕ̂ ∈ �(v) with strictly positive wealth process v + ϕ̂ • S. By
Assumption 2.2 and [21, I.2.27], v + ϕ̂ • S− is strictly positive as well and we can write

v + ϕ̂ • S = vE (−ã • S)

for the optimal number of shares per unit of wealth

−ã := ϕ̂

v + ϕ̂ • S−
,

which is independent of the initial endowment v for power utility. Finally, [31, Theorem 2.2]
also establishes the existence of a dual minimizer, i.e., a strictly positive supermartingale Ŷ
with ŶT = E (−ã • S)−p

T such that (v + ϕ • S)Ŷ is a supermartingale for all ϕ ∈ �(v) and
(v + ϕ̂ • S)Ŷ is a true martingale. Alternatively, one can represent this object in terms of
the opportunity process L := L0E (K ) := E (−ã • S)pŶ of the power utility maximization
problem (cf. [6,26] for motivation and more details).

The optimal strategy ϕ̂ as well as the joint characteristics of the assets and the opportunity
process L satisfy a semimartingale Bellman equation (cf. [36, Theorem 3.2]). In concrete
models, this sometimes allows to determine ϕ̂ and L by making an appropriate ansatz.

Example 2.5 1. Let S = S0E (X) > 0 for a non-monotone Lévy process X with finite
(1 − p)-th moments. Then it follows from [37, Lemma 5.1] that there exists a unique
maximizer η̂ of

g(η) = ηbX − p

2
η2cX +

∫ (
(1 + ηx)1−p − 1

1 − p
− ηh(x)

)
F X (dx),

over the set C 0 = {η ∈ R : F X (x ∈ R : ηx < −1) = 0} of fractions of wealth invested
into stocks that lead to nonnegative wealth processes. By [37, Theorem 3.2], the optimal
number of shares per unit of wealth is given by

−ã = η̂/S−,

with corresponding wealth process vE (−ã • S) = vE (̂ηX) and opportunity process

Lt = exp(a(T − t)), where a = (1 − p) max
η∈C 0

g(η).

2. By [26, Theorem 3.3], it is also optimal to hold a constant fraction of wealth in stocks
in the BNS model, namely η̂ = μ/p (provided that the conditions of Example 2.4 are
satisfied). The optimal number of shares per unit of wealth is then given by −ã = η̂/S−
with corresponding wealth process vE (̂ηX), and opportunity process

Lt = exp(α0(t)+ α1(t)vt ),
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for

α1(t) = 1 − p

2p
μ2 1 − e−λ(T −t)

λ
, α0(t) =

T∫
t

ψ Z (α1(s))ds,

where ψ Z denotes the Lévy exponent of Z .

In addition to the traded securities, we now also consider a non-traded European contingent
claim with maturity T and payment function H , which is an FT -measurable random variable.
Following [32,33], we assume that H can be superhedged by some admissible strategy as,
e.g., for European puts and calls.

Assumption 2.6 |H | ≤ w + ϕ • ST for some w ∈ (0,∞) and ϕ ∈ �(w).
If the investor sells q units of H at time 0, her terminal wealth should be sufficiently large

to cover the payment −q H due at time T . This leads to the following definition (cf. [9,19]
for more details).

Definition 2.7 A strategy ϕ ∈ �(v) is called maximal if the terminal value v+ϕ • ST of its
wealth process is not dominated by that of any other strategy in �(v). An arbitrary strategy
ϕ is called acceptable if its wealth process can be written as

v + ϕ • S = v′ + ϕ′ • S − (v′′ + ϕ′′ • S)

for some v′, v′′ ∈ R+ and ϕ′, ϕ′′ ∈ L(S) such that v′ + ϕ′ • S ≥ 0, v′′ + ϕ′′ • S ≥ 0 and, in
addition, ϕ′′ is maximal. For v ∈ (0,∞) and q ∈ R we denote by

�q(v) := {ϕ ∈ L(S) : ϕ is acceptable, v + ϕ • ST − q H ≥ 0},
the set of acceptable strategies whose terminal value dominates q H .

Remark 2.8 Given Assumption 2.2, we have �(v) = �0(v) by [9, Theorem 5.7] combined
with [23, Lemma 3.1 and Proposition 3.1] .

Let an initial endowment of v ∈ (0,∞) be given. If the investor sells q units of H for a
price of x ∈ R each, her initial position consists of v + qx in cash as well as −q units of
the contingent claim H . Hence �q(v + qx) represents the natural set of admissible trading
strategies for utility functions defined on R+. The maximal expected utility the investor can
achieve by dynamic trading in the market is then given by

U q(v + qx) := sup
ϕ∈�q (v+qx)

E(u(v + qx + ϕ • ST − q H)).

Definition 2.9 Fix q ∈ R. A number πq ∈ R is called utility indifference price of H if

U q(v + qπq) = U (v). (2.3)

Existence of indifference prices does not hold in general for power utility. However, a
unique indifference price πq always exists if the number q of contingent claims sold is
sufficiently small or, conversely, if the initial endowment v is sufficiently large.

Lemma 2.10 Suppose Assumptions 2.2, 2.3 and 2.6 hold. Then a unique indifference price
exists for sufficiently small q. More specifically, (2.3) has a unique solution πq if q < v

2w ,
respectively if q < v

w
and H ≥ 0, wherew denotes the initial endowment of the superhedging

strategy for H from Assumption 2.6.
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Proof First notice that gq
v : x 
→ U q(v + qx) is concave and strictly increasing on its

effective domain. By [31, Theorem 2.1], gq
v (x) ≤ U (v + qx + qw) < ∞ for all x ∈ R. For

H ≥ 0 and q < v
w

we have gq
v (x) > −∞ for x > w − v

q . In particular, gq
v is continuous

and strictly increasing on (w − v
q ,∞) and in particular on [0, w] by [40, Theorem 10.1].

By H ≥ 0 we have gq
v (0) ≤ U (v). Moreover, Assumption 2.6 implies gq

v (w) ≥ U (v).
Hence there exists a unique solution πq ∈ [0, w] to gq

v (x) = U (v). Similarly, for general
H and q < v

2w , the function gq
v is finite, continuous and strictly increasing on an open set

containing [−w,w]. Moreover, gq
v (−w) ≤ U (v) and gq

v (w) ≥ U (v). Hence there exists a
unique πq ∈ (−w,w) such that gq

v (π
q) = U (v). This proves the assertion. ��

We now turn to optimal trading strategies in the presence of random endowment. Their
existence has been established by [8] resp. [19] in the bounded resp. general case.

Theorem 2.11 Fix q ∈ R satisfying the conditions of Lemma 2.10 and suppose Assumptions
2.2, 2.3 and 2.6 are satisfied. Then there exists ϕq ∈ �q(v + qπq) such that

E(u(v + qπq + ϕq • ST − q H)) = U q(v + qπq).

Moreover, the corresponding optimal value process v + qπq + ϕq • S is unique.

Proof This follows from [19, Theorem 2 and Corollary 1] because the proof of Lemma 2.10
shows that (v + qπq , q) belongs to the interior of {(x, r) ∈ R

2 : �r (x) �= ∅}. ��
Without contingent claims, the investor will trade according to the strategy ϕ̂, whereas

she will invest into ϕq if she sells q units of H for πq each. Hence, the difference between
both strategies represents the action the investors needs to take in order to compensate for
the risk of selling q units of H . This motivates the following notion:

Definition 2.12 The trading strategy ϕq − ϕ̂ is called utility-based hedging strategy.

3 The asymptotic results of Kramkov and Sîrbu

We now give a brief exposition of some of the deep results of [32,33] concerning the exis-
tence and characterization of first-order approximations of utility-based prices and hedging
strategies in the following sense.

Definition 3.1 Real numbers π0 and π ′ are called marginal utility-based price resp. risk
premium per option sold if

πq = π0 + qπ ′ + o(q)

for q → 0, where πq is well-defined for sufficiently small q by Lemma 2.10. A trading
strategy ϕ′ ∈ L(S) is called marginal utility-based hedging strategy if there exists v′ ∈ R

such that

lim
q→0

(v + qπq + ϕq • ST )− (v + ϕ̂ • ST )− q(v′ + ϕ′ • ST )

q
= 0 (3.1)

in P-probability and (v′ + ϕ′ • S)Ŷ is a martingale for the dual minimizer Ŷ of the pure
investment problem.

Remark 3.2 [32, Theorems A.1, 8, and 4] show that for power utility functions, a trading
strategy ϕ′ is a marginal utility-based hedging strategy in the sense of Definition 3.1 if and
only if it is a marginal hedging strategy in the sense of [33, Definition 2].

The asymptotic results of [32,33] are derived subject to two technical assumptions.
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Assumption 3.3 The following process is σ -bounded:

S$ :=
(

1

E (−ã • S)
,

S

E (−ã • S)

)
.

The reader is referred to [32] for more details on σ -bounded processes as well as for
sufficient conditions that ensure the validity of this assumption. In our concrete examples,
we have the following:

Lemma 3.4 1. Let S = S0E (X) > 0 for a non-monotone Lévy process X with finite
(1 − p)-th moments. Then Assumption 3.3 holds if the optimizer η̂ from Example 2.5 lies
in the interior of the set C 0 of fractions of wealth in stocks leading to nonnegative wealth
processes.

2. Assumption 3.3 is automatically satisfied if the stock price S is continuous. In particular,
it holds in the BNS model.

Proof First consider Assertion 1. In view of [32, Lemma 8], it suffices to show that S$

is bounded by a predictable process. If η̂ ≥ 0, there exists η ∈ C 0 with η̂ < η; hence
�X > −1/η by definition of C 0. Consequently, η̂�X ≥ −η̂/η > −1 and thus∣∣∣∣ 1

E (−ã • S)

∣∣∣∣ = 1

|E (̂ηX)| = 1

|1 + η̂�X |
1

|E (̂ηX)−| ≤ η

(η − η̂)|E (̂ηX)−| a.s.,

which shows that the first component of S$ is bounded by a predictable process and hence
σ -bounded. Likewise, if η̂ < 0, there exists η ∈ C 0 with η < η̂. Then �X < −1/η and in
turn η̂�X > −η̂/η > −1. Hence it follows as above that |1/E (−ã • S)| is bounded by a

predictable process. The assertion for the second component of S$ follows similarly.
If the stock price process is continuous, both S and E (−ã • S) are predictable. Hence

Assertion 2 follows immediately from [32, Lemma 8]. ��
Since E (−ã • S)Ŷ is a martingale with terminal value E (−ã • S)1−p

T , we can define an
equivalent probability measure Q$ ∼ P via

d Q$

d P
:= E (−ã • S)1−p

T

C0
, C0 := E(E (−ã • S)1−p

T ).

Let H 2
0 (Q

$) be the space of square-integrable Q$-martingales starting at 0 and set

M 2
$ :=

{
M ∈ H 2

0 (Q
$) : M = ϕ • S$ for some ϕ ∈ L(S$)

}
. (3.2)

Assumption 3.5 There exists a constant w$ ≥ 0 and a process M$ ∈ M 2
$ , such that

|H$| ≤ w$ + M$
T

for

H$ := H

E (−ã • S)T
.

Assumption 3.5 means that the claim under consideration can be superhedged with port-
folios as in (3.2). Note that this is again evidently satisfied for European puts and calls.

Remark 3.6 By [32, Remark 1], Assumption 3.5 implies that Assumption 2.6 holds. In par-
ticular, it ensures that indifference prices and utility-based hedging strategies exist for suf-
ficiently small q if the pure investment problem is well-posed, i.e., if Assumptions 2.2 and
2.3 are also satisfied.
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In the proof of [32, Lemma 1] it is shown that the process

V $
t := EQ$

(
H$|Ft

)
, t ∈ [0, T ]

is a square-integrable Q$-martingale. Hence it admits a decomposition

V $ = EQ$

(
H$

)
+ ξ • S$ + N $ = 1

C0
E

(
E (−ã • S)−p

T H
)

+ ξ • S$ + N $, (3.3)

where ξ • S$ ∈ M 2
$ and N $ is an element of the orthogonal complement of M 2

$ in

H 2
0 (Q

$). Note that this decomposition coincides with the classical Galtchouk–Kunita–
Watanabe decomposition if S$ itself is a square-integrable martingale. The following theorem
is a reformulation of the results of [32,33] applied to power utility, and also contains a feed-
back representation of the utility-based hedging strategy in terms of the original numeraire.

Theorem 3.7 Suppose Assumptions 2.2, 2.3, 3.3, and 3.5 hold. Then the marginal utility-
based price π0 and the risk premium π ′ exist and are given by

π0 = 1

C0
E(E (−ã • S)−p

T H), π ′ = p

2v
EQ$((N $

T )
2).

A marginal-utility-based hedging strategy φ′ is given in feedback form as the solution of the
stochastic differential equation

φ′ = (̃a, Ed + ãS�−)ξ − (
π0 + φ′ • S−

)
ã,

with ξ from (3.3), and where Ed denotes the identity matrix on R
d .

Proof The first two assertions follow immediately from [32, Theorems A.1, 8, and 4] adapted
to the present notation. For the third, [33, Theorem 2] and [32, Theorems A.1, 8, and 4] yield

lim
q→0

(v + qπq + ϕq • ST )− (v + ϕ̂ • ST )− qE (−ã • S)T (π0 + ξ • S$
T )

q
= 0. (3.4)

because the process X ′
T (x) from [33, Equation (23)] coincides with E (−ã • S) for power

utility. Set

ξ0 := π0 + ξ • S$ − ξ�S$ = π0 + ξ • S$− − ξ�S$−.

Then we have (ξ0, ξ2, . . . , ξd+1) ∈ L((E (−ã • S), S)) and

π0 + (ξ0, ξ2, . . . , ξd+1) • (E (−ã • S), S) = E (−ã • S)(π0 + ξ • S$) (3.5)

by [14, Proposition 2.1]. The predictable sets Dn := {|̃a| ≤ n, |S−| ≤ n, |(ξ0, ξ)| ≤ n}
increase to �× R+, the predictable process (̃a, Ed + ãS�−)ξ1Dn is bounded, and we have

((̃a, Ed + ãS�− )ξ1Dn )
• S

= ((E (−ã • S)−ξ�S$−ã + (ξ2, . . . , ξd+1))1Dn )
• S

=((ξ0, ξ2, . . . , ξd+1)1Dn )
• (E (−ã • S), S)+ (E (−ã • S)−(π0+ξ • S$−)1Dn )

• (̃a • S)

=1Dn
• ((ξ0, ξ2, . . . , ξd+1) • (E (−ã • S), S)+ (E (−ã • S)−(π0+ξ • S$−)) • (̃a • S)).

By [23, Lemma 2.2] and (3.5), this implies (̃a, Ed + ãS�− )ξ ∈ L(S) as well as

π0 + ((̃a, Ed + ãS�− )ξ) • S = E (−ã • S)(π0 + ξ • S$)

+(E (−ã • S)−(π0 + ξ • S$−)) • (̃a • S).
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Hence E (−ã • S)(π0 + ξ • S$) solves the stochastic differential equation

G = π0 + ((̃a, Ed + ãS�−)ξ) • S − G− • (̃a • S). (3.6)

By [20, (6.8)] this solution is unique. Since we have shown (̃a, Ed + ãS�−)ξ ∈ L(S) above,
it follows as in the proof of [6, Lemma 4.9] that φ′ is well-defined. π0 + φ′ • S also solves
(3.6), hence we obtain

E (−ã • S)(π0 + ξ • S$) = π0 + φ′ • S.

In view of (3.4), the process π0 + φ′ • S therefore satisfies (3.1), so that φ′ is indeed a
marginal utility-based hedge in the sense of Definition 3.1. ��
Remark 3.8 If the dual minimizer Ŷ is a martingale and hence—up to the constant C0—the
density process of the q-optimal martingale measure Q0 with respect to P , the generalized
Bayes formula yields V $

t = EQ0(H |Ft )/E (−ã • S)t . In particular, the marginal utility-
based price of the claim H is given by its expectation π0 = EQ0(H) under Q0 in this
case.

The computation of the optimal strategy ϕ̂ and the corresponding dual minimizer Ŷ in the
pure investment problem 2.1 has been studied extensively in the literature. In particular, these
objects have been determined explicitly in a variety of Markovian models using stochastic
control theory resp. martingale methods. Given E (−ã • S), the computation of π0 can then
be dealt with using integral transform methods or variants of the Feynman-Kac formula.
Consequently, we suppose from now on that ϕ̂ and π0 are known and focus on how to obtain
π ′ and ϕ′.

As reviewed above, [32,33] show that ϕ′ and π ′ can be obtained by calculating the gen-
eralized Galtchouk–Kunita–Watanabe decomposition (3.3). Since S$ is generally only a
Q$-supermartingale, this is typically very difficult. If however, S$ happens to be a square-
integrable Q$-martingale, (3.3) coincides with the classical Galtchouk-Kunita–Watanabe
decomposition. By [11], this shows that ξ represents the mean-variance optimal hedging
strategy for the claim H hedged with S$ under the measure Q$ and EQ$((N $

T )
2) is given

by the corresponding minimal expected squared hedging error in this case. Moreover, ξ and
EQ$((N $

T )
2) can then be characterized in terms of semimartingale characteristics.

Assumption 3.9 S$ is a square-integrable Q$-martingale.

For exponential Lévy models, this assumption satisfied if the budget constraint C 0 is “not
binding” for the optimal fraction η̂ of stocks and if, in addition, the driving Lévy process is
square-integrable. For the BNS model it is only a matter of integrability.

Lemma 3.10 1. Let S = S0E (X) > 0 for a non-monotone Lévy process X with finite
second moments. Then Assumption 3.9 is satisfied if the optimizer η̂ of the pure investment
problem lies in the interior of C 0.

2. Let S = S0E (X), where (y, X) is a BNS model. If p > 1 or (2.2) holds, then S$ is a
Q$-martingale.

Proof If η̂ lies in the interior of C 0, it follows from [36, Proposition 5.12] that the dual
optimizer Y = LE (−ã • S)−p is a local martingale. Since it is also the exponential of a
Lévy process (cf. [37, Sect. 6]), it is in a fact a true martingale. Thus it is—up to normaliza-
tion with 1/L0—the density process of the q-optimal martingale measure by [36, Remark
5.18]. Combined with [21, Proposition III.3.8], this yields that S$ is a Q$-martingale and it
remains to show that S$ is square-integrable. By Propositions 6.2, 6.3, and 6.4, the process
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S$ = (1/E (π̂X), S0E (X)/E (π̂X)) is the stochastic exponential (E (R1),E (R2)) of a semi-
martingale R with local Q$-characteristics(

0,

(
η̂2 −η̂(1 − η̂)

−η̂(1 − η̂) (1 − η̂)2

)
,G 
→

∫
1G

( −η̂x

1 + η̂x
,
(1 − η̂)x

1 + η̂x

)
(1 + η̂x)1−p F X (dx)

)
,

relative to the truncation function h(x) = x on R
2. This truncation function can be used

because R is Q$-locally a square-integrable martingale. By [21, Propositions II.2.29 and
III.6.35], this holds because X is square-integrable, |1/(1 + η̂�X)| is bounded (cf. the proof
of Lemma 3.4) and hence

∫
x2

1 F R,$(dx) < C
∫

x2 F X (dx) < ∞ and
∫

x2
2 F R,$(dx) <

C
∫

x2 F X (dx) < ∞ for some constant C ∈ R+ (cf. [21, Theorem II.1.8]). As the Q$-
characteristics of R are deterministic, R is a Q$-Lévy process by [21, Corollary II.4.19] and
a square-integrable martingale by [21, Proposition I.4.50]. Therefore S$ = (E (R1),E (R2))

is a square-integrable martingale as well by [35, Lemma A.1.(x)]. This proves Assertion 1.
Assertion 2 is shown in the proof of [26, Theorem 3.3]. ��
The square-integrability of S$ in the BNS model is discussed in Remarks 4.3 and 5.7

below. Given Assumption 3.9, we have the following representation.

Lemma 3.11 Suppose Assumptions 2.2, 2.3, 3.3, 3.5 and 3.9 hold. Denote by c̃(S
$,V $)$ the

modified second Q$-characteristic of (S$, V $) with respect to some A ∈ A +
loc (cf. Appendix

6). Then

ξ = (c̃S$$)−1c̃S$,V $$, (3.7)

EQ$((N $
T )

2) = EQ$

(
(c̃V $$ − (c̃S$,V $$)�(c̃S$$)−1c̃S$,V $$) • AT

)
.

Proof Since S$ is a square integrable Q$-martingale by Assumption 3.9, the claim follows
from [6, Theorems 4.10 and 4.12] applied to the martingale case. ��

4 An alternative representation

We now develop our alternative representation of power utility-based prices and hedging
strategies. As explained in the introduction, they can—morally speaking—be represented
as the solution to a mean-variance hedging problem relative to the original numeraire, but
subject to yet another probability measure Pe ∼ P . Given Assumption 3.9, the latter can be
defined as follows:

d Pe

d P
:= E (−ã • S)−1−p

T

C1
, C1 := E(E (−ã • S)−1−p

T ).

Remark 4.1 If we write the density process of Pewith respect to P as LeE (−ã • S)−1−p/C1

for a semimartingale Le > 0 with LeT = 1, the local joint P-characteristics of S and
Ke := L (Le) relative to some truncation function (h1, h2) on R

d × R satisfy∫
{|x |>1}

(1 + x2)(1 − ã�x1)
−1−p F (S,K

e)(dx) < ∞, (4.1)

and solve

0 = bKe + (1 + p)̃a�bS + (1 + p)̃a�cS,Ke + (p + 1)(p + 2)

2
ã�cSã

+
∫ (

(1+x2)(1−ã�x1)
−1−p −1−h2(x2)−(1+ p)̃a�h1(x1)

)
F (S,K

e)(dx), (4.2)
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by [23, Lemma 3.1] and Propositions 6.3, 6.2 . Conversely, if a strictly positive semimartingale
Le = Le0 E (Ke) satisfies LeT = 1 and (4.1), (4.2), then LeE (−ã • S)−1−p/C1 is a σ -
martingale and the density process of Pe if it is a true martingale.

In concrete models, the drift condition (4.2) often allows to determine Le by making an
appropriate parametric ansatz. For exponential Lévy models and the BNS model, this leads
to the following results.

Example 4.2 1. For exponential Lévy models as in Example 4.2, plugging the ansatz aet
with ae ∈ R for Ke into (4.2) yields

ae = (1 + p)̂ηbX − (p + 1)(p + 2)

2
η̂2cX

−
∫ (

(1 + η̂x)−1−p − 1 + (1 + p)̂ηh(x)
)

F X (dx).

This expression is well-defined because the integrand is of order O(x2) for small x and
bounded on the support of F X by the proof of Lemma 3.4 and [21, Theorem II.1.8]. One
then easily verifies that Let = exp(ae(T − t)). Indeed, the strictly positive σ -martingale
LeE (̂ηX) is a true martingale because it is also the stochastic exponential of a Lévy
process.

2. For the BNS model, one has to make a more general ansatz for Let . Choosing exp(αe0 (t)+
αe1 (t)yt ) with smooth functions αe0 , α

e
1 satisfying αe0 (T ) = αe1 (T ) = 0 as in [26],

insertion into 4.2 leads to

αe1 (t) = (1 + p)(2 − p)

2p2 μ2 1 − e−λ(T −t)

λ
, αe0 (t) =

T∫
t

ψ Z (αe1 (s))ds.

Then, (4.1) is satisfied and exp(αe0 (t)+ αe1 (t)y)E (̂ηX)−1−p is a σ -martingale if∫
{|x |>1}

eα
e
1 (t)z F Z (dz) < ∞ for all t ∈ [0, T ]. (4.3)

(4.3) automatically holds for p ≥ 2, because αe1 ≤ 0 in this case. For p ∈ (0, 2), (4.3)
is satisfied if

∞∫
1

exp

(
(1 + p)(2 − p)

2p2 μ2 1 − e−λT

λ
z

)
F Z (dz) < ∞. (4.4)

In either case, the true martingale property of the exponentially affine σ -martingale
exp(αe0 (t)+ αe1 (t)y)E (̂ηX)−1−p follows from [24, Corollary 3.9]. This shows that Le

is indeed given by exp(αe0 (t)+ αe1 (t)y).

Remark 4.3 Part 2 of Example 4.2 shows that in the BNS model the first component of Se is
square-integrable if p ≥ 2 or (4.4) holds. Hence the measure Pe is well defined with density
process LeE (̂ηX)−1−p in either case.

As motivated in the introduction, the measures Pe and Q$ are linked as follows.

Lemma 4.4 Suppose Assumptions 2.2, 2.3 and 3.9 hold. Then the process

L$
t := EPe

(
E (−ã • S)2T
E (−ã • S)2t

∣∣∣∣Ft

)
, 0 ≤ t ≤ T,
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satisfies L$
T = 1 and the density process of Q$ with respect to Pe is given by

EPe

(
d Q$

d Pe

∣∣∣∣Ft

)
= C1

C0
L$

t E (−ã • S)2t = L$
t E (−ã • S)2t

L$
0

.

In particular, L$, L$− > 0 and the stochastic logarithm K $ := L (L$) is well-defined.

Proof The first part of the assertion is trivial, whereas the second follows from d Q$/d Pe =
C1
C0

E (−ã • S)2T . Since E (−ã • S),E (−ã • S)− > 0, [21, I.2.27] yields L$, L$− > 0 and
hence the third part of the assertion by [21, II.8.3]. ��
Remark 4.5 L$ is linked to the opportunity process L of the pure investment problem and
the process Le from Remark 4.1 via

L$
0E (K

$) = L$ = L

Le
= L0E (K )

Le0 E (Ke)
,

by the generalized Bayes’ formula, LT = LeT = 1, and because LE (−ã • S)1−p as well as
LeE (−ã • S)−1−p are martingales.

In our examples, this leads to the following.

Example 4.6 1. Suppose S = S0E (X) > 0 for a non-monotone Lévy process with finite
second moments. Then L$ = exp((a − ae)(T − t)) and K $

t = (ae − a)t for a and ae

as in Examples 2.5 resp. 4.2.
2. Let S = S0E (X) > 0 for a BNS model satisfying (4.4) if p < 2 and, additionally, (2.2)

if p < 1. Then L$
t = exp(α$

0(t))+ α$
1(t)yt ) and, by Itô’s formula,

K $
t = α$

0(t)− α$
0(0)+ α$

1(t)yt − α$
1(0)y0 +

∑
s≤t

(
eα

$
1(s)�Zs − 1 − α$

1(s)�Zs

)
,

for α$
i = αi − αei , i = 0, 1, with αi and αei as in Examples 2.5 resp. 4.2.

Now define

Vt := E (−ã • S)t V $
t = E(E (−ã • S)−p

T H |Ft )

LtE (−ã • S)−p
t

, 0 ≤ t ≤ T,

which coincides with the conditional expectation under the q-optimal martingale measure
Q0, if the latter exists. Denote by⎛

⎜⎝
⎛
⎝ bSe

bVe

bK $e

⎞
⎠ ,

⎛
⎜⎝ cSe cS,Ve cS,K $e

cV,Se cVe cV,K $e

cK $,Se cK $,Ve cK $e

⎞
⎟⎠ , F (S,V,K

$)e, A

⎞
⎟⎠

Pe-differential characteristics of the semimartingale (S, V, K $) and define

c̃S� := 1

1 +�AK $

(
cSe +

∫
(1 + x3)x1x�

1 F (S,V,K
$)e(dx)

)
,

c̃S,V � := 1

1 +�AK $

(
cS,Ve +

∫
(1 + x3)x1x2 F (S,V,K

$)e(dx)

)
,

c̃V � := 1

1 +�AK $

(
cVe +

∫
(1 + x3)x

2
2 F (S,V,K

$)e(dx)

)
,
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where K $ = K $
0 + AK $ + M K $

denotes an arbitrary Pe-semimartingale decomposition of
K $. We then have the following representation of the marginal utility-based hedging strategy
ϕ′ and the risk premium π ′ in terms of semimartingale characteristics, which is the main
result of this paper.

Theorem 4.7 Suppose Assumptions 2.2, 2.3, 3.3, 3.5 and 3.9 hold. Then c̃S�, c̃S,V �, c̃V �

are well-defined, the strategy ϕ′ given in feedback form as the solution of the stochastic
differential equation

ϕ′ = (c̃S�)−1c̃S,V � − (
π0 + ϕ′ • S− − V−

)
ã

is a marginal utility-based hedge, and the corresponding risk premium is

π ′ = pC1

2vC0
EPe

(( (
c̃V � − (c̃S,V �)�(c̃S�)−1c̃S,V �

)
L$) • AT

)
.

Remark 4.8 As is customary for mean-variance optimal hedges [6,42], the strategy ϕ′ is
described in “feedback form”, i.e., it is computed as the solution of a stochastic differential
equation involving its past trading gains ϕ′ • S−, which reduces to a simple recursive for-
mula in discrete time (cf., e.g., [43, Theorem 2.4]). Alternatively, the corresponding linear
stochastic differential equation for ϕ′ • S can be solved [6, Corollary 4.11],

ϕ′ • S = E (̃a • S)

(
(c̃S�)−1c̃S,V � + (V− − π0 )̃a

E (−ã • S)−
•
(

S + ã

1 − ã��S
• [S, S]

))
,

leading to a cumbersome but explicit expression for the hedge ϕ′.

In view of [6, Theorems 4.10 and 4.12], Theorem 4.7 states that the first-order approxi-
mations for ϕq and πq can essentially be computed by solving the mean-variance hedging
problem for the claim H under the (non-martingale) measure Pe relative to the original
numeraire. However, this assertion only holds true literally if the dual minimizer Ŷ is a
martingale and if the optimal strategy ϕ̂ in the pure investment problem is admissible in the
sense of [6, Corollary 2.5], i.e., if ϕ̂ • ST ∈ L2(Pe) and (ϕ̂ • S)Z Q is a Pe-martingale
for any absolutely continuous signed σ -martingale measure Q with density process Z Q and

d Q
d Pe

∈ L2(Pe). More precisely, in this case the strategy −ã1]]τ,T ]]E (−ã1]]τ,T ]] • S)− is
efficient on the stochastic interval ]]τ, T ]] in the sense of [6, Sect. 3.1] and ã is the corre-
sponding adjustment process in the sense of [6, Definition 3.8]. By [6, Corollary 3.4] this
in turn implies that L$ is the opportunity process in the sense of [6, Definition 3.3]. Hence
it follows along the lines of [6, Lemma 3.15] that the opportunity neutral measure P� with
density process

Z P� := L$

L$
0E (A

K $
)

exists. By [6, Lemma 3.17 and Theorem 4.10], c̃S�, c̃V �, c̃S,V � indeed coincide with the
corresponding modified second characteristics of (S, V, K ) under P�. Hence [6, Theorems
4.10 and 4.12] yield that relative to the probability measure Pe, the process ϕ′ represents a
variance-optimal hedging strategy for H while the minimal expected squared hedging error
of H is given by the 2C0v/(pC1)-fold of π ′. Moreover, Vt = EQ0(H |Ft ) and in particular
the marginal utility-based price π0 = EQ0(H) are given as conditional expectations under
the variance-optimal martingale measure Q0 with respect to Pe, which coincides with the
q-optimal martingale measure with respect to P .
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Proof of Theorem 4.7 An application of Propositions 6.3 and 6.2 yields the Pe-differential
characteristics of the process (S, V,E (−ã • S),L (C1

C0
L$E (−ã • S)2)). Now, since

C1
C0

L$E (−ã • S)2 is the density process of Q$ with respect to Pe, the Q$-characteristics of
(S, V,E (−ã • S)) can be obtained with Proposition 6.4. Another application of Proposition
6.2 then allows to compute the Q$-characteristics of (S$, V $).

Since S$ ∈H 2(Q$)by Assumption 3.9 and V $ ∈ H 2(Q$)by the proof of [33, Lemma 1],

the modified second characteristics c̃V $$, c̃S$,V $$ and c̃S$$ exist and are given by

c̃S$$ = 1 +�AK $

E (−ã • S)2−

(
ã�c̃S�ã ã�c̃S�R�
Rc̃S�ã Rc̃S�R�

)
, (4.5)

c̃S$,V $$ = 1 +�AK $

E (−ã • S)2−

(
ã�
R

) (
c̃S,V � + c̃S�ãV−

)
, (4.6)

c̃V $$ = 1 +�AK $

E (−ã • S)2−

(
c̃V � + 2V−ã�c̃S,V � + V 2−ã�c̃S�ã

)
(4.7)

for R := Ed + S−ã�. In particular it follows that c̃V �, c̃S,V � and c̃S� are well defined. By
the definition of ξ in Eq. (3.7) and [1, Theorem 9.1.6] we have

c̃S$$ξ = c̃S$,V $$.

In view of Eqs. (4.6) and (4.5), this yields(
ã�c̃S�ã ã�c̃S�R�
Rc̃S�ã Rc̃S�R�

)
ξ =

(
ã�
R

) (
c̃S,V � + c̃S�ãV−

)
,

or equivalently, decomposed into the first and last d components,

ã�c̃S�(̃a, R�)ξ = ã�(c̃S,V � + c̃S�ãV−) (4.8)

and

Rc̃S�(̃a, R�)ξ = R(c̃S,V � + c̃S�ãV−). (4.9)

By multiplying both sides of (4.8) with S− from the left and subtracting the result from (4.9),
this leads to

c̃S�(̃a, R�)ξ = c̃S,V � + c̃S�ãV−, (4.10)

since R − S−ã� = Ed . By Theorem 3.7,

φ′ = (̃a, R�)ξ − (π0 + φ′ • S−)̃a

defines a marginal utility-based hedging strategy. Let

ψ ′ := φ′ − ((c̃S�)−1c̃S,V � − (π0 + φ′ • S− − V−)̃a) = (̃a, R�)ξ − (c̃S�)−1c̃S,V � − V−ã.

Then it follows from the definition of ψ ′ and (4.10) that

c̃S�ψ ′ = c̃S,V � + c̃S�V−ã − c̃S,V � − c̃S�V−ã = 0,

because c̃S�(c̃S�)−1c̃S,V � = c̃S,V � by [1, Theorem 9.1.6]. In particular, (ψ ′)�c̃S�ψ ′ = 0.
Since L$/L$

0 = E (K $) > 0 and hence �K $ > −1 by [21, I.4.61], this implies

(ψ ′)�c̃Sψ ′ = 0. (4.11)
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For n ∈ N define the predictable sets Dn := {|ψ ′| ≤ n}. By Proposition 6.3 and (4.11), we
have c̃ψ

′1Dn
•S = 0 and hence cψ

′1Dn
•S = 0 and Fψ

′1Dn
•S = 0. Together with Proposition 6.4,

this implies that the local characteristics of ψ ′1Dn
• S under the equivalent local martingale

measure Q from Assumption 2.2 vanish by [23, Lemma 3.1]. Hence ψ ′1Dn
• S = 0 and it

follows from [23, Lemma 2.2] that ψ ′ ∈ L(S) with ψ ′ • S = 0. Taking into account the
definition of ψ ′, this shows

φ′ • S = ((c̃S�)−1c̃S,V � − (π0 − V−)̃a) • S − (φ′ • S−) • (̃a • S),

i.e., φ′ • S solves the feedback equation

G = ((c̃S�)−1c̃S,V � − (π0 − V−)̃a) • S − G− • (̃a • S). (4.12)

Since ψ ′ ∈ L(S) and L(S) is a vector space, it follows that (c̃S�)−1c̃S,V � ∈ L(S), too.
As in the proof of [6, Lemma 4.9], this in turn yields that ϕ′ is well-defined and in L(S).
Evidently, ϕ′ • S also solves (4.12) and, since the solution is unique by [20, (6.8)], we obtain
ϕ′ • S = φ′ • S. Therefore ϕ′ is a marginal utility-based hedging strategy.

We now turn to the risk premium π ′. First notice that by [1, Theorem 9.1.6],

C$ := c̃V $$ − (c̃S$,V $$)�ξ = c̃V $$ − (c̃S$,V $$)�(c̃S$$)−1c̃S$,V $$ ≥ 0,

Ce := c̃V � − (c̃S,V �)�(c̃S�)−1c̃S,V � ≥ 0.

Hence C$ • A is an increasing predictable process and, by Lemmas 3.11 and 6.5,

EQ$((N $
T )

2) = EQ$(C$ • AT )

= C1

C0
EPe

(
L$−E (−ã • S)2−C$ • AT

)

= C1

C0
EPe

(
L$−E (−ã • S)2− • (〈V $, V $〉Q$

T − 〈V $, ξ • S$〉Q$

T )
)
.

Since we have shown φ′ • S = ϕ′ • S above, [15, Proposition 2.1] and the proof of Theorem
3.7 yield ξ • S$ = (ϕ′0, ϕ′) • S$ for ϕ′0 := π0 + ϕ′ • S − ϕ′S. Hence

EQ$((N $
T )

2) = C1

C0
EPe

(
L$−E (−ã • S)2− •

(
〈V $, V $〉Q$

T − 〈V $, (ϕ′0, ϕ′) • S$〉Q$

T

))

= C1

C0
EPe

(
L$−E (−ã • S)2−

(
c̃V $$ − (c̃S$,V $$)�(ϕ′0, ϕ′)

)
• AT

)
.

After inserting c̃V $$, c̃S$,V $$ from (4.7) resp. (4.6) and the definition of (ϕ′0, ϕ′), this leads
to

EQ$((N $
T )

2) = C1

C0
EPe

((
1 +�AK $

)
L$−Ce • AT

)
. (4.13)

Now notice that the definition of the stochastic exponential and [21, I.4.36] imply

L$ =
(

1 +�AK $ +�M K $
)

L$−.

By [21, I.4.49] the process �M K $ • (L$−Ce • A) is a local martingale. If (Tn)n∈N denotes a
localizing sequence, this yields

EPe(L
$Ce • AT ∧Tn ) = EPe

((
1 +�AK $ +�M K $

)
L$−Ce • AT ∧Tn

)
= EPe

((
1 +�AK $

)
L$−Ce • AT ∧Tn

)
,
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and hence

EPe(L
$Ce • AT ) = EPe

((
1 +�AK $

)
L$−Ce • AT

)
by monotone convergence. Combining this with (4.13), we obtain

EQ$((N $
T )

2) = C1

C0
EPe(

(
c̃V � − (c̃S,V �)�(c̃S�)−1c̃S,V �

)
L$ • AT ).

In view of Theorem 3.7, this completes the proof. ��
Remarks 1. The arguments used to show ϕ′ • S = φ′ • S in the proof of Theorem 4.7

also yield that one obtains a marginal utility-based hedging strategy if the pure hedge
coefficient (c̃S�)−1c̃S,V � is replaced by any other solution ζ of c̃S�ζ = c̃S,V �.

2. An inspection of the proof of Theorem 4.7 shows that the formulas for ϕ′ and π ′ are
independent of the specific semimartingale decomposition of K $ that is used. In particu-

lar, the not necessarily predictable term 1 +�AK $e disappears in the formula for ϕ′ by
[1, Theorem 3.9]. If the semimartingale K $ is Pe-special, one can choose the canonical
decomposition [21, II.2.38]. By [21, II.2.29], this yields

�AK $ = �A
∫

x F K $e(dx).

If additionally K $ has no fixed times of discontinuity, [21, II.2.9] shows that A can be

chosen to be continuous, which implies �AK $ = 0.
3. For continuous S, our feedback representation of ϕ′ coincides with [33, Theorem 3]

because the modified second characteristic is invariant with respect to equivalent changes
of measure for continuous processes.

5 Semi-explicit formulas in concrete models

We now discuss how Theorem 4.7 can be applied in our concrete examples to yield numeri-
cally tractable representations of power utility-based prices and hedging strategies.

5.1 Exponential Lévy models

For exponential Lévy models, Theorem 4.7 indeed leads to a mean-variance hedging problem.
Consequently, semi-explicit formulas for the objects of interest are provided by the results
of Hubalek et al. [18] for mean-variance hedging in exponential Lévy models.

To this end, we fix a univariate exponential Lévy model S = S0E (X) > 0, with some
non-monotone square-integrable Lévy process X . Its Lévy-Khintchine triplet relative to the
truncation function h(x) = x is denoted by (bX , cX , F X ). Finally, we suppose throughout
that the optimal fraction η̂ for the pure investment problem lies in the interior of the admissible
fractions of wealth in stock C 0, implying that all assumptions of Sects. 3 and 4 are satisfied.

Remark 5.1 By [15, Lemma A.8], the stock price can also be written as the ordinary expo-
nential S = S0 exp(X̃) of the Lévy process X̃ with Lévy-Khintchine triplet

bX̃ = bX − 1

2
cX +

∫
(log(1 + x)− x)F X (dx), cX̃ = cX ,

F X̃ (G) =
∫

1G(log(1 + x))F X (dx) ∀G ∈ B,

relative to h(x) = x .

123



18 Math Finan Econ (2014) 8:1–28

Since the density process (Le/Le0 )E (̂ηX)−1−p of Pe with respect to P is an exponential
Lévy process, Proposition 6.4 shows that X is also a Lévy process under Pe with Lévy-
Khintchine triplet (bX,e, cX,e, F X,e) given by(

bX − (1 + p)̂ηcX −
∫

x(1 − (1 + η̂x)−1−p)F X (dx), cX , (1 + η̂x)−1−p F X (dx)

)
,

relative to h(x) = x . This truncation function can be used because X is square-integrable
under Pe as well by [41, Corollary 25.8] and the proof of Lemma 3.4. Moreover, since the
budget constraint C 0 is “not binding,” the first-order condition [37, Equation (6.3)] implies
that the drift rate bX,e can also be written as

bX,e = −η̂
(

cX +
∫

x2

(1 + η̂x)1+p
F X (dx)

)
= −η̂c̃X,e. (5.1)

Lemma 5.2 The optimal trading strategy ϕ̂ = −vãE (−ã • S) in the pure investment prob-
lem is admissible in the sense of [6, Corollary 2.5].

Proof In view of [42, Proposition 13], the mean-variance optimal hedge for the constant
claim H = v is −ṽλE (−̃λ • S) for λ̃ = bX,e/(S−c̃X,e). Hence ã = λ̃ by (5.1); in particular,
ϕ̂ is admissible in the sense of Schweizer [42] and therefore in the sense of Černý and Kallsen
[6] as well by [6, Corollary 2.9]. ��

Together with the discussion at the end of Sect. 4, Lemma 5.2 immediately yields

Corollary 5.3 Let H be a contingent claim satisfying Assumption 3.5. Then the marginal
utility-based price π0, the marginal utility-based hedging strategy ϕ′, and the risk premium
π ′ from Theorem 4.7 coincide with the mean-variance optimal initial capital, the mean-
variance optimal hedge and the p exp((ae− a)T )/2v-fold of the minimal expected squared
hedging error ε2

e for H under Pe.

Corollary 5.3 implies that—in first-order approximation—power utility-based hedging
corresponds to mean-variance hedging, but for a Lévy process with different drift and jump
measure. If η = 0, which is equivalent to S being a martingale under the physical measure
P , then Pe = P and no adjustment is necessary. If η̂ > 0 in the economically most
relevant case of a positive drift, the stock price process is a P-submartingale, but turns into
a supermartingale under Pe. Moreover, negative jumps become more likely and positive
jumps less likely, such that a negative skewness is amplified when passing from P to Pe.
The magnitude of these effects depends on the investor’s risk aversion p. Note that as the latter
becomes large, the Pe dynamics of the return process converge to those under the minimal
entropy martingale measure (cf., e.g., [12]). Hence, as risk aversion becomes large, asymptotic
power utility-based pricing and hedging approaches its counterpart for exponential utility.

The above considerations apply to any contingent claim satisfying Assumption 3.5, i.e.,
which can be superhedged with respect to the numeraire given by the optimal wealth process
in the pure investment problem. To obtain numerically tractable formulas, one has to make
additional assumptions. For example, semi-explicit solutions to the mean-variance hedging
problem for exponential Lévy models have been obtained in [18] using the Laplace transform
approach put forward in [38]. The key assumption for this approach is the existence of an
integral representation of the payoff function in the following sense.
Assumption 5.4 Suppose H = f (ST ) for a function f : (0,∞) 
→ R such that

f (s) =
R+i∞∫

R−i∞
l(z)szdz, s ∈ (0,∞),

for l : C → C such that the integral exists for all s ∈ (0,∞) and R ∈ R such that E(SR
T ) < ∞.
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Most European options admit a representation of this kind, see, e.g., [18, Sect. 4].

Example 5.5 For a European call option with strike K > 0 we have H = (ST − K )+ and,
for s > 0 and R > 1,

(s − K )+ = 1

2π i

R+i∞∫
R−i∞

K 1−z

z(z − 1)
szdz.

By evaluating the formulas of Hubalek et al. [18] under Pe, we obtain the following
semi-explicit representations. They are expressed in terms of the Lévy exponent ψ X̃e of the
log-price X̃ under Pe.

Theorem 5.6 For a contingent claim H satisfying Assumptions 3.5 and 5.4, the marginal
utility-based price and a marginal utility-based hedging strategy are given by

π(0) = V0,

ϕ′
t = ξt − (

V0 + ϕ′ • St− − Vt−
)

ã,

with

�(z) := ψ X̃e(z)− ψ X̃e(1)
ψ X̃e(z + 1)− ψ X̃e(z)− ψ X̃e(1)

ψ X̃e(2)− 2ψ X̃e(1)
,

ã := 1

St−
ψ X̃e(1)

ψ X̃e(2)− 2ψ X̃e(1)
,

Vt :=
R+i∞∫

R−i∞
Sz

t e�(z)(T −t)l(z)dz,

ξt :=
R+i∞∫

R−i∞
Sz−1

t−
ψ X̃e(z + 1)− ψ X̃e(z)− ψ X̃e(1)

ψ X̃e(2)− 2ψ X̃e(1)
e�(z)(T −t)l(z)dz.

Moreover, the corresponding risk premium π ′ for H can be written as

π ′ = p exp((ae − a)T )

2v

R+i∞∫
R−i∞

R+i∞∫
R−i∞

J (z1, z1)l(z1)l(z2)dz1dz2,

for a and ae as in Examples 2.5 and 4.2, respectively, and

k(z1, z2) := �(z1)+�(z2)− ψ X̃e(1)2

ψ X̃e(2)− 2ψ X̃e(1)
,

j (z1, z2) := ψ X̃e(z1 + z2)− ψ X̃e(z1)− ψ X̃e(z2)

− (ψ X̃e(z1 + 1)− ψ X̃e(z1)− ψ X̃e(1))(ψ X̃e(z2 + 1)− ψ X̃e(z2)− ψ X̃e(1))

ψ X̃e(2)− 2ψ X̃e(1)
,

J (z1, z2) :=

⎧⎪⎨
⎪⎩

Sz1+z2
0 j (z1, z2)

ek(z1,z2)T − eψ
X̃e(z1+z2)T

k(z1, z2)− ψ X̃e(z1 + z2)
if k(z1, z2) �= ψ X̃e(z1 + z2),

Sz1+z2
0 j (z1, z2)T eψ

X̃e(z1,z2)T if k(z1, z2) = ψ X̃e(z1, z2).

Proof See [18, Theorems 3.1 and 3.2]. ��
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5.2 BNS model

We now turn to the application of Theorem 4.7 to the BNS model with stochastic volatility.
Throughout, we assume that the conditions of Examples 2.4 and 4.2 are satisfied, i.e., either
p ≥ 2 or sufficiently large exponential moments of the subordinator Z driving the variance
process y exist. In the first case, we also suppose Z is integrable. By Proposition 6.4, the
Pe-dynamics of the variance process y and the return process X are given by

dyt = −λdt + d Zet ,

d Xt = (−μ/p)yt dt + √
yt dWt .

Hereμ and λ are the constant drift and mean reversion rates of the BNS model under P , W is
a standard Brownian motion (under both P and Pe), and Ze is an inhomogeneous Pe-Lévy
process with characteristics⎛

⎝bZ +
∞∫

0

z(eα
e
1 (t)z − 1)F Z (dz), 0, eα

e
1 (t)z F Z (dz)

⎞
⎠

relative to the truncation function h(z) = z. Hence (y, X) is an inhomogeneous BNS model
under Pe. Note that as for exponential Lévy models, the drift rate of the return process
changes its sign when moving from μ (under P) to −μ/p (under Pe). The effect on the
volatility process y depends on the sign of αe1 , which is positive for p < 2 and negative for
p > 2. If p < 2, i.e., for less risk-averse investors, the mean of Ze (i.e., the average size
of the positive volatility jumps) increases because jumps (in particular, large ones) become
more likely under Pe. For more risk averse investors with p > 2, the frequency of jumps is
decreased under Pe, which also leads to a decrease in the average value of volatility. Since
αe1 (t) decreases resp. increases to 0 as t → T for p < 2 resp. p > 2, the deviation from
the P-dynamics of Z is largest at the initial time t = 0 and tends to zero as t → T . Finally,
as the investor’s risk aversion becomes large, the Pe dynamics of (y, X) again tend to their
counterparts under the minimal entropy martingale measure corresponding to exponential
utility, which was determined in [4].

With the Pe-dynamics of S at hand, we can now provide a sufficient condition for the
validity of Assumption 3.9 in the BNS model. More specifically, S is square-integrable under
Pe by [24, Theorem 5.1] provided that

∞∫
1

exp

(
1 − e−λT

λ

(
(1 + p)(2 − p)

2p2 μ2 + 2 − μ

p

)
z

)
F Z (dz) < ∞.

If, in addition, the conditions of Example 4.2 are satisfied, Assumption 3.9 holds.
We now turn to the computation of semi-explicit representations for the marginal utility-

based price π0 (cf. Remark 3.8) as well as the utility-based hedge ϕ′ and the risk premium π ′
from Theorem 4.7 for claims admitting an integral representation as in Assumption 5.4. The
(inhomogeneous) BNS model is studied from the point of view of mean-variance hedging
in [30]. As noted in the introduction, the formulas in Theorem 4.7 formally agree with such
a problem under the appropriate probability measure Pe. Therefore the calculations in [30]
can be adapted to the present situation. In that paper, admissibility of the candidate solution ã
to the pure investment problem under quadratic utility is not shown. Nevertheless, the results
from [30] can be applied here because ã does not have to be admissible for the application of
Theorem 4.7. Put differently, the calculations in [30] can be used without explicitly referring
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to the quadratic hedging problem studied there. Below, we outline the necessary steps. This
sketch could be turned into a rigorous proof, similarly as in [27, Theorems 4.1 and 4.2].

The first step is to determine the mean value process V = EQ0(H |Ft ). Since the density
process LE (̂ηX)−p of Q0 with respect to P is the exponential of an inhomogeneous affine
process (cf. [10,24] for more details), Proposition 6.4 shows that (y, X) is also an inhomo-
geneous affine process under Q0. Using the integral representation for H , Fubini’s theorem,
and the affine transform formula for (y, X) (compare [10,24]) then leads to

Vt =
R+i∞∫

R−i∞
Sz

t exp
(
�0(t, T, z)+�1(t, T, z)yt

)
l(z)dz, (5.2)

with

�1(t, T, z) = (1 − z)z

2λ
(e−λ(T −t) − 1),

�0(t, T, z) =
T∫

t

(
ψ Z (α1(s)+�1(s, T, z))− ψ Z (α1(s))

)
ds.

In the second step, we turn to the marginal utility-based hedging strategy ϕ′. The repre-
sentation (5.2) for V and the bilinearity of the predictable quadratic variation yields integral
representations for the modified second Pe-characteristics of (S, V ), too, where the inte-
grands can be computed using Proposition 6.2 (cf. the proof of [30, Theorem 3.3] for more
details). Plugging these in Theorem 4.7 gives

ϕ′ = ξt − (V0 + ϕ′ • St− − Vt−)̃at ,

with

ξt =
R+i∞∫

R−i∞
zSz−1

t exp
(
�0(t, T, z)+�1(t, T, z)yt−

)
l(z)dz,

for �0, �1 as above.

Remark 5.7 Provided that differentiation and integration can be interchanged, the pure hedge
coefficient ξt in the BNS model is given by the derivative of Vt with respect to St . Hence the
marginal utility-based hedging strategy is given as the sum of the delta hedge with respect to
the marginal utility-based option price and a feedback term. This is a generic result in affine
models with continuous asset prices and uncorrelated volatility processes, compare [30].

Finally, in a third step, it remains to consider the risk premiumπ ′ in Theorem 4.7. Plugging
in the expression for L and Le, we find

pC1

2vC0
= pLe0

2vL0
= p

2v
exp

⎛
⎝ T∫

0

(ψ Z (αe1 (t))− ψ Z (α1(t)))dt + μ2(1 − e−λT )

p2λ
y0

⎞
⎠ .

Hence it remains to compute the expectation in the formula for the risk premium π ′. Here,
(5.2) again leads to integral representations for c̃S�, c̃S,V �, c̃V �. The product of L$ and the
integrand once more turns out to be the exponential of an inhomogeneous affine process. Its
expectation can therefore again be computed using the affine transform formula for (y, X)
(cf. the proof of [30, Theorem 3.4] for more details). This leads to

π ′ = pC1

2vC0

T∫
0

R+i∞∫
R−i∞

R+i∞∫
R−i∞

J (t, z1, z2)l(z1)l(z2)dz1dz2dt,
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for

ψ Ze(t, u) = ψ Z (u + αe1 (t))− ψ Z (αe1 (t)),

j (t, z1, z2) = ψ Ze(t, α$
1(t)+�1(t, T, z1)+�1(t, T, z2))+ ψ Ze(t, α$

1(t))

−ψ Ze(t, α$
1(t)+�1(t, T, z1))− ψ Ze(t, α$

1(t)+�1(t, T, z2)),

g(z1, z1) = 2μ+ p

2p
(z1 + z2)− 1

2
(z1 + z2)

2,

and

ϒ1(s, t, T, z1, z2) = (α$
1(t)+�1(t, T, z1)+�1(t, T, z2))e

λ(s−t) + g(z1, z2)
eλ(s−t) − 1

λ
,

ϒ0(s, t, T, z1, z2) =
t∫

s

ψ Ze(r, ϒ1(r, t, T, z1, z2))dr,

J (t, z1, z2) = Sz1+z2
0 j (t, z1, z2) exp

(
ϒ0(0, t, T, z1, z2)+ ϒ1(0, t, T, z1, z2)y0

)

× exp

⎛
⎝ T∫

t

ψ Ze(s, α$
1(s))ds +�0(t, T, z1)+�0(t, T, z2)

⎞
⎠ .

If the volatility process y is chosen to be a Gamma-OU process, all expressions involving
integrals of the characteristic exponent ψ Ze(t, u) = ψ Z (u + αe1 (t)) − ψ Z (αe1 (t)) can be
computed in closed form as well. More specifically, let y be a Gamma-OU process with mean
reversion rate λ > 0 and stationary �(a, b)-distribution and let

m(s) := c1

(
e−λ(̃t−s) − 1

)
+ c2e−λ(̃t−s) + c3, t̃ ∈ [0, T ],

for constants c1, c2, c3 ∈ C. Then if m(s) �= b, s ∈ [t, T ] we have

t2∫
t1

ψ Z (m(s))ds =
⎧⎨
⎩

−a
b+c1−c3

(
λ(t2 − t1)(c1 − c3)− b log

(−b+m(t1)−b+m(t2)

))
b �= c3 − c1,

−λa(t2 − t1)+ ab
c1+c2

(
eλ(̃t−t2) − eλ(̃t−t1)

)
b = c3 − c1

for 0 ≤ t1 ≤ t2 ≤ T and where log denotes the distinguished logarithm in the sense of [41,
Lemma 7.6]. This follows by inserting the Lévy exponent ψ Z (u) = λau

b−u , which is analytic
on C\{b}, and integration using decomposition into partial fractions.

6 Numerical illustration

Mean-variance hedging for the BNS Gamma-OU stochastic volatility model is considered in
[30]. Since the formulas in the previous section are of the same form, the numerical algorithm
applied in [30] can also be used to explore this model from the point of view of utility-based
pricing and hedging. Exponential Lévy processes could be treated analogously (compare
[18]). Since the corresponding results are very similar, we omit them here.

As a concrete specification, we consider the discounted BNS-Gamma-OU model with
parameters as estimated in [25] from a DAX time series, i.e.,

μ = 1.404, λ = 2.54, a = 0.848, b = 17.5.
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Fig. 1 Initial Black–Scholes hedge and initial utility-based BNS-hedges for p = 2, p = 150 and a European
call with strike K = 100 and maturity T = 0.25

Fig. 2 Black–Scholes price and approximate indifference price π(0)+ qπ ′ in the BNS model for p = 2 and
a European call with strike K = 100 and maturity T = 0.25

We let y0 = 0.0485 and put v = 241, which implies that indifference prices and utility-based
hedging strategies exist for S0 ∈ [80, 120] and q ∈ [−2, 2]. By our above results, first-order
approximations of the utility-indifference price and the utility-based hedging strategy exist
for p = 0.5, . . . , 150 by Lemma 2.10 resp. Theorem 2.11. Moreover, Assumptions 3.5 and
5.4 hold for European call-options by Example 5.5. The formulas from Sect. 5.2 can now be
evaluated using numerical quadrature, where we use R = 1.2.
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Fig. 3 Black–Scholes price and approximate indifference price π(0) + qπ ′ in the BNS model for p = 150
and a European call with strike K = 100 and maturity T = 0.25

Fig. 4 Risk premia qπ ′ for q at-the-money European calls with strike K = 100 and maturity T = 0.25 in
the BNS model for risk aversions p = 0.5, . . . , 150

The initial hedges for p = 2 and p = 150 in Fig. 1 below cannot be distinguished
by eye. Indeed, the maximal relative difference between the two strategies is 0.4 % for
80 ≤ S0 ≤ 120, which implies that the utility-based hedging strategy is virtually independent
of the investor’s risk aversion. Moreover, both strategies are quite close to the Black–Scholes
hedging strategy, the maximal relative difference being about 8.9 %.

We now turn to utility-based pricing. First, note that in our specification the mar-
ginal utility-based price π0 barely depends on the investor’s risk aversion, and is almost
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indistinguishable from its Black–Scholes counterpart. For a relative risk aversion of p = 2,
the effect of the first-order risk adjustment is also very small (cf. Fig. 2). This resembles
similar findings of [14,13] on utility-based pricing and hedging for basis risk.

In fact, much higher risk aversions as, e.g., p = 150 in Fig. 3 are required to obtain a bid
price below and an ask-price above the Black–Scholes price for one option as a result of the
first-order risk adjustment. For evidence supporting such high levels of risk aversion, cf., e.g.,
[22]. Finally, Fig. 4 depicts the dependence of the risk premium π ′ on the investor’s relative
risk aversion p, which turns out to be almost linear. Note that sinceπ ′ is inversely proportional
to the initial endowment v, this also implies thatπ ′ is virtually linear in the investor’s absolute
risk aversion p/v, which holds exactly for exponential utility (cf. [3,28,34]).
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Appendix

In this appendix we summarize some basic notions regarding semimartingale characteristics
(cf. [21] for more details). In addition, we state and prove an auxiliary result which is used
in the proof of Theorem 4.7.

To any R
d -valued semimartingale X there is associated a triplet (B,C, ν) of character-

istics, where B resp. C denote R
d - resp. R

d×d -valued predictable processes and ν a random
measure on R+ × R

d (cf. [21, II.2.6]). The first characteristic B depends on a truncation
function h : R

d → R
d such as h(x) = x1{|x |≤1}. Instead of the characteristics themselves,

we typically use the following notion.

Definition 6.1 Let X be an R
d -valued semimartingale with characteristics (B,C, ν) relative

to some truncation function h on R
d . In view of [21, II.2.9], there exist a predictable process

A ∈ A +
loc, an R

d -valued predictable process b, an R
d×d -valued predictable process c and a

transition kernel F from (�× R+,P) into (Rd ,Bd) such that

Bt = b • At , Ct = c • At , ν([0, t] × G) = F(G) • At for t ∈ [0, T ], G ∈ Bd ,

where we implicitly assume that (b, c, F) is a good version in the sense that the values of
c are non-negative symmetric matrices, Fs({0}) = 0 and

∫
(1 ∧ |x |2)Fs(dx) < ∞. We call

(b, c, F, A) local characteristics of X .

If (b, c, F, A) denote local characteristics of some semimartingale X , we write

c̃ := c +
∫

xx�F(dx)

and call c̃ the modified second characteristic of X provided that the integral exists. This notion
is motivated by the fact that 〈X, X〉 = c̃ • A by [21, I.4.52] if the corresponding integral is
finite. We write (bX , cX , F X , A) and c̃X for the differential characteristics and the modified
second characteristic of a semimartingale X . Likewise, the joint local characteristics of two
semimartingales X , Y are denoted by

(b(X,Y ), c(X,Y ), F (X,Y ), A) =
((

bX

bY

)
,

(
cX cX,Y

cY,X cY

)
, F (X,Y ), A

)
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and

c̃(X,Y ) =
(

c̃X c̃X,Y

c̃Y,X c̃Y

)
,

if the modified second characteristic of (X, Y ) exists. The characteristics of a semimartingale
X under some other measure Q$ are denoted by (bX$, cX$, F X$, A). The following rules for
the computation of characteristics are used repeatedly in the proofs of this paper.

Proposition 6.2 (C2-function) Let X be an R
d -valued semimartingale with local character-

istics (bX , cX , F X , A). Suppose that f : U → R
n is twice continuously differentiable on

some open subset U ⊂ R
d such that X,X− are U-valued. Then the R

n-valued semimartingale
f (X) has local characteristics (b f (X), c f (X), F f (X), A), where

b f (X),i
t =

d∑
k=1

∂k f i (Xt−)bX,k
t + 1

2

d∑
k,l=1

∂kl f i (Xt−)cX,kl
t

+
∫ (

h̃i ( f (Xt− + x)− f (Xt−))−
d∑

k=1

∂k f i (Xt−)hk(x)

)
F X

t (dx),

c f (X),i j
t =

d∑
k,l=1

∂k f i (Xt−)cX,kl
t ∂l f j (Xt−),

F f (X)
t (G) =

∫
1G( f (Xt− + x)− f (Xt−))F X

t (dx) ∀G ∈ Bn with 0 /∈ G.

Here, ∂k etc. denote partial derivatives and h̃ again the truncation function on R
n.

Proof This follows immediately from [15, Corollary A.6]. ��
Proposition 6.3 (Stochastic integration) Let X be an R

d -valued semimartingale with local
characteristics (bX , cX , F X , A)and H an R

n×d -valued predictable process with H j · ∈ L(X)
for j = 1, . . . , n. Then local characteristics of the R

n-valued integral process H • X :=
(H j · • X) j=1,...,n are given by (bH•X , cH•X , F H•X , A), where

bH•X
t = Ht b

X
t +

∫
(̃h(Ht x)− Ht h(x))F

X
t (dx),

cH•X
t = Ht c

X
t H�

t ,

F H•X
t (G) =

∫
1G(Ht x)F

X
t (dx) ∀G ∈ Bn with 0 /∈ G.

Here h̃ : R
n → R

n denotes the truncation function which is used on R
n.

Proof [29, Lemma 3]. ��

Let P�
loc∼ P be a probability measure with density process Z . Local equivalence yields

that Z and Z− are strictly positive by [21, I.2.27]. Hence the stochastic logarithm N :=
L (Z) = 1

Z−
• Z is a well-defined semimartingale. For an R

d -valued semimartingale X we
now have the following result, which relates the local P�-characteristics of (X, N ) to the
local characteristics of (X, N ) under P .
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Proposition 6.4 (Equivalent change of measure) Local P�-characteristics of the process
(X, N ) are given by (b(X,N )�, c(X,N )�, F (X,N )�, A), where

b(X,N )� = b(X,N ) + c(X,N ),N +
∫

h(x)xd+1 F (X,N )(dx),

c(X,N )� = c(X,N ),

F (X,N )� =
∫

1G(x)(1 + xd+1)F
(X,N )(dx) ∀G ∈ Bd+1 with 0 /∈ G.

Proof [23, Lemma 5.1]. ��
The following observation is needed in the proof of Theorem 4.7.

Lemma 6.5 Let Q
loc�P with density process Z. Then for any increasing, predictable process

A with A0 = 0 we have

EQ(AT ) = EP (Z− • AT ).

Proof Since Z is a P-martingale and A is predictable and of finite variation, A • Z is a local
P-martingale by [21, I.3.10 and I.4.34]. If (Tn)n∈N denotes a localizing sequence, A • ZT ∧Tn

is a martingale starting at 0. By [21, III.3.4 and I.4.49], this implies

EQ(AT ∧Tn ) = EP (ZT ∧Tn AT ∧Tn )

= EP (Z− • AT ∧Tn + A • ZT ∧Tn )

= EP (Z− • AT ∧Tn ).

Hence monotone convergence yields EQ(AT ) = EP (Z− • AT ) as claimed. ��
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22. Janeček, K.: What is a realistic aversion to risk for real-world individual investors?. Carnegie Mellon

University, Working paper (2004)
23. Kallsen, J.: σ -localization and σ -martingales. Theory Probab. Appl. 48, 152–163 (2004)
24. Kallsen, J., Muhle-Karbe, J.: Exponentially affine martingales, affine measure changes and exponential

moments of affine processes. Stoch. Process. Appl. 120, 163–181 (2010)
25. Kallsen, J., Muhle-Karbe, J.: Method of moment estimation in time-changed Lévy models. Stat. Decis.

28, 169–194 (2011)
26. Kallsen, J., Muhle-Karbe, J.: Utility maximization in affine stochastic volatility models. Int. J. Theor.

Appl. Finance 13, 459–477 (2010)
27. Kallsen, J., Pauwels, A.: Variance-optimal hedging in general affine stochastic volatility models. Adv.

Appl. Probab. 42, 83–105 (2009)
28. Kallsen, J., Rheinländer, T.: Asymptotic utility-based pricing and hedging for exponential utility. Stat.

Decis. 28, 17–36 (2010)
29. Kallsen, J., Shiryaev, A.: Time change representation of stochastic integrals. Theory Probab. Appl. 46,

522–528 (2002)
30. Kallsen, J., Vierthauer, R.: Quadratic hedging in affine stochastic volatility models. Rev. Deriv. Res. 12,

3–27 (2009)
31. Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment

in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999)
32. Kramkov, D., Sîrbu, M.: The sensitivity analysis of utility based prices and the risk-tolerance wealth

processes. Ann. Appl. Probab. 16, 2140–2194 (2006)
33. Kramkov, D., Sîrbu, M.: Asymptotic analysis of utility-based hedging strategies for small number of

contingent claims. Stoch. Process. Appl. 117, 1606–1620 (2007)
34. Mania, M., Schweizer, M.: Dynamic exponential utility indifference valuation. Ann. Appl. Probab. 15,

2113–2143 (2005)
35. Muhle-Karbe, J., Nutz, M.: Small-time asymptotics of option prices and first absolute moments. J. Appl.

Probab. 48, 1003–1020 (2012)
36. Nutz, M.: The Bellman equation for power utility maximization with semimartingales. Ann. Appl. Probab.

22, 363–406 (2012)
37. Nutz, M.: Power utility maximization in constrained exponential Lévy models. Math. Finance 22, 690–709

(2012)
38. Raible, S.: Lévy Processes in Finance: Theory, Numerics, and Empirical Facts. Dissertation Universität

Freiburg i (2000)
39. Rheinländer, T., Schweizer, M.: On L2-projections on a space of stochastic integrals. Ann. Probab. 25,

1810–1831 (1997)
40. Rockafellar, T.: Convex Analysis. Princeton University Press, Princeton (1970)
41. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge

(1999)
42. Schweizer, M.: Approximating random variables by stochastic integrals. Ann. Probab. 22, 1536–1575

(1994)
43. Schweizer, M.: Variance-optimal hedging in discrete time. Math. Oper. Res. 20, 1–32 (1995)

123


	Asymptotic power utility-based pricing and hedging
	Abstract
	1 Introduction
	2 Utility-based pricing and hedging
	3 The asymptotic results of Kramkov and Sîrbu
	4 An alternative representation
	5 Semi-explicit formulas in concrete models
	5.1 Exponential Lévy models
	5.2 BNS model

	6 Numerical illustration
	Acknowledgments
	Appendix
	References


