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Abstract Functional evidence suggests that the stimula-

tion of peripheral and central opioid receptors (ORs) is able

to modulate heart function. Moreover, selective stimulation

of either cardiac or central ORs evokes preconditioning

and, therefore, protects the heart against ischemic injury.

However, anatomic evidence for OR subtypes in the human

heart is scarce. Human heart tissue obtained during autopsy

after sudden death was examined immunohistochemically

for mu- (MOR), kappa- (KOR), and delta- (DOR) OR

subtypes. MOR and DOR immunoreactivity was found

mainly in myocardial cells, as well as on sparse individual

nerve fibers. KOR immunoreactivity was identified pre-

dominantly in myocardial cells and on intrinsic cardiac

adrenergic (ICA) cell-like structures. Double immunoflu-

orescence confocal microscopy revealed that DOR colo-

calized with the neuronal marker PGP9.5, as well as with

the sensory neuron marker calcitonin gene-related peptide

(CGRP). CGRP-immunoreactive (IR) fibers were detected

either in nerve bundles or as sparse individual fibers con-

taining varicose-like structures. Our findings offer the first

hint of an anatomic basis for the existence of OR subtypes in

the human heart by demonstrating their presence in CGRP-

IR sensory nerve fibers, small cells with an eccentric nucleus

resembling ICA cells, and myocardial cells. Taken together,

this suggests the role of opioids in both the neural trans-

mission and regulation of myocardial cell function.
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Introduction

There is a growing body of data supporting a peripheral

role for opioids in the regulation of organ function, such

as the gut [1], lungs [2, 3], and heart [4]. Experimental

studies have shown that stimulation of both peripheral

(cardiac) and central opioid receptors (ORs) is able to

modulate heart function and evoke cardioprotection

against ischemia [5–7]. The efficacy of opioids in

inducing preconditioning and postconditioning not only in

intact hearts in vivo [8] but also in isolated cardiomyo-

cytes in vitro [9, 10], their inotropic effects [11–13], and

their impact on growth factor expression [14, 15] in cell

culture indicate the presence of ORs on cardiomyocytes

and not only on neural elements.

The function of the heart is controlled by the autonomic

nervous system. It is widely accepted that the heart has an

intrinsic cardiac nervous system, or ‘‘heart brain,’’ con-

sisting of a complex network of intrinsic cardiac ganglia,

sensory afferents, local circuits, and pre- and postgangli-

onic parasympathetic and postganglionic sympathetic
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efferents. We have consistently shown in rats that mu-OR

(MOR), delta-OR (DOR), and kappa-OR (KOR) are

expressed as mRNA and translated into specific receptor

proteins on different components of the intrinsic cardiac

nervous system [16, 17].

To date, anatomic evidence for the different OR subtypes

in the human heart has been scarce. Most investigators have

confirmed the presence of DOR mRNA and protein, but there

is still conflicting evidence for MOR and KOR [18–20].

Moreover, immunohistochemical studies of their anatomic

distribution are lacking. Therefore, we examined the pre-

sence of MOR, DOR, and KOR throughout human heart

tissue sampled from victims of sudden death.

Materials and methods

Patients and the preparation of human heart tissue

The study protocol adhered to the International Guidelines

of the Declaration of Helsinki 2004 (World Medical

Association: http://www.wma.net) and was approved by

the Ethics Committee of the Nicolaus Copernicus Univer-

sity in Torun, Poland. Human heart tissue samples were

obtained from two subjects (females, 37 and 42 years of

age) up to 48 h after sudden death during postmortem

examination in the Forensic Medicine Department, By-

dgoszcz. The younger female died as a result of suicide.

The older female died unexpectedly and during autopsy,

atherosclerotic changes in the coronaries and focuses of

myolysis and nuclear fragmentation were identified, which

gave the suspicion of a very recent myocardial infarction.

Both were nonsmokers. Samples (at least 1 cm3 each) were

taken from five different regions, two from each location:

the right atrium between the caval veins, the free wall of

the right ventricle, the intraventricular septum, the anterior

wall of the left ventricle including the left anterior

descending coronary artery, and the inferior wall of the left

ventricle. Tissue samples were fixed in 4 % (w/v) para-

formaldehyde in 0.16 M phosphate buffer solution (pH 7.4)

for 5 h and then cryoprotected overnight at 4 �C in phos-

phate-buffered saline (PBS) containing 10 % sucrose [21].

The tissues were embedded in Tissue-Tek compound

(OCT; Miles, Elkhart, IN, USA). Then 50-lm thick sec-

tions were processed in a cryostat and collected in PBS

(floating sections).

Single immunostaining for light microscopy

Floating tissue sections were processed for MOR, DOR,

or KOR immunohistochemistry with a Vectastain avidin–

biotin–peroxidase complex (ABC) kit (Vector

Laboratories, Burlingame, CA, USA) as described pre-

viously [21, 22]. All incubations were carried out at

room temperature, and PBS was used for washing (three

times for 10 min) after each step. Sections were incu-

bated for 45 min in PBS with 0.6 % H2O2 and 50 %

methanol to block endogenous peroxidase, and for 60

min in PBS containing 0.3 % Triton X-100, 1 % bovine

serum albumin, and 10 % goat serum (Vector Labora-

tories) (blocking solution) to prevent nonspecific binding.

The sections were then incubated overnight with poly-

clonal rabbit antibodies against MOR (a gift from S.

Schulz and V. Höllt, Magdeburg, Germany), DOR (a gift

from R. Elde, Minneapolis, MN, USA), or KOR (a gift

from S.J. Watson, MI, USA), and thereafter for 90 min

with a goat antirabbit biotinylated secondary antibody

(Vector Laboratories) and for another 90 min with ABC.

Finally, specific immunostaining was detected with 30,30-
disaminobenzidine tetrahydrochloride (Sigma, Taufkir-

chen, Germany). Rabbit polyclonal anti-MOR, anti-DOR,

and anti-KOR have been thoroughly characterized pre-

viously [16, 17, 23]. Their immunoreactivity is lost upon

gene deletion of the respective receptors in transgenic

animals [24] or on Western blot following preincubation

with the respective antigen peptide [16, 17, 23]. In

addition, there is no cross-reactivity between these anti-

sera, since they do not stain the other receptors following

their respective transfection into cell lines [25–27].

Double immunofluorescence staining

Double immunofluorescence staining was performed as

described previously [22]. In brief, floating tissue sections

were incubated for 60 min in blocking solution. The sec-

tions were then incubated overnight with the following

antibodies: (1) rabbit polyclonal anti-DOR (dilution:

1:1000) in combination with chicken polyclonal protein

gene product 9.5 (PGP9.5) antibody (dilution: 1:500;

EnCor Biotechnology, Gainesville, FL, USA) or guinea

pig polyclonal calcitonin gene-related peptide (CGRP)

antibody (dilution: 1:500; Peninsula Laboratories, San

Carlos, CA, USA). After incubation with primary anti-

bodies, the tissue sections were washed with PBS and then

incubated with the appropriate secondary antibodies. After

incubation with primary antibodies, the tissue sections

were washed with PBS and then incubated with Texas Red

conjugated goat antirabbit antibody (Vector Laboratories)

in combination with Alexa Fluor 488 goat anti-guinea pig

or antichicken antibody (Invitrogen, Karlsruhe, Germany).

Thereafter, sections were washed with PBS, and the nuclei

stained bright blue with 40-6-diamidino-2-phenylindole

(0.1 lg/ml in PBS) (Sigma). Finally, the tissues were
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washed in PBS, mounted in Vectashield (Vector Labora-

tories), and imaged on a confocal laser scanning micro-

scope, Zeiss LSM 510 (Carl Zeiss, Göttingen, Germany).

To demonstrate specificity of staining, the following con-

trols were included as described thoroughly in detail

elsewhere [16, 17, 28–30]: (1) preabsorption of diluted

antibody against MOR, DOR, or KOR with 5 lg/ml of

synthetic peptide antigen for MOR (Gramsch Laboratories,

Schwabhausen, Germany), DOR (Neuromics, Minneapo-

lis, MN, USA), or KOR (S.J. Watson), respectively, for 24

h at 4 �C; and (2) omission of either the primary or sec-

ondary antibodies.

Fig. 1 Immunohistochemical localization of calcitonin gene-related

peptide (CGRP) in the right and left ventricles of human heart tissue.

a CGRP immunoreactivity expressed in nerve processes coursing in

nerve bundles. b–d CGRP immunoreactivity localized to some nerve

processes arborizing throughout the right ventricle tissue, containing

localized bead-like enlargements of the axoplasm (arrowheads) along

their lengths. c, f CGRP immunohistochemical localization in the left

ventricle. Note that CGRP is expressed in sparse, fine, and varicose

nerve fibers. Bar 20 lm
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Results

Identification of CGRP-immunoreactive sensory nerve

fibers in human myocardial tissue

In the right ventricle of the human heart, the majority of

CGRP immunoreactivity consisted of nerve processes

coursing in nerve bundles together with nonstained nerve

processes (Fig. 1a–d). In addition, CGRP-stained

individual nerve fibers arborizing throughout the right

ventricle myocardium contained localized, bead-like

enlargements of the axoplasm along their course. Histo-

logically, these enlargements resembled varicosities. In the

free wall of the left ventricle, sensory nerve fibers were

usually sparse, fine, and varicose, and exhibited CGRP

immunoreactivity (Fig. 1e, f). An abundant supply of

CGRP-immunoreactive (IR) nerve bundles and varicose

nerve fibers was distributed throughout the intraventricular

Fig. 2 Immunohistochemical localization of CGRP immunoreactiv-

ity in the intraventricular septum (a–e) and right atrium (f) of human

myocardial tissue. a–c An abundant supply of CGRP-immunoreactive

nerve trunks (b, c), nerve fascicles (e), and varicose nerve fibers (a,

d). f CGRP in the right atrium. Note that CGRP is expressed in sparse,

fine, and varicose nerve fibers. Bar 20 lm
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septum (Fig. 2a–e). Single CGRP-IR nerve fibers in the

right atrium were usually sparse, fine, and varicose (Fig.

2f).

Identification of MOR, DOR, and KOR

immunoreactivity in human myocardial tissue

Light microscopy pictures of human myocardium immu-

nostained with a specific antibody against MOR identified

a high degree of MOR immunoreactivity inside myocardial

cells in the inferior wall of the left ventricle (Fig. 3a, b). In

addition, MOR immunoreactivity was demonstrated in

sparse fine nerve fibers taking their course through human

myocardium in the intraventricular septum and inferior

wall of the left ventricle (Fig. 3c).

Delta opioid receptors (DOR) immunoreactivity was

located in the free wall of the right ventricle and in the

intraventricular septum, predominantly on longitudinal

structures corresponding to nerves. Some of the DOR-IR

thin nerve fibers were in close proximity to small artery

walls (Fig. 3e), whereas others lay between cardiomyocytes

(Fig. 3f). DOR immunoreactivity was also identified inside

myocardial cells of the right ventricle (Fig. 3g). KOR

immunoreactivity was demonstrated in the right ventricle

and intraventricular septum of human myocardium in

sparse fine nerve fibers between cardiomyocytes (Fig. 4a),

Fig. 3 Immunohistochemical localization of mu opioid receptor

(MOR) (a–d) or delta opioid receptor (DOR) (e–g) in human

myocardial tissue. a, b MOR expressed in myocardial cells of the

human heart. c MOR expressed in sparse solitary nerve processes in

cardiac tissue. d Preabsorption of antibody against MOR with 5 lg/ml

of synthetic peptide antigen for MOR revealed no significant

immunoreactivity. e–g DOR-immunoreactive nerve fibers in human

myocardial tissue was usually sparse, fine, and varicose. g DOR was

expressed in cardiomyocytes of the human heart. Bar 20 lm
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inside myocardial cells (Fig. 4b–d), and occasionally on

long fusiform cells with an eccentrically located large

nucleus resembling intrinsic cardiac adrenergic (ICA) cell-

like structures (Fig. 4d, e). Preabsorption of primary anti-

bodies against MOR, DOR, or KOR with 5 lg/ml of the

respective synthetic peptide antigen for MOR, DOR, or

KOR as well as the omission of the primary antibody

revealed no significant immunoreactivity (Fig. 3d).

Coexpression of DOR in CGRP-IR and PGP9.5-IR

neurons of human myocardial tissue

Double immunofluorescence confocal microscopy demon-

strated that human myocardium was densely innervated by

the general neuronal marker PGP9.5-IR (fluorescein iso-

thiocyanate (FITC) green) axons (Fig. 5b, e), some of

which also displayed DOR (Texas Red) immunoreactivity

(Fig. 5a, c, d, f). Some nerve fibers were immunolabeled

for PGP9.5 alone (Fig. 5c, f). In addition, double immu-

nofluorescence confocal microscopy of human heart tissue

demonstrated afferent nerve fibers coexpressing the sen-

sory neuronal marker CGRP (FITC green) (Fig. 5h, k),

which were colocalized with DOR immunoreactivity (Fig.

5g, i, j, l).

Discussion

The findings of this study demonstrate for the first time the

immunohistochemical localization of all three ORs (MOR,

DOR, and KOR) in human myocardial tissue. MOR and

DOR immunoreactivity was mainly found in myocardial

cells as well as on sparse individual nerve fibers. KOR

immunoreactivity was found predominantly in myocardial

cells and on ICA cell-like structures. Double immunoflu-

orescence microscopy revealed that DOR colocalized with

the neuronal marker PGP9.5 as well as with the sensory

neuron marker CGRP. CGRP-IR fibers were detectable

either in nerve bundles or as sparse individual nerve fibers

containing varicose-like structures.

In earlier studies, the neuropeptide CGRP was demon-

strated in nerve fibers of the human heart. The CGRP

content in the atria was found to be three- to fourfold

higher than that in the ventricles [31]. Wharton et al. [32]

confirmed these early findings and reported CGRP immu-

noreactivity mainly on scattered individual neurons, gan-

glion neurons, and nerve bundles. Interestingly in the

developing human heart, sensory CGRP-IR innervation

occurs later (18th–24th week of gestation) than the auto-

nomic parasympathetic and sympathetic ones (7th week of

gestation), suggesting a chronological development of the

autonomic and sensory nerves [33, 34]. Peptidergic CGRP-

IR nerve fibers are part of a complex sensory network that

transmits relevant sensory information from the heart to

nearby intrinsic cells as well as to the spinal cord [35].

Consistent with our previous studies in rats [16], we can

now demonstrate that DORs in the human heart are

expressed in CGRP-IR sensory neurons as well as in

Fig. 4 Immunohistochemical localization of kappa opioid receptor

(KOR) (a–e) in human myocardial tissue. a, b KOR was expressed in

sparse solitary nerve processes in cardiac tissue (arrow). d, e KOR

was expressed on long fusiform cells with an eccentrically located

large nucleus (arrow) of the human heart. b–d KOR is expressed in

cardiomyocytes (arrowhead) of the human heart. Bar 20 lm
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myocardial cells, suggesting that opioids regulate both the

transmission of sensory information and the function of

myocardial cells. In addition, we can show the presence of

the other ORs (MOR and KOR) on single nerve fibers and

on myocardial cells, confirming that all three ORs are

expressed in the human heart. Until now, MOR, DOR, and

KOR have been mainly identified by the detection of their

mRNA in cardiomyocytes [18, 19, 36–38]. Moreover,

DOR protein was detected by Western blot and immuno-

histochemistry in ICA cells [37, 38]. The most interesting

previous finding is the demonstration of MOR- and DOR-

specific binding sites in the heart of human volunteers by

the use of MOR- and DOR-specific radioligands and pos-

itron emission tomography [39]. The distribution of these

binding sites was homogeneous throughout the myocar-

dium, with relatively higher uptake in the lateral wall than

in the septum. The specificity of binding was confirmed

with naloxone pretreatment, which decreased radioligand

uptake.

There is a growing body of evidence from experimental

studies of the rodent heart supporting the notion that acti-

vation of the local ORs affects cardiac function. Indeed,

ORs such as DOR in the heart elicit cardioprotective

effects against myocardial infarction and trigger processes

similar to ischemic preconditioning [40, 41]. DOR stimu-

lation also reduces arrhythmias, and preserves the viability

of isolated cells and organs [42, 43]. In addition, DOR

activation enhances the growth of neonatal rat ventricular

myocytes via the extracellular signal-regulated kinase

pathway [44] and mediates antiapoptotic effects in

cardiomyocytes [45]. KOR stimulation is proarrhythmic in

swine [46], but in rats it can exert a pro- or antiarrhythmic

influence [47–50]. In rabbit hearts, KOR agonists inhibit

electric stimulation-induced sympathomimetic effects [51],

whereas in rats MOR activation did not induce precondi-

tioning [52, 53].

It is well established that endogenous ligands for ORs,

i.e., the opioid peptides encephalin and dynorphin and their

Fig. 5 Confocal microscopy of DOR (a, d, g, j) (red fluorescence)

with polyclonal protein gene product 9.5 (PGP9.5) (b, e) or CGRP (h,

k) (green fluorescence) double immunofluorescence in human

myocardial tissue. c, f, i and l are combined images showing

colocalization (double arrows) of DOR with PGP9.5 (c, f) or CGRP

(i, l). Some PGP9.5- or CGRP-immunoreactive nerve fibers (arrow-

heads) do not express DOR. Bar 20 lm (color figure online)
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precursor peptides proenkephalin and prodynorphin, are

expressed in peripheral neuronal terminals of the human

heart [54, 55] and that of other mammalian species,

including the rat (for a review, see [56, 57]). However, the

release of opioid peptides (i.e., OR ligands) from heart

tissue has not been conclusively demonstrated although

preliminary evidence supports this view [58, 59]. Thus, in

the human heart there exists an intrinsic opioid system that

may regulate the parasympathetic and sympathetic control

of the heart as well as myocardial performance. However,

our study has its limitations as tissue samples were taken

within 48 h post mortem, which may contribute to a

potential loss of antigen recognition. Nevertheless, our

results remain in concordance with previous studies

showing the existence of ORs in the human heart by other

techniques [18, 19, 32, 36, 37].

Taken together, our findings demonstrate that ORs in the

human heart are expressed in CGRP-IR sensory nerves, as

well as in myocardial cells and small cells resembling ICA

cells, suggesting a modulatory role of opioids both in the

neural transmission and in the function of myocardial cells.

This study may stimulate further experiments to investigate

systematically the precise subcellular localization of each

OR subtype in the human heart.
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