Research Article
Giulia Bianco and Elisa Gorla*

Compression for trace zero points on twisted Edwards curves

DOI: 10.1515/jmc-2015-0039
Received July 27, 2015; revised January 6, 2016; accepted January 14, 2016

Abstract

We propose two optimal representations for the elements of trace zero subgroups of twisted Edwards curves. For both representations, we provide efficient compression and decompression algorithms. The efficiency of the algorithm is compared with the efficiency of similar algorithms on elliptic curves in Weierstrass form.

Keywords: Trace zero subgroup, Edwards curve, compression, decompression
MSC 2010: 14G50, 94A60

Communicated by: Alfred Menezes

Introduction

Trace zero subgroups are subgroups of the groups of points of an elliptic curve over extension fields. They were first proposed for use in public key cryptography by Frey in [11]. A main advantage of trace zero subgroups is that they offer a better scalar multiplication performance than the whole group of points of an elliptic curve of approximately the same cardinality. This allows a fast arithmetic, which can speed up the calculations by 30% compared with elliptic curves groups (see, e.g., [14] for the case of hyperelliptic curves, [3,8$]$ for elliptic curves over fields of even characteristic). In addition, computing the cardinality of a trace zero subgroup is more efficient than for the group of points of an elliptic curve of approximately the same cardinality. Moreover, even if the trace zero subgroup is a proper subgroup of the group of rational points of the curve over an extension field, the Discrete Logarithm Problem (DLP) in the two groups has the same complexity. Hence, when working over non-prime fields, we may restrict to the trace zero subgroup to gain a more efficient arithmetic without compromising the security. Finally, in the context of pairings trace zero subgroups of supersingular elliptic curves offer higher security than supersingular elliptic curves of the same bit-size, as shown in [16].

The problem of how to compress the elements of the trace zero subgroup of an elliptic or hyperelliptic curve is the analogue of torus-based cryptography in finite fields. For elliptic and hyperelliptic curves this problem has been studied by many authors, see [12-16, 18].

Edwards curves were first introduced by Edwards in [9] as a normal form for elliptic curves. They were proposed for use in elliptic curve cryptography by Bernstein and Lange in [4]. Twisted Edwards curves were introduced shortly after in [6]. They are relevant from a cryptographic point of view since the group operation can be computed very efficiently and via strongly unified formulas, i.e., formulas that do not distinguish between addition and doubling. This makes them more resistant to side-channel attacks. We refer to [4-6] for a detailed discussion on the advantages of Edwards curves.

[^0]In this paper, we provide two efficient representations for the elements of the trace zero subgroups of twisted Edwards curves. The first one follows ideas from [12] and it is based on Weil restriction of scalars and Semaev's summation polynomials. The second one follows ideas from [13] and it makes use of rational functions on the curve. Some obstacles have to be overcome in adapting these ideas to Edwards curves, especially for adapting the method from [13].

Given a twisted Edwards curve defined over a finite field \mathbb{F}_{q} of odd characteristic and a field extension of odd prime degree $\mathbb{F}_{q} \subset \mathbb{F}_{q^{n}}$, we consider the trace zero subgroup \mathcal{T}_{n} of the group of $\mathbb{F}_{q^{n}}$-rational points of the curve. We give two efficiently computable maps from \mathcal{T}_{n} to \mathbb{F}_{q}^{n-1}, such that inverse images can also be efficiently computed. One of our maps identifies Frobenius conjugates, while the other identifies Frobenius conjugates and opposites of points. Since \mathcal{T}_{n} has order $\mathcal{O}\left(q^{n-1}\right)$, our maps are optimal representations of \mathcal{T}_{n} modulo Frobenius equivalence. For both representations we provide efficient algorithms to compute the image and the preimage of an element, that is, to compress and decompress points. We also compare with the corresponding algorithms for trace zero subgroups of elliptic curves in short Weierstrass form.

The article is organized as follows. In Section 1 we give some preliminaries on twisted Edwards curves, finite fields, trace zero subgroups, and representations. In Section 2 we present our first optimal representation based on Weil restriction and summations polynomials, and give compression and decompression algorithms. We then make explicit computations for the cases $n=3$ and $n=5$, and compare execution times of our Magma implementation with those of the corresponding algorithms for elliptic curves in short Weierstrass form. In Section 3 we propose another representation based on rational functions, with the corresponding algorithms, computations and efficiency comparison.

1 Preliminaries and notations

Let \mathbb{F}_{q} be a finite field of odd characteristic and let $\mathbb{F}_{q} \subset \mathbb{F}_{q^{n}}$ be a field extension of odd prime degree. Choose a normal basis $\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}. If $n \mid q-1$, let $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}[\xi] /\left(\xi^{n}-\mu\right)$, where μ is not a n th-power in \mathbb{F}_{q}, and choose the basis $\left\{1, \xi, \ldots, \xi^{n-1}\right\}$ of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}. Either of these choices is suitable for computation, since it produces sparse equations. When writing explicit formulas, we always assume that we are in the latter situation.

When counting the number of operations in our computations, we denote respectively by M, S, and I multiplications, squarings, and inversions in the field. We do not take into account additions and multiplications by constants. The timings for the implementation of our algorithms in Magma refer to version V2.20-7 of the software, running on a single 3 GHz core.

1.1 Twisted Edwards curves

Definition 1.1. A twisted Edwards curve over \mathbb{F}_{q} is a plane curve of equation

$$
E_{a, d}: a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

where $a, d \in \mathbb{F}_{q} \backslash\{0\}$ and $a \neq d$. An Edwards curve is a twisted Edwards curve with $a=1$.
Twisted Edwards curves are curves of geometric genus one with two ordinary multiple points, namely the two points at infinity. Since $E_{a, d}$ is birationally equivalent to a smooth elliptic curve, one can define a group law on the set of points of $E_{a, d}$, called the twisted Edwards addition law.

Definition 1.2. The sum of two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ of $E_{a, d}$ is defined as

$$
P_{1}+P_{2}=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+x_{2} y_{1}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-a x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

We refer to [4, Section 3] and [6, Section 6] for a detailed discussion on the formulas and a proof of correctness. The point $\mathcal{O}=(0,1) \in E_{a, d}$ is the neutral element of the addition, and we denote by $-P$ the additive inverse
of P. If $P=(x, y)$, then $-P=(-x, y)$. We let $\mathcal{O}^{\prime}=(0,-1) \in E_{a, d}$, and denote by $\Omega_{1}=[1,0,0]$ and $\Omega_{2}=[0,1,0]$ the two points at infinity of $E_{a, d}$.

Edwards curves were introduced in [9] as a convenient normal form for elliptic curves. Over an algebraically closed field, every elliptic curve in Weierstrass form is birationally equivalent to an Edwards curve, and vice versa. This is however not the case over \mathbb{F}_{q}, where Edwards curves represent only a fraction of elliptic curves in Weierstrass form. In [6, Theorem 3.2] it is shown that a twisted Edwards curve defined over \mathbb{F}_{q} is birationally equivalent over \mathbb{F}_{q} to an elliptic curve in Montgomery form, and conversely, an elliptic curve in Montgomery form defined over \mathbb{F}_{q} is birationally equivalent over \mathbb{F}_{q} to a twisted Edwards curve.

Proposition 1.3. The twisted Edwards curve $E_{a, d}$ defined over \mathbb{F}_{q} is birationally equivalent over \mathbb{F}_{q} to the elliptic curve in Montgomery form $E_{A, B}: B y^{2}=x^{3}+A x^{2}+x$, where $A=2 \frac{a+d}{a-d}$ and $B=\frac{4}{a-d}$. Let $\bar{E}_{a, d}$ and $\bar{E}_{A, B}$ be the projective closures of $E_{a, d}$ and $E_{A, B}$, respectively. The birational isomorphism $\Phi: \bar{E}_{A, B} \rightarrow \bar{E}_{a, d}$ is defined via

$$
\phi([x, y, z])= \begin{cases}{[x(x+z), y(x-z), y(x+z)]} & \text { if }[x, y, z] \notin\left\{\Omega_{2},(0,0)\right\} \\ {\left[B y(x+z), B y^{2}-x^{2}-A x z-z^{2}, B y^{2}+x^{2}+A x z+z^{2}\right]} & \text { if }[x, y, z] \notin\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}\end{cases}
$$

where

$$
Q_{1}=\left(\frac{\sqrt{d}+\sqrt{a}}{\sqrt{d}-\sqrt{a}}, 0\right), Q_{2}=\left(\frac{\sqrt{d}-\sqrt{a}}{\sqrt{d}+\sqrt{a}}, 0\right), Q_{3}=(-1, \sqrt{d}), Q_{4}=(-1,-\sqrt{d}) \in E_{A, B}
$$

Proof. It is easy to check that Φ is well defined and $\Phi\left(Q_{1}\right)=\Phi\left(Q_{2}\right)=\Omega_{1}$ and $\Phi\left(Q_{3}\right)=\Phi\left(Q_{4}\right)=\Omega_{2}$. Moreover, Φ is injective on $\bar{E}_{A, B} \backslash\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}$, and its birational inverse is $\Psi: \bar{E}_{a, d} \backslash\left\{\Omega_{1}, \Omega_{2}\right\} \rightarrow \bar{E}_{A, B}$ given by

$$
\Psi([x, y, z])= \begin{cases}{[x(z+y), z(z+y), x(z-y)]} & \text { if }[x, y, z] \neq \mathcal{O}^{\prime} \\ {\left[z(z+y)(z-y), x\left(a z^{2}-d y^{2}\right), z(z-y)^{2}\right]} & \text { if }[x, y, z] \neq \mathcal{O}\end{cases}
$$

Moreover, the twisted Edwards addition law corresponds to the usual addition law on the birationally isomorphic elliptic curve in Montgomery form, as shown in [4, Theorem 3.2]. Similarly to elliptic curves in Montgomery or Weierstrass form, the twisted Edwards addition law has a geometric interpretation.

Proposition 1.4 ([1, Section 4]). Let $P_{1}, P_{2} \in E_{a, d}$, and let C be the projective conic passing through P_{1}, P_{2}, Ω_{1}, Ω_{2}, and \mathcal{O}^{\prime}. Then, the point $P_{1}+P_{2}$ is the symmetric with respect to the y-axis of the eighth point of intersection between $E_{a, d}$ and C.

1.2 Trace zero subgroups

Let $E_{a, d}$ be a twisted Edwards curve defined over \mathbb{F}_{q}. We denote by $E_{a, d}\left(\mathbb{F}_{q^{n}}\right)$ the group of $\mathbb{F}_{q^{n}}$-rational points of $E_{a, d}$, by P_{∞} any point at infinity of $E_{a, d}$, and by φ the Frobenius endomorphism on $E_{a, d}$ defined as follows:

$$
\varphi: E_{a, d} \rightarrow E_{a, d}, \quad(x, y) \mapsto\left(x^{q}, y^{q}\right), \quad P_{\infty} \mapsto P_{\infty}
$$

Definition 1.5. The trace zero subgroup \mathcal{T}_{n} of $E_{a, d}\left(\mathbb{F}_{q^{n}}\right)$ is the kernel of the trace map

$$
\operatorname{Tr}: E_{a, d}\left(\mathbb{F}_{q^{n}}\right) \rightarrow E_{a, d}\left(\mathbb{F}_{q}\right), \quad P \mapsto P+\varphi(P)+\varphi^{2}(P)+\cdots+\varphi^{n-1}(P)
$$

We can view \mathcal{T}_{n} as the \mathbb{F}_{q}-rational points of an abelian variety of dimension $n-1$ defined over \mathbb{F}_{q}, called the trace zero variety. We refer to [2] for a construction and the basic properties of the trace zero variety. The following result is an easy consequence of [2, Proposition 7.13].

Proposition 1.6. The sequence

$$
0 \rightarrow E_{a, d}\left(\mathbb{F}_{q}\right) \rightarrow E_{a, d}\left(\mathbb{F}_{q^{n}}\right) \xrightarrow{\varphi-\mathrm{id}} \mathcal{T}_{n} \rightarrow 0
$$

is exact. Therefore, the DLPs in $E_{a, d}\left(\mathbb{F}_{q^{n}}\right)$ and in \mathcal{T}_{n} have the same complexity.

1.3 Representations

Definition 1.7. A representation of size ℓ for the elements of a finite set G is a map

$$
\mathcal{R}: G \rightarrow \mathbb{F}_{2}^{\ell} .
$$

Notice that, in our setup, a representation \mathcal{R} is not necessarily injective. Nevertheless, any representation induces an injective representation

$$
\overline{\mathcal{R}}: G / \sim \rightarrow \mathbb{F}_{2}^{\ell},
$$

where $g \sim h$ if and only if $\mathcal{R}(g)=\mathcal{R}(h)$ for any $g, h \in G$.
Definition 1.8. Let \mathcal{A} be a family of abelian varieties of fixed dimension d. An optimal representation for \mathcal{A} is a family of representations $\mathcal{R}: A\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{F}_{2}^{\ell}$ for all finite fields \mathbb{F}_{q} and for all $A \in \mathcal{A}$ defined over \mathbb{F}_{q}, with the property that

$$
\ell=\ell(q)=\left\lceil\log _{2}\left|A\left(\mathbb{F}_{q}\right)\right|\right\rceil+\mathcal{O}(1)=d\left\lceil\log _{2} q\right\rceil+\mathcal{O}(1) .
$$

We also say that each \mathcal{R} is an optimal representation for the elements of $A\left(\mathbb{F}_{q}\right)$.
Given $g \in A\left(\mathbb{F}_{q}\right), x \in \operatorname{Im} \mathcal{R}$, we refer to computing $\mathcal{R}(g)$ as compression and $\mathcal{R}^{-1}(x)$ as decompression.
Intuitively, a representation is optimal if $\ell(q)$ is the smallest possible length of a binary representation of the elements of $A\left(\mathbb{F}_{q}\right)$, up to an additive constant. In particular, the length of a representation is regarded as a function of q, while the dimension d of the varieties is assumed to be constant. Notice moreover that, if $\left|\mathcal{R}^{-1}(x)\right| \in \mathcal{O}(1)$ as a function of q, then

$$
\ell(q)=\left\lceil\log _{2}\left|A\left(\mathbb{F}_{q}\right)\right|\right\rceil=\left\lceil\log _{2}\left|A\left(\mathbb{F}_{q}\right) / \sim\right|\right\rceil+\mathcal{O}(1)
$$

In particular, optimality of a representation does not depend on the number of elements that are identified, under the assumption that this number is upper bounded by a constant in q. Therefore, Definition 1.8 is well-posed.

Remark 1.9. The problem of representing the elements of \mathbb{F}_{q} via binary strings of length $\left\lceil\log _{2} q\right\rceil$ is well studied. Therefore, an optimal representation for \mathcal{A} may be given via a family of maps

$$
\mathcal{R}: A\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{F}_{q}^{d} \times \mathbb{F}_{2}^{k},
$$

where $k \in \mathcal{O}(1)$.
The problem of finding an optimal representation has been studied for the following families of abelian varieties: elliptic curves, Jacobians of hyperelliptic curves of fixed genus, trace zero varieties of elliptic or hyperelliptic curves of fixed genus and with respect to a field extension of fixed degree. One may also let \mathcal{A} consist of only one element, e.g., the multiplicative group or its primitive subgroup. Finding an optimal representation for the latter is at the core of torus-based cryptography.

In this paper, we let \mathcal{A} be the set of trace zero varieties of Edwards curves with respect to a field extension of fixed degree n. We construct two optimal representations for the elements of \mathcal{T}_{n}, with the property that each element in the image has at most $2 n$, respectively, n inverse images.

2 An optimal representation using summation polynomials

Let \mathbb{F}_{q} be a finite field of odd characteristic and let $E_{a, d}$ be the twisted Edwards curve of equation

$$
a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

where $a, d \in \mathbb{F}_{q} \backslash\{0\}$ and $a \neq d$. Following ideas from [12], in this section we use Weil restriction of scalars and Semaev's summation polynomials to write an equation for the subgroup \mathcal{T}_{n}. Similarly to the case of elliptic curves in Weierstrass form, a point $P=(x, y) \in E_{a, d}\left(\mathbb{F}_{q^{n}}\right)$ can be represented via $y \in \mathbb{F}_{q^{n}}$. Using the curve equation, the value of x can be recovered up to sign. Hence, after choosing an \mathbb{F}_{q}-basis of $\mathbb{F}_{q^{n}}$, each
pair of points $\pm P \in E_{a, d}\left(\mathbb{F}_{q^{n}}\right)$ can be represented by the element $\left(y_{0}, \ldots, y_{n-1}\right) \in \mathbb{F}_{q}^{n}$ corresponding to $y \in \mathbb{F}_{q^{n}}$ under the isomorphism $\mathbb{F}_{q^{n}} \cong \mathbb{F}_{q}^{n}$ induced by the chosen basis. Having an equation for \mathcal{T}_{n} allows us to drop one of the y_{i} 's and represent each pair $\pm P$ via $n-1$ coordinates in \mathbb{F}_{q}, thus providing an optimal representation for the elements of \mathcal{T}_{n}. In order to make computation of the compression and decompression maps more efficient, we modify this basic idea and use the elementary symmetric functions of $y, y^{q}, \ldots, y^{q^{n-1}}$ instead of the vector $\left(y_{0}, \ldots, y_{n-1}\right) \in \mathbb{F}_{q}^{n}$.

Summation polynomials were introduced by Semaev in [17] for elliptic curves in Weierstrass form. Here we use them in the form for Edwards curves from [10].

Definition 2.1. The n-th summation polynomial is denoted by f_{n} and defined recursively by

$$
\begin{aligned}
f_{3}\left(z_{1}, z_{2}, z_{3}\right) & =\left(z_{1}^{2} z_{2}^{2}-z_{1}^{2}-z_{2}^{2}+a d^{-1}\right) z_{3}^{2}+2(d-a) d^{-1} z_{1} z_{2} z_{3}+a d^{-1}\left(z_{1}^{2}+z_{2}^{2}-1\right)-z_{1}^{2} z_{2}^{2} \\
f_{n}\left(z_{1}, \ldots, z_{n}\right) & =\operatorname{res}_{t}\left(f_{n-k}\left(z_{1}, \ldots, z_{n-k-1}, t\right), f_{k+2}\left(z_{n-k}, \ldots, z_{n}, t\right)\right)
\end{aligned}
$$

for all $n \geq 4$ and for all $1 \leq k \leq n-3$, where $\operatorname{res}_{t}\left(f_{i}, f_{j}\right)$ denotes the resultant of f_{i} and f_{j} with respect to t.
The next theorem summarizes the properties of summation polynomials.
Theorem 2.2 ($\left[17\right.$, Section 2] and [10, Section 2.3.1]). Let $f_{n} \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{n}\right], n \geq 3$, be the n-th summation polynomial. Denote by $\mathbb{F}_{q} \subset k$ a field extension, and by \bar{k} its algebraic closure. Then, the following hold:
(i) f_{n} is absolutely irreducible, symmetric, and has degree 2^{n-2} in each of the variables.
(ii) $\left(\beta_{1}, \ldots, \beta_{n}\right) \in k^{n}$ is a root of f_{n} if and only if there exist $\alpha_{1}, \ldots, \alpha_{n} \in \bar{k}$ such that $P_{i}=\left(\alpha_{i}, \beta_{i}\right) \in E_{a, d}(\bar{k})$ and $P_{1}+\cdots+P_{n}=0$.

By the previous theorem, if $P=(x, y) \in \mathcal{T}_{n}$, then

$$
\begin{equation*}
f_{n}\left(y, y^{q}, \ldots, y^{q^{n-1}}\right)=0 \tag{2.1}
\end{equation*}
$$

A partial converse and exceptions to the opposite implication are given in the next proposition.
Proposition 2.3 ([12, Lemma 1 and Proposition 4]). Let $E_{a, d}$ be a twisted Edwards curve and denote by $E_{a, d}[m]$ its m-torsion points. Then, we have the following:
(1) $\mathcal{T}_{3}=\left\{(x, y) \in E_{a, d}\left(\mathbb{F}_{q^{3}}\right) \mid f_{3}\left(y, y^{q}, y^{q^{2}}\right)=0\right\}$,
(2) $\mathcal{T}_{5} \cup E_{a, d}[3]\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in E_{a, d}\left(\mathbb{F}_{q^{5}}\right) \mid f_{5}\left(y, y^{q}, \ldots, y^{q^{4}}\right)=0\right\}$,
(3) $\mathcal{T}_{n} \cup \bigcup_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor} E_{a, d}[n-2 k]\left(\mathbb{F}_{q}\right) \subseteq\left\{(x, y) \in E_{a, d}\left(\mathbb{F}_{q^{n}}\right) \mid f_{n}\left(y, y^{q}, \ldots, y^{q^{n-1}}\right)=0\right\}$ for $n \geq 7$.

Proof. The proof proceeds as in [12, Lemma 1 and Proposition 4], after observing that for any odd prime n one has $E_{a, d}[2] \cap \mathcal{T}_{n}=\{\mathcal{O}\}$.

Remark 2.4. Proposition 2.3 raises the question of efficiently deciding, for each root $y \in \mathbb{F}_{q^{n}}$ of equation (2.1), whether the corresponding points $(\pm x, y) \in E_{a, d}$ are elements of \mathcal{T}_{n}. However, this issue is easily solved in the two cases of major interest $n=3$ and $n=5$. In fact, we have the following:

- By Proposition $2.3(1),(\pm x, y) \in \mathcal{T}_{3}$ if and only if $x \in \mathbb{F}_{q^{3}}$.
- By Proposition $2.3(2),(\pm x, y) \in \mathcal{T}_{5}$ if and only if $x \in \mathbb{F}_{q^{5}}$ and $(\pm x, y) \notin E_{a, d}[3]\left(\mathbb{F}_{q}\right) \backslash\{\mathcal{O}\}$. By storing the list \mathcal{L} of the y-coordinates of the elements of $E_{a, d}[3]\left(\mathbb{F}_{q}\right) \backslash\{\mathcal{O}\}$, one can easily decide whether a point of $E_{a, d}\left(\mathbb{F}_{q^{5}}\right)$ of coordinates (x, y) belongs to \mathcal{T}_{5} by checking that $y \notin \mathcal{L}$. Notice that \mathcal{L} consists of at most 4 elements of \mathbb{F}_{q}.

Using the above considerations as a starting point, we can give an optimal representation for the points of \mathcal{T}_{n} with efficient compression and decompression algorithms.

Step 1. Denote by e_{1}, \ldots, e_{n} the elementary symmetric functions in n variables. Represent $(x, y) \in \mathcal{T}_{n}$ via $n-1$ of the elementary symmetric functions evaluated at $y, y^{q}, \ldots, y^{q^{n-1}}$. We obtain an efficiently computable optimal representation

$$
\begin{equation*}
\mathcal{R}: \mathcal{T}_{n} \rightarrow \mathbb{F}_{q}^{n-1}, \quad(x, y) \mapsto\left(e_{i}\left(y, y^{q}, \ldots, y^{q^{n-1}}\right)\right)_{i=1, \ldots, n-1} \tag{2.2}
\end{equation*}
$$

```
Algorithm 1. Compression
Input : \(P=(x, y) \in \mathcal{T}_{n}\)
Output : \(\mathcal{R}(P) \in \mathbb{F}_{q}^{n-1}\)
    Write \(y=y_{0} \alpha+\cdots+y_{n-1} \alpha^{q^{n-1}}\).
    Compute \(e_{i}=\tilde{e}_{i}\left(y_{0}, \ldots, y_{n-1}\right)\) for \(i=1, \ldots, n-1\).
    return \(\left(e_{1}, \ldots, e_{n-1}\right)\)
```

Step 2. Since the polynomial $f_{n}\left(z_{1}, \ldots, z_{n}\right)$ is symmetric, we can write it uniquely as a polynomial $g_{n}\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{F}_{q}\left[e_{1}, \ldots, e_{n}\right]$. Therefore, the equation

$$
g_{n}\left(e_{1}, \ldots, e_{n}\right)=0
$$

describes trace zero points (with the exceptions seen in Proposition 2.3) via the equations

$$
\begin{equation*}
e_{1}=\tilde{e}_{1}\left(y_{0}, \ldots, y_{n-1}\right), \ldots, e_{n}=\tilde{e}_{n}\left(y_{0}, \ldots, y_{n-1}\right), \tag{2.3}
\end{equation*}
$$

where the polynomials $\tilde{e}_{1}, \ldots, \tilde{e}_{n}$ are obtained from the polynomials

$$
e_{1}\left(y, y^{q}, \ldots, y^{q^{n-1}}\right), \ldots, e_{n}\left(y, y^{q}, \ldots, y^{q^{n-1}}\right)
$$

by Weil restriction of scalars with respect to the chosen basis of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}, and reducing modulo $y_{i}^{q}-y_{i}$ for $i \in\{0, \ldots, n-1\}$. Notice that the reduction simplifies the equations by drastically reducing their degrees. Moreover, it does not alter their values when evaluated over \mathbb{F}_{q}.

Step 3. For $\left(e_{1}, \ldots, e_{n-1}\right) \in \mathcal{R}\left(\mathcal{T}_{n}\right)$, we first solve

$$
g_{n}\left(e_{1}, \ldots, e_{n-1}, t\right)=0
$$

for t. For any solution $e_{n} \in \mathbb{F}_{q}$, we solve system (2.3) to find $\left(y_{0}, \ldots, y_{n-1}\right) \in \mathbb{F}_{q}^{n}$, corresponding to $y \in \mathbb{F}_{q^{n}}$. From y we can recover x in the usual way (see also Remark 2.4).

Notice that $g_{n}\left(e_{1}, \ldots, e_{n},\right)$ is not linear in any of the variables for $n \geq 3$, hence in step 3 we may find more than one value for e_{n}. This corresponds to the fact that \mathcal{R} may identify more than just opposites and Frobenius conjugates. However, this is a rare phenomenon, and for a generic point $P \in \mathcal{T}_{n}, \mathcal{R}^{-1}(\mathcal{R}(P))$ consists only of $\pm P$ and their Frobenius conjugates. We come back to this discussion in Section 2.2, where we discuss this issue for $n=5$.

The pseudocode of a compression and a decompression algorithm for the elements of \mathcal{T}_{n} are given in Algorithms 1 and 2, respectively.

2.1 Explicit equations, complexity, and timings for $\boldsymbol{n}=3$

In this subsection we give explicit equations for trace zero point compression and decompression on twisted Edwards curves for $n=3$. We also estimate the number of operations needed for the computations, present some timings obtained with Magma, and compare with the results from [12] for elliptic curves in short Weierstrass form.

The symmetrized third summation polynomial for $E_{a, d}$ is

$$
\begin{equation*}
g_{3}\left(e_{1}, e_{2}, e_{3}\right)=e_{1}^{2}-1+(d / a)\left(e_{3}^{2}-e_{2}^{2}\right)+(2 d / a) e_{1} e_{3}-2 e_{2}+((-2 a+2 d) / a) e_{3}, \tag{2.4}
\end{equation*}
$$

where e_{1}, e_{2} and e_{3} are the elementary symmetric polynomials in $y, y^{q}, y^{q^{2}}$, i.e.,

$$
\left\{\begin{array}{l}
e_{1}=y+y^{q}+y^{q^{2}} \tag{2.5}\\
e_{2}=y^{1+q}+y^{1+q^{2}}+y^{q+q^{2}} \\
e_{3}=y^{1+q+q^{2}}
\end{array}\right.
$$

```
Algorithm 2. Decompression
Input: \(\left(e_{1}, \ldots, e_{n-1}\right) \in \mathbb{F}_{q}^{n-1}\)
Output: \(\mathcal{R}^{-1}\left(e_{1}, \ldots, e_{n-1}\right) \subseteq \mathcal{T}_{n}\)
    Solve \(g_{n}\left(e_{1}, \ldots, e_{n-1}, t\right)=0\) for \(t\) in \(\mathbb{F}_{q}\).
    \(T \leftarrow\) list of solutions of \(g_{n}\left(e_{1}, \ldots, e_{n-1}, t\right)=0\) in \(\mathbb{F}_{q}\).
    for \(e_{n} \in T\) do
        Find a solution in \(\mathbb{F}_{q}^{n}\) of the system
            \(\left\{\begin{aligned} e_{1} & =\tilde{e}_{1}\left(y_{0}, \ldots, y_{n-1}\right), \\ & \vdots \\ e_{n} & =\tilde{e}_{n}\left(y_{0}, \ldots, y_{n-1}\right),\end{aligned}\right.\)
        if it exists.
        Any time a solution \(\left(y_{0}, \ldots, y_{n-1}\right)\) is found, compute \(y=y_{0} \alpha+\cdots+y_{n-1} \alpha^{q^{n-1}}\).
        Recover one of the corresponding \(x\)-coordinates using the curve equation.
    end for
    if \((x, y) \in \mathcal{T}_{n}\) then
        add \(P=( \pm x, y)\) and all its Frobenius conjugates to the list \(L\) of output points.
    end if
    return \(L\)
```

The symmetrized third summation polynomial for an elliptic curve in short Weierstrass form is

$$
\begin{equation*}
G_{3}\left(e_{1}, e_{2}, e_{3}\right)=e_{2}^{2}-4 e_{1} e_{3}-4 B e_{1}-2 A e_{2}+A^{2} \tag{2.6}
\end{equation*}
$$

Notice that, while G_{3} is linear in e_{1} and e_{3}, g_{3} is of degree 2 in each variable. In particular, none of e_{1}, e_{2}, e_{3} is determined uniquely by the other two as is the case of elliptic curves in Weierstrass form. However, applying the change of coordinates

$$
\left\{\begin{array}{l}
t_{1}=e_{1} \tag{2.7}\\
t_{2}=e_{3}+e_{2} \\
t_{3}=e_{3}-e_{2}
\end{array}\right.
$$

to g_{3}, we obtain the polynomial

$$
\begin{equation*}
\tilde{g}_{3}\left(t_{1}, t_{2}, t_{3}\right)=t_{1}^{2}+(d / a)\left(t_{2} t_{3}+t_{1} t_{2}+t_{1} t_{3}\right)+((d / a)-2) t_{2}+d t_{3}-1, \tag{2.8}
\end{equation*}
$$

that is linear in both t_{2} and t_{3}.
Applying Weil restriction of scalars to the combination of (2.5) and (2.7) (and following the conventions of Section 1), we obtain

$$
\left\{\begin{array}{l}
t_{1}=3 y_{0} \tag{2.9}\\
t_{2}=y_{0}^{3}-3 \mu y_{0} y_{1} y_{2}+\mu y_{1}^{3}+\mu^{2} y_{2}^{3}+3 y_{0}^{2}-3 \mu y_{1} y_{2} \\
t_{3}=y_{0}^{3}-3 \mu y_{0} y_{1} y_{2}+\mu y_{1}^{3}+\mu^{2} y_{2}^{3}-3 y_{0}^{2}+3 \mu y_{1} y_{2}
\end{array}\right.
$$

which expresses t_{1}, t_{2}, t_{3} as polynomials in y_{0}, y_{1}, y_{2}.
Point compression. For compression of a point $P=(x, y) \in \mathcal{T}_{3}$, we use the first two coordinates from (2.7) and (2.9), obtaining

$$
\mathcal{R}(P)=\left(t_{1}, t_{2}\right)=\left(3 y_{0}, y_{0}^{3}-3 \mu y_{0} y_{1} y_{2}+\mu y_{1}^{3}+\mu^{2} y_{2}^{3}+3 y_{0}^{2}-3 \mu y_{1} y_{2}\right) .
$$

If we compute t_{2} as $\left(y_{0}+1\right)\left(y_{0}^{2}-3 \mu y_{1} y_{2}\right)+\mu y_{1}^{3}+\mu^{2} y_{2}^{3}+2 y_{0}^{2}$, the cost of computing $\mathcal{R}(P)$ is $3 \mathrm{~S}+4 \mathrm{M}$ in \mathbb{F}_{q}. In the case of elliptic curves in short Weierstrass form, computing the representation of a point is less expensive, as it takes $1 \mathrm{~S}+1 \mathrm{M}$ in \mathbb{F}_{q} or 1 M in \mathbb{F}_{q} with the two methods presented in [12, Section 5].

Point decompression. In order to decompress $\left(t_{1}, t_{2}\right) \in \operatorname{Im} \mathcal{R}$ we proceed as follows.
Step 1. Given $\left(t_{1}, t_{2}\right) \in \operatorname{Im} \mathcal{R}$, solve $\tilde{g}_{3}\left(t_{1}, t_{2}, t_{3}\right)=0$ for t_{3}. If $t_{1}+t_{2}+a=0$, then $\tilde{g}_{3}\left(t_{1}, t_{2}, t_{3}\right)=0$ for all $t_{3} \in \mathbb{F}_{q}$. If $t_{1}+t_{2}+a \neq 0$, then

$$
t_{3}=-\frac{((d / a)-2) t_{2}+(d / a) t_{1} t_{2}+\left(t_{1}+1\right)\left(t_{1}-1\right)}{(d / a)\left(t_{1}+t_{2}+a\right)}
$$

Hence, t_{3} can be computed with $3 \mathrm{M}+1 \mathrm{I}$ in \mathbb{F}_{q}.
Step 2. Given $\left(t_{1}, t_{2}, t_{3}\right)$, we solve system (2.9) for y_{0}, y_{1}, y_{2}. Notice that, since the t_{i} are obtained from the e_{i} by a linear change of coordinates, all considerations from [12] apply to our situation. In particular, one can compute y from $\left(t_{1}, t_{2}, t_{3}\right)$ with at most $3 \mathrm{~S}+3 \mathrm{M}+1 \mathrm{I}, 1$ square root and 2 cube roots in \mathbb{F}_{q}.

Summarizing, the complete decompression algorithm takes at most $3 \mathrm{~S}+6 \mathrm{M}+2 \mathrm{I}, 1$ square root, and 2 cube roots in \mathbb{F}_{q}. For elliptic curves in short Weierstrass form, decompression takes at most $3 \mathrm{~S}+5 \mathrm{M}+2 \mathrm{I}, 1$ square root and 2 cube roots in \mathbb{F}_{q} or $4 \mathrm{~S}+4 \mathrm{M}+2 \mathrm{I}, 1$ square roots and 2 cube roots in \mathbb{F}_{q}, depending on the method used. We refer the interested reader to [12, Section 5] for details on the complexity of the computation for curves in short Weierstrass form.

Remark 2.5. Notice that one can also use $\left(t_{1}, t_{3}\right)$ as an optimal representation of $(x, y) \in \mathcal{T}_{3}$, and then solve \tilde{g}_{3} for t_{2} in order to recover y. This choice is analogous to the one we have made, and the computational cost of compression and decompression does not change.

Remark 2.6. The symmetry of twisted Edwards curves makes the computation of point addition on these curves more efficient than on elliptic curves in short Weierstrass form. However, the same symmetry results in summation polynomials of higher degree and with a denser support. This explains our empirical observation that the summation polynomials in the elementary symmetric functions for elliptic curves in short Weierstrass form are sparser than those for twisted Edwards curves for $n=3,5$, even though for both curves they have the same degree 2^{n-2}. For $n=3$, this behavior is apparent if one compares equations (2.4) and (2.6). Therefore, one should expect that compression and decompression for a representation based on summation polynomials for twisted Edwards curves are less efficient than for elliptic curves in short Weierstrass form. This is confirmed by our findings.

The following examples and statistics have been implemented in Magma [7].
Example 2.7. Let $q=2^{79}-67$ and $\mu=3$. We choose the following random curves, defined and birationally equivalent over \mathbb{F}_{q} :

$$
E_{a, d}: 31468753957068040687814 x^{2}+y^{2}=1+192697821276638966498997 x^{2} y^{2}
$$

and

$$
E: y^{2}=x^{3}+292467848427659499478503 x+361361026736404004345421
$$

We choose a random point of trace zero $P^{\prime} \in E\left(\mathbb{F}_{q^{3}}\right)$, and let P be the corresponding point on $E_{a, d}$. For brevity, here we only write the x-coordinates of points of E and the y-coordinates of points of $E_{a, d}$:

$$
\begin{aligned}
& P^{\prime}=346560928146076959314753 \xi^{2}+456826539628535981034212 \xi \\
&+344167470403026652826672 \\
& P=208520713897518236215966 \xi^{2}+451121944550219947368811 \xi \\
&+68041089860429901306252
\end{aligned}
$$

We represent the points of E using the compression coordinates (t_{1}, t_{2}) from [12, Section 5]. Denote by \mathcal{R} and \mathcal{R}^{\prime} the representation maps on $E_{a, d}$ and E, respectively. We compute

$$
\begin{aligned}
\mathcal{R}^{\prime}\left(P^{\prime}\right) & =(344167470403026652826672,334324534997495805088214), \\
\mathcal{R}(P) & =(204123269581289703918756,98788782936076524413527)
\end{aligned}
$$

Bit-length of $\left\|\mathcal{T}_{\mathbf{3}}\right\|$	$\mathbf{1 9 2}$	$\mathbf{2 2 4}$	$\mathbf{2 5 6}$
Compression on E	0.006	0.005	0.006
Compression on $E_{a, d}$	0.016	0.017	0.015
Decompression on E	0.81	2.40	1.20
Decompression on $E_{a, d}$	0.88	2.44	1.17

Table 1. Average times for compression and decompression on elliptic curves in short Weierstrass form and twisted Edwards curves.

Bit-length of $\left\|\mathcal{T}_{\mathbf{3}}\right\|$	$\mathbf{1 9 2}$	$\mathbf{2 2 4}$	$\mathbf{2 5 6}$
Comp on $E /$ Comp on $E_{a, d}$	0.375	0.294	0.400
Dec on E / Dec on $E_{a, d}$	0.920	0.984	1.026

Table 2. Ratios between the average times for point compression and decompression on elliptic curves in short Weierstrass form and twisted Edwards curves.

We now apply the corresponding decompression algorithms to $\mathcal{R}^{\prime}\left(P^{\prime}\right)$ and $\mathcal{R}(P)$. We obtain

$$
\left.\begin{array}{c}
\mathcal{R}^{\prime-1}(344167470403026652826672,334324534997495805088214) \\
=\left\{346560928146076959314753 \xi^{2}+456826539628535981034212 \xi\right. \\
+344167470403026652826672
\end{array}\right\} \begin{gathered}
164759498614507503187493 \xi^{2}+361520690988197751534381 \xi \\
+344167470403026652826672, \\
93142483046730124850775 \xi^{2}+390578588997895442137449 \xi \\
+344167470403026652826672\}
\end{gathered}
$$

which are exactly the x-coordinate of P^{\prime} and its Frobenius conjugates. Similarly,

$$
\left.\begin{array}{c}
\mathcal{R}^{-1}(204123269581289703918756,98788782936076524413527) \\
=\left\{208520713897518236215966 \xi^{2}+451121944550219947368811 \xi\right. \\
+68041089860429901306252
\end{array}\right\} \begin{gathered}
539321536961066855011167 \xi^{2}+237431391097642968386719 \xi \\
+68041089860429901306252, \\
461083568756044083478909 \xi^{2}+520372483966766258950512 \xi \\
+68041089860429901306252\}
\end{gathered}
$$

which are exactly the y-coordinate of P and its Frobenius conjugates.
We now give an estimate of the average time of compression and decompression for groups of different bitsize. We consider primes q_{1}, q_{2} and q_{3} such that $3 \mid q_{i}-1$ for all i, of bit-length 96,112 and 128 , respectively. For each q_{i}, we consider five pairs of birationally equivalent curves $\left(E, E_{a, d}\right)$, defined over $\mathbb{F}_{q_{i}}$, such that the order of \mathcal{T}_{3} is prime of bit-length respectively 192,224 and 256 . On each pair of curves we randomly choose $20^{\prime} 000$ pairs of points $\left(P^{\prime}, P\right)$ of trace zero, as in Example 2.7. For each pair of points, we compute $\mathcal{R}^{\prime}\left(P^{\prime}\right), \mathcal{R}(P), \mathcal{R}^{\prime-1}\left(\mathcal{R}^{\prime}\left(P^{\prime}\right)\right), \mathcal{R}^{-1}(\mathcal{R}(P))$. For each computation, we consider the average time in milliseconds for each curve, and then the averages over the five curves. The average computation times are reported in Table 1.

Table 2 contains the ratios between the average times for point compression and decompression on elliptic curves in short Weierstrass form and twisted Edwards curves.

2.2 Explicit equations, complexity, and timings for $\boldsymbol{n}=5$

In this subsection we treat in detail the case $n=5$. We compute explicit equations for compression and decompression, give an estimate of the complexity of the computations in terms of the number of operations, and give some timings computed in Magma. We also compare the results with those obtained in [12] for elliptic curves in short Weierstrass form.

The fifth Semaev polynomial f_{5} for a twisted Edwards curve has degree 40, while for curves in short Weierstrass form it has degree 32. The first polynomial also contains many more terms than the second. This agrees with what we observed in Remark 2.6 for the case $n=3$. The symmetrized fifth summation polynomial g_{5} has degree 8 for both Weierstrass and Edwards curves. However, for Edwards curves g_{5} has degree 8 in each variable, while for elliptic curves in short Weierstrass form it has degree 6 in some of the variables. Because of these reasons, we expect that compression and decompression for a trace zero subgroup coming from a twisted Edwards curve are less efficient than for one coming from a curve in short Weierstrass form.

For fields such that $16 \mid q-1$, we perform a linear change of coordinates on the e_{i} in order to obtain a polynomial \tilde{g}_{5}, of degree strictly less than 8 in some variable. The polynomial g_{5} is too big to be printed here. However, denoting by $\left(g_{5}\right)_{8}$ the part of g_{5} which is homogeneous of degree 8 , we have that

$$
\begin{equation*}
\left(g_{5}\right)_{8}\left(e_{1}, \ldots, e_{5}\right)=e_{1}^{8}+(d / a)^{4}\left(e_{2}^{8}+e_{3}^{8}\right)+(d / a)^{8}\left(e_{4}^{8}+e_{5}^{8}\right) \tag{2.10}
\end{equation*}
$$

Let $\mu_{1} \in \overline{\mathbb{F}}_{q}$ be a primitive 16 -th roots of unity. Then, we can factor $t^{8}+s^{8}$ over \mathbb{F}_{q} as

$$
t^{8}+s^{8}=\left(t-\mu_{1} s\right)\left(t+\mu_{1} s\right) r_{6}(t, s)
$$

Therefore, (2.10) can be written in the form

$$
\left(g_{5}\right)_{8}=e_{1}^{8}+(d / a)^{4}\left(e_{2}-\mu_{1} e_{3}\right)\left(e_{2}+\mu_{1} e_{3}\right) r_{6}\left(e_{2}, e_{3}\right)+(d / a)^{8}\left(e_{4}^{8}+e_{5}^{8}\right)
$$

Hence, after performing the change of coordinates

$$
\left\{\begin{aligned}
t_{2} & =e_{2}-\mu_{1} e_{3} \\
t_{3} & =e_{2}+\mu_{1} e_{3} \\
t_{i} & =e_{i} \text { for } i=1,4,5
\end{aligned}\right.
$$

we obtain a polynomial $\tilde{g}_{5}\left(t_{1}, \ldots, t_{5}\right)$ of degree 8 in t_{1}, t_{4}, t_{5}, and degree 7 in t_{2}, t_{3}.
Example 2.8. Let $q=2^{10}-3, \mu=2$. Consider the Edwards curve $E_{1,486}$ of equation $x^{2}+y^{2}=1+6 x^{2} y^{2}$. Let $P \in \mathcal{T}_{5}$ be the point

$$
P=(u, v)=\left(951 \xi^{4}+338 \xi^{3}+246 \xi^{2}+934 \xi+133,650 \xi^{4}+927 \xi^{3}+301 \xi^{2}+171 \xi+973\right) .
$$

The compression of P is $\mathcal{R}(P)=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=(686,289,865,418)$. In order to decompress, we solve

$$
\begin{aligned}
g_{5}\left(e_{1}, e_{2}, e_{3}, e_{4}, t\right) & =g_{5}(686,289,865,418, t) \\
& =71 t^{8}+705 t^{7}+1007 t^{6}+970 t^{5}+233 t^{4}+1014 t^{3}+356 t^{2}+198 t+575=0,
\end{aligned}
$$

which has a unique solution $e_{5}=790 \in \mathbb{F}_{q}$. In order to recover the value of y up to Frobenius conjugates, we find a root in $\mathbb{F}_{q^{5}}$ of

$$
y^{5}-e_{1} y^{4}+e_{2} y^{3}-e_{3} y^{2}+e_{4} y-e_{5}=y^{5}+335 y^{4}+289 y^{3}+156 y^{2}+418 y+231 .
$$

Notice that the five roots are Frobenius conjugates of each other. From one $y \in \mathbb{F}_{q^{5}}$ we can recompute x via the curve equation, hence recover one of the Frobenius conjugates of $\pm P$. So the decompression algorithm returns $\mathcal{R}^{-1}(\mathcal{R}(P))=\left\{ \pm P, \pm \varphi(P), \pm \varphi^{2}(P), \pm \varphi^{3}(P), \pm \varphi^{4}(P)\right\}$.

We now give an example that presents some indeterminacy in the decompression algorithm.
Example 2.9. Let $q=2^{10}-3$ and consider the Edwards curve

$$
E_{210,924}: 210 x^{2}+y^{2}=1+924 x^{2} y^{2}
$$

and the point

$$
P=\left(1020 \xi^{4}+713 \xi^{3}+158 \xi^{2}+745 \xi+515,891 \xi^{4}+557 \xi^{3}+135 \xi^{2}+976 \xi+62\right) \in \mathcal{T}_{5} .
$$

Bit-length of $\left\|\mathcal{T}_{5}\right\|$	$\mathbf{1 9 2}$	$\mathbf{2 2 4}$	$\mathbf{2 5 6}$
Compression on E	0.057	0.055	0.060
Compression on $E_{a, d}$	0.049	0.058	0.053
Decompression on E	64.17	104.31	121.51
Decompression on $E_{a, d}$	63.66	104.45	121.42

Table 3. Average times for compression and decompression on elliptic curves in short Weierstrass form and twisted Edwards curves.

Bit-length of $\left\|\mathcal{T}_{\mathbf{5}}\right\|$	$\mathbf{1 9 2}$	$\mathbf{2 2 4}$	$\mathbf{2 5 6}$
Comp on $E /$ Comp on $E_{a, d}$	1.163	0.948	1.132
Dec on $E /$ Dec on $E_{a, d}$	1.008	0.999	1.001

Table 4. Ratios between the average times for point compression and decompression on elliptic curves in short Weierstrass form and twisted Edwards curves.

The compressed representation of P is $\mathcal{R}(P)=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=(310,887,19,660)$. The decompressing equation is

$$
g_{5}\left(e_{1}, e_{2}, e_{3}, e_{4}, t\right)=62 t^{8}+502 t^{7}+388 t^{6}+294 t^{5}+2 t^{4}+466 t^{3}+723 t^{2}+55 t+388=0
$$

which has solutions $e_{5}=428, e_{5}^{\prime}=835, e_{5}^{\prime \prime}=550 \in \mathbb{F}_{q}$. By solving the equation

$$
y^{5}-e_{1} y^{4}+e_{2} y^{3}-e_{3} y^{2}+e_{4} y-e_{5}=y^{5}+310 y^{4}+887 y^{3}+19 y^{2}+660 y+593=0
$$

we recover the y-coordinate of P and all its Frobenius conjugates. By solving the equation

$$
y^{5}-e_{1} y^{4}+e_{2} y^{3}-e_{3} y^{2}+e_{4} y-e_{5}^{\prime}=y^{5}+310 y^{4}+887 y^{3}+19 y^{2}+660 y+186=0
$$

we find roots in $\mathbb{F}_{q^{5}}$, which do not correspond to points of trace zero. By solving the equation

$$
y^{5}-e_{1} y^{4}+e_{2} y^{3}-e_{3} y^{2}+e_{4} y-e_{5}^{\prime \prime}=y^{5}+310 y^{4}+887 y^{3}+19 y^{2}+660 y+471=0
$$

we find $Q \in \mathcal{T}_{5}$ which is not a Frobenius conjugate of P. Hence, in this case

$$
\mathcal{R}^{-1}(\mathcal{R}(P))=\left\{ \pm P, \ldots, \pm \varphi^{4}(P), \pm Q, \ldots, \pm \varphi^{4}(Q)\right\} .
$$

Denote by \mathcal{T}_{5} / \sim the quotient of \mathcal{T}_{5} by the equivalence relation that identifies opposite points and Frobenius conjugates. The representation (2.2) induces a representation

$$
\mathcal{R}^{\prime}: \mathcal{T}_{5} / \sim \rightarrow \mathbb{F}_{q}^{4}
$$

In the previous example we showed that \mathcal{R}^{\prime} is not injective. Nevertheless, an easy heuristic argument shows that a generic $\left(e_{1}, \ldots, e_{4}\right) \in \operatorname{Im} \mathcal{R}^{\prime}$ has exactly one inverse image. In order to support the heuristics, we tested 15000 random points in the trace zero subgroup \mathcal{T}_{5} of 15 Edwards curves. The groups had prime cardinality and bit-length 192, 224 and 256 . For any random point P we computed the cardinality of $\mathcal{R}^{\prime-1}\left(\mathcal{R}^{\prime}(P)\right)$, and found that it is 1 for about 91% of the points, 2 for about 8.5% of the points, and 3 for about 0.5% of the points. We also found a few points for which $\left|\mathcal{R}^{\prime-1}\left(\mathcal{R}^{\prime}(P)\right)\right|=4$, but the percentage was less than 0.02%. Finally, we did not find any points for which $4<\left|\mathcal{R}^{\prime-1}\left(\mathcal{R}^{\prime}(P)\right)\right| \leq 8$.

In order to test the efficiency of the compression and decompression algorithms for $n=5$, we have implemented them in Magma [7]. We consider primes q_{1}, q_{2} and q_{3} of bit-length 48, 56 and 64, respectively. We choose primes such that $5 \mid q_{i}-1$ for all i. For each q_{i} we consider five pairs of birationally equivalent curves $\left(E, E_{a, d}\right)$ defined over $\mathbb{F}_{q_{i}}$, such that the order of \mathcal{T}_{5} is prime of bit-length 192,224 and 256 , respectively. Table 3 contains the average times for compression and decompression in milliseconds. Each average is computed on a set of 20000 randomly chosen points on each of the five curves.

Table 4 contains the ratios between the average times for point compression and decompression on elliptic curves in short Weierstrass form and twisted Edwards curves.

3 An optimal representation using rational functions

Let $E_{a, d}$ be a twisted Edwards curve defined over \mathbb{F}_{q}. In this section, we propose another optimal representation for the trace zero subgroup $\mathcal{T}_{n} \subset E_{a, d}\left(\mathbb{F}_{q^{n}}\right)$ using rational functions.

In [13] Gorla and Massierer propose to represent an element $P \in \mathcal{T}_{n}$ via the coefficients of the rational function which corresponds to the principal divisor $P+\varphi(P)+\cdots+\varphi^{n-1}(P)-n \mathcal{O}$ on the elliptic curve. Optimality of the representation depends on the fact that the rational function associated to this divisor has a special form, and can therefore be represented using $n-1$ coefficients in \mathbb{F}_{q}. If we consider a principal divisor of the form $P+\varphi(P)+\cdots+\varphi^{n-1}(P)-n \mathcal{O}$ on the twisted Edwards curve $E_{a, d}$, there are several questions that need to be answered. For example, the rational function associated to this divisor is not a polynomial in general, so one needs to overcome some difficulties in order to successfully carry out the same strategy.

We start with some preliminary results on rational functions on a twisted Edwards curve. If h is a rational function on $E_{a, d}$, we denote by $\operatorname{div}(h)$ the divisor of the homogeneous rational function associated to h on the projective closure of $E_{a, d}$. Throughout the section we use (u, v) for the coordinates of the point and x, y for the variables of the rational functions, in order to avoid confusion.

Lemma 3.1. Let $c \in k$ such that $d^{-1}=c^{2}$, where $k=\mathbb{F}_{q}$ or $k=\mathbb{F}_{q^{2}}$, depending on whether ad ${ }^{-1}$ is a quadratic residue in \mathbb{F}_{q} or not. Let $R(x, y) \in k(x, y)$ be a rational function on $E_{a, d}$. Then, R can be written in the form

$$
R(x, y)=(y-c)^{k_{1}}(y+c)^{k_{2}} \frac{r_{1}(y)+x r_{2}(y)}{r_{3}(y)}
$$

modulo $E_{a, d}$, where $r_{1}, r_{2}, r_{3} \in k[y], \operatorname{gcd}\left\{r_{1}, r_{2}, r_{3}\right\}=1, r_{3}(\pm c) \neq 0$, and $k_{1}, k_{2} \leq 0$.
Proof. Using the relation $x^{2}=\frac{\left(1-y^{2}\right)}{\left(a-d y^{2}\right)}$, we can write $R(x, y)$ in the form

$$
R(x, y)=\frac{s_{1}(y)+x s_{2}(y)}{s_{3}(y)+x s_{4}(y)},
$$

where $s_{i}(y) \in k[y]$ for $1 \leq i \leq 4$. Multiplying and dividing by $s_{3}(y)-x s_{4}(y)$, we obtain

$$
R(x, y)=\frac{t_{1}(y)+x t_{2}(y)}{t_{3}(y)}
$$

where $t_{i}(y) \in k[y]$ for $1 \leq i \leq 3$. Simplifying the fraction and factoring $y-c$ and $y+c$ as much as possible from the denominator, we obtain the thesis.

Lemma 3.2. In the setting of Lemma 3.1, assume that R has poles at most at the points at infinity Ω_{1} and Ω_{2}. Then,

$$
R(x, y)=(y-c)^{k_{1}}(y+c)^{k_{2}}\left(q_{1}(y)+x q_{2}(y)\right)
$$

modulo $E_{a, d}$, where $q_{1}(y), q_{2}(y) \in k[y], q_{i}(\pm c) \neq 0$ for $i=1,2$, and $k_{1}, k_{2} \leq 0$.
Proof. By Lemma 3.1, we can write

$$
R(x, y)=(y-c)^{k_{1}}(y+c)^{k_{2}} \frac{r_{1}(y)+x r_{2}(y)}{r_{3}(y)} .
$$

Since $(y-c)^{k_{1}}=0$ and $(y+c)^{k_{2}}=0$ have no affine zeroes on $E_{a, d}, R$ has poles at most at the points at infinity if and only if the order of vanishing of r_{3} on $E_{a, d}$ at each affine point is less than or equal to the order of vanishing of $r_{1}+x r_{2}$ on $E_{a, d}$ at the same point.

Let $P=(u, v)$ be a point such that $r_{3}(v)=0$. Write r_{3} in the form $r_{3}(y)=(y-v)^{m} t_{3}(y)$, where $t_{3}(v) \neq 0$ and $m>0$. The order of vanishing of r_{3} on $E_{a, d}$ at P is m if $u \neq 0$, and $2 m$ if $u=0$. In fact, the only points in which $E_{a, d}$ has a horizontal tangent line are \mathcal{O} and \mathcal{O}^{\prime}. The same holds for the order of vanishing of r_{3} at $-P$. From $r_{1}(v)+u r_{2}(v)=r_{1}(v)-u r_{2}(v)=0$, we obtain that $r_{1}(v)=u r_{2}(v)=0$. Therefore, since $\operatorname{gcd}\left\{r_{1}, r_{2}, r_{3}\right\}=1$, we have $r_{2}(v) \neq 0$ and $u=0$. The order of vanishing of $r_{1}+x r_{2}$ on $E_{a, d}$ at P is 1 , since P is a smooth point and the tangent line at P to the curve of equation $r_{1}(y)+x r_{2}(y)$ is not horizontal. But the order of vanishing of r_{3} on $E_{a, d}$ at P is bigger than m, which yields a contradiction.

One has the following characterization for rational functions on $E_{a, d}$ with zero divisor.
Lemma 3.3. In the setting of Lemma 3.1, one has that

$$
\operatorname{div}(R)=0 \Leftrightarrow R=(y-c)^{l+m}(y+c)^{-l}(1-\sqrt{d} x)^{m}
$$

where $l, m \in \mathbb{Z}$, and the equality on the right-hand side holds modulo $E_{\text {ad }}$ and up to multiplication by a nonzero constant.

Proof. If R is of the form $R=(y-c)^{l+m}(y+c)^{-l}(1-\sqrt{d} x)^{m}$, then a straightforward calculation shows that $\operatorname{div}(R)=0$. In order to show the converse, let D be the divisor of $\hat{R}=R \circ \Phi$ on $E_{A, B}$, where Φ is the birational isomorphism of Proposition 1.3. Since $\operatorname{div}(R)=0$, one has that $\Phi(D)=0$, hence D is of the form $D=h\left(Q_{1}-Q_{2}\right)+k\left(Q_{4}-Q_{3}\right)$, where $h, k \in \mathbb{Z}$. Consider the two rational functions of $E_{a, d}: g_{1}=(y-c) /(y+c)$ and $g_{2}=(y-c)(1-\sqrt{d} x)$. One has that $\operatorname{div}\left(g_{1} \circ \Phi\right)=2\left(Q_{1}-Q_{2}\right)$ and $\operatorname{div}\left(g_{2} \circ \Phi\right)=Q_{1}-Q_{2}+Q_{4}-Q_{3}$. Moreover, there is no rational function of $E_{A, B}$ whose divisor is $Q_{1}-Q_{2}$ or $Q_{4}-Q_{3}$, since $Q_{1} \neq Q_{2}$ and $Q_{3} \neq Q_{4}$. The thesis follows from these observations and from the fact that $E_{A, B}$ is nonsingular.

In the introduction of this section, we hinted at the difficulty that if $P \in \mathcal{T}_{n}$ is a point of trace zero on a twisted Edwards curve $E_{a, d}$, the rational function associated to the principal divisor $P+\varphi(P)+\ldots+\varphi^{n-1}(P)-n \mathcal{O}$ is not in general a polynomial. Lemma 3.2 offers a solution to this problem by considering a modified principal divisor, whose associated rational function is a polynomial.

Theorem 3.4. Let $E_{a, d}$ be a twisted Edwards curve defined over \mathbb{F}_{q} and let $P \in \mathcal{T}_{n} \subset E_{a, d}\left(\mathbb{F}_{q^{n}}\right)$. Then, there exists a polynomial $q_{P}(x, y)=q_{1}(y)+x q_{2}(y) \in \mathbb{F}_{q}[x, y]$, with $q_{1}(y), q_{2}(y) \in \mathbb{F}_{q}[y]$, such that the following hold true:
(1) $\operatorname{div}\left(q_{P}\right)=P+\varphi(P)+\cdots+\varphi^{n-1}(P)+\mathcal{O}^{\prime}-2 \Omega_{1}-(n-1) \Omega_{2}$.
(2) $\max \left\{\operatorname{deg}\left(q_{1}\right), \operatorname{deg}\left(q_{2}\right)\right\}=\frac{n-1}{2}$.
(3) $q_{1}(y)=(1+y) \hat{q}_{1}(y)$, where $\hat{q}_{1} \in \mathbb{F}_{q}[y]$ and $\operatorname{deg}\left(\hat{q}_{1}\right) \leq \frac{n-3}{2}$.
(4) q_{2} is not the zero polynomial.

Proof. (1) Consider the setting of Proposition 1.3. Since $P=(u, v) \in \mathcal{T}_{n}$, one has that $P^{\prime}=\Psi(P)$ is a point of trace zero of $E_{A, B}$. Then, there exists $f \in E_{A, B}\left(\mathbb{F}_{q}\right)$ such that $\operatorname{div}(f)=\operatorname{Tr}\left(\mathrm{P}^{\prime}\right)$. Let $\hat{\varphi}$ be the Frobenius endomorphism on $E_{A, B}$. For each $i \in\{1, \ldots, n-2\}$ denote with ℓ_{i} the line through $P^{\prime}+\cdots+\hat{\varphi}^{i-1}\left(P^{\prime}\right)$ and $\hat{\varphi}^{i}\left(P^{\prime}\right)$. For each $i \in\{1, \ldots, n-3\}$ denote by v_{i} the vertical line through $P^{\prime}+\cdots+\hat{\varphi}^{i}\left(P^{\prime}\right)$. Finally, let L and V be the products of lines $L=\prod_{i=1}^{n-2} \ell_{i}$ and $V=\prod_{i=1}^{n-3} v_{i}$. By [13, Corollary 4.2], one has that $\operatorname{div}(L / V)=\operatorname{Tr}\left(\mathrm{P}^{\prime}\right)$, from which $L / V=\lambda f \bmod E_{A, B}$, where λ is a nonzero constant in the algebraic closure of \mathbb{F}_{q}. Hence, posing $g=(L / V) \circ \Psi$, one has that $\operatorname{div}(g)=\operatorname{Tr}(\mathrm{P})$ and

$$
g=\frac{\phi_{1} \phi_{2} \cdots \phi_{n-2}}{x^{n-2}(1-y) h_{1} h_{2} \cdots h_{n-3}}
$$

where, for each $i \in\{1, \ldots, n-2\}, \phi_{i}$ is the conic with

$$
\operatorname{div}\left(\phi_{i}\right)=\left(P+\cdots+\varphi^{i-1}(P)\right)+\varphi^{i}(P)+\left(-\left(P+\cdots+\varphi^{i}(P)\right)\right)+\mathcal{O}^{\prime}-2 \Omega_{1}-2 \Omega_{2}
$$

and, for each $i \in\{1, \ldots, n-3\}, h_{i}$ is the horizontal line through $P+\cdots+\varphi^{i}(P)$. Now consider the polynomial $H(x, y)=x(1-y)^{\frac{n-1}{2}} \in \mathbb{F}_{q}[x, y]$ whose divisor is $\operatorname{div}(H)=n \mathcal{O}+\mathcal{O}^{\prime}-2 \Omega_{1}-(n-1) \Omega_{2}$. Then, we have that $\operatorname{div}(g H)=P+\varphi(P)+\cdots+\varphi^{n-1}(P)+\mathcal{O}^{\prime}-2 \Omega_{1}-(n-1) \Omega_{2}$ and

$$
\begin{equation*}
g H=\frac{\phi_{1} \phi_{2} \cdots \phi_{n-2}(1-y)^{\frac{n-3}{2}}}{h_{1} h_{2} \cdots h_{n-3} x^{n-3}}=\frac{\left(a-d y^{2}\right)^{\frac{n-3}{2}}}{h(y)(1+y)^{\frac{n-3}{2}}} \prod_{i=1}^{n-2} \phi_{i} \tag{3.1}
\end{equation*}
$$

modulo the curve equation, where $h(y)=\prod_{i=1}^{n-3} h_{i}$ and $\operatorname{deg}(h)=n-3$. For each $i \in\{1, \ldots, n-2\}, \phi_{i}$ is of the form $\phi_{i}=B_{i}(y) x+A_{i}(y)$, where $B_{i}(y)$ and $A_{i}(y)$ are polynomials in y of degree at most 1, hence

$$
\prod_{i=1}^{n-2} \phi_{i}=H_{n-2}(y) x^{n-2}+H_{n-3}(y) x^{n-3}+\cdots+H_{1}(y) x+H_{0}(y)
$$

where each $H_{i}(y)$ is a polynomial in y of degree at most $n-2$. Reducing modulo $E_{a, d}$, we obtain

$$
\left(a-d y^{2}\right)^{\frac{n-3}{2}} \prod_{i=1}^{n-2} \phi_{i}(x, y)=R_{1}(y)+x R_{2}(y)
$$

where each $R_{i}(y)$ is a polynomial of $\operatorname{deg}\left(R_{i}\right) \leq \max \left\{\operatorname{deg}\left(H_{j}\right)\right\}+n-3 \leq 2 n-5$. The denominator of (3.1) divides both $R_{1}(y)$ and $R_{2}(y)$ by Lemma 3.2, so $g H=q_{P}$ up to multiplication by a nonzero constant, where $q_{1}(y)$ and $q_{2}(y)$ have coefficients in \mathbb{F}_{q} since f and H have coefficients in \mathbb{F}_{q} and $E_{a, d}$ and $E_{A, B}$ are birationally equivalent over \mathbb{F}_{q}.
(2) Using the notation of part (1), we have

$$
\begin{equation*}
\operatorname{deg}\left(q_{i}\right)=\operatorname{deg}\left(R_{i}\right)-\operatorname{deg}(1+y)^{\frac{n-3}{2}}-\operatorname{deg}(h) \leq 2 n-5-\frac{(n-3)}{2}-(n-3)=\frac{n-1}{2} \tag{3.2}
\end{equation*}
$$

for $i=1$, 2. Moreover, by part (1),

$$
\operatorname{div}\left(q_{-P}\right)=(-P)+\cdots+\varphi^{n-1}(-P)+\mathcal{O}^{\prime}-2 \Omega_{1}-(n-1) \Omega_{2}
$$

and modulo $E_{a, d}$

$$
q_{P}(x, y) q_{-P}(x, y)=q_{1}^{2}(y)-\frac{1-y^{2}}{a-d y^{2}} q_{2}^{2}(y)
$$

Since $\operatorname{div}\left(a-d y^{2}\right)=4 \Omega_{1}-4 \Omega_{2}$, the polynomial $R_{P}(y)=\left(a-d y^{2}\right) q_{1}^{2}(y)-\left(1-y^{2}\right) q_{2}^{2}(y)$ has

$$
\operatorname{div}\left(R_{P}\right)=(\pm P)+(\pm \varphi(P))+\cdots+\left(\pm \varphi^{n-1}(P)\right)+2 \mathcal{O}^{\prime}-2(n+1) \Omega_{2}
$$

Hence, $(1+y) \prod_{i=0}^{n-1} v^{q^{i}} \mid R_{P}(y)$, and therefore

$$
\begin{equation*}
n+1 \leq \operatorname{deg}\left(R_{P}(y)\right) \leq 2+2 \max \left\{\operatorname{deg}\left(q_{1}\right), \operatorname{deg}\left(q_{2}\right)\right\} \tag{3.3}
\end{equation*}
$$

and part (2) follows directly from (3.2) and (3.3). We have also obtained that R_{P} is a polynomial of degree exactly $n+1$ with coefficients in \mathbb{F}_{q} and roots -1 , $v^{q^{i}}$ for $0 \leq i \leq n-1$. We will need this result in the sequel.
(3) Since q_{P} vanishes at $\mathcal{O}^{\prime}=(0,-1)$, then q_{1} is of the form

$$
q_{1}(y)=(1+y) \hat{q}_{1}(y)
$$

where $\hat{q}_{1} \in \mathbb{F}_{q}[y]$ and $\operatorname{deg}\left(\hat{q}_{1}\right) \leq \frac{n-3}{2}$.
(4) If q_{2} was the zero polynomial, then $q_{P}=q_{1}(y)$ would vanish on 0^{\prime} with multiplicity at least 2 , contradicting part (1).

Computation of q_{P}. In the proof of the previous theorem, we have seen that one can compute the polynomial q_{P} as

$$
\begin{equation*}
q_{P}=\frac{\phi_{1} \phi_{2} \cdots \phi_{n-2}(1-y)^{\frac{n-3}{2}}}{h_{1} h_{2} \cdots h_{n-3} x^{n-3}} \tag{3.4}
\end{equation*}
$$

where for each $1 \leq i \leq n-2$, ϕ_{i} is the conic through $P+\cdots+\varphi^{i-1}(P), \varphi^{i}(P), \mathcal{O}^{\prime}, 2 \Omega_{1}$ and $2 \Omega_{2}$, and for each $1 \leq i \leq n-3, h_{i}$ is the horizontal line through $P+\cdots+\varphi^{i}(P) \in E_{a, d}$. Notice that we can easily calculate ϕ_{i} for each i, employing the formulas given in [1, Theorem 1 and Theorem 2].

We now discuss how to use the polynomial q_{P} to represent P via $(n-1)$ elements of \mathbb{F}_{q} plus a bit. As a consequence of Theorem 3.4, q_{P} has the form

$$
q_{P}(x, y)=(1+y)\left(a_{\frac{n-3}{2}} y^{\frac{n-1}{2}}+\cdots+a_{1} y+a_{0}\right)+x\left(b_{\frac{n-1}{2}} y^{\frac{n-1}{2}}+\cdots+b_{1} y+b_{0}\right)
$$

where $a_{i}, b_{j} \in \mathbb{F}_{q}$ for all i, j, and $b_{\frac{n-1}{2}} \in\{0,1\}$. We have therefore obtained an optimal representation for the elements of \mathcal{T}_{n} defined as follows:

$$
\begin{equation*}
\mathcal{R}: \mathcal{T}_{n} \rightarrow \mathbb{F}_{q}^{n-1} \times \mathbb{F}_{2}, \quad P \mapsto\left(a_{0}, \ldots, a_{\frac{n-3}{2}}, b_{0}, \ldots, b_{\frac{n-1}{2}}\right) \tag{3.5}
\end{equation*}
$$

The complete algorithm for point compression is given in Algorithm 3. The correctness of the compression algorithm is a direct consequence of our previous results.

Given an n-tuple $\left(\alpha_{1}, \ldots, \alpha_{n-1}, b\right) \in \mathbb{F}_{q}^{n-1} \times \mathbb{F}_{2}$ such that $\left(\alpha_{1}, \ldots, \alpha_{n-1}, b\right)=\mathcal{R}(P)$ for some $P \in \mathcal{T}_{n}$, we want to compute the decompression $\mathcal{R}^{-1}\left(\alpha_{1}, \ldots, \alpha_{n-1}, b\right)$. We start with some preliminary results. The next lemma guarantees that the x-coordinate of P can be computed from its y-coordinate and the polynomial q_{P}.

Lemma 3.5. Let $P=(u, v) \in \mathcal{T}_{n}$ and let $q_{P}(x, y)=q_{1}(y)+x q_{2}(y) \in \mathbb{F}_{q}[x, y]$ be the polynomial with

$$
\operatorname{div}\left(q_{P}\right)=P+\varphi(P)+\cdots+\varphi^{n-1}(P)+\mathcal{O}^{\prime}-2 \Omega_{1}-(n-1) \Omega_{2} .
$$

Then, $q_{2}(v)=0$ if and only if $P=\mathcal{O}$.

```
Algorithm 3. Compression
Input : \(P \in \mathcal{T}_{n}\)
Output: \(\mathcal{R}(P) \in \mathbb{F}_{q}^{n-1} \times \mathbb{F}_{2}\)
    Compute \(q_{P}(x, y)=q_{1}(y)+x q_{2}(y)\) using (3.1) and reducing modulo \(E_{a, d}\).
    Compute \(\hat{q}_{1}(y)=q_{1}(y) /(1+y)=a_{\frac{n-3}{2}} y^{\frac{n-1}{2}}+\cdots+a_{1} y+a_{0}\).
    \(q_{2}(y)=b_{\frac{n-1}{2}} y^{\frac{n-1}{2}}+\cdots+b_{1} y+b_{0}\).
    \(\mathcal{R}(P) \leftarrow\left(a_{0}, \ldots, a_{\frac{n-3}{2}}, b_{0}, \ldots, b_{\frac{n-1}{2}}\right)\).
    return \(\mathcal{R}(P)\).
```

Proof. If $q_{2}(v)=0$, then $q_{1}(v)=0$, hence $q_{P}(-u, v)=0$. Since the affine points of the curve on which q_{P} vanishes are exactly \mathcal{O}^{\prime} and $\varphi^{i}(P)$ for $0 \leq i \leq n-1$, by Theorem 3.4 and $\mathcal{O}^{\prime} \notin \mathcal{T}_{n}$, then $-P=\varphi^{i}(P)$ for some i. If $i=0$, we have $-P=P$, hence $P=\mathcal{O}$. If $i \neq 0$, then $(-u, v)=\left(u^{q^{i}}, v^{q^{i}}\right)$ for some $i \in\{1, \ldots, n-1\}$. Then, $v \in \mathbb{F}_{q^{i}} \cap \mathbb{F}_{q^{n}}=\mathbb{F}_{q}$ and $u^{q^{2 i}}=u \in \mathbb{F}_{q^{2 i}} \cap \mathbb{F}_{q^{n}}=\mathbb{F}_{q}$. Hence, $P \in E_{a, d}\left(\mathbb{F}_{q}\right)$ and $-P=\varphi^{i}(P)=P$, from which $P=\mathcal{O}$. Conversely, if $P=\mathcal{O}$, then $q_{P}(x, y)=x(1-y)^{\frac{n-1}{2}}$ and $q_{2}(1)=0$.

Given $q_{P}(x, y)$, we can compute a polynomial $Q_{P}(y)$ whose roots are exactly the Frobenius conjugates of the y-coordinate of P. This will be used in our decompression algorithm.

Proposition 3.6. Let $P=(u, v) \in \mathcal{T}_{n}$ and let $q_{P}(x, y)=(1+y) \hat{q_{1}}(y)+x q_{2}(y) \in \mathbb{F}_{q}[x, y]$ be the polynomial with $\operatorname{div}\left(q_{P}\right)=P+\varphi(P)+\cdots+\varphi^{n-1}(P)+\mathcal{O}^{\prime}-2 \Omega_{1}-(n-1) \Omega_{2}$. Define

$$
Q_{P}(y)=\left(a-d y^{2}\right)(1+y) \hat{q}_{1}^{2}(y)+(y-1) q_{2}^{2}(y) .
$$

Then, $Q_{P}(y) \in \mathbb{F}_{q}[y], \operatorname{deg} Q_{P}=n$, and its roots are $v, v^{q}, \ldots, v^{q^{n-1}}$.
Proof. Let

$$
R_{P}=\left(a-d y^{2}\right) q_{1}^{2}(y)-\left(1-y^{2}\right) q_{2}^{2}(y)=(1+y)\left[\left(a-d y^{2}\right) \hat{q_{1}}(y)-(1-y) q_{2}^{2}(y)\right]
$$

Then, $Q_{P}(y)=(1+y)^{-1} \cdot R_{P}(y)$, and the claim follows by Theorem 3.4.
The decompression algorithm is given in Algorithm 4.
Remark 3.7. Let $P \in \mathcal{T}_{n}$ be a point with $\mathcal{R}(P)=\left(\alpha_{1}, \ldots, \alpha_{n-1}, b\right)$. By Theorem 3.4 the Frobenius conjugates of P are the only other points of \mathcal{T}_{n} with the same representation. Correctness of the first four lines of the algorithm follows from Proposition 3.6 and correctness of line 5 follows from Lemma 3.5. Hence the given algorithm correctly recovers the point P, up to Frobenius conjugates.

3.1 Explicit equations, complexity, and timings for $\boldsymbol{n}=3$

In this subsection we give explicit equations and perform some computations for $n=3$. We estimate the number of operations needed for the compression and decompression, and present some timings obtained with Magma. We also make comparisons with trace zero subgroups of elliptic curves in short Weierstrass form treated in [13].

Point compression. Let $P=(u, v) \in T_{3}$. By Theorem 3.4, we may write

$$
q_{P}(x, y)=\hat{q}_{1}(y)(1+y)+x q_{2}(y)=a_{0}(1+y)+x\left(b_{1} y+b_{0}\right)
$$

where $a_{0}, b_{0} \in \mathbb{F}_{q}, b_{1} \in\{0,1\}$.
If $P \notin E_{a, d}\left(\mathbb{F}_{q}\right)$, let $t=\frac{v+1}{u}$. Notice that $u \neq 0$, since $u=0$ implies $P=\mathcal{O}$, hence $P \in E_{a, d}\left(\mathbb{F}_{q}\right)$.
Case 1. If $t^{q}-t \neq 0$, by [1, Theorem 1],

$$
\mathcal{R}(P)=\left(a_{0}, b_{0}, b_{1}\right)=\left(-\frac{v^{q}-v}{t^{q}-t},-a_{0} t-v, 1\right) .
$$

```
Algorithm 4. Decompression
Input: \(\left(\alpha_{1}, \ldots, \alpha_{n-1}, b\right) \in \mathbb{F}_{q}^{n-1} \times \mathbb{F}_{2}\)
Output: \(P=(u, v) \in \mathcal{T}_{n}\) with \(\mathcal{R}(P)=\left(\alpha_{1}, \ldots, \alpha_{n-1}, b\right)\)
    \(\hat{q}_{1}(y) \leftarrow \alpha_{\frac{n-1}{2}} y^{\frac{n-3}{2}}+\cdots+\alpha_{2} y+\alpha_{1}\).
    \(q_{2}(y) \leftarrow b y^{\frac{n-1}{2}}+\alpha_{n-1} y^{\frac{n-3}{2}}+\cdots+\alpha_{\frac{n+3}{2}} y+\alpha_{\frac{n+1}{2}}\).
    \(Q_{P}(y) \leftarrow\left(a-d y^{2}\right) \cdot(1+y) \cdot \hat{q}_{1}^{2}(y)+(y-1) \cdot q_{2}^{2}(y)\).
    \(v \leftarrow\) one root of \(Q_{P}(y)\).
    if \(v=1\) then
        \(u \leftarrow 0\)
    else
        \(u \leftarrow-\frac{\hat{q}_{1}(v)(v+1)}{q_{2}(v)}\)
    end if
    return \((u, v)\).
```

Computing t from u and v takes $1 \mathrm{M}+1 \mathrm{I}$ in $\mathbb{F}_{q^{3}}$. Once we have t, the situation is analogous to the case of elliptic curves in short Weierstrass form. Hence, we refer to [13, Section 5.1] for a detailed discussion of how to efficiently compute $\mathcal{R}(P)$. In particular, it is shown that one can compute a_{0} and b_{0} with $2 \mathrm{~S}+6 \mathrm{M}+1 \mathrm{I}$ in \mathbb{F}_{q}. Summarizing, point compression in this case takes $1 \mathrm{M}+1 \mathrm{I}$ in $\mathbb{F}_{q^{3}}$ and $2 \mathrm{~S}+6 \mathrm{M}+1 \mathrm{I}$ in \mathbb{F}_{q}. Due to the calculation of t, it is more expensive than that for elliptic curves in short Weierstrass form.

Case 2. If $t^{q}-t=0$, then q_{P} is the line passing through P and 0^{\prime} by [1, Theorem 1]. Hence,

$$
\begin{equation*}
\mathcal{R}(P)=\left(-t^{-1}, 1,0\right) . \tag{3.6}
\end{equation*}
$$

Since $\mathcal{O}^{\prime} \notin T_{3}$, then $t \neq 0$. In this case, point compression requires only $1 \mathrm{M}+1 \mathrm{I}$ in $\mathbb{F}_{q^{3}}$.
If $P \in E_{a, d}\left(\mathbb{F}_{q}\right)$, then the computation takes place in \mathbb{F}_{q} instead of $\mathbb{F}_{q^{3}}$, hence we expect the complexity to be lower. We carry on a precise operation count, as in the previous case.

Case 3. If $d u^{2} v-1 \neq 0$, by [1, Theorem 1],

$$
\mathcal{R}(P)=\left(\frac{u(1-v)}{d u^{2} v-1}, \frac{v-a u^{2}}{d u^{2} v-1}, 1\right) .
$$

Therefore, point compression takes $1 \mathrm{~S}+4 \mathrm{M}+1 \mathrm{I}$ in \mathbb{F}_{q}.
Case 4. If $d u^{2} v-1=0$, then the situation is analogous to case 2 , and $\mathcal{R}(P)$ is given by (3.6). Hence, point compression requires $1 M+1 I$ in \mathbb{F}_{q}.

Since case 1 is the generic case, the expected complexity of point compression is $1 \mathrm{M}+1 \mathrm{I}$ in $\mathbb{F}_{q^{3}}$ and $2 \mathrm{~S}+6 \mathrm{M}$ +1 I in \mathbb{F}_{q}.

Point decompression. Let $\left(\alpha_{1}, \alpha_{2}, b\right) \in \mathbb{F}_{q}^{2} \times \mathbb{F}_{2}$ and let $P=(u, v) \in \mathcal{T}_{3}$ such that $\mathcal{R}(P)=\left(\alpha_{1}, \alpha_{2}, b\right)$. In order to recover P from $\mathcal{R}(P)$, we want to find the roots of

$$
Q_{P}(y)=\left(b-d \alpha_{1}^{2}\right) y^{3}+\left(-d \alpha_{1}^{2}+2 \alpha_{2} b-b\right) y^{2}+\left(a \alpha_{1}^{2}-2 \alpha_{2} b+\alpha_{2}^{2}\right) y+\left(a \alpha_{1}^{2}-\alpha_{2}^{2}\right) .
$$

They are the solutions to the system

$$
\left\{\begin{align*}
y+y^{q}+y^{q^{2}} & =c\left(d \alpha_{1}^{2}-2 \alpha_{2} b+b\right), \tag{3.7}\\
y^{q+1}+y^{q^{2}+1}+y^{q^{2}+q} & =c\left(a \alpha_{1}^{2}-2 \alpha_{2} b+\alpha_{2}^{2}\right), \\
y^{1+q+q^{2}} & =c\left(-a \alpha_{1}^{2}+\alpha_{2}^{2}\right),
\end{align*}\right.
$$

where $c=\left(b-d \alpha_{1}^{2}\right)^{-1}$. Notice that $\left(b-d \alpha_{1}^{2}\right) \neq 0$, since Q_{P} has degree 3 by Proposition 3.6.
Computing the constant terms of (3.7) takes $2 \mathrm{~S}+3 \mathrm{M}+1 \mathrm{I}$ in \mathbb{F}_{q}. Computing a solution of the system takes at most $3 \mathrm{~S}+3 \mathrm{M}+1 \mathrm{I}$, one square root and two cube roots in \mathbb{F}_{q}, as shown in [13]. Finally, computing u from v requires $2 \mathrm{M}+1 \mathrm{I}$ in $\mathbb{F}_{q^{3}}$. Summarizing, for $n=3$ point decompression takes at most $2 \mathrm{M}+1 \mathrm{I}$ in $\mathbb{F}_{q^{3}}$ and $5 \mathrm{~S}+6 \mathrm{M}+2 \mathrm{I}$, one square root and two cube roots in \mathbb{F}_{q}. It is more expensive than that for elliptic curves in short Weierstrass form, which takes at most 1 M in $\mathbb{F}_{q^{3}}$ and $5 \mathrm{~S}+4 \mathrm{M}+1 I$, one square root and two cube roots in \mathbb{F}_{q}.

We now give an example and some statistics implemented in Magma. We follow the same setup as in Example 2.7, and compare our results with those obtained in [13] for elliptic curves in short Weierstrass form.

Example 3.8. Let $q=2^{79}-67$ and $\mu=3$. We choose the following random curves, defined and birationally equivalent over \mathbb{F}_{q} :

$$
E_{a, d}: 31468753957068040687814 x^{2}+y^{2}=1+192697821276638966498997 x^{2} y^{2}
$$

and

$$
E: y^{2}=x^{3}+292467848427659499478503 x+361361026736404004345421
$$

We choose a random point $P^{\prime} \in E\left(\mathbb{F}_{q^{3}}\right)$ of trace zero, and let P be the corresponding point on $E_{a, d}$. For brevity, we only write the x-coordinates of points of E and the y-coordinates of points of $E_{a, d}$:

$$
\begin{aligned}
& P^{\prime}=346560928146076959314753 \xi^{2}+456826539628535981034212 \xi \\
&+344167470403026652826672 \\
& P=208520713897518236215966 \xi^{2}+451121944550219947368811 \xi \\
&+68041089860429901306252
\end{aligned}
$$

We denote by \mathcal{R} and \mathcal{R}^{\prime} the representation maps on $E_{a, d}$ and E, respectively. We compute

$$
\begin{aligned}
\mathcal{R}^{\prime}\left(P^{\prime}\right) & =\left(\gamma_{0}, \gamma_{1}\right)=(48823870679406912678832,283451751560764957720302) \\
\mathcal{R}(P) & =\left(a_{1}, b_{0}, b_{1}\right)=(313084342552232820027816,535814703179324297074161,1)
\end{aligned}
$$

Applying the decompression algorithms to $\mathcal{R}^{\prime}\left(P^{\prime}\right)$ and $\mathcal{R}(P)$, we obtain

$$
\begin{gathered}
\mathcal{R}^{\prime-1}(48823870679406912678832,283451751560764957720302) \\
=\left\{346560928146076959314753 \xi^{2}+456826539628535981034212 \xi\right. \\
+344167470403026652826672, \\
164759498614507503187493 \xi^{2}+361520690988197751534381 \xi+ \\
344167470403026652826672, \\
93142483046730124850775 \xi^{2}+390578588997895442137449 \xi \\
+344167470403026652826672\}
\end{gathered}
$$

which are the x-coordinates of P^{\prime} and its Frobenius conjugates. Similarly,

$$
\left.\left.\begin{array}{l}
\mathcal{R}^{-1}(313084342552232820027816,535814703179324297074161,1) \\
=\left\{208520713897518236215966 \xi^{2}+451121944550219947368811 \xi\right. \\
+68041089860429901306252, \\
539321536961066855011167 \xi^{2}+237431391097642968386719 \xi \\
+
\end{array}\right\} 8041089860429901306252,\right\}
$$

which are the y-coordinates of P and its Frobenius conjugates.
We now give an estimate of the average time of compression and decompression for groups of different bitsize. We consider primes q_{1}, q_{2} and q_{3} such that $3 \mid q_{i}-1$ for all i, of bit-length 96,112 and 128 , respectively. For each q_{i}, we consider five pairs of birationally equivalent curves $\left(E, E_{a, d}\right)$, defined over $\mathbb{F}_{q_{i}}$, such that the order of \mathcal{T}_{3} is prime of bit-length, respectively, 192, 224 and 256 . On each pair of curves we randomly

Bit-length of $\left\|\mathcal{T}_{\mathbf{3}}\right\|$	$\mathbf{1 9 2}$	$\mathbf{2 2 4}$	$\mathbf{2 5 6}$
Compression on E	0.015	0.013	0.011
Compression on $E_{a, d}$	0.034	0.037	0.035
Decompression on E	0.09	0.13	0.15
Decompression on $E_{a, d}$	0.14	0.19	0.20

Table 5. Average times for compression and decompression on elliptic curves in short Weierstrass form and twisted Edwards curves.

Bit-length of $\left\|\mathcal{T}_{\mathbf{3}}\right\|$	$\mathbf{1 9 2}$	$\mathbf{2 2 4}$	$\mathbf{2 5 6}$
Comp on E / Comp on $E_{a, d}$	0.441	0.351	0.314
Dec on E / Dec on $E_{a, d}$	0.643	0.684	0.750

Table 6. Ratios between the average times for point compression and decompression on elliptic curves in short Weierstrass form and twisted Edwards curves.
choose 20000 pairs of points $\left(P^{\prime}, P\right)$ of trace zero which correspond to each other via the birational isomorphism between the curves. For each pair of points, we compute $\mathcal{R}^{\prime}\left(P^{\prime}\right), \mathcal{R}(P), \mathcal{R}^{\prime-1}\left(\mathcal{R}^{\prime}\left(P^{\prime}\right)\right), \mathcal{R}^{-1}(\mathcal{R}(P))$. For each computation, we consider the average time in milliseconds for each curve, and then the averages over the five curves. The average computation times are reported in Table 5.

Table 6 contains the ratios of the average times for point compression and decompression on elliptic curves in short Weierstrass form and twisted Edwards curves.

3.2 Explicit equations, complexity, and timings for $n=5$

In this subsection we give explicit equations and perform computations for $n=5$. We estimate the number of operations needed for the computations and present some timings obtained with Magma. We also make comparisons with the method proposed in [13] for elliptic curves in short Weierstrass form.

Point compression. Let $P \in \mathcal{T}_{5}$. By Theorem 3.4, q_{P} is of the form

$$
q_{P}(x, y)=(1+y) \hat{q}_{1}(y)+x q_{2}(y)=(1+y)\left(a_{1} y+a_{0}\right)+x\left(b_{2} y^{2}+b_{1} y+b_{0}\right)
$$

where $a_{0}, a_{1}, b_{0}, b_{1} \in \mathbb{F}_{q}$, and $b_{2} \in \mathbb{F}_{2}$. Moreover,

$$
(1+y) h_{1} h_{2} q_{P}=\phi_{1} \phi_{2} \phi_{3}\left(a-d y^{2}\right)
$$

modulo $E_{a, d}$ and up to a nonzero constant factor. We consider the generic case, where $b_{2}=1$ and ϕ_{i} is of the form

$$
\phi_{i}(x, y)=p_{i}(y+1)+x\left(y+q_{i}\right)
$$

with $p_{i}, q_{i} \in \mathbb{F}_{q^{5}}$ and $i \in\{1,2,3\}$. Denote by k_{1} and k_{2} the y-coordinates of $P_{1}+P_{2}$ and $P_{1}+P_{2}+P_{3}$, respectively. We have

$$
\mathcal{R}(P)=\left(a_{0}, a_{1}, b_{0}, b_{1}, 1\right),
$$

where

$$
\begin{aligned}
a_{1}= & k \cdot\left(d\left(p_{1} p_{2} p_{3}\right)+\left(p_{1}+p_{2}+p_{3}\right)\right), \\
a_{0}= & k \cdot\left(3 d\left(p_{1} p_{2} p_{3}\right)+\left(p_{1} q_{2}+p_{1} q_{3}+q_{1} p_{2}+q_{1} p_{3}+p_{2} q_{3}+q_{2} p_{3}\right)+\left(p_{1}+p_{2}+p_{3}\right)\right)+a_{1} \cdot\left(k_{1}+k_{2}-2\right), \\
b_{1}= & k \cdot\left(d\left(p_{1} p_{2} q_{3}+p_{1} p_{3} q_{2}+p_{2} p_{3} q_{1}\right)+2 d\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right)+\left(q_{1}+q_{2}+q_{3}\right)\right)+\left(k_{1}+k_{2}-1\right), \\
b_{0}= & k \cdot\left(2 d\left(p_{1} p_{2} q_{3}+p_{1} p_{3} q_{2}+p_{2} p_{3} q_{1}\right)+(d-a)\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right)+\left(q_{1} q_{2}+q_{1} q_{3}+q_{2} q_{3}\right)-1\right) \\
& \quad+b_{1}\left(k_{1}+k_{2}-1\right)+\left(k_{1}+k_{2}-k_{1} k_{2}\right), \\
& \quad\left(d\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right)+1\right)^{-1} .
\end{aligned}
$$

Computing ϕ_{1}, ϕ_{2} and ϕ_{3} takes $2 \mathrm{~S}+34 \mathrm{M}+2 \mathrm{I}$ in $\mathbb{F}_{q^{5}}$. Computing $a_{1}, a_{2}, b_{1}, b_{0}$ with the formulas above requires $45 \mathrm{M}+1 \mathrm{I}$ in $\mathbb{F}_{q^{5}}$. So point compression for $n=5$ takes a total of $2 \mathrm{~S}+79 \mathrm{M}+3 \mathrm{I}$ in $\mathbb{F}_{q^{5}}$. The method of [13] for elliptic curves in short Weierstrass form is less expensive, as it takes $3 \mathrm{~S}+18 \mathrm{M}+3 \mathrm{I}$ in $\mathbb{F}_{q^{5}}$.

Bit-length of $\left\|\mathcal{T}_{\mathbf{5}}\right\|$	$\mathbf{1 9 2}$	$\mathbf{2 2 4}$	$\mathbf{2 5 6}$
Compression on E	1.566	1.725	1.894
Compression on $E_{a, d}$	1.704	1.868	2.052
Decompression on E	6.10	31.69	36.99
Decompression on $E_{a, d}$	6.15	31.37	36.59

Table 7. Average times for compression and decompression on elliptic curves in short Weierstrass form and twisted Edwards curves.

Bit-length of $\left\|\mathcal{T}_{5}\right\|$	$\mathbf{1 9 2}$	$\mathbf{2 2 4}$	$\mathbf{2 5 6}$
Comp on $E /$ Comp on $E_{a, d}$	0.919	0.923	0.923
Dec on $E /$ Dec on $E_{a, d}$	0.992	1.010	1.011

Table 8. Ratios between the average times for point compression and decompression on elliptic curves in short Weierstrass form and twisted Edwards curves.

Point decompression. Let $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, b\right) \in \mathbb{F}_{q}^{4} \times \mathbb{F}_{2}$ and assume that $P=(u, v) \in \mathcal{T}_{5}$ is such that $\mathcal{R}(P)=$ $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, b\right)$. In order to decompress $\mathcal{R}(P)$, we look for the roots of

$$
Q_{P}(y)=Q_{5} y^{5}+Q_{4} y^{4}+Q_{3} y^{3}+Q_{2} y^{2}+Q_{1} y+Q_{0}
$$

where

$$
\begin{aligned}
Q_{0} & =a \alpha_{1}^{2}-\alpha_{3}^{2} \\
Q_{1} & =a \alpha_{1}^{2}+2 a \alpha_{1} \alpha_{2}+\alpha_{3}^{2}-2 \alpha_{3} \alpha_{4} \\
Q_{2} & =-d \alpha_{1}^{2}+2 a \alpha_{1} \alpha_{2}+a \alpha_{2}^{2}+2 \alpha_{3} \alpha_{4}-2 \alpha_{3} b-\alpha_{4}^{2} \\
Q_{3} & =-d \alpha_{1}^{2}-2 d \alpha_{1} \alpha_{2}+a \alpha_{2}^{2}+2 \alpha_{3} b+\alpha_{4}^{2}-2 \alpha_{4} b, \\
Q_{4} & =-2 d \alpha_{1} \alpha_{2}-d \alpha_{2}^{2}+2 \alpha_{4} b-b, \\
Q_{5} & =-d \alpha_{2}^{2}+b
\end{aligned}
$$

This amounts to solving the system

$$
\left\{\begin{array}{l}
e_{1}\left(y, y^{q}, \ldots, y^{q^{4}}\right)=-Q_{5}^{-1} Q_{4} \\
e_{2}\left(y, y^{q}, \ldots, y^{q^{4}}\right)=Q_{5}^{-1} Q_{3} \\
e_{3}\left(y, y^{q}, \ldots, y^{q^{4}}\right)=-Q_{5}^{-1} Q_{2} \\
e_{4}\left(y, y^{q}, \ldots, y^{q^{4}}\right)=Q_{5}^{-1} Q_{1} \\
e_{5}\left(y, y^{q}, \ldots, y^{q^{4}}\right)=-Q_{5}^{-1} Q_{0}
\end{array}\right.
$$

where $e_{i}\left(y, y^{q}, \ldots, y^{q^{4}}\right)$ is the i-th elementary symmetric polynomial in $y, y^{q}, \ldots, y^{q^{4}}$. Computing the constants in the system takes $4 \mathrm{~S}+7 \mathrm{M}+1 \mathrm{I}$ in \mathbb{F}_{q}, while solving the system requires $\mathcal{O}\left(\log _{2} q\right)$ operations in \mathbb{F}_{q} following the approach from [13]. Finally, recovering u from v takes $1 S+5 M+1 I$ in $\mathbb{F}_{q^{5}}$. The computational cost of point decompression is comparable to that of the decompression algorithm from [13] for elliptic curves in short Weierstrass form.

In order to estimate of the average time of compression and decompression for groups of different bit-size, we consider primes q_{1}, q_{2}, and q_{3} such that $3 \mid q_{i}-1$ for all i, of bit-length 96,112 and 128 , respectively. For each q_{i}, we consider five pairs of birationally equivalent curves $\left(E, E_{a, d}\right)$, defined over $\mathbb{F}_{q_{i}}$, such that the order of \mathcal{T}_{3} is prime of bit-length respectively 192,224 and 256 . On each pair of curves we randomly choose 20000 pairs of points $\left(P^{\prime}, P\right)$ of trace zero which correspond to each other via the birational isomorphism between the curves. For each pair of points, we compute $\mathcal{R}^{\prime}\left(P^{\prime}\right), \mathcal{R}(P), \mathcal{R}^{\prime-1}\left(\mathcal{R}^{\prime}\left(P^{\prime}\right)\right), \mathcal{R}^{-1}(\mathcal{R}(P))$. For each computation, we consider the average time in milliseconds for each curve, and then the averages over the five curves. The average computation times are reported in Table 7.

Table 8 contains the ratios of the average times for point compression and decompression on elliptic curves in short Weierstrass form and twisted Edwards curves.

Finally, Table 9 summarizes the number of operations for point compression and decompression. We compare the operation count from this paper with the one for elliptic curves in short Weierstrass form from [13].

Funding: The research reported in this paper was partially supported by the Swiss National Science Foundation under grant no. 200021_150207.

Compression	$n=3$	elliptic	$2 S+6 M+1 I$ in \mathbb{F}_{q}
Compression	$n=3$	Edwards	$1 M+1 I$ in $\mathbb{F}_{q^{3}}$ and $2 S+6 M+1 I$ in \mathbb{F}_{q}
Decompression	$n=3$	elliptic	$1 M$ in $\mathbb{F}_{q^{3}}, 5 S+4 M+1 I$, one square root, two cube roots in \mathbb{F}_{q}
Decompression	$n=3$	Edwards	$2 M+1$ in $\mathbb{F}_{q^{3}}, 5 S+6 M+2 I$, one square root, two cube roots in \mathbb{F}_{q}
Compression	$n=5$	elliptic	$3 S+18 M+3 I$ in $\mathbb{F}_{q^{5}}$
Compression	$n=5$	Edwards	$2 S+79 M+3 I$ in $\mathbb{F}_{q^{5}}$
Decompression	$n=5$	elliptic	$\mathcal{O}\left(\log _{2} q\right)$ operations in $\mathbb{F}_{q}, 1 S+3 M+1$ in $\mathbb{F}_{q^{5}}$
Decompression	$n=5$	Edwards	$\mathcal{O}\left(\log _{2} q\right)$ operations in $\mathbb{F}_{q}, 1 S+5 M+1 I$ in $\mathbb{F}_{q^{5}}$

Table 9. Number of operations for point compression and decompression for elliptic curves in short Weierstrass form and Edwards curves.

References

[1] C. Aréne, T. Lange, M. Naehrig and C. Ritzenthaler, Faster computation of the Tate pairing, J. Number Theory 131 (2011), no. 5, 842-857.
[2] R. M. Avanzi et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete Math. Appl. (Boca Raton) 34, Chapman \& Hall/CRC, Boca Raton, 2005.
[3] R. M. Avanzi and E. Cesena, Trace zero varieties over fields of characteristic 2 for cryptographic applications, in: Algebraic Geometry and its Applications, World Scientific, Singapore (2007), 188-215.
[4] D. J. Bernstei and T. Lange, Faster addition and doubling on elliptic curves, in: Advances in Cryptology - ASIACRYPT 2007, Lecture Notes in Comput. Sci. 4833, Springer, Berlin (2007), 29-50.
[5] D. J. Bernstein and T. Lange, Inverted Edwards coordinates, in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes Lecture Notes in Comput. Sci. 4851, Springer, Berlin (2007), 20-27.
[6] D. J. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters, Twisted Edwards curves, in: Progress in Cryptology AFRICACRYPT 2008, Lecture Notes in Comput. Sci. 5023, Springer, Berlin (2008), 389-405.
[7] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235-265.
[8] E. Cesena, Trace zero varieties in pairing-based cryptography, Ph.D. Thesis, Università Roma TRE, 2010.
[9] H. M. Edwards, A normal form for elliptic curves, Bull. Amer. Math. Soc. (N.S.) 44 (2007), 393-422.
[10] J. C. Faugére, P. Gaudry, L. Huot and G. Renault, Using symmetries in the index calculus for elliptic curves discrete logarithm, J. Cryptology 27 (2014), no. 4, 595-635.
[11] G. Frey, Applications of arithmetical geometry to cryptographic constructions, in: Finite Fields and Applications, Springer, Berlin (1999), 128-161.
[12] E. Gorla and M. Massierer, Point compression for the trace zero subgroup over a small degree extension field, Des. Codes Cryptogr. 75 (2015), no. 2, 335-357.
[13] E. Gorla and M. Massierer, An optimal representation for the trace zero subgroup, preprint 2014, http://arxiv.org/abs/1405.2733.
[14] T. Lange, Trace zero subvarieties of genus 2 curves for cryptosystem, J. Ramanujan Math. Soc. 19 (2004), no. 1, 15 -33.
[15] N. Naumann, Weil-Restriktion abelscher Varietäten, Master's thesis, University of Duisburg-Essen, 1999.
[16] K. Rubin and A. Silverberg, Using abelian varieties to improve pairing-based cryptography, J. Cryptology 22 (2009), no. 3, 330-364.
[17] I. Semaev, Summation polynomials and the discrete logarithm problem on elliptic curves, preprint (2004), https://eprint.iacr.org/2004/031.pdf.
[18] A. Silverberg, Compression for trace zero subgroups of elliptic curves, Trends Math. 8 (2005), 93-100.

[^0]: Giulia Bianco: Institut de Mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland, e-mail: giulia.bianco@unine.ch
 *Corresponding author: Elisa Gorla: Institut de Mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland, e-mail: elisa.gorla@unine.ch

