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Introduction
Trace zero subgroups are subgroups of the groups of points of an elliptic curve over extension fields. They
were first proposed for use in public key cryptography by Frey in [11]. A main advantage of trace zero sub-
groups is that they o�er a better scalar multiplication performance than the whole group of points of an
elliptic curve of approximately the same cardinality. This allows a fast arithmetic, which can speed up the
calculations by 30% compared with elliptic curves groups (see, e.g., [14] for the case of hyperelliptic curves,
[3, 8] for elliptic curves over fields of even characteristic). In addition, computing the cardinality of a trace
zero subgroup is more e�cient than for the group of points of an elliptic curve of approximately the same
cardinality. Moreover, even if the trace zero subgroup is a proper subgroup of the group of rational points
of the curve over an extension field, the Discrete Logarithm Problem (DLP) in the two groups has the same
complexity. Hence, when working over non-prime fields, we may restrict to the trace zero subgroup to gain
a more e�cient arithmetic without compromising the security. Finally, in the context of pairings trace zero
subgroups of supersingular elliptic curves o�er higher security than supersingular elliptic curves of the same
bit-size, as shown in [16].

The problem of how to compress the elements of the trace zero subgroup of an elliptic or hyperelliptic
curve is the analogue of torus-based cryptography in finite fields. For elliptic and hyperelliptic curves this
problem has been studied by many authors, see [12–16, 18].

Edwards curves were first introduced by Edwards in [9] as a normal form for elliptic curves. They were
proposed for use in elliptic curve cryptography by Bernstein and Lange in [4]. Twisted Edwards curves were
introduced shortly after in [6]. They are relevant from a cryptographic point of view since the group operation
can be computed very e�ciently and via strongly unified formulas, i.e., formulas that do not distinguish
between addition and doubling. This makes them more resistant to side-channel attacks. We refer to [4–6]
for a detailed discussion on the advantages of Edwards curves.
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In this paper, we provide two e�cient representations for the elements of the trace zero subgroups of
twisted Edwards curves. The first one follows ideas from [12] and it is based onWeil restriction of scalars and
Semaev’s summation polynomials. The second one follows ideas from [13] and it makes use of rational func-
tions on the curve. Some obstacles have to be overcome in adapting these ideas to Edwards curves, especially
for adapting the method from [13].

Given a twisted Edwards curve defined over a finite field Fq of odd characteristic and a field extension
of odd prime degree Fq ⊂ Fqn , we consider the trace zero subgroup Tn of the group of Fqn -rational points of
the curve. We give two e�ciently computable maps from Tn to Fn−1q , such that inverse images can also be
e�ciently computed. One of our maps identifies Frobenius conjugates, while the other identifies Frobenius
conjugates and opposites of points. Since Tn has order O(qn−1), our maps are optimal representations of
Tn modulo Frobenius equivalence. For both representations we provide e�cient algorithms to compute the
image and the preimage of an element, that is, to compress and decompress points. We also compare with
the corresponding algorithms for trace zero subgroups of elliptic curves in short Weierstrass form.

The article is organized as follows. In Section 1 we give some preliminaries on twisted Edwards curves,
finite fields, trace zero subgroups, and representations. In Section 2 we present our first optimal representa-
tion based onWeil restriction and summations polynomials, and give compression and decompression algo-
rithms. We then make explicit computations for the cases n = 3 and n = 5, and compare execution times of
ourMagma implementationwith those of the corresponding algorithms for elliptic curves in shortWeierstrass
form. In Section 3 we propose another representation based on rational functions, with the corresponding
algorithms, computations and e�ciency comparison.

1 Preliminaries and notations
LetFq be a finite field of odd characteristic and letFq ⊂ Fqn be a field extension of odd prime degree. Choose a
normal basis {α, αq , . . . , αqn−1 } of Fqn over Fq. If n|q − 1, let Fqn = Fq[ξ ]/(ξ n − μ), where μ is not a nth-power
inFq, and choose the basis {1, ξ, . . . , ξ n−1} ofFqn overFq. Either of these choices is suitable for computation,
since it produces sparse equations.Whenwriting explicit formulas,we always assume thatwe are in the latter
situation.

When counting the number of operations in our computations, we denote respectively byM, S, and Imul-
tiplications, squarings, and inversions in the field.We do not take into account additions andmultiplications
by constants. The timings for the implementation of our algorithms in Magma refer to version V2.20-7 of the
software, running on a single 3 GHz core.

1.1 Twisted Edwards curves

Definition 1.1. A twisted Edwards curve over Fq is a plane curve of equation

Ea,d : ax2 + y2 = 1 + dx2y2,

where a, d ∈ Fq \ {0} and a ̸= d. An Edwards curve is a twisted Edwards curve with a = 1.

Twisted Edwards curves are curves of geometric genus onewith two ordinarymultiple points, namely the two
points at infinity. Since Ea,d is birationally equivalent to a smooth elliptic curve, one can define a group law
on the set of points of Ea,d, called the twisted Edwards addition law.

Definition 1.2. The sum of two points P1 = (x1, y1) and P2 = (x2, y2) of Ea,d is defined as

P1 + P2 = (x1, y1) + (x2, y2) = (
x1y2 + x2y1

1 + dx1x2y1y2
, y1y2 − ax1x21 − dx1x2y1y2

).

Werefer to [4, Section3] and [6, Section6] for a detaileddiscussionon the formulas andaproof of correctness.
The point O = (0, 1) ∈ Ea,d is the neutral element of the addition, and we denote by −P the additive inverse
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of P. If P = (x, y), then−P = (−x, y).We letO� = (0, −1) ∈ Ea,d, and denote byΩ1 = [1, 0, 0] andΩ2 = [0, 1, 0]
the two points at infinity of Ea,d.

Edwards curves were introduced in [9] as a convenient normal form for elliptic curves. Over an alge-
braically closed field, every elliptic curve in Weierstrass form is birationally equivalent to an Edwards curve,
and vice versa. This is however not the case over Fq, where Edwards curves represent only a fraction of ellip-
tic curves in Weierstrass form. In [6, Theorem 3.2] it is shown that a twisted Edwards curve defined over Fq
is birationally equivalent over Fq to an elliptic curve in Montgomery form, and conversely, an elliptic curve
in Montgomery form defined over Fq is birationally equivalent over Fq to a twisted Edwards curve.

Proposition 1.3. The twistedEdwards curve Ea,d definedoverFq is birationally equivalent overFq to the elliptic
curve in Montgomery form EA,B : By2 = x3 + Ax2 + x, where A = 2 a+da−d and B = 4

a−d . Let Ea,d and EA,B be the
projective closures of Ea,d and EA,B, respectively. The birational isomorphism Φ : EA,B → Ea,d is defined via

ϕ([x, y, z]) =
{
{
{

[x(x + z), y(x − z), y(x + z)] if [x, y, z] ̸∈ {Ω2, (0, 0)},
[By(x + z), By2 − x2 − Axz − z2, By2 + x2 + Axz + z2] if [x, y, z] ̸∈ {Q1, Q2, Q3, Q4},

where

Q1 = (
√d +√a
√d −√a

, 0), Q2 = (
√d −√a
√d +√a

, 0), Q3 = (−1,√d), Q4 = (−1, −√d) ∈ EA,B .

Proof. It is easy to check thatΦ is well defined andΦ(Q1) = Φ(Q2) = Ω1 andΦ(Q3) = Φ(Q4) = Ω2. Moreover,
Φ is injective on EA,B \ {Q1, Q2, Q3, Q4}, and its birational inverse is Ψ : Ea,d \ {Ω1, Ω2} → EA,B given by

Ψ([x, y, z]) =
{
{
{

[x(z + y), z(z + y), x(z − y)] if [x, y, z] ̸= O�,
[z(z + y)(z − y), x(az2 − dy2), z(z − y)2] if [x, y, z] ̸= O.

Moreover, the twisted Edwards addition law corresponds to the usual addition law on the birationally isomor-
phic elliptic curve in Montgomery form, as shown in [4, Theorem 3.2]. Similarly to elliptic curves in Mont-
gomery or Weierstrass form, the twisted Edwards addition law has a geometric interpretation.

Proposition 1.4 ([1, Section 4]). Let P1, P2 ∈ Ea,d, and let C be the projective conic passing through P1, P2,Ω1,
Ω2, andO�. Then, the point P1 + P2 is the symmetric with respect to the y-axis of the eighth point of intersection
between Ea,d and C.

1.2 Trace zero subgroups

Let Ea,d be a twisted Edwards curve defined over Fq. We denote by Ea,d(Fqn ) the group of Fqn -rational points
of Ea,d, by P∞ any point at infinity of Ea,d, and by φ the Frobenius endomorphism on Ea,d defined as follows:

φ : Ea,d → Ea,d , (x, y) Ü→ (xq , yq), P∞ Ü→ P∞.

Definition 1.5. The trace zero subgroup Tn of Ea,d(Fqn ) is the kernel of the trace map

Tr : Ea,d(Fqn ) → Ea,d(Fq), P Ü→ P + φ(P) + φ2(P) + ⋅ ⋅ ⋅ + φn−1(P).

We can view Tn as the Fq-rational points of an abelian variety of dimension n − 1 defined over Fq, called
the trace zero variety. We refer to [2] for a construction and the basic properties of the trace zero variety. The
following result is an easy consequence of [2, Proposition 7.13].

Proposition 1.6. The sequence

0 → Ea,d(Fq) → Ea,d(Fqn )
φ−id
ÚÚÚÚ→ Tn → 0

is exact. Therefore, the DLPs in Ea,d(Fqn ) and in Tn have the same complexity.

Brought to you by | Universitaetsbibliothek Basel
Authenticated

Download Date | 4/29/19 3:49 PM



18 | G. Bianco and E. Gorla, Compression for trace zero points on twisted Edwards curves

1.3 Representations

Definition 1.7. A representation of size ℓ for the elements of a finite set G is a map

R : G → Fℓ2.

Notice that, in our setup, a representation R is not necessarily injective. Nevertheless, any representation
induces an injective representation

R : G/∼ → Fℓ2,

where g ∼ h if and only if R(g) = R(h) for any g, h ∈ G.

Definition 1.8. LetA be a family of abelian varieties of fixed dimension d. An optimal representation forA is
a family of representations R : A(Fq) → Fℓ2 for all finite fields Fq and for all A ∈ A defined over Fq, with the
property that

ℓ = ℓ(q) = ⌈log2|A(Fq)|⌉ + O(1) = d⌈log2 q⌉ + O(1).

We also say that each R is an optimal representation for the elements of A(Fq).
Given g ∈ A(Fq), x ∈ ImR, we refer to computing R(g) as compression and R−1(x) as decompression.

Intuitively, a representation is optimal if ℓ(q) is the smallest possible length of a binary representation of
the elements of A(Fq), up to an additive constant. In particular, the length of a representation is regarded
as a function of q, while the dimension d of the varieties is assumed to be constant. Notice moreover that, if
|R−1(x)| ∈ O(1) as a function of q, then

ℓ(q) = ⌈log2|A(Fq)|⌉ = ⌈log2|A(Fq)/∼|⌉ + O(1).

In particular, optimality of a representation does not depend on the number of elements that are identified,
under the assumption that this number is upper bounded by a constant in q. Therefore, Definition 1.8 is
well-posed.

Remark 1.9. The problem of representing the elements ofFq via binary strings of length ⌈log2 q⌉ is well stud-
ied. Therefore, an optimal representation forAmay be given via a family of maps

R : A(Fq) → Fdq × Fk2,

where k ∈ O(1).

The problem of finding an optimal representation has been studied for the following families of abelian vari-
eties: elliptic curves, Jacobians of hyperelliptic curves of fixed genus, trace zero varieties of elliptic or hyperel-
liptic curves of fixed genus and with respect to a field extension of fixed degree. One may also letA consist of
only one element, e.g., the multiplicative group or its primitive subgroup. Finding an optimal representation
for the latter is at the core of torus-based cryptography.

In this paper, we letA be the set of trace zero varieties of Edwards curves with respect to a field extension
of fixed degree n. We construct two optimal representations for the elements of Tn, with the property that
each element in the image has at most 2n, respectively, n inverse images.

2 An optimal representation using summation polynomials
Let Fq be a finite field of odd characteristic and let Ea,d be the twisted Edwards curve of equation

ax2 + y2 = 1 + dx2y2,

where a, d ∈ Fq \ {0} and a ̸= d. Following ideas from [12], in this section we use Weil restriction of scalars
and Semaev’s summation polynomials to write an equation for the subgroup Tn. Similarly to the case of
elliptic curves in Weierstrass form, a point P = (x, y) ∈ Ea,d(Fqn ) can be represented via y ∈ Fqn . Using the
curve equation, the value of x can be recovered up to sign. Hence, after choosing an Fq-basis of Fqn , each
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pair of points ±P ∈ Ea,d(Fqn ) can be represented by the element (y0, . . . , yn−1) ∈ Fnq corresponding to y ∈ Fqn
under the isomorphismFqn ≅ Fnq inducedby the chosenbasis.Havinganequation forTn allowsus todropone
of the yi’s and represent each pair ±P via n − 1 coordinates in Fq, thus providing an optimal representation
for the elements of Tn. In order to make computation of the compression and decompression maps more
e�cient, we modify this basic idea and use the elementary symmetric functions of y, yq , . . . , yqn−1 instead of
the vector (y0, . . . , yn−1) ∈ Fnq .

Summation polynomials were introduced by Semaev in [17] for elliptic curves in Weierstrass form. Here
we use them in the form for Edwards curves from [10].

Definition 2.1. The n-th summation polynomial is denoted by fn and defined recursively by

f3(z1, z2, z3) = (z21z
2
2 − z

2
1 − z

2
2 + ad

−1)z23 + 2(d − a)d−1z1z2z3 + ad−1(z21 + z
2
2 − 1) − z21z

2
2,

fn(z1, . . . , zn) = rest(fn−k(z1, . . . , zn−k−1, t), fk+2(zn−k , . . . , zn , t))

for all n ≥ 4 and for all 1 ≤ k ≤ n − 3, where rest(fi , fj) denotes the resultant of fi and fj with respect to t.

The next theorem summarizes the properties of summation polynomials.

Theorem 2.2 ([17, Section 2] and [10, Section 2.3.1]). Let fn ∈ Fq[z1, . . . , zn], n ≥ 3, be the n-th summation
polynomial. Denote by Fq ⊂ k a field extension, and by k its algebraic closure. Then, the following hold:
(i) fn is absolutely irreducible, symmetric, and has degree 2n−2 in each of the variables.
(ii) (β1, . . . , βn) ∈ kn is a root of fn if and only if there exist α1, . . . , αn ∈ k such that Pi = (αi , βi) ∈ Ea,d(k) and

P1 + ⋅ ⋅ ⋅ + Pn = O.

By the previous theorem, if P = (x, y) ∈ Tn, then

fn(y, yq , . . . , yq
n−1

) = 0. (2.1)

A partial converse and exceptions to the opposite implication are given in the next proposition.

Proposition 2.3 ([12, Lemma 1 and Proposition 4]). Let Ea,d be a twisted Edwards curve and denote by
Ea,d[m] its m-torsion points. Then, we have the following:
(1) T3 = {(x, y) ∈ Ea,d(Fq3 ) | f3(y, yq , yq

2
) = 0},

(2) T5 ∪ Ea,d[3](Fq) = {(x, y) ∈ Ea,d(Fq5 ) | f5(y, yq , . . . , yq
4
) = 0},

(3) Tn ∪⋃
⌊ n2 ⌋
k=1 Ea,d[n − 2k](Fq) ⊆ {(x, y) ∈ Ea,d(Fqn ) | fn(y, yq , . . . , yq

n−1
) = 0} for n ≥ 7.

Proof. The proof proceeds as in [12, Lemma 1 and Proposition 4], after observing that for any odd prime n
one has Ea,d[2] ∩ Tn = {O}.

Remark 2.4. Proposition2.3 raises thequestionof e�ciently deciding, for each root y ∈ Fqn of equation (2.1),
whether the corresponding points (±x, y) ∈ Ea,d are elements of Tn. However, this issue is easily solved in the
two cases of major interest n = 3 and n = 5. In fact, we have the following:
∙ By Proposition 2.3 (1), (±x, y) ∈ T3 if and only if x ∈ Fq3 .
∙ By Proposition 2.3 (2), (±x, y) ∈ T5 if and only if x ∈ Fq5 and (±x, y) ̸∈ Ea,d[3](Fq) \ {O}. By storing the

list L of the y-coordinates of the elements of Ea,d[3](Fq) \ {O}, one can easily decide whether a point of
Ea,d(Fq5 ) of coordinates (x, y) belongs to T5 by checking that y ̸∈ L. Notice that L consists of at most 4
elements of Fq.

Using the above considerations as a starting point, we can give an optimal representation for the points of Tn
with e�cient compression and decompression algorithms.

Step 1. Denote by e1, . . . , en the elementary symmetric functions in n variables. Represent (x, y) ∈ Tn via
n − 1of the elementary symmetric functions evaluatedat y, yq , . . . , yqn−1 .Weobtain ane�ciently computable
optimal representation

R : Tn → Fn−1q , (x, y) Ü→ (ei(y, yq , . . . , yq
n−1

))i=1,...,n−1. (2.2)
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20 | G. Bianco and E. Gorla, Compression for trace zero points on twisted Edwards curves

Algorithm 1. Compression
Input : P = (x, y) ∈ Tn
Output : R(P) ∈ Fn−1q

1: Write y = y0α + ⋅ ⋅ ⋅ + yn−1αq
n−1 .

2: Compute ei = ẽi(y0, . . . , yn−1) for i = 1, . . . , n − 1.
3: return (e1, . . . , en−1)

Step 2. Since the polynomial fn(z1, . . . , zn) is symmetric, we can write it uniquely as a polynomial
gn(e1, . . . , en) ∈ Fq[e1, . . . , en]. Therefore, the equation

gn(e1, . . . , en) = 0

describes trace zero points (with the exceptions seen in Proposition 2.3) via the equations

e1 = ẽ1(y0, . . . , yn−1), . . . , en = ẽn(y0, . . . , yn−1), (2.3)

where the polynomials ẽ1, . . . , ẽn are obtained from the polynomials

e1(y, yq , . . . , yq
n−1

), . . . , en(y, yq , . . . , yq
n−1

)

by Weil restriction of scalars with respect to the chosen basis of Fqn over Fq, and reducing modulo yqi − yi
for i ∈ {0, . . . , n − 1}. Notice that the reduction simplifies the equations by drastically reducing their degrees.
Moreover, it does not alter their values when evaluated over Fq.

Step 3. For (e1, . . . , en−1) ∈ R(Tn), we first solve

gn(e1, . . . , en−1, t) = 0

for t. For any solution en ∈ Fq, we solve system (2.3) to find (y0, . . . , yn−1) ∈ Fnq, corresponding to y ∈ Fqn .
From y we can recover x in the usual way (see also Remark 2.4).

Notice that gn(e1, . . . , en , ) is not linear in any of the variables for n ≥ 3, hence in step 3wemayfindmore
than one value for en. This corresponds to the fact thatRmay identifymore than just opposites and Frobenius
conjugates. However, this is a rare phenomenon, and for a generic point P ∈ Tn,R−1(R(P)) consists only of±P
and their Frobenius conjugates. We come back to this discussion in Section 2.2, where we discuss this issue
for n = 5.

The pseudocode of a compression and a decompression algorithm for the elements of Tn are given in
Algorithms 1 and 2, respectively.

2.1 Explicit equations, complexity, and timings for n = 3

In this subsection we give explicit equations for trace zero point compression and decompression on twisted
Edwards curves for n = 3. We also estimate the number of operations needed for the computations, present
some timings obtained withMagma, and compare with the results from [12] for elliptic curves in short Weier-
strass form.

The symmetrized third summation polynomial for Ea,d is

g3(e1, e2, e3) = e21 − 1 + (d/a)(e23 − e
2
2) + (2d/a)e1e3 − 2e2 + ((−2a + 2d)/a)e3, (2.4)

where e1, e2 and e3 are the elementary symmetric polynomials in y, yq , yq2 , i.e.,

{{{{
{{{{
{

e1 = y + yq + yq2 ,

e2 = y1+q + y1+q2 + yq+q2 ,

e3 = y1+q+q2 .

(2.5)
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Algorithm 2. Decompression
Input : (e1, . . . , en−1) ∈ Fn−1q
Output : R−1(e1, . . . , en−1) ⊆ Tn

1: Solve gn(e1, . . . , en−1, t) = 0 for t in Fq.
2: T ← list of solutions of gn(e1, . . . , en−1, t) = 0 in Fq.
3: for en ∈ T do
4: Find a solution in Fnq of the system

{{{{
{{{{
{

e1 = ẽ1(y0, . . . , yn−1),
...

en = ẽn(y0, . . . , yn−1),

if it exists.
5: Any time a solution (y0, . . . , yn−1) is found, compute y = y0α + ⋅ ⋅ ⋅ + yn−1αq

n−1 .
6: Recover one of the corresponding x-coordinates using the curve equation.
7: end for
8: if (x, y) ∈ Tn then
9: add P = (±x, y) and all its Frobenius conjugates to the list L of output points.

10: end if
11: return L

The symmetrized third summation polynomial for an elliptic curve in short Weierstrass form is

G3(e1, e2, e3) = e22 − 4e1e3 − 4Be1 − 2Ae2 + A2. (2.6)

Notice that, while G3 is linear in e1 and e3, g3 is of degree2 in each variable. In particular, none of e1, e2, e3 is
determined uniquely by the other two as is the case of elliptic curves in Weierstrass form. However, applying
the change of coordinates

{{{
{{{
{

t1 = e1,
t2 = e3 + e2,
t3 = e3 − e2,

(2.7)

to g3, we obtain the polynomial

g̃3(t1, t2, t3) = t21 + (d/a)(t2t3 + t1t2 + t1t3) + ((d/a) − 2)t2 + dt3 − 1, (2.8)

that is linear in both t2 and t3.
Applying Weil restriction of scalars to the combination of (2.5) and (2.7) (and following the conventions

of Section 1), we obtain

{{{
{{{
{

t1 = 3y0,
t2 = y30 − 3μy0y1y2 + μy31 + μ

2y32 + 3y20 − 3μy1y2,
t3 = y30 − 3μy0y1y2 + μy31 + μ

2y32 − 3y20 + 3μy1y2,
(2.9)

which expresses t1, t2, t3 as polynomials in y0, y1, y2.

Point compression. For compression of a point P = (x, y) ∈ T3, we use the first two coordinates from (2.7)
and (2.9), obtaining

R(P) = (t1, t2) = (3y0, y30 − 3μy0y1y2 + μy31 + μ
2y32 + 3y20 − 3μy1y2).

If we compute t2 as (y0 + 1)(y20 − 3μy1y2) + μy31 + μ2y
3
2 + 2y20, the cost of computing R(P) is 3S+4M in Fq.

In the case of elliptic curves in short Weierstrass form, computing the representation of a point is less expen-
sive, as it takes 1S+1M in Fq or 1M in Fq with the two methods presented in [12, Section 5].
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Point decompression. In order to decompress (t1, t2) ∈ ImR we proceed as follows.
Step 1. Given (t1, t2) ∈ ImR, solve g̃3(t1, t2, t3) = 0 for t3. If t1 + t2 + a = 0, then g̃3(t1, t2, t3) = 0 for all

t3 ∈ Fq. If t1 + t2 + a ̸= 0, then

t3 = −
((d/a) − 2)t2 + (d/a)t1t2 + (t1 + 1)(t1 − 1)

(d/a)(t1 + t2 + a)
.

Hence, t3 can be computed with 3M+1I in Fq.
Step 2. Given (t1, t2, t3), we solve system (2.9) for y0, y1, y2. Notice that, since the ti are obtained from

the ei by a linear change of coordinates, all considerations from [12] apply to our situation. In particular, one
can compute y from (t1, t2, t3) with at most 3S+3M+1I, 1 square root and 2 cube roots in Fq.

Summarizing, the complete decompression algorithm takes atmost 3S+6M+2I, 1 square root, and 2 cube
roots in Fq. For elliptic curves in short Weierstrass form, decompression takes at most 3S+5M+2I, 1 square
root and 2 cube roots in Fq or 4S+4M+2I, 1 square roots and 2 cube roots in Fq, depending on the method
used. We refer the interested reader to [12, Section 5] for details on the complexity of the computation for
curves in short Weierstrass form.

Remark 2.5. Notice that one can also use (t1, t3) as an optimal representation of (x, y) ∈ T3, and then solve
g̃3 for t2 in order to recover y. This choice is analogous to the one we have made, and the computational cost
of compression and decompression does not change.

Remark 2.6. The symmetry of twisted Edwards curves makes the computation of point addition on these
curves more e�cient than on elliptic curves in short Weierstrass form. However, the same symmetry results
in summation polynomials of higher degree and with a denser support. This explains our empirical obser-
vation that the summation polynomials in the elementary symmetric functions for elliptic curves in short
Weierstrass form are sparser than those for twisted Edwards curves for n = 3, 5, even though for both curves
they have the same degree 2n−2. For n = 3, this behavior is apparent if one compares equations (2.4) and
(2.6). Therefore, one should expect that compression and decompression for a representation based on sum-
mation polynomials for twisted Edwards curves are less e�cient than for elliptic curves in short Weierstrass
form. This is confirmed by our findings.

The following examples and statistics have been implemented in Magma [7].

Example 2.7. Let q = 279 − 67 and μ = 3. We choose the following random curves, defined and birationally
equivalent over Fq:

Ea,d : 31468753957068040687814x2 + y2 = 1 + 192697821276638966498997x2y2

and
E : y2 = x3 + 292467848427659499478503x + 361361026736404004345421.

We choose a randompoint of trace zero P� ∈ E(Fq3 ), and let P be the corresponding point on Ea,d. For brevity,
here we only write the x-coordinates of points of E and the y-coordinates of points of Ea,d:

P� = 346560928146076959314753ξ2 + 456826539628535981034212ξ
+ 344167470403026652826672,

P = 208520713897518236215966ξ2 + 451121944550219947368811ξ
+ 68041089860429901306252.

We represent the points of E using the compression coordinates (t1, t2) from [12, Section 5]. Denote byR and
R� the representation maps on Ea,d and E, respectively. We compute

R�(P�) = (344167470403026652826672, 334324534997495805088214),
R(P) = (204123269581289703918756, 98788782936076524413527).
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Bit-length of |T3| 192 224 256

Compression on E 0.006 0.005 0.006
Compression on Ea,d 0.016 0.017 0.015
Decompression on E 0.81 2.40 1.20
Decompression on Ea,d 0.88 2.44 1.17

Table 1. Average times for compression and decompression
on elliptic curves in short Weierstrass form and twisted
Edwards curves.

Bit-length of |T3| 192 224 256

Comp on E / Comp on Ea,d 0.375 0.294 0.400
Dec on E / Dec on Ea,d 0.920 0.984 1.026

Table 2. Ratios between the average times for point
compression and decompression on elliptic curves in
short Weierstrass form and twisted Edwards curves.

We now apply the corresponding decompression algorithms to R�(P�) and R(P). We obtain

R�−1(344167470403026652826672, 334324534997495805088214)

= {346560928146076959314753ξ2 + 456826539628535981034212ξ
+ 344167470403026652826672,

164759498614507503187493ξ2 + 361520690988197751534381ξ
+ 344167470403026652826672,

93142483046730124850775ξ2 + 390578588997895442137449ξ
+ 344167470403026652826672},

which are exactly the x-coordinate of P� and its Frobenius conjugates. Similarly,

R−1(204123269581289703918756, 98788782936076524413527)

= {208520713897518236215966ξ2 + 451121944550219947368811ξ
+ 68041089860429901306252,

539321536961066855011167ξ2 + 237431391097642968386719ξ
+ 68041089860429901306252,

461083568756044083478909ξ2 + 520372483966766258950512ξ
+ 68041089860429901306252},

which are exactly the y-coordinate of P and its Frobenius conjugates.

We now give an estimate of the average time of compression and decompression for groups of di�erent bit-
size. We consider primes q1, q2 and q3 such that 3|qi − 1 for all i, of bit-length 96, 112 and 128, respectively.
For each qi, we consider five pairs of birationally equivalent curves (E, Ea,d), defined over Fqi , such that
the order of T3 is prime of bit-length respectively 192, 224 and 256. On each pair of curves we randomly
choose 20�000 pairs of points (P�, P) of trace zero, as in Example 2.7. For each pair of points, we compute
R�(P�),R(P),R�−1(R�(P�)),R−1(R(P)). For each computation, we consider the average time in milliseconds
for each curve, and then the averages over the five curves. The average computation times are reported in
Table 1.

Table 2 contains the ratios between the average times for point compression and decompression on el-
liptic curves in short Weierstrass form and twisted Edwards curves.

2.2 Explicit equations, complexity, and timings for n = 5

In this subsection we treat in detail the case n = 5. We compute explicit equations for compression and de-
compression, give an estimate of the complexity of the computations in terms of the number of operations,
and give some timings computed in Magma. We also compare the results with those obtained in [12] for el-
liptic curves in short Weierstrass form.
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The fifth Semaev polynomial f5 for a twisted Edwards curve has degree 40, while for curves in short
Weierstrass form it has degree 32. The first polynomial also contains many more terms than the second. This
agrees with what we observed in Remark 2.6 for the case n = 3. The symmetrized fifth summation polyno-
mial g5 has degree 8 for both Weierstrass and Edwards curves. However, for Edwards curves g5 has degree 8
in each variable, while for elliptic curves in short Weierstrass form it has degree 6 in some of the variables.
Because of these reasons, we expect that compression and decompression for a trace zero subgroup coming
from a twisted Edwards curve are less e�cient than for one coming from a curve in short Weierstrass form.

For fields such that 16|q − 1, we perform a linear change of coordinates on the ei in order to obtain a
polynomial g̃5, of degree strictly less than 8 in some variable. The polynomial g5 is too big to be printed here.
However, denoting by (g5)8 the part of g5 which is homogeneous of degree 8, we have that

(g5)8(e1, . . . , e5) = e81 + (d/a)4(e82 + e
8
3) + (d/a)8(e84 + e

8
5). (2.10)

Let μ1 ∈ Fq be a primitive 16-th roots of unity. Then, we can factor t8 + s8 over Fq as

t8 + s8 = (t − μ1s)(t + μ1s)r6(t, s).

Therefore, (2.10) can be written in the form

(g5)8 = e81 + (d/a)4(e2 − μ1e3)(e2 + μ1e3)r6(e2, e3) + (d/a)8(e84 + e
8
5).

Hence, after performing the change of coordinates

{{{
{{{
{

t2 = e2 − μ1e3,
t3 = e2 + μ1e3,
ti = ei for i = 1, 4, 5,

we obtain a polynomial g̃5(t1, . . . , t5) of degree 8 in t1, t4, t5, and degree 7 in t2, t3.

Example 2.8. Let q = 210 − 3, μ = 2. Consider the Edwards curve E1,486 of equation x2 + y2 = 1 + 6x2y2. Let
P ∈ T5 be the point

P = (u, v) = (951ξ4 + 338ξ3 + 246ξ2 + 934ξ + 133, 650ξ4 + 927ξ3 + 301ξ2 + 171ξ + 973).

The compression of P is R(P) = (e1, e2, e3, e4) = (686, 289, 865, 418). In order to decompress, we solve

g5(e1, e2, e3, e4, t) = g5(686, 289, 865, 418, t)
= 71t8 + 705t7 + 1007t6 + 970t5 + 233t4 + 1014t3 + 356t2 + 198t + 575 = 0,

which has a unique solution e5 = 790 ∈ Fq. In order to recover the value of y up to Frobenius conjugates, we
find a root in Fq5 of

y5 − e1y4 + e2y3 − e3y2 + e4y − e5 = y5 + 335y4 + 289y3 + 156y2 + 418y + 231.

Notice that the five roots are Frobenius conjugates of each other. From one y ∈ Fq5 we can recompute x via
the curve equation, hence recover one of the Frobenius conjugates of ±P. So the decompression algorithm
returns R−1(R(P)) = {±P, ±φ(P), ±φ2(P), ±φ3(P), ±φ4(P)}.

We now give an example that presents some indeterminacy in the decompression algorithm.

Example 2.9. Let q = 210 − 3 and consider the Edwards curve

E210,924 : 210x2 + y2 = 1 + 924x2y2

and the point

P = (1020ξ4 + 713ξ3 + 158ξ2 + 745ξ + 515, 891ξ4 + 557ξ3 + 135ξ2 + 976ξ + 62) ∈ T5.
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Bit-length of |T5| 192 224 256

Compression on E 0.057 0.055 0.060
Compression on Ea,d 0.049 0.058 0.053
Decompression on E 64.17 104.31 121.51
Decompression on Ea,d 63.66 104.45 121.42

Table 3. Average times for compression and decompression
on elliptic curves in short Weierstrass form and twisted
Edwards curves.

Bit-length of |T5| 192 224 256

Comp on E / Comp on Ea,d 1.163 0.948 1.132
Dec on E / Dec on Ea,d 1.008 0.999 1.001

Table 4. Ratios between the average times for point
compression and decompression on elliptic curves in
short Weierstrass form and twisted Edwards curves.

The compressed representation of P is R(P) = (e1, e2, e3, e4) = (310, 887, 19, 660). The decompressing
equation is

g5(e1, e2, e3, e4, t) = 62t8 + 502t7 + 388t6 + 294t5 + 2t4 + 466t3 + 723t2 + 55t + 388 = 0,

which has solutions e5 = 428, e�5 = 835, e��5 = 550 ∈ Fq. By solving the equation

y5 − e1y4 + e2y3 − e3y2 + e4y − e5 = y5 + 310y4 + 887y3 + 19y2 + 660y + 593 = 0,

we recover the y-coordinate of P and all its Frobenius conjugates. By solving the equation

y5 − e1y4 + e2y3 − e3y2 + e4y − e�5 = y5 + 310y4 + 887y3 + 19y2 + 660y + 186 = 0,

we find roots in Fq5 , which do not correspond to points of trace zero. By solving the equation

y5 − e1y4 + e2y3 − e3y2 + e4y − e��5 = y5 + 310y4 + 887y3 + 19y2 + 660y + 471 = 0,

we find Q ∈ T5 which is not a Frobenius conjugate of P. Hence, in this case

R−1(R(P)) = {±P, . . . , ±φ4(P), ±Q, . . . , ±φ4(Q)}.

Denote by T5/ ∼ the quotient of T5 by the equivalence relation that identifies opposite points and Frobenius
conjugates. The representation (2.2) induces a representation

R� : T5/ ∼→ F4q .

In the previous example we showed that R� is not injective. Nevertheless, an easy heuristic argument shows
that a generic (e1, . . . , e4) ∈ ImR� has exactly one inverse image. In order to support the heuristics, we tested
15000 random points in the trace zero subgroup T5 of 15 Edwards curves. The groups had prime cardinality
and bit-length 192, 224 and 256. For any random point P we computed the cardinality of R�−1(R�(P)), and
found that it is 1 for about 91% of the points, 2 for about 8.5% of the points, and 3 for about 0.5% of the
points. We also found a few points for which |R�−1(R�(P))| = 4, but the percentage was less than 0.02%.
Finally, we did not find any points for which 4 < |R�−1(R�(P))| ≤ 8.

In order to test the e�ciency of the compression and decompression algorithms for n = 5, we have im-
plemented them in Magma [7]. We consider primes q1, q2 and q3 of bit-length 48, 56 and 64, respectively.
We choose primes such that 5|qi − 1 for all i. For each qi we consider five pairs of birationally equivalent
curves (E, Ea,d) defined over Fqi , such that the order of T5 is prime of bit-length 192, 224 and 256, respec-
tively. Table 3 contains the average times for compression and decompression in milliseconds. Each average
is computed on a set of 20 000 randomly chosen points on each of the five curves.

Table 4 contains the ratios between the average times for point compression and decompression on el-
liptic curves in short Weierstrass form and twisted Edwards curves.

3 An optimal representation using rational functions
Let Ea,d be a twisted Edwards curve defined over Fq. In this section, we propose another optimal representa-
tion for the trace zero subgroup Tn ⊂ Ea,d(Fqn ) using rational functions.
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In [13] Gorla and Massierer propose to represent an element P ∈ Tn via the coe�cients of the rational
function which corresponds to the principal divisor P + φ(P) + ⋅ ⋅ ⋅ + φn−1(P) − nO on the elliptic curve. Op-
timality of the representation depends on the fact that the rational function associated to this divisor has a
special form, and can therefore be represented using n − 1 coe�cients in Fq. If we consider a principal divi-
sor of the form P + φ(P) + ⋅ ⋅ ⋅ + φn−1(P) − nO on the twisted Edwards curve Ea,d, there are several questions
that need to be answered. For example, the rational function associated to this divisor is not a polynomial in
general, so one needs to overcome some di�culties in order to successfully carry out the same strategy.

We start with some preliminary results on rational functions on a twisted Edwards curve. If h is a rational
function on Ea,d, we denote by div(h) the divisor of the homogeneous rational function associated to h on
the projective closure of Ea,d. Throughout the section we use (u, v) for the coordinates of the point and x, y
for the variables of the rational functions, in order to avoid confusion.

Lemma 3.1. Let c ∈ k such that ad−1 = c2, where k = Fq or k = Fq2 , depending on whether ad−1 is a quadratic
residue in Fq or not. Let R(x, y) ∈ k(x, y) be a rational function on Ea,d. Then, R can be written in the form

R(x, y) = (y − c)k1 (y + c)k2 r1(y) + xr2(y)
r3(y)

modulo Ea,d, where r1, r2, r3 ∈ k[y], gcd{r1, r2, r3} = 1, r3(±c) ̸= 0, and k1, k2 ≤ 0.

Proof. Using the relation x2 = (1−y2)
(a−dy2) , we can write R(x, y) in the form

R(x, y) = s1(y) + xs2(y)
s3(y) + xs4(y)

,

where si(y) ∈ k[y] for 1 ≤ i ≤ 4. Multiplying and dividing by s3(y) − xs4(y), we obtain

R(x, y) = t1(y) + xt2(y)
t3(y)

,

where ti(y) ∈ k[y] for 1 ≤ i ≤ 3. Simplifying the fraction and factoring y − c and y + c as much as possible
from the denominator, we obtain the thesis.

Lemma 3.2. In the setting of Lemma 3.1, assume that R has poles at most at the points at infinity Ω1 and Ω2.
Then,

R(x, y) = (y − c)k1 (y + c)k2(q1(y) + xq2(y))
modulo Ea,d, where q1(y), q2(y) ∈ k[y], qi(±c) ̸= 0 for i = 1, 2, and k1, k2 ≤ 0.

Proof. By Lemma 3.1, we can write

R(x, y) = (y − c)k1 (y + c)k2 r1(y) + xr2(y)
r3(y)

.

Since (y − c)k1 = 0 and (y + c)k2 = 0 have no a�ne zeroes on Ea,d, R has poles at most at the points at infinity
if and only if the order of vanishing of r3 on Ea,d at each a�ne point is less than or equal to the order of
vanishing of r1 + xr2 on Ea,d at the same point.

Let P = (u, v) be a point such that r3(v) = 0.Write r3 in the form r3(y) = (y − v)m t3(y),where t3(v) ̸= 0 and
m > 0. The order of vanishing of r3 on Ea,d at P ism if u ̸= 0, and 2m if u = 0. In fact, the only points in which
Ea,d has a horizontal tangent line are O and O�. The same holds for the order of vanishing of r3 at −P. From
r1(v) + ur2(v) = r1(v) − ur2(v) = 0, we obtain that r1(v) = ur2(v) = 0. Therefore, since gcd{r1, r2, r3} = 1, we
have r2(v) ̸= 0 and u = 0. The order of vanishing of r1 + xr2 on Ea,d at P is 1, since P is a smooth point and
the tangent line at P to the curve of equation r1(y) + xr2(y) is not horizontal. But the order of vanishing of r3
on Ea,d at P is bigger than m, which yields a contradiction.

One has the following characterization for rational functions on Ea,d with zero divisor.

Lemma 3.3. In the setting of Lemma 3.1, one has that

div(R) = 0 ⇔ R = (y − c)l+m(y + c)−l(1 −√dx)m ,

where l,m ∈ ℤ, and the equality on the right-hand side holds modulo Ead and up to multiplication by a nonzero
constant.

Brought to you by | Universitaetsbibliothek Basel
Authenticated

Download Date | 4/29/19 3:49 PM



G. Bianco and E. Gorla, Compression for trace zero points on twisted Edwards curves | 27

Proof. If R is of the form R = (y − c)l+m(y + c)−l(1 −√dx)m, then a straightforward calculation shows that
div(R) = 0. In order to show the converse, let D be the divisor of R̂ = R ∘ Φ on EA,B, where Φ is the bira-
tional isomorphism of Proposition 1.3. Since div(R) = 0, one has that Φ(D) = 0, hence D is of the form
D = h(Q1 − Q2) + k(Q4 − Q3), where h, k ∈ ℤ. Consider the two rational functions of Ea,d : g1 = (y − c)/(y + c)
and g2 = (y − c)(1 −√dx). One has that div(g1 ∘ Φ) = 2(Q1 − Q2) and div(g2 ∘ Φ) = Q1 − Q2 + Q4 − Q3. More-
over, there is no rational function of EA,B whose divisor is Q1 − Q2 or Q4 − Q3, since Q1 ̸= Q2 and Q3 ̸= Q4.
The thesis follows from these observations and from the fact that EA,B is nonsingular.

In the introduction of this section, we hinted at the di�culty that if P ∈ Tn is a point of trace zero on a twisted
Edwards curve Ea,d, the rational function associated to the principal divisor P + φ(P) + . . . + φn−1(P) − nO is
not in general a polynomial. Lemma 3.2 o�ers a solution to this problem by considering a modified principal
divisor, whose associated rational function is a polynomial.

Theorem 3.4. Let Ea,d bea twistedEdwards curve defined overFq and let P ∈ Tn ⊂ Ea,d(Fqn ). Then, there exists
a polynomial qP(x, y) = q1(y) + xq2(y) ∈ Fq[x, y], with q1(y), q2(y) ∈ Fq[y], such that the following hold true:
(1) div(qP) = P + φ(P) + ⋅ ⋅ ⋅ + φn−1(P) + O� − 2Ω1 − (n − 1)Ω2.
(2) max{deg(q1), deg(q2)} = n−1

2 .
(3) q1(y) = (1 + y)q̂1(y), where q̂1 ∈ Fq[y] and deg(q̂1) ≤ n−3

2 .
(4) q2 is not the zero polynomial.

Proof. (1) Consider the setting of Proposition 1.3. Since P = (u, v) ∈ Tn, one has that P� = Ψ(P) is a point of
trace zero of EA,B. Then, there exists f ∈ EA,B(Fq) such that div(f ) = Tr(P�). Let φ̂ be the Frobenius endomor-
phism on EA,B. For each i ∈ {1, . . . , n − 2} denote with ℓi the line through P� + ⋅ ⋅ ⋅ + φ̂i−1(P�) and φ̂i(P�). For
each i ∈ {1, . . . , n − 3} denote by vi the vertical line through P� + ⋅ ⋅ ⋅ + φ̂i(P�). Finally, let L and V be the prod-
ucts of lines L = ∏n−2

i=1 ℓi and V = ∏n−3
i=1 vi. By [13, Corollary 4.2], one has that div(L/V) = Tr(P�), from which

L/V = λf mod EA,B, where λ is a nonzero constant in the algebraic closure ofFq. Hence, posing g = (L/V) ∘ Ψ,
one has that div(g) = Tr(P) and

g =
ϕ1ϕ2 ⋅ ⋅ ⋅ϕn−2

xn−2(1 − y)h1h2 ⋅ ⋅ ⋅ hn−3
,

where, for each i ∈ {1, . . . , n − 2}, ϕi is the conic with

div(ϕi) = (P + ⋅ ⋅ ⋅ + φi−1(P)) + φi(P) + (−(P + ⋅ ⋅ ⋅ + φi(P))) + O� − 2Ω1 − 2Ω2

and, for each i ∈ {1, . . . , n − 3}, hi is the horizontal line through P + ⋅ ⋅ ⋅ + φi(P). Now consider the polyno-
mialH(x, y) = x(1 − y) n−12 ∈ Fq[x, y]whose divisor is div(H) = nO + O� − 2Ω1 − (n − 1)Ω2. Then,we have that
div(gH) = P + φ(P) + ⋅ ⋅ ⋅ + φn−1(P) + O� − 2Ω1 − (n − 1)Ω2 and

gH =
ϕ1ϕ2 ⋅ ⋅ ⋅ϕn−2(1 − y) n−32
h1h2 ⋅ ⋅ ⋅ hn−3xn−3

=
(a − dy2) n−32
h(y)(1 + y) n−32

n−2
∏
i=1
ϕi (3.1)

modulo the curve equation, where h(y) = ∏n−3
i=1 hi and deg(h) = n − 3. For each i ∈ {1, . . . , n − 2}, ϕi is of the

form ϕi = Bi(y)x + Ai(y), where Bi(y) and Ai(y) are polynomials in y of degree at most 1, hence

n−2
∏
i=1
ϕi = Hn−2(y)xn−2 + Hn−3(y)xn−3 + ⋅ ⋅ ⋅ + H1(y)x + H0(y),

where each Hi(y) is a polynomial in y of degree at most n − 2. Reducing modulo Ea,d, we obtain

(a − dy2)
n−3
2

n−2
∏
i=1
ϕi(x, y) = R1(y) + xR2(y),

where each Ri(y) is a polynomial of deg(Ri) ≤ max{deg(Hj)} + n − 3 ≤ 2n − 5. The denominator of (3.1) di-
vides both R1(y) and R2(y) by Lemma 3.2, so gH = qP up to multiplication by a nonzero constant, where
q1(y) and q2(y) have coe�cients inFq since f andH have coe�cients inFq and Ea,d and EA,B are birationally
equivalent over Fq.
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(2) Using the notation of part (1), we have

deg(qi) = deg(Ri) − deg(1 + y)
n−3
2 − deg(h) ≤ 2n − 5 −

(n − 3)
2 − (n − 3) = n − 1

2 (3.2)

for i = 1, 2. Moreover, by part (1),

div(q−P) = (−P) + ⋅ ⋅ ⋅ + φn−1(−P) + O� − 2Ω1 − (n − 1)Ω2,

and modulo Ea,d

qP(x, y)q−P(x, y) = q21(y) −
1 − y2

a − dy2
q22(y).

Since div(a − dy2) = 4Ω1 − 4Ω2, the polynomial RP(y) = (a − dy2)q21(y) − (1 − y2)q22(y) has

div(RP) = (±P) + (±φ(P)) + ⋅ ⋅ ⋅ + (±φn−1(P)) + 2O� − 2(n + 1)Ω2.

Hence, (1 + y)∏n−1
i=0 vq

i
|RP(y), and therefore

n + 1 ≤ deg(RP(y)) ≤ 2 + 2max{deg(q1), deg(q2)} (3.3)

and part (2) follows directly from (3.2) and (3.3). We have also obtained that RP is a polynomial of degree
exactly n + 1 with coe�cients in Fq and roots −1, vqi for 0 ≤ i ≤ n − 1. We will need this result in the sequel.

(3) Since qP vanishes at O� = (0, −1), then q1 is of the form

q1(y) = (1 + y)q̂1(y),

where q̂1 ∈ Fq[y] and deg(q̂1) ≤ n−3
2 .

(4) If q2 was the zero polynomial, then qP = q1(y) would vanish on O� with multiplicity at least 2, con-
tradicting part (1).

Computation of qP. In the proof of the previous theorem, we have seen that one can compute the polynomial
qP as

qP =
ϕ1ϕ2 ⋅ ⋅ ⋅ϕn−2(1 − y) n−32
h1h2 ⋅ ⋅ ⋅ hn−3xn−3

, (3.4)

where for each 1 ≤ i ≤ n − 2, ϕi is the conic through P + ⋅ ⋅ ⋅ + φi−1(P), φi(P), O�, 2Ω1 and 2Ω2, and for each
1 ≤ i ≤ n − 3, hi is the horizontal line through P + ⋅ ⋅ ⋅ + φi(P) ∈ Ea,d. Notice that we can easily calculate ϕi for
each i, employing the formulas given in [1, Theorem 1 and Theorem 2].

We now discuss how to use the polynomial qP to represent P via (n − 1) elements of Fq plus a bit. As a
consequence of Theorem 3.4, qP has the form

qP(x, y) = (1 + y)(a n−3
2
y
n−1
2 + ⋅ ⋅ ⋅ + a1y + a0) + x(b n−1

2
y
n−1
2 + ⋅ ⋅ ⋅ + b1y + b0),

where ai , bj ∈ Fq for all i, j, and b n−1
2

∈ {0, 1}. We have therefore obtained an optimal representation for the
elements of Tn defined as follows:

R : Tn → Fn−1q × F2, P Ü→ (a0, . . . , a n−3
2
, b0, . . . , b n−1

2
). (3.5)

The complete algorithm for point compression is given inAlgorithm3. The correctness of the compression
algorithm is a direct consequence of our previous results.

Given an n-tuple (α1, . . . , αn−1, b) ∈ Fn−1q × F2 such that (α1, . . . , αn−1, b) = R(P) for some P ∈ Tn, we
want to compute the decompression R−1(α1, . . . , αn−1, b). We start with some preliminary results. The next
lemma guarantees that the x-coordinate of P can be computed from its y-coordinate and the polynomial qP.

Lemma 3.5. Let P = (u, v) ∈ Tn and let qP(x, y) = q1(y) + xq2(y) ∈ Fq[x, y] be the polynomial with

div(qP) = P + φ(P) + ⋅ ⋅ ⋅ + φn−1(P) + O� − 2Ω1 − (n − 1)Ω2.

Then, q2(v) = 0 if and only if P = O.
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Algorithm 3. Compression
Input : P ∈ Tn
Output : R(P) ∈ Fn−1q × F2
1: Compute qP(x, y) = q1(y) + xq2(y) using (3.1) and reducing modulo Ea,d.
2: Compute q̂1(y) = q1(y)/(1 + y) = a n−3

2
y n−1

2 + ⋅ ⋅ ⋅ + a1y + a0.
3: q2(y) = b n−1

2
y n−1

2 + ⋅ ⋅ ⋅ + b1y + b0.
4: R(P) ← (a0, . . . , a n−3

2
, b0, . . . , b n−1

2
).

5: return R(P).

Proof. If q2(v) = 0, then q1(v) = 0, hence qP(−u, v) = 0. Since the a�ne points of the curve on which qP van-
ishes are exactly O� and φi(P) for 0 ≤ i ≤ n − 1, by Theorem 3.4 and O� ̸∈ Tn, then −P = φi(P) for some i.
If i = 0, we have −P = P, hence P = O. If i ̸= 0, then (−u, v) = (uqi , vqi ) for some i ∈ {1, . . . , n − 1}. Then,
v ∈ Fqi ∩ Fqn = Fq and uq

2i
= u ∈ Fq2i ∩ Fqn = Fq. Hence, P ∈ Ea,d(Fq) and−P = φi(P) = P, fromwhich P = O.

Conversely, if P = O, then qP(x, y) = x(1 − y) n−12 and q2(1) = 0.

Given qP(x, y), we can compute a polynomial QP(y) whose roots are exactly the Frobenius conjugates of the
y-coordinate of P. This will be used in our decompression algorithm.

Proposition 3.6. Let P = (u, v) ∈ Tn and let qP(x, y) = (1 + y) ̂q1(y) + xq2(y) ∈ Fq[x, y] be the polynomial with
div(qP) = P + φ(P) + ⋅ ⋅ ⋅ + φn−1(P) + O� − 2Ω1 − (n − 1)Ω2. Define

QP(y) = (a − dy2)(1 + y)q̂21(y) + (y − 1)q22(y).

Then, QP(y) ∈ Fq[y], degQP = n, and its roots are v, vq , . . . , vqn−1 .
Proof. Let

RP = (a − dy2)q21(y) − (1 − y2)q22(y) = (1 + y)[(a − dy2) ̂q1(y) − (1 − y)q22(y)].

Then, QP(y) = (1 + y)−1 ⋅ RP(y), and the claim follows by Theorem 3.4.

The decompression algorithm is given in Algorithm 4.

Remark 3.7. Let P ∈ Tn be a point with R(P) = (α1, . . . , αn−1, b). By Theorem 3.4 the Frobenius conjugates
of P are the only other points of Tn with the same representation. Correctness of the first four lines of the
algorithm follows from Proposition 3.6 and correctness of line 5 follows from Lemma 3.5. Hence the given
algorithm correctly recovers the point P, up to Frobenius conjugates.

3.1 Explicit equations, complexity, and timings for n = 3

In this subsection we give explicit equations and perform some computations for n = 3. We estimate the
number of operations needed for the compression and decompression, and present some timings obtained
withMagma.We alsomake comparisonswith trace zero subgroups of elliptic curves in shortWeierstrass form
treated in [13].

Point compression. Let P = (u, v) ∈ T3. By Theorem 3.4, we may write

qP(x, y) = q̂1(y)(1 + y) + xq2(y) = a0(1 + y) + x(b1y + b0),

where a0, b0 ∈ Fq, b1 ∈ {0, 1}.
If P ̸∈ Ea,d(Fq), let t = v+1

u . Notice that u ̸= 0, since u = 0 implies P = O, hence P ∈ Ea,d(Fq).
Case 1. If tq − t ̸= 0, by [1, Theorem 1],

R(P) = (a0, b0, b1) = (−
vq − v
tq − t

, −a0t − v, 1).
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Algorithm 4. Decompression
Input : (α1, . . . , αn−1, b) ∈ Fn−1q × F2
Output : P = (u, v) ∈ Tn with R(P) = (α1, . . . , αn−1, b)
1: q̂1(y) ← α n−1

2
y n−3

2 + ⋅ ⋅ ⋅ + α2y + α1.
2: q2(y) ← by n−1

2 + αn−1y
n−3
2 + ⋅ ⋅ ⋅ + α n+3

2
y + α n+1

2
.

3: QP(y) ← (a − dy2) ⋅ (1 + y) ⋅ q̂21(y) + (y − 1) ⋅ q22(y).
4: v ← one root of QP(y).
5: if v = 1 then
6: u ← 0
7: else
8: u ← − q̂1(v)(v+1)q2(v)
9: end if

10: return (u, v).

Computing t from u and v takes 1M+1I in Fq3 . Once we have t, the situation is analogous to the case of
elliptic curves in short Weierstrass form. Hence, we refer to [13, Section 5.1] for a detailed discussion of how
to e�ciently computeR(P). In particular, it is shown that one can compute a0 and b0 with 2S+6M +1I in Fq.
Summarizing, point compression in this case takes 1M+1I inFq3 and 2S+6M+1I inFq. Due to the calculation
of t, it is more expensive than that for elliptic curves in short Weierstrass form.

Case 2. If tq − t = 0, then qP is the line passing through P and O� by [1, Theorem 1]. Hence,

R(P) = (−t−1, 1, 0). (3.6)

Since O� ̸∈ T3, then t ̸= 0. In this case, point compression requires only 1M + 1I in Fq3 .
If P ∈ Ea,d(Fq), then the computation takes place in Fq instead of Fq3 , hence we expect the complexity

to be lower. We carry on a precise operation count, as in the previous case.
Case 3. If du2v − 1 ̸= 0, by [1, Theorem 1],

R(P) = (
u(1 − v)
du2v − 1

, v − au
2

du2v − 1
, 1).

Therefore, point compression takes 1S+4M+1I in Fq.
Case 4. If du2v − 1 = 0, then the situation is analogous to case 2, andR(P) is given by (3.6). Hence, point

compression requires 1M + 1I in Fq.
Since case 1 is the generic case, the expected complexity of point compression is1M+1I inFq3 and2S+6M

+1I in Fq.

Point decompression. Let (α1, α2, b) ∈ F2q × F2 and let P = (u, v) ∈ T3 such that R(P) = (α1, α2, b). In order
to recover P from R(P), we want to find the roots of

QP(y) = (b − dα21)y
3 + (−dα21 + 2α2b − b)y2 + (aα21 − 2α2b + α22)y + (aα21 − α

2
2).

They are the solutions to the system

{{{{
{{{{
{

y + yq + yq2 = c(dα21 − 2α2b + b),

yq+1 + yq2+1 + yq2+q = c(aα21 − 2α2b + α22),

y1+q+q2 = c(−aα21 + α
2
2),

(3.7)

where c = (b − dα21)−1. Notice that (b − dα21) ̸= 0, since QP has degree 3 by Proposition 3.6.
Computing the constant terms of (3.7) takes 2S+3M+1I inFq. Computing a solution of the system takes at

most 3S+3M+1I, one square root and two cube roots in Fq, as shown in [13]. Finally, computing u from v re-
quires 2M+1I inFq3 . Summarizing, for n = 3 point decompression takes atmost 2M+1I inFq3 and 5S+6M+2I,
one square root and two cube roots inFq. It ismore expensive than that for elliptic curves in shortWeierstrass
form, which takes at most 1M in Fq3 and 5S+4M+1I, one square root and two cube roots in Fq.
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We now give an example and some statistics implemented in Magma. We follow the same setup as in
Example 2.7, and compare our results with those obtained in [13] for elliptic curves in short Weierstrass
form.

Example 3.8. Let q = 279 − 67 and μ = 3. We choose the following random curves, defined and birationally
equivalent over Fq:

Ea,d : 31468753957068040687814x2 + y2 = 1 + 192697821276638966498997x2y2

and
E : y2 = x3 + 292467848427659499478503x + 361361026736404004345421.

We choose a randompoint P� ∈ E(Fq3 ) of trace zero, and let P be the corresponding point on Ea,d. For brevity,
we only write the x-coordinates of points of E and the y-coordinates of points of Ea,d:

P� = 346560928146076959314753ξ2 + 456826539628535981034212ξ
+ 344167470403026652826672,

P = 208520713897518236215966ξ2 + 451121944550219947368811ξ
+ 68041089860429901306252.

We denote by R and R� the representation maps on Ea,d and E, respectively. We compute

R�(P�) = (ã0, ã1) = (48823870679406912678832, 283451751560764957720302),
R(P) = (a1, b0, b1) = (313084342552232820027816, 535814703179324297074161, 1).

Applying the decompression algorithms to R�(P�) and R(P), we obtain

R�−1(48823870679406912678832, 283451751560764957720302)

= {346560928146076959314753ξ2 + 456826539628535981034212ξ
+ 344167470403026652826672,

164759498614507503187493ξ2 + 361520690988197751534381ξ+
344167470403026652826672,

93142483046730124850775ξ2 + 390578588997895442137449ξ
+ 344167470403026652826672},

which are the x-coordinates of P� and its Frobenius conjugates. Similarly,

R−1(313084342552232820027816, 535814703179324297074161, 1)

= {208520713897518236215966ξ2 + 451121944550219947368811ξ
+ 68041089860429901306252,

539321536961066855011167ξ2 + 237431391097642968386719ξ
+ 68041089860429901306252,

461083568756044083478909ξ2 + 520372483966766258950512ξ
+ 68041089860429901306252},

which are the y-coordinates of P and its Frobenius conjugates.

We now give an estimate of the average time of compression and decompression for groups of di�erent bit-
size. We consider primes q1, q2 and q3 such that 3|qi − 1 for all i, of bit-length 96, 112 and 128, respectively.
For each qi, we consider five pairs of birationally equivalent curves (E, Ea,d), defined over Fqi , such that
the order of T3 is prime of bit-length, respectively, 192, 224 and 256. On each pair of curves we randomly
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Bit-length of |T3| 192 224 256

Compression on E 0.015 0.013 0.011
Compression on Ea,d 0.034 0.037 0.035
Decompression on E 0.09 0.13 0.15
Decompression on Ea,d 0.14 0.19 0.20

Table 5. Average times for compression and decompression
on elliptic curves in short Weierstrass form and twisted
Edwards curves.

Bit-length of |T3| 192 224 256

Comp on E / Comp on Ea,d 0.441 0.351 0.314
Dec on E / Dec on Ea,d 0.643 0.684 0.750

Table 6. Ratios between the average times for point
compression and decompression on elliptic curves in
short Weierstrass form and twisted Edwards curves.

choose 20000 pairs of points (P�, P) of trace zero which correspond to each other via the birational isomor-
phism between the curves. For each pair of points, we compute R�(P�),R(P),R�−1(R�(P�)),R−1(R(P)). For
each computation, we consider the average time in milliseconds for each curve, and then the averages over
the five curves. The average computation times are reported in Table 5.

Table 6 contains the ratios of the average times for point compression and decompression on elliptic
curves in short Weierstrass form and twisted Edwards curves.

3.2 Explicit equations, complexity, and timings for n = 5

In this subsection we give explicit equations and perform computations for n = 5. We estimate the number
of operations needed for the computations and present some timings obtained with Magma. We also make
comparisons with the method proposed in [13] for elliptic curves in short Weierstrass form.

Point compression. Let P ∈ T5. By Theorem 3.4, qP is of the form

qP(x, y) = (1 + y)q̂1(y) + xq2(y) = (1 + y)(a1y + a0) + x(b2y2 + b1y + b0),

where a0, a1, b0, b1 ∈ Fq, and b2 ∈ F2. Moreover,

(1 + y)h1h2qP = ϕ1ϕ2ϕ3(a − dy2)

modulo Ea,d and up to a nonzero constant factor. We consider the generic case, where b2 = 1 and ϕi is of the
form

ϕi(x, y) = pi(y + 1) + x(y + qi)

with pi, qi ∈ Fq5 and i ∈ {1, 2, 3}. Denote by k1 and k2 the y-coordinates of P1 + P2 and P1 + P2 + P3, respec-
tively. We have

R(P) = (a0, a1, b0, b1, 1),

where

a1 = k ⋅ (d(p1p2p3) + (p1 + p2 + p3)),
a0 = k ⋅ (3d(p1p2p3) + (p1q2 + p1q3 + q1p2 + q1p3 + p2q3 + q2p3) + (p1 + p2 + p3)) + a1 ⋅ (k1 + k2 − 2),
b1 = k ⋅ (d(p1p2q3 + p1p3q2 + p2p3q1) + 2d(p1p2 + p1p3 + p2p3) + (q1 + q2 + q3)) + (k1 + k2 − 1),
b0 = k ⋅ (2d(p1p2q3 + p1p3q2 + p2p3q1) + (d − a)(p1p2 + p1p3 + p2p3) + (q1q2 + q1q3 + q2q3) − 1)

+ b1(k1 + k2 − 1) + (k1 + k2 − k1k2),

k = (d(p1p2 + p1p3 + p2p3) + 1)−1.

Computing ϕ1, ϕ2 and ϕ3 takes 2S+34M+2I in Fq5 . Computing a1, a2, b1, b0 with the formulas above re-
quires 45M+1I in Fq5 . So point compression for n = 5 takes a total of 2S+79M+3I in Fq5 . The method of [13]
for elliptic curves in short Weierstrass form is less expensive, as it takes 3S+18M+3I in Fq5 .
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Bit-length of |T5| 192 224 256

Compression on E 1.566 1.725 1.894
Compression on Ea,d 1.704 1.868 2.052
Decompression on E 6.10 31.69 36.99
Decompression on Ea,d 6.15 31.37 36.59

Table 7. Average times for compression and decompression
on elliptic curves in short Weierstrass form and twisted
Edwards curves.

Bit-length of |T5| 192 224 256

Comp on E / Comp on Ea,d 0.919 0.923 0.923
Dec on E / Dec on Ea,d 0.992 1.010 1.011

Table 8. Ratios between the average times for point
compression and decompression on elliptic curves in
short Weierstrass form and twisted Edwards curves.

Point decompression. Let (α1, α2, α3, α4, b) ∈ F4q × F2 and assume that P = (u, v) ∈ T5 is such that R(P) =
(α1, α2, α3, α4, b). In order to decompress R(P), we look for the roots of

QP(y) = Q5y5 + Q4y4 + Q3y3 + Q2y2 + Q1y + Q0,

where
Q0 = aα21 − α

2
3,

Q1 = aα21 + 2aα1α2 + α23 − 2α3α4,
Q2 = −dα21 + 2aα1α2 + aα22 + 2α3α4 − 2α3b − α24,
Q3 = −dα21 − 2dα1α2 + aα22 + 2α3b + α24 − 2α4b,
Q4 = −2dα1α2 − dα22 + 2α4b − b,
Q5 = −dα22 + b.

This amounts to solving the system

{{{{{{{{{{
{{{{{{{{{{
{

e1(y, yq , . . . , yq
4
) = −Q−1

5 Q4,

e2(y, yq , . . . , yq
4
) = Q−1

5 Q3,

e3(y, yq , . . . , yq
4
) = −Q−1

5 Q2,

e4(y, yq , . . . , yq
4
) = Q−1

5 Q1,

e5(y, yq , . . . , yq
4
) = −Q−1

5 Q0,

where ei(y, yq , . . . , yq
4
) is the i-th elementary symmetric polynomial in y, yq , . . . , yq4 . Computing the con-

stants in the system takes 4S+7M+1I in Fq, while solving the system requires O(log2 q) operations in Fq fol-
lowing the approach from [13]. Finally, recovering u from v takes 1S+5M+1I in Fq5 . The computational cost
of point decompression is comparable to that of the decompression algorithm from [13] for elliptic curves in
short Weierstrass form.

In order to estimate of the average time of compression anddecompression for groups of di�erent bit-size,
we consider primes q1, q2, and q3 such that 3|qi − 1 for all i, of bit-length 96, 112 and 128, respectively. For
each qi, we consider five pairs of birationally equivalent curves (E, Ea,d), defined overFqi , such that the order
of T3 is prime of bit-length respectively 192, 224 and 256. On each pair of curves we randomly choose 20000
pairs of points (P�, P) of trace zero which correspond to each other via the birational isomorphism between
the curves. For each pair of points, we computeR�(P�),R(P),R�−1(R�(P�)),R−1(R(P)). For each computation,
we consider the average time in milliseconds for each curve, and then the averages over the five curves. The
average computation times are reported in Table 7.

Table 8 contains the ratios of the average times for point compression and decompression on elliptic
curves in short Weierstrass form and twisted Edwards curves.

Finally, Table 9 summarizes the number of operations for point compression and decompression. We
compare the operation count from this paper with the one for elliptic curves in short Weierstrass form
from [13].

Funding: The research reported in this paper was partially supported by the Swiss National Science Founda-
tion under grant no. 200021_150207.
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Compression n = 3 elliptic 2S+6M+1I in Fq
Compression n = 3 Edwards 1M+1I in Fq3 and 2S+6M+1I in Fq
Decompression n = 3 elliptic 1M in Fq3 , 5S+4M+1I, one square root, two cube roots in Fq
Decompression n = 3 Edwards 2M+1I in Fq3 , 5S+6M+2I, one square root, two cube roots in Fq
Compression n = 5 elliptic 3S+18M+3I in Fq5
Compression n = 5 Edwards 2S+79M+3I in Fq5
Decompression n = 5 elliptic O(log2 q) operations in Fq, 1S+3M+1I in Fq5
Decompression n = 5 Edwards O(log2 q) operations in Fq, 1S+5M+1I in Fq5

Table 9. Number of operations for point compression and decompression for elliptic curves in short
Weierstrass form and Edwards curves.
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