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Abstract: We formulate a generalized concept of asymptotic completeness and show
that it holds in any Haag–Kastler quantum field theory with an upper and lower mass
gap. It remains valid in the presence of pairs of oppositely charged particles in the
vacuum sector, which invalidate the conventional property of asymptotic completeness.
Our result can be restated as a criterion characterizing a class of theories with complete
particle interpretation in the conventional sense. This criterion is formulated in terms
of certain asymptotic observables (Araki–Haag detectors) whose existence, as strong
limits of their approximating sequences, is our main technical result. It is proven with
the help of a novel propagation estimate, which is also relevant to scattering theory of
quantum mechanical dispersive systems.

1. Introduction

The physical interpretation of local relativistic quantum field theories (QFT) in terms
of particles is a long-standing open problem. The only known class of non-trivial
asymptotically complete models are the recently constructed two-dimensional theories
with factorizing S-matrices [Le08,Ta13]. In the thoroughly studied P(φ)2 models only
partial results on asymptotic completeness (AC) of two- and three-particle scattering
have been found [SZ76,CD82]. The progress on this fundamental problem is hindered
by several conceptual and technical difficulties:

(1) On the conceptual side we face a difficulty which is typical for QFT: the alge-
bra of the observables of a system with infinitely many degrees of freedom may
have many non-equivalent representations (‘sectors’) labelled by some ‘charge’
[DHR71,DHR74,BF82]. Thus the vacuum sector, whose Hilbert space H consists
of states of zero charge, may contain collections of charged particles whose total
charge is zero, for example pairs of oppositely charged excitations. As such con-
figurations do not belong to the subspace H+ of Haag–Ruelle scattering states of
neutral particles, they undermine the conventional AC relation:
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H+ = H, (1.1)

inherited from quantum mechanics.
(2) Even if a theory has trivial superselection structure, or all its superselection sectors

are properly taken into account, the conventional AC may fail due to the presence
of (unphysical) states with too many local degrees of freedom, which do not admit
any particle interpretation. This is the case in certain generalized free fields [Gre61,
HS65].

(3) On the technical side the main stumbling block is our poor understanding of dynam-
ics of dispersive systems, i.e., systems of particles with non-quadratic dispersion
relations. We recall in this context that the classical results on the n-body AC in
quantum mechanics [SiSo87,Gr90,De93] do not apply to such theories.

In essence, the first two problems above mean that it is not possible to prove con-
ventional AC from the Haag–Kastler postulates, since there exist counterexamples of
physical (1) and unphysical (2) type. It is at best possible to formulate criteria which
characterize a class of theories for which (1.1) holds. A search for such conditions, initi-
ated almost half a century ago in [HS65] and continued in [Bu87,Bu94,BS05], has so far
been unsuccessful. In the present work we formulate a model-independent criterion for
conventional AC in massive Haag–Kastler QFT. Our analysis can be summarized as fol-
lows: To tackle difficulty (1), we introduce a ‘charged particles free’ subspace Hcpf ⊂ H,
defined in (1.11) below. This subspace is constructed with the help of suitable asymp-
totic observables (generalizations of the Araki–Haag detectors [AH67]), sensitive only
to neutral particles. We formulate a generalized (weaker) concept of AC, suitable for
theories with non-trivial superselection structure, which requires that

H+ = Hcpf . (1.2)

We show that this variant of AC holds in any Haag–Kastler QFT with an upper and
lower mass gap, as defined in Sect. 2.1 below. This class includes non-trivial models,
as for example λφ4

2 and λφ4
3 theories at small λ [GJS73,GJS74,Bur77]. Incidentally,

relation (1.2) shows that also the unphysical states of type (2) are eliminated from the
‘charged particles free’ subspace. Equality (1.2) can immediately be reformulated as a
criterion for conventional AC:

H = Hcpf ⇔ H+ = H. (1.3)

Our proof of relations (1.2), (1.3) relies on deep similarities between non-relativistic
and relativistic scattering theory brought to light in our recent work [DG12]. They
allow us to apply powerful quantum-mechanical techniques, as for example the method
of propagation estimates [SiSo87], in the relativistic setting. At this technical level
we encounter difficulty (3): The approach of Graf [Gr90], which relies on a phase
space propagation estimate, does not apply in the presence of three or more particles
with relativistic dispersion relations. We solve this problem with the help of a novel
propagation estimate (Proposition 5.3) which is the main technical result of this work. We
expect that it will also find applications in scattering theory of non-relativistic dispersive
systems [Zi97,Ge91].

The question if criterion (1.3) is useful for proving conventional AC in concrete
interacting models is left open in the present work. Nevertheless, let us provide several
remarks on this point which may indicate directions of future research: For theories
with trivial superselection structure we expect that our criterion is sharp in the sense
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that it only eliminates unphysical examples of type (2). We recall in this context that
general conditions for the absence of Doplicher–Haag–Roberts (DHR) sectors in two-
dimensional massive theories were given in [Mu98]. These conditions (Haag duality for
double cones and split property for wedges) offer a more specific framework for future
investigations of the problem of AC in concrete interacting theories. A class of examples
which should fit into this setting are the P(φ)2 models in the one-phase region.1

Theories with non-trivial superselection structure should be embedded into larger
theories, which take all the superselection sectors into account, before criterion (1.3)
is checked. Such an embedding can, in principle, be accomplished for any massive
Haag–Kastler QFT by a suitable variant of the DHR construction [DHR71,DHR74]. In
particular, for massive theories in physical spacetime this procedure is very well under-
stood [BF82] and allows for a construction of Haag–Ruelle scattering states involving
both neutral and charged particles. We recall, however, that the resulting larger the-
ory contains charge carrying fields whose commutation and localization properties may
significantly differ from the familiar properties of observables: In physical spacetime
they may have Fermi statistics and/or string-like localization. In spacetimes of lower
dimension braid group statistics [FRS89] or soliton sectors [Fr76,BFG78] may appear.
The question of validity of relations (1.2), (1.3) in the presence of these interesting
complications is left for future work. Examples of interacting theories with non-trivial
superselection structure (soliton sectors) are the P(φ)2 models in the two-phase region.2

To outline the construction of the ‘charged particles free’ subspace Hcpf , appearing
in relations (1.2) and (1.3), we need some preparations. The restrictive form of the
spectrum condition, which we adopt in this work, is important for this discussion: We
assume that the spectrum of the energy-momentum operators, denoted S p U , consists
of an isolated simple eigenvalue at zero, corresponding to the vacuum vector �, an
isolated mass hyperboloid Hm := {(E, p) ∈ R

1+d : E = ω(p)}, ω(p) := √
p2 + m2,

carrying neutral single-particle states of mass m > 0 and a multiparticle spectrum G2m
whose lower boundary is H2m . For precise definitions of other concepts appearing in the
discussion below the reader should consult Sect. 2.

Let us fix an energy-momentum vector p̃ = (E, p) ∈ Hm , and construct time-
dependent families of observables t �→ Ct which are the main building blocks of Hcpf :
We choose an almost-local operator B from the algebra of observables A of our theory,
s.t. its energy-momentum transfer belongs to a small neighbourhood of − p̃. Denoting
by B(t, x) the translation of B by the spacetime vector (t, x) and choosing a suitable
function on the phase space h ∈ C∞0 (T ∗Rd) we set

Ct :=
∫

hw
t (x, y)B∗(t, x)B(t, y)dxdy, (1.4)

where ht (x, ξ) := h(x/t, ξ), hw
t ∈ B(L2(Rd)) is the Weyl quantization of the symbol

ht and hw
t (x, y) is its integral kernel. The function h essentially has the form h(x, ξ) =

h0(x)χ(x−∇ω(ξ)), where h0 ∈ C∞0 (Rd) is supported in a small neighbourhood of the
point ∇ω(p) and χ is supported in a small neighbourhood of zero.

Let us now justify that t �→ Ct can be interpreted for large t as a detector sensitive
only to neutral particles whose energies-momenta belong to a small neighbourhood of
p̃. By computing the limit C+ of t �→ Ct , as t → ∞ on the subspace of Haag–Ruelle

1 Split property for wedges is expected but not known yet in these theories. Cf. Section 7 of [Mu98].
2 We refer to the Appendix of [SW] and references therein for a discussion of superselection structure and

its relation to the problem of AC in P(φ)2 models.
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scattering states involving both neutral and charged particles, one obtains a counterpart
of formula (28) from [AH67]:

C+ = (2π)d
∑

q,q ′

∫
dξ h

(∇ωq(ξ), ξ
)〈ξ, q|B∗B|ξ, q ′〉a∗+,q(ξ)a+,q ′(ξ), (1.5)

where ωq(ξ) :=
√
ξ2 + m2

q , mq is the mass of a particle of type q, |ξ, q〉 its plane-wave

configuration with momentum ξ and a∗+,q(ξ) the asymptotic creation operator of such a
configuration, given by the Haag–Ruelle theory. The sum in (1.5) extends over all pairs
q, q ′ s.t. mq = mq ′ . In view of the relation h(∇ωq(ξ), ξ) = h0(∇ωq(ξ))χ(∇ωq(ξ) −
∇ω(ξ)) and of the support properties of h0 and χ , the function ξ �→ h(∇ωq(ξ), ξ) is
non-zero only for such ξ that (ωq(ξ), ξ) is in a small neighbourhood of p̃. (In particular,
mq must be close to m). For such ξ we also have

B|ξ, q〉 = |�〉〈�|B|ξ, q〉, (1.6)

since the energy-momentum transfer of B is close to − p̃ and mq ≥ m for all q.3 If
the particle of type q is neutral, we can easily find B, within the above restrictions, s.t.
〈�|B|q, ξ 〉 �= 0. However, if the particle of type q is charged, we have 〈�|B|q, ξ 〉 = 0,
since observables cannot create charged states from the vacuum. Hence, the sum in (1.5)
extends only over neutral particle types and the integral over such ξ that (ω(ξ), ξ) is
in a small neighbourhood of p̃. Thus any non-zero vector from the range of C+, on the
subspace of Haag–Ruelle scattering states, contains a neutral particle whose energy-
momentum vector is in a small neighbourhood of p̃ (and possibly some other neutral or
charged particles).

We mention as an aside that for a symbol h(x, ξ) = h0(x) we recover from (1.4) a
time-dependent family of observables of the form

CAH
t :=

∫
h0

( x

t

)
B∗(t, x)B(t, x)dx (1.7)

which is the usual Araki–Haag detector [AH67]. Arguing as above one can justify that
these detectors are sensitive only to particles whose velocities belong to the support of
h0, i.e., are in a neighbourhood of ∇ω(p). However, one cannot conclude in this case
that the masses m′ of these particles are close to m. Thus t �→ CAH

t is sensitive not only
to neutral particles of mass m, but may also detect some neutral or charged particles
whose mass hyperboloids are embedded in the multiparticle spectrum in the respective
sector. (Charged particles with isolated mass hyperboloids can be excluded by exploiting
the energy-momentum transfer of B, similarly as above). While this sensitivity to other
particles would disappear in the next step of our analysis, which concerns products of
detectors (see (1.8) below), we find it conceptually more satisfactory to work from the
outset with detectors (1.4), which are only sensitive to neutral particles of mass m. A
more technical reason to use these detectors, related to difficulty (3), will be discussed
later on in this section.

Coming back to the construction of the ‘charged particles free’ subspace Hcpf , we
fix some open bounded set 	 ⊂ G2m , which is small compared to the mass gap, (i.e.,

3 If the particle of type q is neutral, we have mq = m since we assumed that there is only one isolated mass
hyperboloid in S p U . If the particle of type q is charged, we have mq ≥ m, since otherwise the multiparticle
spectrum G2m in the vacuum sector would start below E = 2m due to the presence of pairs of oppositely
charged particles of mass mq .
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s.t. (	−	)∩S p U = {0}) and let 1	(U ) be the corresponding spectral projection. We
intend to characterize states from the range of 1	(U )which are configurations of n ≥ 2
neutral particles of mass m. Let us consider one such configuration consisting of particles
whose energy-momentum vectors are centered around some p̃i ∈ Hm , i = 1, . . . , n,
which satisfy p̃1 + · · · + p̃n ∈ 	 and p̃i �= p̃ j for i �= j . We denote by t �→ Ci,t ,
i = 1, . . . , n, detectors of the form (1.4) sensitive to neutral particles whose energy-
momentum vectors are close to p̃i . In particular, we require that the corresponding
functions hi ∈ C∞0 (T ∗Rd) have disjoint supports in the first variable. A coincidence
arrangement of this collection of detectors, defined as

Q+
n(	)
 := s− lim

t→∞C1,t . . .Cn,t
, 
 ∈ 1	(U )H, (1.8)

is an asymptotic observable sensitive to the prescribed configuration of n neutral par-
ticles. In fact, for 
 from the subspace of Haag–Ruelle scattering states, it follows
from our discussion of individual detectors above that any vector from the range of
Q+

n(	) contains only the prescribed configuration of neutral particles. (The presence
of any other particles is energetically excluded, since Q+

n(	) commutes with 1	(U ),
p̃1 + · · · + p̃n ∈ 	 and 	 is small compared to the mass gap). It is an important finding
of the present paper that the same holds for any 
 ∈ 1	(U )H, including the existence
of the limit in (1.8). Leaving the question of convergence in (1.8) to the later part of
this Introduction, we set H(	) = 1	(U )H and define the n-particle component of the
‘charged particles free’ subspace associated with the set 	 as

Hcpf
n (	) := Span{Q+

n,α(	)H(	) : α ∈ J }cl, (1.9)

where the span extends over the collection of all the asymptotic observables of the form
(1.8), corresponding to various configurations of n neutral particles with total energy-
momentum in 	. We show in Theorems 2.8 and 2.9 that

Hcpf
n (	) = H+

n(	), (1.10)

where H+
n(	) is the subspace of n-particle Haag–Ruelle scattering states (of particles

from Hm) with total energy-momentum in 	. Since the vacuum and the neutral single-
particle states are also ‘charged particles free’, we set

Hcpf := C�⊕ 1Hm (U )H⊕ Span{Hcpf
n (	) : n ≥ 2,	 ⊂ G2m }cl, (1.11)

where the span extends over all open bounded sets 	 s.t. (	 − 	) ∩ S p U = {0}.4
Making use of (1.10), we immediately obtain the generalized AC relation Hcpf = H+

and criterion (1.3) for conventional AC.
A crucial technical step of our analysis is the proof of existence of the limits (1.8). We

recall that the convergence of Araki–Haag detectors on the subspace of scattering states
of bounded energy follows from the results in [AH67,Bu90]. However, their convergence
on the orthogonal complement of this subspace, which is of great importance for the
question of AC, is a long-standing open problem, discussed for example in [Ha]. To

4 If the multiparticle spectrum G2m contains an embedded mass hyperboloid Hm′ , m′ ≥ 2m, the cor-
responding spectral subspace belongs to the orthogonal complement of Hcpf by relation (1.10). This is
conceptually not completely satisfactory, since the particles from Hm′ are neutral. One could improve on this
point by including also detectors sensitive to particles from Hm′ and using a variant of Haag–Ruelle theory
suitable for embedded mass-shells [He71,Dy05]. However, we leave this problem for future investigations.



1172 W. Dybalski, C. Gérard

tackle this problem, we essentially reduce it to scattering theory of an n-body dispersive
Hamiltonian. Let us explain this reduction:

Let us set Qn,t (	) := C1,t . . .Cn,t1	(U ). Exploiting locality and the disjointness
of supports of hi (in the first variable) we can write:

Qn,t (	)
=
∫

Hw
t (x, y)B∗1 (t, x1) . . . B∗n (t, xn)B1(t, y1). . .Bn(t, yn)
dxd y+O(t−∞),

(1.12)

where x := (x1, . . . , xn), y := (y1, . . . , yn) and we denote by Hw
t (x, y) the distribu-

tional kernel of

Hw
t := hw

1,t ⊗ · · · ⊗ hw
n,t (1.13)

and by O(t−∞) a term which vanishes in norm faster than any inverse power of t .
Exploiting the fact that
 ∈ 1	(U )H and our assumptions on the energy-momentum

transfers of Bi , we can write

B1(t, y1) . . . Bn(t, yn)
 = �(�|B1(t, y1) . . . Bn(t, yn)
)H. (1.14)

We set

Ft (y) := (�|B1(t, y1) . . . Bn(t, yn)
)H,

and note that by a result from [Bu90], Ft ∈ L2(Rnd) for any t ∈ R. Thus we obtain
from (1.12):

Qn,t (	)
 =
∫ (∫

Hw
t (x, y)Ft (y)d y

)
B∗1 (t, x1) . . . B∗n (t, xn)�dx + O(t−∞).

(1.15)

If we replaced the expression in brackets above by a sum of products of n positive
energy solutions of the Klein–Gordon equation, the first term on the r.h.s. of (1.15)
would become an n-particle scattering state approximant. While such a substitution is
not possible at finite times, it can be performed asymptotically: In fact, as we show in
Theorem 5.4, there exists the limit

F+ = lim
t→∞ eitω̃(Dx )Hw

t Ft , (1.16)

where ω̃(Dx ) := ω(Dx1)+ · · ·+ω(Dxn ). In Theorem 4.1 we verify that the existence of
this limit implies the convergence of t �→ Qn,t (	)
 as t →∞. The key step towards
the proof of convergence in (1.16), which we take in Lemma 4.2, is to show that Ft
satisfies the following evolution equation with a source term:

∂t Ft = −iω̃(Dx )Ft + Rt , (1.17)

where the source term satisfies Hw
t Rt = O(t−∞) due to locality and the disjointness of

supports of hi in the first argument.
It is easy to see that the Schrödinger equation of a system of massive particles with rel-

ativistic dispersion relations, interacting with a rapidly decaying potential, has a general
form of (1.17). Thus we reduced the problem of convergence of the generalized Araki–
Haag detectors in (1.8) to the question of existence of the limit (1.16) in a dispersive
system described by the evolution equation (1.17).
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For n = 2 we solved this problem in a recent publication [DG12], for standard Araki–
Haag detectors whose symbols hi are independent of momentum, following the approach
of Graf [Gr90]: we combined a large velocity propagation estimate, which in our context
says that particles cannot move faster than light, with a phase space propagation estimate,
which encodes the fact that the instantaneous velocity of a particle equals its average
velocity at large times. The convex Graf function, appearing in the derivation of this
latter estimate, must vanish near the collision plane { x1 = x2 } to ensure a rapid decay
of the rest term Rt in (1.17). Due to this restriction, the method does not generalize to the
case n > 2, which involves several collision planes ({ x1 = x2 }, { x1 = x3 }, { x2 = x3 },
etc.) In fact, since the Graf function is convex, it would have to vanish in the convex hull
of these collision planes, which contains the relevant part of the configuration space.
This difficulty is one of several obstacles which hinder our understanding of AC for
dispersive systems of three or more particles [Zi97,Ge91].

A solution of this problem in the case of a product of n ≥ 3 particle detectors is the
main technical result of the present paper. In this case it is instrumental to use symbols hi
in (1.4) which depend also on momentum. As we mentioned above, they have the form
hi (x, ξ) = h0,i (x)χ(x − ∇ω(ξ)), where the supports of h0,i ∈ C∞0 (Rd) are disjoint
(with some minimal distance ε > 0) and χ is supported in a ball around zero whose
radius is ε′ � ε. For such symbols hi and Hw

t as in (1.13) we prove in Proposition 5.3
the following new variant of a phase space propagation estimate:

∫ +∞

1
‖(x/t −∇ω̃(Dx )) · Hw

t Ft‖2 dt

t
<∞. (1.18)

Abstract arguments, which are an extension of results of standard scattering theory to
inhomogeneous evolution equations like (1.17), allow then to deduce from (1.18) the
existence of the limit (1.16).

Our paper is organized as follows: In Sect. 2 we recall the framework of algebraic
QFT, introduce some central concepts and state our main results. Section 3 contains
more technical preliminaries. In Sect. 4 we show that the existence of the intermediate
limit (1.16) implies the convergence of the approximating sequences of detectors in (1.8).
Section 5 contains the proof of existence of the intermediate limit (1.16). In Sect. 6 we
show that the ranges of the asymptotic observables (1.8) span the entire subspace of the
Haag–Ruelle scattering states.

This paper can be seen as a (non-trivial) generalization of our work [DG12] on two-
particle scattering to the n-particle case. Readers who are familiar with [DG12] will find
material which is special to the n > 2 case in Sects. 2.3–3.2, 3.5, 3.6 and in Sect. 5.

2. Framework and Results

In this section we recall the Haag–Kastler framework of local quantum field theory and
state our main results. The preliminary Sects. 2.1 and 2.2 are similar to the corresponding
subsections of [DG12].

2.1. Nets of local observables. We base our theory on a net

O �→ A(O) ⊂ B(H)
of von Neumann algebras attached to open bounded regions of Minkowski spacetime
R

1+d , which satisfies the assumptions of isotony, locality, covariance w.r.t. translations,
positivity of energy, uniqueness of the vacuum and cyclicity of the vacuum.
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Isotony says that A(O1) ⊂ A(O2) if O1 ⊂ O2, which allows to define the C∗-
inductive limit of the net, denoted by A. Locality requires that A(O1) ⊂ A(O2)

′ if
O1 and O2 are spacelike separated. To state the remaining postulates, we introduce a
strongly continuous unitary representation of translations

R
1+d � (t, x) �→ U (t, x) =: ei(t H−x ·P) on H,

which induces a group of automorphisms of A:

αt,x (B) := B(t, x) := U (t, x)BU (t, x)∗, B ∈ A, (t, x) ∈ R
1+d .

Covariance requires that

αt,x (A(O)) = A(O + (t, x)), ∀ open bounded O and (t, x) ∈ R
1+d . (2.1)

We will need a restrictive formulation of positivity of energy, suitable for massive the-
ories. We denote by Hm := {(E, p) ∈ R

1+d : E = √
p2 + m2} the mass hyperboloid

of a particle of mass m > 0 and set Gμ := {(E, p) ∈ R
1+d : E ≥ √

p2 + μ2}. We
assume that:

(i) S p U = {0} ∪ Hm ∪ G2m,

(ii) 1{0}(U ) = |�〉〈�|, � cyclic for A.
(2.2)

Here we denoted by S p U ⊂ R
1+d the spectrum of (H, P) and by 1	(U ) the spectral

projection on a Borel set	 ⊂ R
1+d . The unit vector�will be called the vacuum vector.

Part (i) in (2.2) encodes positivity of energy and the presence of an upper and lower mass
gap m. Part (ii) covers the uniqueness and cyclicity of the vacuum.

Remark 2.1. We adopt the restrictive form of the spectrum condition (2.2) (i) to remain
consistent with the discussion of AC in the Introduction. We remark, however, that our
main results, Theorems 2.8 and 2.9 below, remain valid as they stand if the assump-
tion (2.2) (i) is relaxed to S p U = {0} ∪ Hm ∪ G̃, G̃ ⊂ Gμ, m < μ ≤ 2m. If G̃\G2m
consists of isolated mass hyperboloids, our results can easily be modified so as to take
the additional types of neutral particles into account.

2.2. Relevant classes of observables. In this subsection we introduce some classes of
observables, which are important for our discussion. We start with the definition of
almost local operators. We denote by Or := { (t, x) ∈ R

1+d : |t | + |x | < r } the double
cone of radius r centered at 0.

Definition 2.2. B ∈ A is almost local if there exists a family Ar ∈ A(Or ) s.t. ‖B−Ar‖ ∈
O(〈r〉−∞). (Here 〈r〉 := √1 + r2).

For B ∈ A, we denote by B̂ the Fourier transform of (t, x) �→ B(t, x) defined as an
operator-valued distribution:

B̂(E, p) := (2π)−(1+d)/2
∫

e−i(Et−p·x)B(t, x)dtdx . (2.3)
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The support of B̂, denoted by supp(B̂) ⊂ R
1+d , is called the energy-momentum transfer

of B. We recall the following well-known properties:

(i) α̂t,x (B)(E, p) = ei(Et−p·x) B̂(E, p),

(ii) supp(B̂∗) = −supp(B̂),

(iii) B1	(U ) = 1
	+supp(B̂)

(U )B1	(U ), ∀ Borel sets 	 ⊂ R
1+d .

(2.4)

For (iii) we refer to [Ar82, Theorem 5.3]. Now we are ready to define another important
class of observables, which are the energy decreasing operators:

Definition 2.3. B ∈ A is energy decreasing if supp(B̂)∩V+ = ∅, where V+ := {(E, p) :
E ≥ |p|} is the closed forward light cone.

In the rest of the paper we will work with the following set of observables:

Definition 2.4. We denote by L0 ⊂ A the subspace spanned by the elements B ∈ A
such that:

(i) B is energy decreasing, supp(B̂) is compact,

(ii) R
1+d � (t, x) �→ B(t, x) ∈ A is C∞ in norm,

(iii) ∂αt,x B(t, x) is almost local for all α ∈ N
1+d .

Clearly, if (i) and (ii) hold, then ∂αt,x B(t, x) is energy decreasing for any α ∈ N
1+d . It

is easy to give examples of elements of L0: let A ∈ A(O) and f ∈ S(R1+d) with supp f̂
compact and supp f̂ ∩ V+ = ∅. Then

B = (2π)−(1+d)/2
∫

f (t, x)A(t, x)dtdx (2.5)

belongs to L0, since B̂(E, p) = f̂ (E, p) Â(E, p). (See (3.1) below for definition of f̂ ).

2.3. Pseudo-differential operators. We consider the phase space T ∗R� = R
� × (R�)′,

whose elements are denoted by (x, ξ). For h ∈ S(T ∗R�)we define its Weyl quantization
hw by

hwu(x) = (2π)−�
∫

ei(x−y)·ξh
( x + y

2
, ξ

)
u(y)dydξ, u ∈ S(R�). (2.6)

It is well known that hw is bounded on S(R�) and L2(R�).
Denoting by A(x, y) ∈ S ′(R�×R

�) the distributional kernel of A : S(R�)→ S ′(R�),
one has:

hw(x, y) = (2π)−�/2

̂

h
( x + y

2
, x − y

)
, (2.7)

where

̂

h(x, y) = (2π)−�/2 ∫
eiy·ξh(x, ξ)dξ is the inverse Fourier transform of h in the

ξ variable.
We refer to [Ho85] and [DG97, Appendix D] for systematic expositions of the Weyl

quantization. Properties needed in the present work are summarized in Sect. 3.2 below.
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2.4. Results. To B ∈ L0, h ∈ S(T ∗Rd), we associate the one-particle detector:

Ct :=
∫

B∗(t, x)hw
t (x, y)B(t, y)dxdy

=
∫

B∗
(

t, x +
y

2

) ̂

h
( x

t
, y

)
B

(
t, x − y

2

)
dxdy, (2.8)

where we set ht (x, ξ) = h( x
t , ξ). In view of Lemma 3.4 below, one has

sup
t∈R
‖Ct1	̃(U )‖ <∞,

for any bounded Borel set 	̃.
A much more convenient formula for Ct , using notation introduced below in Sect. 3,

is:

Ct = eit H (
a∗B ◦ (1H ⊗ hw

t ) ◦ aB
)

e−it H . (2.9)

In particular, it remains meaningful if hw
t is replaced by any bounded operator on L2(Rd).

For example, for symbols h0 ∈ C∞0 (Rd), independent of momentum, we recover from
(2.9) the conventional Araki–Haag detectors from [AH67]:

CAH
t :=

∫
B∗(t, x)h0

( x

t

)
B(t, x)dx,

which we considered in [DG12]. These detectors are only sensitive to average velocity
x/t of a particle. In view of formula (2.8), our detectors Ct are essentially averages
(w.r.t. y) of the conventional Araki–Haag detectors, and are also sensitive to momentum
ξ of a particle.

We fix now Bi ∈ L0, hi ∈ S(T ∗Rd) for 1 ≤ i ≤ n and define Ci,t as in (2.8). For
any open bounded subset 	 ⊂ G2m we define the n-particle detector:

Qn,t (	) := C1,t . . .Cn,t1	(U ). (2.10)

Our main technical result is the strong convergence of Qn,t (	) as t →∞ if the extension
of 	 is smaller than the mass gap (i.e., (	 − 	) ∩ S p U = {0}), B is 	-admissible
in the sense of Definition 2.5 and H := h1 ⊗ · · · ⊗ hn is admissible in the sense of
Definition 2.7.

Definition 2.5. Let 	 ⊂ R
1+d be an open bounded set and B1, . . . , Bn ∈ L0. We say

that B = (B1, . . . , Bn) is 	-admissible if

(−supp(B̂i )) ∩ S p U ⊂ Hm, i = 1, . . . , n, (2.11)

−(supp(B̂1) + · · · + supp(B̂n)) ⊂ 	, (2.12)

(	 + supp(B̂1) + · · · + supp(B̂n)) ∩ S p U ⊂ {0}. (2.13)

Remark 2.6. In Lemma 7.4 it is shown that if 	 ⊂ G2m is an open bounded set s.t.
(	 − 	) ∩ S p U ⊂ {0} and −supp(B̂1), . . . ,−supp(B̂n) are sufficiently small neigh-
bourhoods of vectors p̃1, . . . , p̃n ∈ Hm s.t. p̃i �= p̃ j for i �= j and p̃1 + · · · + p̃n ∈ 	
then B = (B1, . . . , Bn) is	-admissible. We also note that for such	 (2.11) and (2.12)
cannot be simultaneously satisfied for n = 1 if B1 �= 0.
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Let us introduce the notation

D0 := { x ∈ R
nd : xi = x j for some i �= j }, (2.14)

B(0, ε) := { x ∈ R
nd : |x | < ε}, (2.15)

B̃(0, ε) := { x ∈ R
nd : |xi | < ε, i = 1, . . . , n }, (2.16)

and define ω̃(ξ) := ω(ξ1) + · · · + ω(ξn). Note that ∇ω̃(ξ) ∈ B̃(0, 1) for any ξ ∈ R
nd .

Definition 2.7. Let H ∈ C∞0 (T ∗Rnd;R�). We say that H is admissible, if there exists a
compact set K ⊂ R

nd and ε > 0 such that K + B̃(0, ε) ⊂ B̃(0, 1)\D0 and

supp H ⊂ { (x, ξ) ∈ T ∗Rnd : ∇ω̃(ξ) ∈ K , x −∇ω̃(ξ) ∈ B(0, ε) }. (2.17)

Theorem 2.8. Let 	 ⊂ G2m be an open bounded set s.t. (	 − 	) ∩ S p U = {0}.
Let B = (B1, . . . , Bn) be a collection of elements of L0 s.t. B is 	-admissible and let
h = (h1, . . . , hn) be a collection of elements of C∞0 (T ∗Rd) s.t. H = h1 ⊗ · · · ⊗ hn is
admissible. Then there exists the limit

Q+
n(	) := s− lim

t→∞C1,t . . .Cn,t1	(U ), (2.18)

where Ci,t are defined in (2.8) for Bi , hi , i = 1, . . . , n. The range of Q+
n(	) belongs

to H+
n(	) := 1	(U )H+

n , where H+
n is the subspace of n-particle scattering states. (See

Definition 6.7).

Proof. Follows immediately from Theorems 4.1 and 5.4. ��
Theorem 2.8 substantiates our discussion below formula (1.8) in the Introduction, where
we argued that vectors from the ranges of Q+

n(	) should describe configurations of n
neutral particles with total energies-momenta in	. This theorem allows us to define the
n-particle component of the ‘charged particles free’ subspace Hcpf

n (	) associated with
any open bounded set 	 ⊂ G2m s.t. (	−	) ∩ S p U = {0}:

Hcpf
n (	) := Span{Q+

n,α(	)H(	) : α ∈ J }cl, (2.19)

where J is the collection of pairs α = (B, h) satisfying the conditions from Theorem 2.8
and Q+

n,α(	) is the limit (2.18) corresponding to α. We also define the total ‘charged
particles free’ subspace:

Hcpf := C�⊕ 1Hm (U )H⊕ Span{Hcpf
n (	) : n ≥ 2,	 ⊂ G2m }cl, (2.20)

where the span extends over all open bounded sets	 ⊂ G2m s.t. (	−	)∩S p U = {0}.
It follows immediately from Theorem 2.8 that

Hcpf
n (	) ⊂ H+

n(	) and therefore Hcpf ⊂ H+, (2.21)

where H+ is the subspace of all scattering states of neutral particles of mass m (see
Definition 6.7). The last inclusion can be interpreted as a weak variant of AC, as it says
that certain subspace Hcpf ⊂ H, defined without reference to scattering states, is in
fact contained in H+. The larger the subspace Hcpf is, the closer we are to verifying
AC proper. For example, if we could show that Hcpf = H, conventional AC would
follow, which gives one implication in our criterion for AC stated in (1.3). The opposite
implication is given by the following theorem, which shows that the inclusions in (2.21)
are in fact equalities. This result, whose proof is given in Sect. 7, guarantees, in particular,
that Hcpf

n (	) �= 0 for any 	 as specified above.
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Theorem 2.9. Let	 ⊂ G2m be an open bounded set such that (	−	)∩S p U = {0}.
Let Hcpf

n (	) and Hcpf be as defined in (2.19) and (2.20), respectively. Then

Hcpf
n (	) = H+

n(	) and therefore Hcpf = H+, (2.22)

where H+
n(	) := 1	(U )H+

n , H+
n is the subspace of n-particle scattering states and H+

is the subspace of all scattering states. (See Definition 6.7).

3. Preliminaries

In this section we specify our notation and collect some basic properties of particle
detectors. Sections 3.3, 3.4 are similar to [DG12, Subsect. 3.2, 3.3]. The remaining
subsections contain essential generalizations of the material from [DG12].

3.1. Notation.

– By x, x1, x2, . . . we denote elements of R
d and by ξ, ξ1, ξ2, . . . elements of (Rd)′.

We write T ∗Rd := R
d × (Rd)′ to denote the phase space.

– We set x = (x1, . . . , xn) and ξ = (ξ1, . . . , ξn) to denote elements of R
nd and (Rnd)′.

The Lebesgue measure on R
nd is denoted dx .

– We write K � R
� if K is a compact subset of R

�.

– We set 〈x〉 := (1 + x2)
1
2 for x ∈ R

d and ω(p) = (p2 + m2)
1
2 for p ∈ R

d .
– We denote the momentum operator i−1∇x by Dx .
– We denote by (t, x) or (E, p) elements of R

1+d .
– If f : R1+d → C we will denote by ft : Rd → C the function ft ( · ) := f (t, · ).
– We denote by S(R1+d) the Schwartz class in R

1+d . If f ∈ S(R1+d) we define its
(unitary) Fourier transform:

f̂ (E, p) := (2π)−(1+d)/2
∫

ei(Et−p·x) f (t, x)dtdx,

̂

f (t, x) := (2π)−(1+d)/2
∫

e−i(Et−p·x) f (E, p)d Edp.

(3.1)

(Note the different sign in the exponent in comparison with (2.3), where the Fourier
transform is taken in the sense of operator valued distributions).

– If f ∈ S(Rd) we set, consistently with (3.1),

f̂ (p) := (2π)−d/2
∫

e−ip·x f (x)dx,

f̌ (x) := (2π)−d/2
∫

eip·x f (p)dp.
(3.2)

– If h ∈ S(T ∗Rd) is a symbol, ĥ and

̂

h denote the Fourier transform and the inverse
Fourier transform w.r.t. the momentum variable ξ only.

– By πx : T ∗Rd → R
d we will denote the projection from the phase space to config-

uration space.
– If B is an observable, we write B(∗) to denote either B or B∗. We will also set

Bt := B(t, 0), B(x) := B(0, x) so that B(t, x) = Bt (x).
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3.2. Pseudodifferential calculus. For future reference, we recall the following well-
known facts:

Proposition 3.1. Let h ∈ S(T ∗R�), ht (x, ξ) := h(x/t, ξ) and ω ∈ C∞(R�) such that
∂αξ ω is bounded for all |α| ≥ 1. Then

(1) If h ≥ 0 then hw
t ≥ − c

t for some c ≥ 0 independent of t .
(2) s− limt→∞ eitω(Dx )hw

t e−itω(Dx ) = h(∇ω(Dx ), Dx ) = h(∇ω(·), ·)w.
(3) [ω(Dx ), ihw

t ], defined as a continuous linear map S(R�) → S(R�), extends to a
bounded operator on L2(R�) s.t.:

[ω(Dx ), ihw
t ] =

1

t

(∇ξω · (∇x h)t
)w + O(t−2).

(4) Let f ∈ C∞(R�) be bounded by a fixed polynomial, together with all its derivatives.
Then f (x/t)hw

t and f (Dx )hw
t , defined as continuous linear maps S(R�)→ S(R�),

extend to bounded operators on L2(R�) s.t.

f (x/t)hw
t = (h1,t )

w + O(t−1), f (Dx )h
w
t = hw

2,t + O(t−1),

where h1,t (x, ξ) := f (x/t)h(x/t, ξ) and h2,t (x, ξ) = f (ξ)h(x/t, ξ).
(5) Let g ∈ S(T ∗R�) and gt (x, ξ) = g(x/t, ξ). Then (gw

t )(h
w
t ) = (gt ht )

w + O(t−1).
(6) Let χ ∈ C∞0 (R�) be s.t. χ(x) = 1 near πx supp h. Let χt (x) = χ(x/t) and denote

the corresponding operator on L2(R�) also by χt . Then (1− χt )hw
t = O(t−∞).

3.3. Auxiliary maps aB . For B ∈ A, f ∈ S(Rd) we write:

B( f ) :=
∫

B(x) f (x)dx,

so that B∗( f ) = B( f )∗. If B1, B2 ∈ A are almost local, then

‖[B1(x1), B2(x2)]‖ ≤ CN 〈x1 − x2〉−N , ∀ N ∈ N, (3.3)

and consequently

‖[B1( f1), B2( f2)]‖ ≤ CN

∫
| f1(x1)|〈x1 − x2〉−N | f2(x2)|dx1dx2, f1, f2 ∈ S(Rd).

(3.4)
Now we introduce auxiliary maps which will be often used in our investigation:

Definition 3.2. Let B ∈ A. We denote by aB : H → S ′(Rd;H) the linear operator
defined as:

aB
(x) := B(x)
, x ∈ R
d .

The operator aB : H→ S ′(Rd;H) is continuous and

B( f ) = (1H ⊗ 〈 f |) ◦ aB, f ∈ S(Rd), (3.5)

where (1H ⊗ 〈 f |) : S ′(Rd;H)→ H is defined on simple tensors by

(1H ⊗ 〈 f |)(
 ⊗ T ) = T ( f )
, 
 ∈ H, T ∈ S ′(Rd). (3.6)
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By duality a∗B : S(Rd ;H)→ H is continuous and we have

B∗( f ) = a∗B ◦ (1H ⊗ | f 〉), f ∈ S(Rd). (3.7)

The group of space translations

τy
(x) := 
(x − y), y ∈ R
d ,

is strongly continuous on S ′(Rd;H), and its generator is Dx i.e., τy = e−iy·Dx . Clearly,
we have the identity:

aB ◦ e−iy·P = e−iy·(Dx +P) ◦ aB, y ∈ R
d . (3.8)

The following lemma collects some elementary properties of aB .

Lemma 3.3. Let B ∈ A. Then:

(1) For any Borel set 	 ⊂ R
1+d :

aB1	(U ) = (1	+supp(B̂)
(U )⊗ 1S ′(Rd )) ◦ aB1	(U ),

a∗B ◦ (1	(U )⊗ 1S(Rd )) = 1
	−supp(B̂)

(U )a∗B ◦ (1	(U )⊗ 1S(Rd )).

(2) For any f ∈ S(Rd) one has f (Dx )aB = aB f for

B f := (2π)−d/2
∫ ̂

f (−y)B(0, y)dy = (2π)−(1+d)/2
∫

f (−p)B̂(E, p)d Edp.

Moreover, B̂ f (E, p) = f (−p)B̂(E, p).
(3) If supp(B̂) is compact and f ∈ C∞(Rd) then f (Dx )aB = aB f .

Proof. (1) follows from (2.4), (2) is an easy consequence of (3.8) and (3) follows from
(1) and (2). ��

The mappings aB have much stronger properties if B ∈ L0. For example, for 	 �
R

1+d the operator aB1	(U ) maps H into L2(Rd;H) � H ⊗ L2(Rd), as shown in
Lemma 3.5 below. This is a consequence of the following important property of energy
decreasing operators, proven in [Bu90].

Lemma 3.4. Let B ∈ A be almost local and energy decreasing with supp(B̂) � R
1+d

and 	 ⊂ R
1+d be some bounded Borel set. Then there exists c ≥ 0 such that for any

F � R
d one has:

‖
∫

F
(B∗B)(x)1	(U )dx‖ ≤ c. (3.9)

Clearly, we can let F ↗ R
d in (3.9). In view of Lemma 3.4, it is convenient to

introduce the subspace of vectors with compact energy-momentum spectrum:

Hc(U ) := {
 ∈ H : 
 = 1	(U )
, 	 � R
1+d}.

There holds the following simple fact:

Lemma 3.5. Assume that 	 � R
1+d and let B ∈ L0. Then

aB1	(U ) : H→ H⊗ L2(Rd) is bounded.
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Proof. We note that

1	(U )a
∗
B ◦ aB1	(U ) =

∫

Rd
1	(U )(B

∗B)(x)1	(U )dx,

and apply Lemma 3.4. ��
Remark 3.6. Considering aB as a linear operator from H to H ⊗ L2(Rd) with domain
Hc(U ), we see that H⊗ S(Rd) ⊂ Dom a∗B , hence aB is closable.

3.4. Particle detectors. In this subsection we establish connection between the maps aB
and the particle detectors Ct introduced in (2.8).

Definition 3.7. Let B ∈ L0. For h ∈ B(L2(Rd)) we set:

NB(h) := a∗B ◦ (1H ⊗ h) ◦ aB, Dom NB(h) = Hc(U ).

From Lemmas 3.3 and 3.5 we obtain the following facts:

Lemma 3.8. We have:

(1) ‖NB(h)1	(U )‖B(H) ≤ c	,B‖h‖B(L2(Rd )),

(2) ∀ 	 � R
1+d , NB(h)1	(U ) = 1	1(U )NB(h)1	(U ), for some 	1 � R

1+d .

Denoting by h(x, y) the distributional kernel of h we have the following expression for
NB(h),

NB(h) =
∫

B∗(x)h(x, y)B(y)dxdy, (3.10)

which is meaningful as a quadratic form identity on Hc(U ). This shows that for h ∈
S(T ∗Rd), ht (x, ξ) := h

( x
t , ξ

)
, Bt := B(t, 0) and Ct as defined in (2.8), one has:

Ct = NBt (h
w
t ).

3.5. Auxiliary maps aB . We recall that B=(B1, . . . , Bn), Bi ∈ L0 and x=(x1, . . . , xn),
xi ∈ R

d . The Lebesgue measure in R
nd is denoted dx . We state the following definition

which is meaningful due to Lemma 3.5:

Definition 3.9. For B1, . . . , Bn ∈ L0 we define the linear operator:

aB : Hc(U )→ H⊗ L2(Rnd , dx),

 �→ aB
 = (aB1 ⊗ 1L2(R(n−1)d )) ◦ · · · ◦ (aBn−1 ⊗ 1L2(Rd )) ◦ aBn
.

(3.11)

Formally we have

aB
(x1, . . . , xn) = B1(x1) . . . Bn(xn)
.

We state the following lemma, which is a direct consequence of Lemmas 3.3 and 3.5.

Lemma 3.10. Let 	 � R
1+d and let B1, . . . , Bn ∈ L0. Then:

(1) aB1	(U ) : H→ H⊗ L2(Rnd , dx) is bounded,
(2) For any 	 � R

1+d one has:

aB1	(U ) = (1	+supp(B̂1)+···+supp(B̂n)
(U )⊗ 1L2(Rnd )) ◦ aB1	(U ),

a∗B ◦ (1	(U )⊗ 1L2(Rnd ))=1	−(supp(B̂1)+···+supp(B̂n))
(U )a∗B ◦ (1	(U )⊗1L2(Rnd )).
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3.6. Some consequences of almost locality. We collect some commutator estimates
which make essential use of almost locality. The proofs of Proposition 3.11 and
Lemma 3.14 are given in Appendix B.

It is convenient to introduce the following functions for N > d:

gN (ξ) :=
∫

e−iξ ·x 〈x〉−N dx . (3.12)

Clearly

∂αξ gN (ξ) ∈ O(〈ξ 〉−p), ∀p ∈ N, |α| < N − |d|,

and the operator on L2(Rd) with kernel 〈x − y〉−N equals gN (Dx ).

Proposition 3.11. Let hi ∈ B(L2(Rd)), Bi ∈ L0, 1 ≤ i ≤ n. We set B = (B1, . . . , Bn),
B = (Bn, . . . , B1) and

Rn := a∗
B
◦ (1H ⊗ h1 ⊗ · · · ⊗ hn) ◦ aB −

n∏

i=1

NBi (hi ). (3.13)

Let us fix measurable functions χi : R
d → R with 0 ≤ χi ≤ 1 and still denote by

χi ∈ B(L2(Rd)) the operator of multiplication by χi (x).
Then for any 	 � R

1+d , N ∈ N there exists a constant CN (	, B1, . . . , Bn) such
that:

‖Rn1	(U )‖B(H) ≤ CN (	, B1, . . . , Bn)

×
( n∑

i=1

(‖hi (1− χi )‖B(L2(Rd )) + ‖(1− χi )hi‖B(L2(Rd ))

) ∏

j �=i

‖h j‖B(L2(Rd ))

+
∑

i �= j

‖χi gN (Dx )χ j‖B(L2(Rd ))

n∏

i=1

‖hi‖B(L2(Rd ))

)
.

Remark 3.12. Let us explain the meaning of Proposition 3.11. By almost locality we
expect Rn to be small if the operators hi are ‘localized’ in distant regions of configuration
space. This is easy to prove if hi = hi (x) for functions hi with compact, pairwise disjoint
supports. In the general case we pick functions χi such that the operators hi (1 − χi )

and (1− χi )hi are small, i.e., hi is ‘localized’ in the support of χi . If these supports are
far away from each other, then the operators χi gN (Dx )χ j , and hence Rn , will also be
small.

Corollary 3.13. Let B be as in Proposition 3.11 and h̃i ∈ C∞0 (T ∗Rd) with πx supph̃i ∩
πx supph̃ j = ∅ for i �= j , where πx : T ∗Rd → R

d is the projection on the configuration
space. Let Rn(t) be as in (3.13) with the operators hi replaced with h̃w

i,t . Then for any

	 � R
1+d one has:

‖Rn(t)1	(U )‖B(H) ∈ O(t−∞).
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Proof. We choose functions χ̃i ∈ C∞0 (Rd) such that 0 ≤ χ̃i ≤ 1, χ̃i (x) = 1 near
πx supph̃i and suppχ̃i pairwise disjoint. We set χ̃i,t (x) := χ̃i (x/t) and denote the cor-
responding operators on B(L2(Rd)) by the same symbol. We apply Proposition 3.11 to
hi = h̃w

i,t and χi = χ̃i,t . By Proposition 3.1 (6), ‖h̃w
i,t (1 − χ̃i,t )‖ + ‖(1 − χ̃i,t )h̃w

i,t‖ ∈
O(t−∞). Similarly we can estimate the operator norm of χ̃i,t gN (Dx )χ̃ j,t by its Hilbert-
Schmidt norm which equals

( ∫
χ̃2

i,t (x)〈x − y〉−2N χ̃2
j,t (y) dxdy

) 1
2 ∈ O(td−N ).

Since N is arbitrary we obtain the lemma. ��
The following lemma is similar to Proposition 3.11. Its proof is given in Appendix B.2.

Lemma 3.14. Let B1, B2 ∈ L0, h1 ∈ B(L2(Rd)) and g2 ∈ L2(Rd). Let us fix mea-
surable functions χi : R

d → R, i = 1, 2, with 0 ≤ χi ≤ 1 and still denote by
χi ∈ B(L2(Rd)) the operator of multiplication by χi . Then for any 	 � R

1+d , N ∈ N

there exists CN (	, B1, B2) such that:

‖[NB1(h1), B∗2 (g2)]1	(U )‖B(H) ≤ CN (	, B1, B2)

× (‖h1(1− χ1)‖B(L2(Rd ))‖g2‖L2(Rd ) + ‖(1− χ1)h1‖B(L2(Rd ))‖g2‖L2(Rd )

+‖h1‖B(L2(Rd ))‖(1− χ2)g2‖L2(Rd ) +‖h1‖B(L2(Rd ))‖g2‖L2(Rd )

×‖χ1gN (Dx )χ2‖B(L2(Rd ))

)
. (3.14)

4. An Intermediate Convergence Argument

Theorem 4.1 and Lemma 4.2 below essentially reduce the proof of Theorem 2.8 to an
argument adapted from non-relativistic scattering theory, which will be presented in
Sect. 5. The results of the present section generalize to arbitrary n the corresponding
arguments from [DG12], where we studied the case of n = 2 detectors. The discussion
in Sect. 5 will be very different from [DG12], however.

Let Bi ∈ L0, hi ∈ S(T ∗Rd), i = 1, . . . , n, and set

hi,t (x, ξ) := hi

( x

t
, ξ

)
, NBi (h

w
i , t) := NBi,t (h

w
i,t ). (4.1)

We recall the notation x = (x1, . . . , xn) and ω̃(Dx ) = ω(Dx1) + · · · + ω(Dxn ), where
ω̃(Dx ) is an operator acting on L2(Rnd).

Theorem 4.1. Let 	 ⊂ R
1+d be an open bounded set, B1, . . . , Bn ∈ L0 be s.t. B is

	-admissible and let h1, . . . , hn ∈ S(T ∗Rd) be s.t. πx (supp hi ) are pairwise disjoint.
Let H(x, ξ) :=∏n

i=1 hi (xi , ξi ) and Ht (x, ξ) := H(x/t, ξ).
We set for 
 ∈ 1	(U )H:

Ft := (〈�| ⊗ 1L2(Rnd )) ◦ aBe−it H
 ∈ L2(Rnd), (4.2)

so that

Ft (x1, . . . , xn) = (�|B1(t, x1) . . . Bn(t, xn)
)H, (x1, . . . , xn) ∈ R
nd .
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Assume that:

F+ := lim
t→∞ eitω̃(Dx )Hw

t Ft exists. (4.3)

Then

lim
t→∞ NB1(h

w
1 , t) . . . NBn (h

w
n , t)
 (4.4)

exists and belongs to 1	(U )H+
n .

Proof. Applying Corollary 3.13, we get:

NB1(h
w
1,t ) . . . NBn (h

w
n,t )1	(U ) = a∗

B
◦ (1H ⊗ Hw

t ) ◦ aB1	(U ) + O(t−∞).

By the	-admissibility of B (more precisely, property (2.13)) and Lemma 3.10 we have:

aB1	(U ) = (1{0}(U )⊗ 1L2(Rnd )) ◦ aB1	(U ) = (|�〉〈�| ⊗ 1L2(Rnd )) ◦ aB1	(U ),

using the spectrum condition (2.2). Therefore we have:

eit H NB1(h
w
1,t ) . . . NBn (h

w
n,t )e

−it H
 = eit H a∗
B
(�⊗ Hw

t Ft ) + O(t−∞)

= eit H a∗
B
(�⊗ e−itω̃(Dx )F+) + o(t0), (4.5)

by (4.3). We set

St : L2(Rnd) � F �→ eit H a∗
B
(�⊗ e−itω̃(Dx )F) ∈ H.

By Lemma 3.10 the family St is uniformly bounded in norm. Moreover if g1, . . . , gn
are positive energy KG solutions with disjoint velocity supports (defined in Sect. 6.1)
and f1, . . . , fn ∈ S(Rd) are their initial data, then

St ( f1 ⊗ · · · ⊗ fn) = B∗1,t (g1,t ) . . . B∗n,t (gn,t )�,

where the Haag–Ruelle creation operators B∗i,t (gi,t ) are defined in Sect. 6.2. From The-
orem 6.5 we know that limt→∞ St ( f1 ⊗ · · · ⊗ fn) exists. By linearity and density
arguments, using the uniform boundedness of St , we conclude that limt→∞ St F exists
for any F ∈ L2(Rnd). In view of (4.5) this implies the existence of the limit in (4.4). It
is also clear from the approximation argument above that this limit belongs to H+

n . Due
to 	-admissibility of B it belongs to the range of 1	(U ). ��

The proof of the existence of the limit (4.3) will be given in the next section. The
key input is the fact that Ft solves a Schrödinger equation with Hamiltonian ω̃(Dx ) and
a source term Rt whose L2 norm decreases very fast when t → +∞ outside of the
collision planes { x ∈ R

nd : xi = x j }, i �= j . This is the content of the following
lemma:

Lemma 4.2. Let Ft be defined in (4.2). Then:

(1) Ft is uniformly bounded in L2(Rnd),
(2) t �→ Ft ∈ L2(Rnd) is C1 with

∂t Ft = −iω̃(Dx )Ft + Rt ,

where Rt satisfies the assumptions of Lemma 5.1 below.
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Proof. We have Ft (x1, . . . , xn) = (�|B1(t, x1) . . . Bn(t, xn)
)H, which is uniformly
bounded in L2(Rnd) by Lemma 3.10. We set Ḃi := ∂s Bi (s, 0)|s=0 and note that since

 ∈ Hc(U ), the map t �→ Ft ∈ L2(Rnd) is C1 with:

∂t Ft (x) =
n∑

i=1

(�|B1(t, x1) . . . Ḃi (t, xi ) . . . Bn(t, xn)
)H

=
n∑

i=1

(�|Ḃi (t, xi )B1(t, x1) . . . ǐ . . . Bn(t, xn)
)H + R1,t (x), (4.6)

where

R1,t (x) =
n∑

i=2

i−1∑

j=1

(�|B1(t, x1) . . . B j−1(t, x j−1)[B j (t, x j ), Ḃi (t, xi )]

× B j+1(t, x j+1) . . . ǐ . . . Bn(t, xn)
)H.
(For j = 1 in the above sum we set B1(t, x1) . . . B j−1(t, x j−1) := I and for j =
i − 1 we set B j+1(t, x j+1) . . . ǐ . . . Bn(t, xn) = Bi+1(t, xi+1) . . . Bn(t, xn) which is to
be understood as I if i = n). Note that Ḃi are again almost local by definition of L0.
Using almost locality of Bi , Ḃi , we easily obtain that R1,t satisfies the assumptions of
Lemma 5.1 below.

There holds for any � ∈ H:

(�|Bi (t, xi )�)H = (�|1{0}(U )Bi (t, xi )�)H = (�|Bi (t, xi )1Hm (U )�)H
= (�|Bi (xi )e

−itω(P)�)H = e−itω(Dxi )(�|Bi (xi )�),

using (2.4), (2.11) and finally (3.8). Differentiating this identity we obtain

(�|Ḃi (t, xi )�)H = −iω(Dxi )(�|Bi (t, xi )�)H. (4.7)

We get from (4.6) and (4.7) that

∂t Ft (x) = −
n∑

i=1

iω(Dxi )(�|Bi (t, xi )B1(t, x1) . . . ǐ . . . Bn(t, xn)
)H + R1,t (x)

= −iω̃(Dx )Ft (x1, . . . , xn) + R1,t (x) + R2,t (x),

where

R2,t (x) := −
n∑

i=2

i−1∑

j=1

iω(Dxi )(�|B1(t, x1) . . . B j−1(t, x j−1)[Bi (t, xi ), B j (t, x j )]

×B j+1(t, x j+1) . . . ǐ . . . Bn(t, xn)
)H. (4.8)

To conclude the proof it suffices to show that R2,t satisfies the assumptions of Lemma 5.1.
To this end, we note that for any �1,�2 ∈ Hc(U ) we can write

ω(Dxi )(�1|[Bi (t, xi ), B j (t, x j )]�2) = (�1|[Ci (t, xi ), B j (t, x j )]�2), (4.9)

where, by Lemma 3.3 (3),

Ci = (2π)−d/2
∫

f (x)Bi (0, x)dx, f ∈ S(Rd), f̂ (−p) ≡ ω(p) near supp(B̂i ).

Since Ci are almost local, we can argue as in the case of R1,t and the proof is complete.
��
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5. Scattering for Schrödinger Equations with Source Terms

In this section we give the proof of the existence of the limit

F+ = lim
t→+∞ eitω̃(Dx )Hw

t Ft , (5.1)

appearing in Theorem 4.1. The proof relies on the fact that Ft satisfies a Schrödinger
equation with a source term Rt as shown in Lemma 4.2 above. To control the influence
of Rt , we need the following fact.

Lemma 5.1. Let Rt ∈ L2(Rnd) satisfy

(i) ‖Rt‖L2(Rnd ) ∈ O(t N0), N0 ∈ N,

(ii) |Rt (x)| ≤ CN

∑

i �= j

〈xi − x j 〉−N , ∀N ∈ N, uniformly in t.

Let H ∈ S(T ∗Rnd) be such that

πx (supp H) ∩ D0 = ∅, (5.2)

where D0 ⊂ R
nd is defined in (2.14). Then

‖Hw
t Rt‖L2(Rnd ) = O(t−∞). (5.3)

Remark 5.2. Note that symbols which are admissible (in the sense of Definition 2.7)
satisfy (5.2).

Proof. Let Kt (x, y) =
̂

H((x + y)/2t, x − y) be the distributional kernel of Hw
t . Let

δ > 0, χ ∈ C∞0 (Rnd) with χ ≡ 1 near 0 and set K1,t (x, y) = Kt (x, y)χ((x − y)/δt),

K2,t = Kt − K1,t . Since

̂

H ∈ S(Rnd × R
nd) we easily see that ‖K2,t‖L2(R2nd ) ∈

O(t−∞). Still denoting by K2,t the operator with kernel K2,t , we deduce from (i) that
‖K2,t Rt‖L2(Rnd ) ∈ O(t−∞). On the other hand we have using (ii) and (5.2):

‖K1,t Rt‖2
L2(Rnd )

≤ CN t3nd
∑

i �= j

∫
|
∫
|

̂

H((x + y)/2, t (x − y)|χ((x − y)/δ)〈t (yi − y j )〉−N d y|2dx .

For δ � ε the integrand is supported in {|yi − y j | ≥ ε/2}, hence the integral is
O(t3nd−2N ). This concludes the proof. ��
The main ingredient of the proof of existence of the limit in (5.1) is a novel propagation
estimate established in Proposition 5.3 below. As a preparation we recall that Ft is
defined in (4.2) and note that for M ∈ S(T ∗Rnd) and Mt (x, ξ) = M(x/t, ξ) we have
by Proposition 3.1 (3):

DMw
t := ∂t Mw

t + [ω̃(Dx ), iMw
t ] = t−1(d M)wt + O(t−2), for (5.4)

d M(x, ξ) := (∂t Mt − {ω̃(ξ),Mt })|t=1 = −(x − ∇ω̃(ξ)) · ∇x M(x, ξ), (5.5)

where { · , · } is the Poisson bracket. In the remaining part of this section we set ‖ · ‖ :=
‖ · ‖L2(Rnd ).



A Criterion for Asymptotic Completeness in Local Relativistic QFT 1187

Proposition 5.3. Let H ∈ C∞0 (T ∗Rnd;Rnd) be admissible in the sense of Definition 2.7.
Then

∫ +∞

1
‖ (

x/t − ∇ω̃(Dx )
) · Hw

t Ft‖2 dt

t
<∞,

∫ +∞

1
‖ (

x/t −∇ω̃(Dx )
) · Hw

t e−itω̃(Dx )u‖2 dt

t
≤ c‖u‖2, u ∈ L2(Rnd).

(5.6)

Proof. Let K and ε be as in Definition 2.7 and choose 0 < λ� ε. Let χ ∈ C∞(R)with
χ(s) = 1 for s ≤ −1, χ(s) = 0 for s ≥ (1 + λ)2, χ ′(s) ≤ 0 for s ∈ R and χ ′(s) ≤ − 1

2
for 0 ≤ s ≤ 1. Let χ1 ∈ C∞0 (Rnd) be equal to 1 on K and vanish outside of K + B̃(0, λ).
We set

M(x, ξ) := χ(ε−2|x −∇ω̃(ξ)|2)χ1(∇ω̃(ξ)).

By Definition 2.7, K + B̃(0, λ) ⊂ B̃(0, 1), hence M ∈ S(T ∗Rnd) and we obtain from
(5.5)

d M(x, ξ) = −ε−2
∣
∣
∣x −∇ω̃(ξ)

∣
∣
∣
2
χ ′(ε−2|x −∇ω̃(ξ)|2)χ1(∇ω̃(ξ)).

Making use of the properties of χ and χ1 we obtain for some c > 0:

d M(x, ξ) ≥ c1B(0,ε)(x −∇ω̃(ξ))1K (∇ω̃(ξ))
∣
∣
∣x − ∇ω̃(ξ)

∣
∣
∣
2
, (5.7)

πx (suppM) ⊂ R
nd\D0. (5.8)

Relation (5.8) holds for λ � ε and follows from the facts that for y ∈ K + B̃(0, λ) we

have |yi − y j | ≥ 2(ε−λ) for i �= j and |z| ≤ ε(1 +λ) implies |zi |+ |z j | ≤
√

2ε(1 +λ).
Relation (5.8) and Lemma 5.1 imply that ‖Mw

t Rt‖, ‖(Mw
t )
∗Rt‖ belong to L1(R, dt).

Properties (5.7), (5.4) give

DMw
t ≥

c

t

(
x/t −∇ω̃(Dx )

) · Hw∗
t Hw

t ·
(
x/t − ∇ω̃(Dx )

)
+ O(t−2),

using Proposition 3.1 (1), (5), (4). Applying Lemma A.1 we obtain the first statement
of (5.6). The proof of the second is similar. ��
Theorem 5.4. Let Ft , be defined in (4.2) and H ∈ C∞0 (Rnd) be admissible in the sense
of Definition 2.7. Then the limit

F+ = lim
t→+∞ eitω̃(Dx )Hw

t Ft exists.

Proof. We proceed similarly as in the proof of [DG97, Prop. 4.4.5]. We apply (5.5) to

M(x, ξ) := H(x, ξ)−
(

x − ∇ω̃(ξ)
)
· (∇x H)(x, ξ), (5.9)

which yields

d M(x, ξ) =
(

x −∇ω̃(ξ)
)
· ∇2

x H(x, ξ) ·
(

x −∇ω̃(ξ)
)
. (5.10)
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By the admissibility of H, we can find H1 ∈ C∞0 (T ∗Rnd;Rnd) which is also admissible
s.t.

d M(x, ξ) =
(

x −∇ω̃(ξ)
)
· H1(x, ξ)∇2

x H(x, ξ)H1(x, ξ) ·
(

x − ∇ω̃(ξ)
)
. (5.11)

By pseudodifferential calculus (see Proposition 3.1 (4), (5)) and (5.4) one has for u ∈
L2(Rnd):

|(u|DMw
t Ft )| ≤ c

t
‖ (

x/t −∇ω̃(Dx )
) · Hw

1,t u‖ ‖
(
x/t −∇ω̃(Dx )

) · Hw
1,t Ft‖

+ O(t−2)‖u‖. (5.12)

Since M satisfies the assumptions imposed on H in Lemma 5.1, we obtain

‖Mw
t Rt‖, ‖(Mw

t )
∗Rt‖ ∈ O(t−∞). (5.13)

Making use of (5.12), (5.13), Proposition 5.3 and Lemma A.3, we get that

lim
t→+∞ eitω̃(Dx )Mt Ft exists.

To conclude the proof, it suffices to verify that Mt −Ht does not contribute to the above
limit. For admissible H2 ∈ C∞0 (T ∗Rnd;Rnd), we set

N (x, ξ) :=
(

x − ∇ω̃(ξ)
)
· H2(x, ξ).

We have to show that

lim
t→∞‖N w

t Ft‖ = 0. (5.14)

By Proposition 5.3 the limit must be zero if it exists. To prove the existence of the limit,
we first note that by pseudodifferential calculus

(N w
t )
∗N w

t = (|N |2t )w + O(t−1).

Next, making use of relation (5.5), we obtain

d|N |2(x, ξ) = (x −∇ω̃(ξ)) · N1(x, ξ) · (x −∇ω̃(ξ)), for

N1,i, j (x, ξ) := −(x −∇ω̃(ξ)) · ∇x (H
∗
2,i H2, j )(x, ξ)− 2(H∗2,i H2, j )(x, ξ),

i, j = 1, . . . , nd. (5.15)

Since |N |2 is admissible, we obtain by Lemma 5.1:

‖(|N |2t )w Rt‖ ∈ O(t−∞). (5.16)

Exploiting the admissibility of N1, we can rewrite (5.15) as in (5.10), (5.11) above and
conclude the existence of the limit (5.14) from (5.4), Proposition 5.3 and
Lemma A.2. ��

6. Haag–Ruelle Scattering Theory

In this section we collect some basic facts concerning the Haag–Ruelle scattering theory,
which we need for the proof of Theorem 2.9. For the reader’s convenience we give a
self-contained presentation of this classical topic in the setting of the present paper. In
the special case of two-body scattering we presented a similar discussion in [DG12].
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6.1. Positive energy solutions of the Klein–Gordon equation.

Definition 6.1. Let f ∈ S(Rd) be such that f̂ has compact support. The function

g(t, x) = gt (x) for gt = e−itω(Dx ) f,

which solves (∂2
t −	x )g + m2g = 0, will be called a positive energy KG solution.

The following property of positive energy KG solutions is proven in [RS3]:

Proposition 6.2. Let χ1, χ2 ∈ C∞(Rd) be bounded with all derivatives and having
disjoint supports. Let f ∈ S(Rd) be s.t. f̂ has compact support. Then

‖χ1

( x

t

)
e−itω(Dx )χ2(∇ω(Dx )) f ‖L2(Rd ) ∈ O(t−∞).

We recall the notion of velocity support which will be useful later on.

Definition 6.3. Let 	 � Hm. We set

Vel(	) := {∇ω(p) : p ∈ R
d , (ω(p), p) ∈ 	}.

It is clear that disjointness of 	1 and 	2 entails that Vel(	1) and Vel(	2) are also
disjoint. In view of Proposition 6.2 and of the fact that supp ĝ ⊂ Hm , we can call
Vel(suppĝ) = {∇ω(p) : p ∈ supp f̂ } the velocity support of a positive energy KG
solution g with initial data f .

6.2. Haag–Ruelle scattering theory. Let B ∈ L0 satisfy (2.11), that is −supp(B̂) ∩
S p U ⊂ Hm , and let g be a positive energy KG solution. The Haag–Ruelle creation
operator is given by

B∗t (gt ) =
∫

g(t, x)B∗(t, x)dx, t ∈ R,

which is well defined since e−itω(Dx ) preserves S(Rd). The following lemma is elemen-
tary, except for part (2) which relies on Lemma 3.4. We refer to [DG12] for a proof.

Lemma 6.4. The following properties hold:

(1) B∗t (gt )� = B∗( f )� = (2π)d/2 f̂ (P)B∗�, if gt = e−itω(Dx ) f .
(2) Let 	 � R

1+d , f ∈ L2(Rd). Then ‖B(∗)( f )1	(U )‖ ≤ c	,B‖ f ‖L2(Rd ).
(3) ∂t B∗t (gt ) = Ḃ∗t (gt ) + B∗t (ġt ), where Ḃ = ∂s B(s, 0)|s=0 ∈ L0 and ġ = ∂t g is a

positive energy KG solution with the same velocity support as g.

The following result is known as the Haag–Ruelle theorem [Ha58,Ru62]. In Appen-
dix B.3 we give an elementary proof which uses ideas from [He65,BF82,Ar99,Dy05]
and exploits the bound in Lemma 6.4 (2).

Theorem 6.5. Let B1, . . . , Bn ∈ L0 satisfy (2.11). Let g1, . . . , gn be positive energy KG
solutions with disjoint velocity supports. Then:

(1) There exists the n-particle scattering state given by


+ = lim
t→∞ B∗1,t (g1,t ) . . . B∗n,t (gn,t )�. (6.1)
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(2) The state 
+ depends only on the single-particle vectors 
i = B∗i,t (gi,t )�, and

therefore we can write 
+ = 
1
out× · · · out× 
n. Given two such vectors 
+ and 
̃+

one has:

(
̃+|
+) =
∑

σ∈Sn

(
̃1|
σ1) . . . (
̃n|
σn ), (6.2)

U (t, x)(
1
out× · · · out× 
n) = (U (t, x)
1)

out× · · · out× (U (t, x)
n), (t, x) ∈ R
1+d ,

(6.3)

where Sn is the set of permutations of an n-element set.

Let us now explain how to obtain the (outgoing) n-particle wave operator: Let

Hm := 1Hm (U )H,
be the space of one-particle states. For 
1, . . . , 
n ∈ Hm we set


1⊗s · · · ⊗s
n := 1√
n!

∑

σ∈Sn


σ1 ⊗ · · · ⊗
σn ∈ H⊗sn
m .

Proposition 6.6. For any n ≥ 1 there exists a unique isometry

W +
n : H⊗sn

m → H
with the following properties:

(1) If
1, . . . , 
n are as in Theorem 6.5, then W +
n (
1⊗s · · · ⊗s
n) = 
1

out× · · · out× 
n.

(2) U (t, x) ◦W +
n = W +

n ◦ (Um(t, x)⊗· · ·⊗Um(t, x)), (t, x) ∈ R
1+d , where we denote

by Um(t, x) the restriction of U (t, x) to Hm.

Definition 6.7. Let W +
n , n ≥ 1, be the isometries defined in Proposition 6.6 and let us

define W +
0 : C�→ H by W +

0� = �. Let �(Hm) be the symmetric Fock space over Hm
and let W + : �(Hm)→ H be the isometry given by W + :=⊕

n≥0 W +
n .

(1) The map W +
n : H⊗sn

m → H is called the (outgoing) n-particle wave operator.
(2) The map W + : �(Hm)→ H is called the (outgoing) wave operator.
(3) The range of W +

n is denoted by H+
n and called the subspace of n-particle scattering

states.
(4) The range of W + is denoted by H+ and called the subspace of scattering states.

Proof of Proposition 6.6. Let F ⊂ H⊗sn
m be the subspace spanned by vectors 
1 ⊗s

· · ·⊗s
n for
1, . . . , 
n as in Theorem 6.5. Due to (6.2) there exists a unique isometry
W +

n : F → H such that

W +
n (
1⊗s . . .⊗s
n) = 
1

out× . . . out× 
n,

for all 
1, . . . , 
n as in the theorem. Also, by (6.3),

U (t, x) ◦W +
n = W +

n ◦ (Um(t, x)⊗ · · · ⊗Um(t, x)). (6.4)

Thus it suffices to prove that the closure of F is H⊗sn
m .
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Let (Hi , Pi ), i = 1, . . . , n, be the generators of the groups of unitaries

(t, x) �→ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗Um(t, x)⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−i

, (6.5)

acting on H⊗n
m . We note that the joint spectral measure of (H̃ , P̃) := ((H1, P1), . . . ,

(Hn, Pn)) is supported by H×n
m .

Let B ∈ L0 satisfy (2.11) and g be a positive energy KG solution. Then, due to
Lemma 6.4 (1) and the cyclicity of the vacuum, the set of vectors B∗t (gt )� is dense
in Hm . Also, for 	 � Hm , the set of such vectors with g having the velocity support
included in Vel(	) is dense in 1	(U )Hm . Thus the closure of F in H⊗sn

m equals

Fcl = �s ◦ 1(H×n
m )\D(H̃ , P̃)H⊗n

m ,

where �s : H⊗n
m → H⊗sn

m is the orthogonal projection, and

D := { p ∈ H×n
m : pi = p j for some i �= j}. (6.6)

By [BF82, Prop. 2.2], the spectral measure of the restriction of (H, P) to Hm is absolutely
continuous w.r.t. the Lorentz invariant measure on Hm . Hence 1D(H̃ , P̃) = 0, which
completes the proof. ��

7. Proof of Theorem 2.9

We recall that the notation NB(h1), NB(hw
2 , t) was introduced in Definition 3.7 and in

(4.1), respectively, for B ∈ L0, h1 ∈ B(L2(Rd)) and h2 ∈ S(T ∗Rd).

Proposition 7.1. Let i = 1, . . . , n. Let	i � Hm be disjoint sets, Bi ∈ L0 and supp(B̂i )

be disjoint sets. Assume moreover that:

−supp(B̂i ) ∩ S p U ⊂ 	i , (7.1)

(	i + supp(B̂i )) ∩ S p(U ) ⊂ {0}. (7.2)

Let hi ∈ C∞0 (T ∗Rd) such that

(1) hi (y, (∇ω)−1(y)) = 1, y ∈ Vel(	i ),

(2) πx supp hi ∩ πx supp h j = ∅, ∀ i �= j.
(7.3)

Then, for 
i ∈ 1	i (U )H,

lim
t→+∞ NB1(h

w
1 , t) . . . NBn (h

w
n , t)W +

n (
1 ⊗s · · · ⊗s 
n)

= W +
n (NB1(1)
1 ⊗s · · · ⊗s NBn (1)
n). (7.4)

Remark 7.2. Note that W +
n (
1 ⊗s · · · ⊗s 
n) belongs to Hc(U ), and that NBi (1)
i

belong to 1	i (U )H, because of (7.1), (7.2). Hence all the expressions appearing in (7.4)
are well defined.
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Proof. Due to the fact that NBi (1)
i satisfy the assumption imposed on 
i in the
proposition, it suffices to show that

lim
t→+∞ NBi (h

w
i , t)W +

n (
1 ⊗s · · · ⊗s 
n) = W +
n (
1 ⊗s · · · ⊗s NBi (1)
i ⊗s · · · ⊗s 
n)

(7.5)

and then iterate this result making use of the bound supt∈R ‖NBi (h
w
i , t)1	(U )‖ < ∞

valid for any	 � R
1+d . By the same token, it suffices to assume that
 j = A∗j,t (g j,t )�

for A j ∈ L0 satisfying (7.1) and g j a positive energy KG solution with the velocity
support included in Vel(	 j ), so that 
 j = 1	 j (U )
 j . Similarly, since NBi (1)
i ∈
1	i (U )H, we can find for any 0 < εi � 1 operators Ãi ∈ L0 and positive energy KG
solutions g̃i , satisfying the same properties as Ai , gi , such that

‖NBi (1)
i − Ã∗i,t (g̃i,t )�‖ ≤ εi , i = 1, . . . , n. (7.6)

We fix such A j , g j and Ãi , g̃i for future reference.
First, we claim that for B,	,
, h as in the proposition one has:

lim
t→+∞ NB(h

w, t)
 = NB(1)
. (7.7)

In fact, due to (7.1), (7.2) we have

B∗B1	(U ) = B∗|�〉〈�|B1	(U ) = 1	(U )B
∗B1	(U ). (7.8)

Therefore,

NB(h
w, t)
 = eit H NB(h

w
t )e
−it H


= eitω(P)a∗B ◦ (1H ⊗ hw
t ) ◦ aBe−itω(P)


= a∗B ◦ eitω(P+Dx )(1H ⊗ hw
t )e
−itω(P+Dx ) ◦ aB


= a∗B ◦ (1H ⊗ eitω(Dx )hw
t e−itω(Dx )) ◦ aB
,

where we used (3.8) and the fact that aB
 = (|�〉〈�| ⊗ 1L2(Rd )) ◦ aB
. Making use
of Proposition 3.1 (2), we get

s− lim
t→∞ eitω(Dx )hw

t e−itω(Dx ) = h(∇ω(Dx ), Dx ). (7.9)

Thus we obtain

lim
t→+∞ NB(h

w, t)
 = a∗B ◦ (1H ⊗ h(∇ω(Dx ), Dx )) ◦ aB
 = a∗BaBh(∇ω(P), P)
,

(7.10)
exploiting Lemma 3.5 and once again (3.8). By (7.3) (1) we have h(∇ω(p), p) = 1 for
(ω(p), p) ∈ 	. Hence h(∇ω(P), P)
 = 
, which completes the proof of (7.7).

Next, we claim that for i �= j :

‖[NBi (h
w
i , t), A∗j,t (g j,t )]‖ ∈ O(t−∞). (7.11)

To show (7.11), we first note that Vel(	 j ) ⊂ πx supp h j by (7.3) (1). Hence πx supp hi

and the velocity support of g j are disjoint by (7.3) (2). Let χi , χ j ∈ C∞0 (Rd) with
0 ≤ χi , χ j ≤ 1, suppχi ∩ suppχ j = ∅ and χi ≡ 1 near πx supp hi , χ j ≡ 1 near the
velocity support of g j . We set χi,t (x) := χi (x/t), χ j,t (x) := χ j (x/t) and denote the
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corresponding operators on L2(Rd) by the same symbols. We recall that gN is defined
in (3.12) and note that

‖(1−χi,t )h
w
i,t‖B(L2(Rd )), ‖hw

i,t (1−χi,t )‖B(L2(Rd )), ‖χi,t gN (Dx )χ j,t‖B(L2(Rd ))∈O(t−∞),
(7.12)

where the expressions involving hw
i,t are treated using Proposition 3.1 (6) and the ex-

pression with gN by inspection of its kernel as in the proof of Corollary 3.13. By Propo-
sition 6.2 we have:

‖(1− χ j,t )g j,t‖L2(Rd ) ∈ O(t−∞). (7.13)

Then (7.11) follows by applying Lemma 3.14 for B1 = Bi , B2 = A j , h1 = hw
i,t ,

g2 = g j,t and χ1 = χi,t , χ2 = χ j,t . Indeed, the quantities in the r.h.s. of (3.14) are
O(t−∞) by (7.12) and (7.13).

After these preparations we proceed to the proof of (7.5). Using (7.11), (7.7), we
obtain:

NBi (h
w
i , t)(
1

out× · · · out× 
n) = NBi (h
w
i , t)A∗1,t (g1,t ) . . . A∗n,t (gn,t )� + o(t0)

= A∗1,t (g1,t ) . . . ǐ . . . A∗n,t (gn,t )NBi (1)
i + o(t0)

= A∗1,t (g1,t ) . . . ǐ . . . A∗n,t (gn,t ) Ã
∗
i,t (g̃i,t )�+o(t0)+O(t0)εi

= 
1
out× · · · out× 
̃i

out× · · · out× 
n + o(t0) + O(t0)εi

= 
1
out× · · · out× NBi (1)
i

out× · · · out× 
n + o(t0) + O(t0)εi ,

where 
̃i := Ã∗i,t (g̃i,t )�. Since εi > 0 is arbitrary, this concludes the proof of the
proposition. ��
Lemma 7.3. Let 	 ⊂ G2m be an open bounded set. Then

1	(U )H+
n = Span{W +

n (
1 ⊗s · · · ⊗s 
n) : 
i ∈ 1	i (U )H, 	i � Hm,

	i ∩	 j = ∅, i �= j, 	1 + · · · +	n ⊂ 	}cl.

Proof. The statement follows immediately from Proposition 6.6 (2) and the absolute
continuity of the spectral measure of (H, P) restricted to Hm , recalled in its proof. ��
Lemma 7.4. Let 	 ⊂ G2m be an open bounded set s.t. (	 − 	) ∩ S p U = {0}.
Let 	1, . . . ,	n � Hm be disjoint and such that 	1 + · · · + 	n ⊂ 	. Then there
exist O1, . . . , On ⊂ R

1+d which are disjoint open neighbourhoods of 	1, . . . ,	n,
respectively, s.t. for any K1, . . . , Kn � R

1+d satisfying−Ki ⊂ Oi ,−Ki ∩S p U ⊂ 	i ,
i = 1, . . . , n, one has:

(	 + K1 + · · · + Kn) ∩ S p U ⊂ {0}, (7.14)

−(K1 + · · · + Kn) ⊂ 	, (7.15)

(	i + Ki ) ∩ S p U ⊂ {0}. (7.16)

Proof. Assume that Oi ⊂ 	i + B1(0, ε), where B1(0, ε) := { x ∈ R
d : |x | < ε }. To

prove (7.14), we write

	 + K1 + · · · + Kn ⊂ 	− (O1 + · · · + On) ⊂ 	− (	1 + · · · +	n) + B1(0, nε)

⊂ 	−	 + B1(0, nε).
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Since, by assumption, (	−	)∩ S p U = {0} and 0 is isolated in S p U , we obtain that
(	−	 + B1(0, nε)) ∩ S p U = {0} for ε � 1. As for (7.15), we obtain that

−(K1 + · · · + Kn) ⊂ O1 + · · · + On ⊂ 	1 + · · · +	n + B1(0, nε) ⊂ 	,
for ε � 1 using that 	i are compact and 	 is open. Finally we write:

	i + Ki ⊂ Oi − Oi ⊂ 	i −	i + B1(0, 2ε).

We note that a difference of two vectors from Hm is either 0 or spacelike. For ε � 1 we
obtain (7.16).

Lemma 7.5. Let 	 � Hm and O ⊂ R
1+d be a sufficiently small neighbourhood of 	.

Then

1	(U )H = Span{NB(1)1	(U )H : B ∈ L0,

−supp(B̂) ⊂ O,−supp(B̂) ∩ S p U ⊂ 	}cl.

Proof. A proof of this lemma, which is based on ideas from [DT11a, Thm. 3.5], can be
found in [DG12].

Proof of Theorem 2.9. By Theorem 2.8, it is enough to verify that

1	(U )H+
n ⊂ Span{Ran Q+

n,α(	) : α ∈ J }cl. (7.17)

In view of Lemma 7.3, it suffices to show that for any	i � Hm , i = 1, . . . , n, such that
	1 + · · · +	n ⊂ 	 and 	i ∩	 j = ∅ for i �= j one has

W +
n

(
1	1(U )H⊗s · · · ⊗s 1	n (U )H

) ⊂ Span{Ran Q+
n,α(	) : α ∈ J }cl. (7.18)

Let Oi ⊂ R
1+d be sufficiently small open neighbourhoods of 	i so that the assertions

of Lemma 7.4 hold. Let Bi ∈ L0 be such that −supp(B̂i ) ⊂ Oi , −supp(B̂i ) ∩ S p U ⊂
	i . By Lemma 7.4, Bi are 	-admissible in the sense of Definition 2.5 and satisfy the
assumptions of Proposition 7.1. We also choose hi ∈ C∞0 (T ∗Rd) as in Proposition 7.1
and s.t. h1 ⊗ · · · ⊗ hn is admissible in the sense of Definition 2.7. For example one
can choose hi (x, ξ) := h0,i (x)χ(x − ∇ω(ξ)), where h0,i ∈ C∞0 (Rd) are equal to
one on Vel(	i ) and have disjoint supports contained in the unit ball. The function
χ ∈ C∞0 (Rd) satisfies χ(0) = 1 and is supported in a sufficiently small neighbourhood
of zero, depending on the supports of h0,i .

Let J0 be the set of pairs (B, h) as specified above. We get

Span{Q+
n,α(	) ◦W +

n

(
1	1(U )H⊗s · · · ⊗s 1	n (U )H

) : α ∈ J0}
= Span{W +

n

(
NB1(1)1	1(U )H⊗s · · · ⊗s NBn (1)1	n (U )H

) : α ∈ J0}
= W +

n

(
1	1(U )H⊗s · · · ⊗s 1	n (U )H

)
. (7.19)

In the first step we used Proposition 7.1 and in the second Lemma 7.5. Since J0 ⊂ J ,
the subspace on the l.h.s. of (7.19) is included in the subspace on the r.h.s. of (7.18).
This concludes the proof. ��
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Appendix A: Propagation Estimates for Inhomogeneous Evolution Equations

In this section, which appeared already in [DG12], we extend standard results on propaga-
tion estimates and existence of asymptotic observables to the case of an inhomogeneous
evolution equation:

∂t u(t) = −iHu(t) + r(t).

Let H be a Hilbert space and H a self-adjoint operator on H. We choose a function

R
+ � t �→ u(t) ∈ H,

such that

(i) sup
t≥0
‖u(t)‖ <∞,

(ii) u(t) ∈ C1(R+,H) ∩ C0(R+,Dom H),
(A.1)

and define:

r(t) := ∂t u(t) + iHu(t).

For a map R
+ � t �→ M(t) ∈ B(H) we denote by DM(t) = ∂t M(t) + [H, iM(t)] the

Heisenberg derivative of M(t). We assume that [H, iM(t)], defined first as a quadratic
form on Dom H , extends by continuity to a bounded operator.

The following three lemmas can be proved by modifying standard arguments, see
e.g. [DG97, Sect. B.4]. By C j ( · ), B( · ), B1( · ) we denote auxiliary functions from R

+

to B(H).
Lemma A.1. Let R

+ � t �→ M(t) ∈ B(H) be s.t.:

(i) sup
t∈R+
‖M(t)‖ <∞, ‖M(·)r(·)‖, ‖M∗(·)r(·)‖ ∈ L1(R+, dt),

(ii) DM(t) ≥ B∗(t)B(t)−
n∑

j=1

C∗j (t)C j (t),
∫

R+
‖C j (t)u(t)‖2dt <∞.

Then
∫

R+
‖B(t)u(t)‖2dt <∞.

Lemma A.2. Let R
+ � t �→ M(t) ∈ B(H) be s.t.:

(i) sup
t∈R+
‖M(t)‖ <∞, ‖M(·)r(·)‖, ‖M∗(·)r(·)‖ ∈ L1(R+, dt),

(ii) |(u1|DM(t)u2)| ≤
n∑

j=1

‖C j (t)u1‖‖C j (t)u2‖, u1, u2 ∈ H,

with
∫

R+
‖C j (t)u(t)‖2dt <∞.

Then

lim
t→+∞(u(t)|M(t)u(t)) exists.
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Lemma A.3. Let R
+ � t �→ M(t) ∈ B(H) be s.t.:

(i) ‖M(·)r(·)‖ ∈ L1(R+, dt),

(ii) |(u1|DM(t)u(t))| ≤ ‖B1(t)u1‖‖B(t)u(t)‖, with

(iii)
∫

R+
‖B(t)u(t)‖2dt <∞,

∫

R+
‖B1(t)e

−it H u1‖2dt ≤ C‖u1‖2, u1 ∈ H.

Then

lim
t→+∞ eit H M(t)u(t) exists.

Appendix B: Some Technical Proofs

In this section we give the proofs of Proposition 3.11, Lemma 3.14, Proposition 3.1 and
Theorem 6.5.

B.1: Proof of Proposition 3.11.

Proof. We will prove the proposition by induction on n. We set x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ R

nd and denote by hi (xi , yi ) the distributional kernel of hi .
We will also write h̃i = hiχi for 1 ≤ i ≤ n − 1 and h̃n = χnhn . Note that

h̃i (xi , yi ) = hi (xi , yi )χi (yi ), 1 ≤ i ≤ n − 1,

h̃n(xn, yn) = χn(xn)hn(xn, yn).
(B.1)

We will first estimate the analog of Rn with hi replaced with h̃i , which will be denoted by
R̃n . Note first that since Bi have compact energy-momentum transfers, for any	 � R

1+d

there exists 	′ � R
1+d such that:

R̃n1	(U ) = 1	′(U )R̃n1	(U ),

and therefore it suffices to estimate 1	1(U )R̃n1	2(U ) for 	i � R
1+d , i = 1, 2.

Writing

R̃n =
∫ (

n∏

i=1

B∗i (xi )

n∏

i=1

Bi (yi )−
n∏

i=1

B∗i (xi )Bi (yi )

)
n∏

i=1

h̃i (xi , yi )dxd y,

and commuting B∗n (xn) to the right, we obtain

R̃n = R̃n−1 ◦ NBn (h̃n) +
n−1∑

l=1

Sn,l ,

for:

Sn,l =
∫ (

n−1∏

i=1

B∗i (xi )

l−1∏

i=1

Bi (yi )[B∗n (xn), Bl(yl)]
n∏

i=l+1

Bi (yi )

)
n∏

i=1

h̃i (xi , yi )dxd y,
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where
∏0

i=1 Bi (yi ) = 1 is understood. This implies that:

‖1	1(U )R̃n1	2(U )‖B(H) ≤ ‖1	1(U )R̃n−11	3(U)‖B(H)‖1	3(U )NBn (h̃n)1	2(U )‖B(H)

+
n−1∑

l=1

‖1	1(U )Sn,l1	2(U )‖B(H)

≤ C(Bn)‖1	1(U )R̃n−11	3(U )‖B(H)‖hn‖B(L2(Rd ))

+
n−1∑

l=1

‖1	1(U )Sn,l1	2(U )‖B(H). (B.2)

The main part of the proof is to estimate ‖1	1(U )Sn,l1	2(U )‖B(H).
Let us fix ui ∈ 1	i (U )H for 	i � R

1+d , i = 1, 2. Then, recalling the definition of
aB =: aB1,...,Bn , we have

(u1|Sn,l u2)H

=
∫
(ψ1(x1, . . . , xn−1)|

l−1∏

i=1

Bi (yi )[B∗n (xn), Bl (yl )]ψ2(yl+1, . . . , yn))H
n∏

i=1

h̃i (xi , yi )dxd y,

for

ψ1(x1, . . . , xn−1) = (aBn−1,...,B1 u1)(xn−1, . . . , x1),

ψ2(yl+1, . . . , yn) = (aBl+1,...,Bn u2)(yl+1, . . . , yn).

Step 1: Let us first perform the integral in the variables x1, . . . , xn−1, yn . We obtain
using (B.1):

(u1|Sn,lu2)H =
∫
(ψ̃1(y1, . . . , yn−1)|

l−1∏

i=1

Bi (yi )

× [B∗n (xn), Bl(yl)]ψ̃2(yl+1, . . . , yn−1, xn))Hχl(yl)χn(xn)dy1 . . . dyn−1dxn, (B.3)

for

ψ̃1(y1, . . . , yn−1) =
(
(h̃∗1 ⊗ · · · ⊗ h̃∗l−1 ⊗ h∗l ⊗ h̃∗l+1 ⊗ · · · ⊗ h̃∗n−1)ψ1

)
(y1, . . . , yn−1),

ψ̃2(yl+1, . . . , yn−1, xn) =
(
(1⊗ · · · ⊗ 1︸ ︷︷ ︸

n−l−1

⊗hn)ψ2
)
(yl+1, . . . , yn−1, xn).

Step 2: We now perform the integrals in y1, . . . , yl−1.
Let us first note an easy fact: let v1 = v1(y1, . . . , yl−1) ∈ H ⊗ L2(R(l−1)d) and

v2 ∈ 1	(U )H for 	 � R
1+d . Then:

∣
∣
∣
∣
∣

∫
(v1(y1, . . . , yl−1)|

l−1∏

i=1

Bi (yi )v2)Hdy1 . . . dyl−1

∣
∣
∣
∣
∣

≤
(∫
‖v1‖2(y1, . . . , yl−1)dy1 . . . dyl−1

) 1
2
(∫
‖

l−1∏

i=1

Bi (yi )v2‖2
Hdy1 . . . dyl−1

) 1
2

≤ C(B1, . . . , Bl−1)‖v1‖H⊗L2(R(l−1)d ) ‖v2‖H, (B.4)



1198 W. Dybalski, C. Gérard

using successively the Cauchy–Schwarz inequality, the fact that the Bi are energy de-
creasing and Lemma 3.4. Let us denote by K (y1, . . . , yn−1, xn) the integrand in (B.3).
Applying (B.4) we obtain that:

∣
∣
∣
∣

∫
K (y1, . . . , yn−1, xn)dy1 . . . dyl−1

∣
∣
∣
∣

≤ C(B1, . . . , Bl−1)

(∫
‖ψ̃1(y1, . . . , yn−1)‖2

Hdy1 . . . dyl−1

) 1
2

× χl(yl)χn(xn)‖[Bl(yl), B∗n (xn)]‖B(H)‖ψ̃2‖H(yl+1, . . . , yn−1, xn).

Step 3: We perform the remaining integrals in yl , . . . , yn−1, xn .
From almost locality we have ‖[Bl(yl), B∗n (xn)]‖B(H) ≤ CN 〈yl − xn〉−N . Using

(3.12), we see that χl(y)〈y − x〉−Nχn(x) is the distributional kernel of χl gN (Dx )χn .
Using once more the Cauchy–Schwarz inequality we obtain:
∣
∣
∣
∣

∫
K (y1, . . . , yn−1, xn)dy1 . . . dyn−1dxn

∣
∣
∣
∣

≤C(B1, . . . , Bl−1)‖ψ̃1‖H⊗L2(R(n−1)d )×‖χl gN (Dx )χn‖B(L2(Rd ))×‖ψ̃2‖H⊗L2(R(n−l)d ).

Now since the Bi , (resp. ψ1, ψ2) have compact energy-momentum transfers, (resp.
spectrum), we know that:

‖ψ̃1‖H⊗L2(R(n−1)d ) ≤ C(B1, . . . , Bn−1)

n−1∏

i=1

‖hi‖B(L2(Rd ))‖u1‖H,

‖ψ̃2‖ ≤ C(Bl+1 . . . , Bn)‖hn‖B(L2(Rd ))‖u2‖H.
Therefore we obtain that

‖1	1(U )Sn,l1	2(U )‖B(H)

≤ CN (B1, . . . , Bn)‖χl gN (Dx )χn‖B(L2(Rd ))

n∏

i=1

‖hi‖B(L2(Rd )). (B.5)

Step 4: Making use of (B.2) and (B.5) we obtain by induction that

‖1	1(U )R̃n1	2(U )‖B(H)

≤ CN (	, B)
∑

i �= j

‖χi gN (Dx )χ j‖B(L2(Rd ))

n∏

i=1

‖hi‖B(L2(Rd )). (B.6)

(We can start the induction at n = 1, where the statement is trivial). Finally, we estimate
the error terms coming from the replacement of hi by h̃i . Using that the operators
aB1,...,B j1	(U ) are bounded, we obtain that:

‖1	1(U )(Rn − R̃n)1	2(U )‖B(H)

≤ CN (B1, . . . , Bn)×
( n∑

i=1

(‖hi (1− χi )‖B(L2(Rd )) + ‖(1− χi )hi‖B(L2(Rd )))

×
∏

j �=i

‖h j‖B(L2(Rd ))

)
.
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This completes the proof. ��

B.2: Proof of Lemma 3.14.

Proof. By Lemma 3.5 and (3.7), we know that

‖NB1(h1)1	(U )‖ ≤ C‖h1‖B(L2(Rd )), ‖B∗2 (g2)1	(U )‖ ≤ C‖g2‖L2(Rd ).

Therefore, modulo errors controlled by the r.h.s. of (3.14), we can replace h1 by h̃1 =
χ1h1χ1 and g2 by g̃2 = χ2g2. Arguing as in the proof of Proposition 3.11 above, we
write for ui ∈ 1	i (U )H:

(u1|[NB1(h̃1), B∗2 (g̃2)]u2)H

=
∫
(u1|[B∗1 (x1)B1(y1), B∗2 (x2)]u2)Hh̃1(x1, y1)g̃2(x2)dx1dy1dx2

=
∫
((1H ⊗ h̃∗1) ◦ aB1 u1(y1)|[B1(y1), B∗2 (x2)]u2)Hg̃2(x2)dy1dx2

+
∫
([B2(x2), B1(x1)]u1|(1H ⊗ h̃1) ◦ aB1 u2(x1))Hg̃2(x2)dx1dx2

= I1 + I2.

Using Cauchy–Schwarz and almost locality we obtain:

|I1| ≤ CN

∫
‖(1H ⊗ h∗1χ1) ◦ aB1 u1‖H(y1)χ1(y1)〈y1 − x2〉−Nχ2(x2)|g2|(x2)‖u2‖Hdy1dx2,

|I2| ≤ CN

∫
‖(1H ⊗ χ1h1) ◦ aB1 u2‖H(x1)χ1(x1)〈x1 − x2〉−Nχ2(x2)|g2|(x2)‖u1‖Hdy1dx2.

Applying once more Lemma 3.5 we obtain

|I1|+|I2|≤CN (	1,	2)‖h1‖B(L2(Rd ))‖u1‖H‖u2‖H‖χ1gN (Dx )χ2‖B(L2(Rd ))‖g2‖L2(Rd ),

which completes the proof of the lemma. ��

B.3: Proof of Theorem 6.5.

Proof. (1). Let Bi , gi be as specified in the theorem. First we show that for i �= j

[B(∗)i,t (gi,t ), B(∗)j,t (g j,t )] ∈ O(t−∞). (B.7)

By Proposition 6.2 we can find functions χi , χ j ∈ C∞0 (Rd) with disjoint supports such
that

gi,t = χi

( x

t

)
gi,t + O(t−∞) in L2(Rd),

and similarly for g j,t . We set χi,t (x) := χi (
x
t ), χ j,t (x) := χ j (

x
t ) and note that by

Lemma 6.4 (2) for any compact set 	

[B(∗)i,t (gi,t ), B(∗)j,t (g j,t )]1	(U ) = [B(∗)i,t (χi,t gi,t ), B(∗)j,t (χ j,t g j,t )]1	(U ) + O(t−∞).
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Using almost locality of B(∗)i , B(∗)j we obtain from (3.4) that the commutator in the r.h.s.
is of order O(t−∞), which proves (B.7). Now we can write

∂t (B
∗
1,t (g1,t ) . . . B∗n,t (gn,t ))� =

n∑

i=1

B∗1,t (g1,t ) . . . ∂t (B
∗
i,t (gi,t )) . . . B∗n,t (gn,t )�. (B.8)

Due to Lemma 6.4 (1), ∂t (B∗i,t (gi,t )) annihilates the vacuum. Thus we commute this
expression to the right until it acts on the vacuum and show that the resulting terms with
the commutators are O(t−∞). This follows from (B.7) and from Lemma 6.4 (2),(3).
Using the Cook argument we conclude the proof of (1).

Before we proceed to the proof of (2), we need some preparation: Let B ∈ L0
satisfy (2.11), and 	 = −supp(B̂) ∩ S p U ⊂ Hm . We fix O ⊂ R

1+d , which is an
arbitrarily small neighborhood of 	, and a function h ∈ S(R1+d) with supp ĥ ⊂ O and
ĥ = (2π)−(1+d)/2 on 	. Then C∗ := ∫

B∗(t, x)h(t, x)dtdx is an element of L0 and

Ĉ∗(E, p) = (2π)(1+d)/2ĥ(E, p)B̂∗(E, p), C∗� = (2π)(1+d)/2ĥ(H, P)B∗�.

Consequently −supp(Ĉ) ⊂ O , and

B∗t (gt )� = (2π)d/2 f̂ (P)B∗� = (2π)d/2 f̂ (P)1	(U )B
∗�

= (2π)d/2 f̂ (P)(2π)(1+d)/2ĥ(H, P)B∗� = (2π)d/2 f̂ (P)C∗� = C∗t (gt )�.

(B.9)

We define observables Ci corresponding to Bi and obtain


+ = lim
t→∞ B∗1,t (g1,t ) . . . B∗n,t (gn,t )� = lim

t→∞C∗1,t (g1,t ) . . .C
∗
n,t (gn,t )�, (B.10)

where we used (B.7) and Lemma 6.4 (2). Therefore we can assume that the energy-
momentum transfers of B∗i entering in the construction of scattering states are localized
in arbitrarily small neighborhoods of subsets of Hm .

(2). Let 
̃t = B̃∗1,t (g̃1,t ) . . . B̃∗n,t (g̃n,t )� be the approximating sequence of the scat-

tering state 
̃+. In order to analyse the scalar product (
̃t |
t ) we first show that

[[B̃ j,t (g̃ j,t ), B∗k,t (gk,t )], B∗l,t (gl,t )] ∈ O(t−∞), k �= l. (B.11)

To verify (B.11) we write g̃ j = g̃ j,k + g̃ j,l , where g̃ j,k , g̃ j,l are positive energy KG
solutions such that g̃ j,i and gi have disjoint velocity supports for i = k, l. Then (B.11)
follows from (B.7) and the Jacobi identity.

Next we note that

B̃i,t (g̃i,t )B
∗
j,t (g j,t )� = �(�|B̃i,t (g̃i,t )B

∗
j,t (g j,t )�), i, j = 1, . . . , n. (B.12)

(B.12) follows from the fact that B̃i,t (g̃i,t )B∗j,t (g j,t )�belongs to the range of1−K j +K̃i
(U ),

where K j and K̃i are the energy-momentum transfers of B j and B̃i , respectively. Due
to (B.10) −K j , −K̃i can be chosen in arbitrarily small neighbourhoods of Hm . Since
a non-zero vector which is a difference of two vectors from Hm is spacelike, (B.12)
follows.
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To prove (6.2), we set for simplicity of notation Bi (t) := (B∗i,t (gi,t ))
∗, B̃ j (t) :=

(B̃∗j,t (g̃ j,t ))
∗. We assume that (6.2) holds for n − 1 and compute

(
̃t |
t ) = (�|B̃n(t) . . . B̃1(t)B
∗
1 (t) . . . B∗n (t)�)

=
n∑

k=1

(�|B̃n(t). . . B̃2(t)B
∗
1 (t). . . [B̃1(t), B∗k (t)]. . . B∗n (t)�)

=
n∑

k=1

n∑

l=k+1

(�|B̃n(t) . . . B̃2(t)B
∗
1 (t) . . . ǩ . . . [[B̃1(t), B∗k (t)], B∗l (t)] . . . B∗n (t)�)

+
n∑

k=1

(�|B̃n(t) . . . B̃2(t)B
∗
1 (t) . . . ǩ . . . B∗n (t)�)(�|B̃1(t)B

∗
k (t)�), (B.13)

where in the last term on the r.h.s. we applied (B.12). Now we note that the last term
factorizes in the limit t →∞ by the induction hypothesis and the terms involving double
commutators vanish by (B.11).

It is an immediate consequence of (6.2) that the scattering states 
+ depend only on
the single-particle states 
i (and not on a particular choice of Bi and gi ). Relation (6.3)
follows from Lemma 6.4 (1).
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