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Abstract
Summary In the present study, we evaluated the potential for
aminobisphosphonates to enhance the development of bone-
forming osteoblasts from progenitor cells isolated from aged
female osteoporotic patients. The aminobisphosphonates test-
ed significantly enhanced osteoblast formation and thus lend
further insights into their possible mode of action in the
treatment of osteoporosis.
Introduction The primary aim of this study was to evaluate
the influence of aminobisphosphonates on the osteogenesis of
human bone marrow stromal cells (hBMSCs) and mineraliza-
tion of differentiating bone-forming cells isolated from osteo-
porotic patients.

Methods The influence of aminobisphosphonate treatment on
hBMSC osteogenesis was assessed by the quantitative mea-
surement of alkaline phosphatase (ALP) activity, in addition
to quantitative reverse transcription polymerase chain reaction
andWestern blot analysis of known osteogenic markers. Min-
eralized matrix formation by hBMSC-derived osteoblasts was
visualized and quantified using Alizarin red staining.
Results hBMSC cultures treated with osteogenic medium
supplemented with zoledronate demonstrated a significant in-
crease in Alizarin red staining after 3 weeks as compared to cells
cultured in osteogenic medium alone. Similarly, cultures of dif-
ferentiating hBMSCs isolated frompatients receiving alendronate
treatment also demonstrated an increased propensity for mineral-
ization, even in the absence of further in vitro stimulation by
zoledronate. The stimulatory effects of aminobisphosphonate
treatment on hBMSC-derived osteoblast-mediated minerali-
zation were independent of any alterations in ALP activity,
although significant decreases in the expression levels of
osteopontin (SPP1) were evident in hBMSCs following ex-
posure to aminobisphosphonates. Further analysis including
Western blotting and loss-of-function studies revealed osteo-
pontin as having a negative influence on the mineralization of
differentiating osteoporotic bone-forming cells.
Conclusions The results presented here demonstrate for the
first time that aminobisphosphonate treatment of osteoporotic
hBMSCs enhances their capacity for osteoblast formation and
subsequent mineral deposition, thus supporting the concept of
aminobisphosphonates as having an osteoanabolic effect in
osteoporosis.
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Introduction

Age-related bone loss results from an imbalance between
bone resorption and bone formation due to a spatially or
temporally uncoupled activity of bone resorbing osteoclasts
and bone forming osteoblasts [1]. The latter are derived from
progenitor cells within the bone marrow termed bone marrow
stromal cells (BMSCs), through a process of osteogenic dif-
ferentiation. The ability to produce a sufficient number of
functionally active osteoblasts is pivotal to preserving bone
mass and represents an essential step in the continuous, com-
plex and well-orchestrated process of bone remodeling [2].
There is now a growing body of evidence to suggest that
BMSCs are critically involved in the pathogenesis of osteo-
porosis [3–9], thus implying that the structural abnormalities
associated with osteoporotic bone maybe as a consequence of
inadequacies in bone cell differentiation. This concept is fur-
ther supported by findings from studies investigating the role
of BMSCs in experimental models of osteoporosis and aging.
Results from our own studies, as well as research performed
by others, have shown that the osteoporotic-like phenotype
observed in senescence-accelerated mouse prone 6 strain
(SAMP6) mice is associated with deficits in the osteogenic
differentiation potential of resident BMSCs [10, 11]. Similar-
ly, impaired BMSC osteogenesis has been observed in several
transgenic mouse models in which many of the characteristic
features of senile osteoporosis are evident [12–15]. Clearly,
therefore, stimulation of resident BMSC populations to un-
dergo osteogenic differentiation through therapeutic interven-
tion may be key to the success of treating osteoporosis in aged
individuals.

The majority of current treatments available for osteoporo-
sis are directed towards preventing bone resorption, with
bisphosphonate therapy being the most widely used
antiresorptive approach to enhance bone strength in osteopo-
rotic patients [16]. Bisphosphonates are a well-characterized
class of synthetic compounds structurally related to pyrophos-
phate and are thought to mediate their antiresorptive actions
primarily through inhibition of osteoclast activity [17]. How-
ever, there are now an increasing number of reports alluding to
the idea that the preventative effects of bisphosphonates on
bone loss maybe additionally mediated through their anabolic
effects on cells of the osteoblastic lineage. In the majority of
cases, both amino- and non-aminobisphosphonates have been
found to enhance osteogenic differentiation of human BMSCs
(hBMSCs) [18–21]. These observations have also been ex-
tended to human adipose-derived stromal cells (hASCs),
where alendronate treatment not only stimulated osteogenesis
in vitro but also enhanced bone repair in a rat critical-sized
calvarial defect model when delivered locally on a hASC/
poly(lactide-co-glycolide) scaffold construct [22]. However,
despite these observations, no study has yet examined the
effects of bisphosphonates on hBMSCs isolated from

osteoporotic patients, even though they are the primary target
group for bisphosphonate treatment. The need for such inves-
tigations is further highlighted by the fact that hBMSCs from
osteoporotic patients are considered to be molecularly distinct
from their nonosteoporotic counterparts and may therefore not
respond in the same way to bisphosphonate treatment [23].

In the present study, we aim to address this issue by
evaluating the potential of aminobisphosphonates to enhance
osteogenic differentiation of hBMSCs isolated from aged
female osteoporotic patients. In vitro cultures of hBMSCs
were incubated with zoledronate, and their ability to differen-
tiate towards osteoblasts assessed through the use of molecu-
lar, biochemical, and histological techniques. Furthermore, the
osteogenic differentiation potential of hBMSCs isolated from
osteoporotic patients undergoing alendronate therapy was also
evaluated. We hypothesized that exposure of osteoporotic
hBMSCs to aminobisphosphonate would significantly in-
crease their capacity for osteoblastogenesis and subsequent
mineralization.

Materials and methods

Patients

BMSCs were isolated from a total of 10 aged female osteopo-
rotic donors undergoing routine surgical procedures for prox-
imal femur fracture at the Department of Trauma Surgery,
University Hospital Innsbruck, Austria (Table 1). All proce-
dures were carried out in accordance with the ethics commis-
sion guidelines for Innsbruck Medical University. Inclusion
criteria consisted of patients being >65 years of age and having
sustained a proximal femoral fracture after a low-energy trau-
ma. Osteoporosis was confirmed in these patients using dual
energy X-ray absorptiometry (DXA; Hologic QDR 4500)
where those patients showing a bone mineral density T-score
of −2.5 standard deviations (SD) or less at the contralateral hip
and/or lumbar spine were considered osteoporotic. In three of
the cases, patients had been receiving aminobisphosphonate
treatment for >3 years.

Cell culture

Bone marrow was harvested from the femoral medullary cav-
ity of patients undergoing routine surgery and hBMSCs iso-
lated according to a well established protocol [24]. Purified
hBMSCs were maintained at 37 °C, in 5 % CO2 and 98 %
humidity in normal growth medium consisting of Dulbecco’s
modified eagle medium (DMEM-low glucose, with L-gluta-
mine) (PAA Laboratories GmbH, Pasching, Austria),
supplemented with 10% fetal bovine serum (Biowest, Nuaillé,
France) and 1 % penicillin (100 U/ml) and streptomycin
(100 μg/ml) (PAA Laboratories GmbH, Pasching, Austria).
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The medium was changed twice a week. Cells were used at
passage 4 unless otherwise stated. For all experiments,
hBMSCs were cultured in 96-, 48- and 6-well culture plates
(Sarstedt, Wiener Neudorf, Austria), seeded at densities of 4×
103 and 5×104 cells per well, respectively. After 72 h, cells
were washed and used for experimental analysis.

Fluorescence activated cell sorting analysis of surface markers

hBMSCs were directly stained with phycoerythrin-labeled
antibodies (Biozym Scientific GmbH, Oldendorf, Germany)
specific for CD90, CD105, CD166, CD34, and CD45. Spec-
ificity was confirmed through the use of appropriate
phycoerythrin-labeled isotype control antibodies and viability
assessed using 7-AAD (1 μg/ml) (Sigma, Vienna, Austria).
Flow cytometry was carried out on a FACScan (BD Biosci-
ences, Schwechat, Austria) and staining analyzed using
WinMDI2.8 freeware.

hBMSC differentiation

hBMSCs were induced to undergo either adipogenesis or
osteogenesis using well-recognized differentiation protocols
previously established in our laboratory [25]. Adipocyte for-
mation was confirmed by positive staining of triglyceride
using Oil red O (Sigma-Aldrich, Vienna, Austria). In order
to investigate the effects of aminobisphosphonate treatment
on hBMSC osteogenesis, osteogenic induction medium (OM)
consisting of normal growth medium supplemented with
50 μM L-ascorbic acid 2-phosphate (Sigma-Aldrich),

10 mM β-glycerophosphate (Sigma-Aldrich), and 100 nM
dexamethasone (Sigma-Aldrich), was supplemented with
zoledronate (10 and 100 nM) where stated. Mineralization
was visualized using Alizarin red and the amount of staining
quantified in pooled samples from individual patients using a
spectrophotometer following Alizarin red extraction using
cetylpyridinium chloride (Sigma-Aldrich, Vienna, Austria).
Optical densities were converted to nanomoles of Alizarin
red using a standard curve and normalized to cell number.
The mean cell number was determined by automated counting
of Hoechst 33258 stained nuclei in at least nine random fields
of view. Images were captured on a Leica DMI 3000 B inverse
fluorescence microscope equipped with a DIC 450 C camera
and LAS V 4.0 software (all Leica, Microsystems, Wetzlar,
Germany). Image processing and nucleus counts were
performed with Cell Profiler cell image analysis software
version 2.0 (Scientific Volume Imaging, Hilversum, The
Netherlands). ALP activity was quantified in cell lysates using
p -nitrophenylphosphate liquid substrate (Sigma-Aldrich,
Buchs, Switzerland) and normalized to total protein content
and reaction time. The expression levels of differentiation
markers specific to adipogenesis or osteogenesis were mea-
sured by quantitative reverse transcription polymerase chain
reaction (qRT-PCR) as detailed below.

Quantitative reverse transcription polymerase chain reaction

Total RNA was purified from hBMSCs using TRI Reagent
(Sigma-Aldrich, Vienna, Austria) and treated with TURBO
DNase (Life Technologies, Zug, Switzerland). Equal amounts

Table 1 Details of patients from which BMSCs were isolated

Patient
(sex)

Age
(yrs)

Mobility
scorea

T-scoreb

(femoral neck)
T-scoreb

(total hip)
T-scoreb

(lumbar spine)
BMI P1NPc

(μg/l)
β-CTxc

(ng/l)
Anti-osteoporotic
therapy used

F 84 2 −2.9 −3.3 −3 18.9 47 932 -

F 92 4 −2.9 −3.4 −4.6 20.2 61 1194 -

F 89 9 −2.5 −1.8 −1 23.5 64 864 -

F 95 6 −2.7 −2.9 −1.9 22.9 37 345 -

F 84 4 n.d. n.d. −5.1 19.5 47 376 -

F 90 4 −3.5 −3.6 −5 21.2 108 1033 Ca/Vit.D

F 85 9 −2.6 −2.4 −2.9 25.0 77 490 -

F 79 4 n.d. n.d. −4.2 20.8 60 71 dFosamax/Ca/Vit.D

F 82 9 −3 −2.6 −2.4 23.2 32 284 dFosamax/Ca/Vit.D

F 85 9 −2.4 −2.4 −3 24.0 24 261 dFosamax/Ca/Vit.D

a Parker mobility score ranging from 0 (no walking ability at all) to 9 (fully independent).
b Determined by DXA analysis where a T-score of −2.5 standard deviations (SD) or less was considered osteoporotic.
c Bone turnover markers, P1NP, Serum procollagen type I N propeptide (bone formation marker); β-CTx , Serum carboxy-terminal cross-linking
telopeptide of type I collagen (bone resorption marker).
d Patients received 70 mg of Fosamax (alendronate) once weekly and duration of treatment ranged from 4–12 years.

F, female; BMI, body mass index; Ca/Vit .D , calcium/vitamin D; n .d ., not determined due to contralateral implant following previous hip fracture
surgery.

Osteoporos Int (2014) 25:1151–1161 1153



of RNA were combined to form the groups control (BMSCs
from untreated patients; n =5), control+ZA (BMSCs from
untreated patients treated with zoledronate in vitro; n =5),
alendronate (ALN) (BMSCs from patients treated with
alendronate; n =3), ALN+ZA (BMSCs from patients treated
with alendronate and further treated with zoledronate in vitro;
n =3). RNA (0.5 μg) was reverse-transcribed using Superscript
II (Life Technologies) as described previously [25]. An equiv-
alent of 10 or 20 ng total RNAwas applied as complementary
DNA template in the successive qRT-PCR reactions using the
StepOnePlus (Life Technologies). Quantification of messenger
RNA (mRNA) expression was performed with TaqMan Gene
Expression Assays (Life Technologies) specific for runt-related
transcription factor 2 (RUNX2) (Hs01047976_m1), osteocalcin
(OCN ) (Hs01587814_g1), secreted phosphoprotein 1/
osteopontin (SPP1) (Hs00959010_m1), and fibroblast growth
factor (FGF2) (Hs00266645_m1), and values normalized to
the housekeeping gene, beta glucuronidase (GUSB )
(Hs99999908_m1). All reactions were performed in fast optical
96-well reaction plates (Life Technologies) at 95 °C for 20 s,
40 cycles of 95 °C for 1 s, and 60 °C for 20 s. The mean fold
changes from three separate experiments were analyzed using
the 2−ΔΔCT method.

Osteopontin (SPP1) small interfering RNA

Specific knockdown of SPP1 expression was performed with
Silencer Select small interfering RNA (siRNA) oligos,
(Ambion, Life Technologies) according to the manufacturer’s
protocol. Osteoporotic hBMSCs (1×105 cells) were
transfected with 100 nM SPP1-specific (S13376) or negative
control siRNA (negative control-1) using the NEON Trans-
fection System (Life Technologies) as previously described
[25]. Following transfection, cells were seeded in cell culture
plates with fresh growth medium (without antibiotics) and
incubated for 24 h at 37 °C, 5 % CO2. Medium was then
replaced with either fresh growth medium or differentiation
medium and total RNA harvested at day 7 to confirm SPP1
mRNA knockdown. Mineral formation was assessed after
28 days using Alizarin red.

Western blot analysis of osteopontin

Protein was extracted using CelLytic M (Sigma-Aldrich) con-
taining a protease inhibitor cocktail (Sigma-Aldrich) and pro-
tein amounts determined by BioRad Protein Assay (BioRad,
Reinach, Switzerland). Protein samples were boiled for 5 min
in loading buffer (50 mM Tris–HCl, pH 6.8, 2 % sodium
dodecyl sulfate (SDS), 10 % glycerol, 100 mM dithiothreitol,
and 0.002%Bromophenol blue) and equal amounts of protein
loaded onto 4–15 % Mini-PROTEAN TGX Precast gels
(BioRad). Protein was then electroblotted onto polyvinylidene
fluoride membranes using the Trans-Blot Turbo blotting

system (BioRad) and incubated in 5 % skimmed milk,
50 mM Tris–HCl, pH 7.6, 150 mM NaCl, 0.1 % Tween 20
(TBST) for 1 h at room temperature. Membranes were then
incubated overnight at 4 °C with either rabbit antihuman osteo-
pontin (1:1,000) (Abcam, UK) or mouse antihuman tubulin
(1:4,000) (Sigma-Aldrich). After washing in TBST three times
for 5 min each, membranes were incubated with a horseradish
peroxidase-conjugated antimouse or antirabbit IgG (1:10,000)
(Jackson ImmunoResearch, UK) for 1 h at room temperature.
Following a further washing step, peroxidase activity was
detected using SuperSignal West Dura Chemiluminescent
Substrate (Thermo Scientific, Lausanne, Switzerland).

Statistical analysis

All statistical analyses were carried out using SPSS20.0
(SPSS Inc., Chicago, IL, USA). Parametric analysis of data
was performed using the two-tailed unpaired Student’s t test
for comparison of two groups or one-way analysis of variance
(ANOVA) followed by Tukey’s post hoc test for multiple
group comparisons. In all cases, a p <0.05 was considered
statistically significant, and all data were expressed as mean±
standard deviation (SD).

Results

Characterization of hBMSCs isolated from osteoporotic
patients

hBMSCs isolated from osteoporotic patients expressed high
levels of various markers associated with mesenchymal stem
cells, including CD90, CD105, and CD166, and low levels of
haematopoietic markers CD34 and CD45 (Fig. 1a). Undiffer-
entiated cells displayed typical fibroblast-like appearance
(Fig. 1b), and multipotency was also demonstrated in these
cell populations through their ability to differentiate into adi-
pocytes (Fig. 1c) and osteoblasts (Fig. 1d).

Effect of zoledronate on the mineral formation
by differentiating hBMSCs isolated from osteoporotic patients

hBMSCs from osteoporotic patients were further evaluated
for their ability to undergo osteogenic differentiation and
subsequent mineralization following their incubation for up
to 21 days in OM supplemented with or without 10 or 100 nM
zoledronate. The degree of mineral formation was visualized
and quantified by Alizarin red staining. Treatment with
zoledronate consistently enhanced mineral formation over
the 3-week treatment period in a concentration-dependent
manner (Fig. 2a and b). Significant increases in Alizarin red
staining at 2 weeks postinduction were only observed in cell
cultures exposed to the highest concentration of zoledronate
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tested (100 nM; p <0.05), although a significant effect on
mineral formation was observed with both 10 (p <0.01) or
100 nM (p <0.01) zoledronate by 3 weeks (Fig. 2a, b). The
lower concentration of zoledronate (10 nM) had no significant
effect on cell numbers during the 3 weeks of treatment as
compared to cells treated without zoledronate (Fig. 2c). How-
ever, cell numbers in cultures treated with the higher concen-
tration of zoledronate (100 nM) were significantly reduced at
day 14 (p <0.05) and at day 21 (p <0.01) and remained at

levels comparable to those observed in uninduced cells
(Fig. 2c).

Comparison between osteogenic differentiation of hBMSCs
isolated from untreated and alendronate-treated osteoporotic
patients

We next isolated hBMSCs from osteoporotic patients under-
going ALN therapy and directly compared their osteogenic

Fig. 1 Characterization of
hBMSCs isolated from aged
female osteoporotic patients. a
Expression of surface antigens by
hBMSCs isolated from
osteoporotic patients (n=3). The
expression of surface markers
associated with mesenchymal
cells (CD90, CD105 and CD166)
and hematopoietic cells (CD34
and CD45) was assessed by
fluorescence activated cell sorting
(FACS). b Phase contrast image
of cultured hBMSCs grown under
non-differentiating conditions. c
Cells differentiated towards
adipocytes and stained with Oil
red O at day 14. d Cells
differentiated towards osteoblasts
and stained with Alizarin red at
day 21. Images are representative
of at least three separate
experiments

Fig. 2 Effect of zoledronate on the mineral formation by differentiating
hBMSCs isolated from aged female osteoporotic patients. hBMSCs
isolated from osteoporotic patients (n=7) were induced to undergo oste-
ogenic differentiation for 14 and 21 days in osteogenic medium (OM)
with or without zoledronate (10 and 100 nM) and mineral formation
determined by Alizarin red staining. a Representative images of hBMSC
cultures isolated from four separate patients stained with Alizarin red at

21 days after osteogenic induction. b Quantitative determination of
Alizarin red staining normalized to cell number. c Mean cell number as
determined from at least 9 random fields of view. Data is expressed as
mean±SD. * p<0.05, ** p <0.01 in comparison to osteogenic medium
without ZA (OM) as determined by ANOVA. All experiments were
performed in triplicate
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potential with hBMSCs from osteoporotic patients without
bisphosphonate medication (control). In all cases, hBMSCs
isolated from alendronate-treated patients demonstrated a
greater tendency towards osteoblast formation than patients
not receiving alendronate treatment as confirmed by signifi-
cant increases in Alizarin red staining at days 14 (p <0.01) and
21 (p <0.01) (Fig. 3a, b). In addition, hBMSCs from osteopo-
rotic patients receiving alendronate medication were also in-
duced to undergo osteogenesis for up to 21 days in osteogenic
medium supplemented with zoledronate at 10 (ALN+10 nM
ZA) or 100 nM (ALN+100 nM ZA). In contrast to our initial
findings using hBMSCs isolated from nonbisphosphonate-
treated osteoporotic patients, zoledronate was only capable
of enhancing mineralization in cultures of differentiating
BMSCs isolated from alendronate-treated patients after
3 weeks of treatment, and only when the highest concentration
of zoledronate was used (ALN+100 nM ZA vs. ALN;
p <0.01). However, these increases in mineralization due to
zoledronate treatment (ALN+100 nM) were also associated
with significant reductions in cell numbers as compared to
control cultures at day 14 (p <0.01) and day 21 (p <0.01)
(Fig. 3c).

Effect of aminobisphosphonate treatment on ALP activity
and osteogenic gene expression in differentiating hBMSCs

In order to ascertain whether the stimulatory effects of
aminobisphosphonate treatment on hBMSC osteogenic activ-
ity were also apparent at the biochemical and molecular level,
we analyzed both ALP protein activity and the expression
levels of several osteogenic markers in cultures of hBMSCs
undergoing osteogenic differentiation. A 2- to 3-fold increase
in ALP enzyme activity was calculated for differentiating
hBMSCs from each treatment group by day 14 following
osteogenic induction (Fig. 4a). However, despite our previous
observation that exposure to aminobisphosphonate greatly
enhances hBMSC-derived osteoblast mineralization, we were
unable to observe any significant increases in ALP enzyme
activity in hBMSCs treated with zoledronate (ZA; 100 nM) or
in hBMSCs isolated from patients treated with ALN. The
expression levels of RUNX2 did not significantly change
during osteogenic differentiation in any of the groups tested
(Fig. 4b). Expression levels of FGF2 (Fig. 4c) and OCN
(Fig. 4d) were significantly reduced upon osteogenic induc-
tion and were found to be comparable between all treatment

Fig. 3 Comparison between
osteogenic differentiation of
hBMSCs isolated from untreated
and alendronate-treated aged
female osteoporotic patients.
hBMSCs isolated from
osteoporotic patients receiving
alendronate treatment (ALN)
(n=3) were induced to undergo
osteogenic differentiation for 14
and 21 days with or without
zoledronate (ZA) (10 and 100
nM). Mineral formation was
assessed by Alizarin red staining
and compared to hBMSCs
isolated from osteoporotic
patients of comparable age and
T-score not receiving
bisphosphonate treatment
(Control) (n=3) cultured at the
same time under identical
conditions. a Representative
images of Alizarin red stained
hBMSC cultures at day 14 and 21
from each set of patients used. b
Quantitative determination of
Alizarin red staining normalized
to cell number. c Mean cell
number as determined from at
least 9 random fields of view.
Data is expressed as mean±SD.
* p <0.05, ** p <0.01 in
comparison to control as
determined by ANOVA. All
experiments were performed in
triplicate
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groups. In contrast, both zoledronate and alendronate had a
marked inhibitory effect on osteopontin (SPP1 ) gene expres-
sion (Fig. 4e). Zoledronate induced a significant reduction in
SPP1 expression in hBMSCs from untreated patients (con-
trol+ZA) at 7 (0.4-fold±0.09; p <0.01) and 14 (0.4-fold±
0.06; p <0.01) days following osteogenic induction. Similarly,
SPP1 expression was also significantly reduced in hBMSCs
from alendronate-treated patients (ALN) at day 7 (0.4-fold±
0.07; p <0.01) postosteogenic induction. Zoledronate treat-
ment of these cells (ALN+ZA) enhanced this effect by induc-
ing a more sustained decrease in SPP1 expression for up to
14 days (p <0.05).

Effect of osteopontin (SPP1) on the mineralization efficiency
of differentiating bone-forming cells isolated
from osteoporotic patients

Further studies were performed in order to assess the involve-
ment of osteopontin in determining the mineralizing capabil-
ities of osteoporotic hBMSC-derived osteoblasts. Western blot
analysis revealed marked reductions in osteopontin protein
levels in differentiating osteoporotic hBMSCs treated with
either 10 or 100 nM zoledronate for 10 days as compared to
control cultures (Fig. 5a). Loss-of-function studies in

differentiating osteoporotic hBMSCs through the use of a
siRNA specific for SPP1 resulted in a >140-fold decrease in
SPP1 mRNA expression as compared to cells transfected with
a siRNA control oligonucleotide (Fig. 5b). Subsequently, these
cells demonstrated a noticeable increase in mineral formation
after 28 days of osteogenic induction as compared to cells
treated with the siRNA control oligonucleotide (Fig. 5c).

Discussion

Bisphosphonates are considered as one of the first-line thera-
pies for osteoporosis and are the most commonly prescribed
agents to prevent bone loss and subsequent fractures [26, 27].
Their selective adsorption to mineral surfaces and uptake by
resident osteoclasts has given rise to the generally accepted
opinion that bisphosphonates exert their antiresorptive effects
primarily through modification of hydroxyapatite crystal dis-
solution and osteoclast activity [28]. Indeed, numerous studies
have confirmed that bisphosphonates can directly influence
osteoclast resorptive activity through alterations in osteoclast
formation and viability [29–32]. Moreover, the cellular and
biochemical mechanisms through which these effects are
brought about have since been elucidated, thus providing us

Fig. 4 Effect of aminobisphosphonate treatment on ALP activity and
osteogenic gene expression in differentiating hBMSCs. hBMSCs isolated
from alendronate treated (ALN; n=3) or untreated (Control; n=5–6) aged
female osteoporotic patients were induced to undergo osteogenic differ-
entiation for up to 21 days with or without zoledronate (ZA) (100 nM). a
Cell lysates were harvested at 0, 7, 14 and 21 days following osteogenic
induction and ALP activity determined using an ALP activity assay.
Expression levels of RUNX2 (b), FGF2 (c), OCN (d), and SPP1 (e)

were determined in hBMSCs at days 0, 7 and 14 following osteogenic
induction using qRT-PCR and values expressed as fold change in mRNA
expression relative to either control hBMSC at day 0 (Control, Control+
ZA) or alendronate-treated hBMSCs at day 0 (ALN, ALN+ZA) (value=
1). In all cases, experiments were performed in triplicate and data
expressed as mean±SD. * p<0.05, ** p<0.01 as determined byANOVA
whereby Control and Control+ZA were compared to Control at day 0,
and ALN and ALN+ZAwere compared to ALN at day 0
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with an even deeper understanding of how bisphosphonates
may function to prevent bone loss [33].

It has been known for some time that bisphosphonates have
the potential to prevent apoptosis in bone-forming osteoblasts
and osteocytes in vitro [34, 35], although information relating
to their ability to directly influence bone formation through
stimulation of such cells remains limited [36, 37]. It is becom-
ing increasingly evident, however, that bisphosphonates may
have an indirect effect on bone quality through their potential
to enhance osteogenesis in differentiating BMSCs. Although
thought to represent only 0.001–0.01 % of the total cell pop-
ulation found in bone marrow [38], BMSCs play a crucial role
inmaintaining normal bone homeostasis through their capacity
for osteoblastic differentiation [39]. The influence of
bisphosphonates on BMSC-derived osteoblast formation was
originally described by Giuliani et al. [18], where cultures of
bone marrow cells treated with low doses of either etidronate
or alendronate resulted in increased numbers of colony
forming units for osteoblasts (CF-OBs). Moreover, bone mar-
row cells isolated from bisphosphonate-treated mice also dem-
onstrated an increased potential for CF-OB formation, thus
suggesting that the stimulatory effects of bisphosphonates on
osteoblastogenesis were also evident in vivo. Several more
reports have since confirmed these initial findings using dif-
ferent bisphosphonates and alternative stem cell sources
[19–22]. However, up until now, no studies have sought to
determine the effects of bisphosphonates on hBMSCs isolated
from osteoporotic patients and to evaluate their potential
osteoanabolic influence on these cells.

In the current report, we successfully isolated and charac-
terized hBMSCs from aged female osteoporotic patients. We
have confirmed our hypothesis that in vitro treatment of these
hBMSC populations with zoledronate during osteogenic dif-
ferentiation could greatly enhance their potential for osteoblast-
mediated mineralization as demonstrated by a significant in-
crease in mineral deposition. Moreover, we could also demon-
strate that hBMSC cultures isolated from osteoporotic patients
receiving treatment with alendronate were also subject to en-
hanced mineralization under normal osteogenic culture condi-
tions. The potential for alendronate to enhance osteoblast for-
mation in vivo may represent an additional mechanism by
which bone mineral density (BMD) is increased in osteoporot-
ic patients receiving aminobisphosphonate therapy [40]. Fur-
thermore, the fact that we were able to visualize enhanced
mineral formation in osteoblasts derived from these hBMSCs
in the absence of further in vitro aminobisphosphonate stimu-
lation suggests that these cells have the potential to retain their
enhanced osteogenic capacity, a trait that may also exist in vivo
during extended periods of bisphosphonate discontinuation. If
confirmed, this theory may be of clinical importance when
considering replacement therapies during time off from bis-
phosphonate treatment [41]. Moreover, such findings may also
be of significant relevance when considering the long-term
effects of aminobisphosphonate treatment. Numerous reports
now exist linking atypical femoral fractures in osteoporotic
patients with long-term bisphosphonate treatment, possibly
through increases in bone mineralization and brittleness due
to decreases in bone turnover [42–45]. Our discovery that long-

Fig. 5 Effect of osteopontin on the mineralization efficiency of differen-
tiating bone-forming cells isolated from aged female osteoporotic pa-
tients. a Equal amounts of protein extracts from hBMSCs incubated for
10 days in growth medium (Uninduced) or in osteogenic medium alone
(OM) or supplemented with 10 nM (OM+10nM) or 100 nM (OM+
100nM) ZA were loaded onto a SDS-PAGE gel and immunoblotting
performed using an antibody specific for osteopontin. Levels of tubulin
were used as a loading control. b qRT-PCR analysis of SPP1 gene
expression in differentiating osteoporotic hBMSCs at day 7 following

transfection with either control siRNA (siRNA (C)) or SPP1 siRNA
(siRNA (SPP1)). Data was normalized to GUSB and expressed as fold
change (Log10) as compared to cells transfected with siRNA (C) using
the 2-ΔΔCT method. Experiments were performed in triplicate and data
expressed as mean±SD. *p <0.01, in comparison to siRNA (C) as
determined by Student’s t-test. c Representative images of Alizarin red
stained osteoporotic hBMSCs transfected with control siRNA (siRNA
(C)) or SPP1 siRNA (siRNA (SPP1)) at day 28 post-osteogenic induction
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term bisphosphonate therapy enhances hBMSC-derived oste-
oblast mineralization may therefore constitute an additional
mechanism through which bisphosphonates influence bone
mineralization and subsequent susceptibility to atypical femo-
ral fractures, independent of their antiosteoclastic effects.

Although the significant increases observed in osteoporotic
hBMSC-derived mineral formation induced by high concen-
trations of zoledronate (100 nM) could partly be explained by
reductions in cell numbers, this could not account for the
enhanced levels of mineralization induced by either low
zoledronate concentrations (10 nM) or by hBMSCs isolated
from alendronate-treated osteoporotic patients. The mechanism
of action of aminobisphosphonates on BMSC-derived mineral
formation remains largely undetermined, although previous
reports have alluded to the fact that aminobisphosphonates
may mediate their effects through the regulation of various
proteins and genes specific to osteogenesis. The activities of
alkaline phosphatase (ALP) are considered to be an essential
prerequisite for the successful initiation of mineralization [46].
As such, ALP activity levels are generally used as a measure of
osteogenesis in differentiating MSC cultures in vitro. Despite
the fact that we could demonstrate marked increases in mineral
formation in hBMSC cultures previously exposed to either
zoledronate or alendronate, ALP activity in these cells
remained unaffected. These findings are in line with previous
studies in which the effects of zoledronate and alendronate on
hBMSC osteogenesis were evaluated [19, 47]. However, addi-
tional reports also exist describing the stimulatory effects of
both zoledronate and alendronate on ALP activity in differen-
tiating hBMSCs [20, 21]. As such, it remains unclear as to the
involvement of ALP in regulating the stimulatory effects of
aminobisphosphonate treatment on hBMSC osteogenesis and
subsequent mineral formation. At least in the hBMSCs
of the osteoporotic individuals used in the current study,
ALP activity did not appear to represent a critical factor
in the mineral-promoting actions of either zoledronate or
alendronate.

At the genetic level, increases in the expression of FGF2 ,
RUNX2 , BSP2 , and BMP-2 mRNA have been observed in
hBMSCs treated with alendronate or zoledronate [19, 48].
Similarly, osteocalcin and RUNX2 protein levels were also
found to be elevated in hBMSCs undergoing osteogenic dif-
ferentiation in response to alendronate treatment [20]. In con-
trast, a more recent study by Ebert et al. [21] demonstrated that
the stimulatory effects of zoledronate on hBMSC mineraliza-
tion were associated with a downregulation in the expression
levels of osteogenic markersOCN , SPP1 , andCOL1A2 . In the
present report,RUNX2 expression levels were unaltered during
osteogenesis and remained at comparable levels in all treatment
groups. The expression levels of both FGF2 and OCN were
significantly downregulated upon osteogenic induction in ei-
ther the presence or absence of aminobisphosphonate. Expres-
sion levels of other known osteogenic markers including

phosphate-regulating gene with homologies to endopeptidases
on the X-chromosome (PHEX) remained unaltered or, as in the
case of matrix extracellular phosphoglycoprotein (MEPE) and
dentin matrix protein 1 (DMP1), were undetectable (data not
shown). As such, we do not consider the stimulatory effects of
aminobisphosphonate treatment to be dependent on alterations
in these osteogenic markers. However, aminobisphosphonate
treatment did induce a significant downregulation in osteopon-
tin (SPP1) at both mRNA and protein levels in hBMSCs
undergoing osteogenic differentiation as compared to untreated
control cells. Osteopontin is generally considered to be a neg-
ative regulator of osteogenic differentiation as demonstrated by
the fact that cortical bone mineralization is significantly en-
hanced in Spp1−/− mice [49]. Furthermore, deletion of the
Spp1 gene from hypomineralized mice deficient in the tissue-
specific ALP gene, Akp2 , partially restored a normal bone
phenotype in these mice [50]. This, along with its ability to
inhibit mineral formation in vitro [51], would suggest that
downregulation of SPP1 expression in osteoblastic cultures
by aminobisphosphonates may represent a plausible means
through which they enhance mineral deposition both in vitro
and possibly even in vivo. This theory is further supported by
the results from our loss-of-function studies in which SPP1
gene knockdown enhanced mineral formation in osteoporotic
hBMSCs undergoing osteogenic differentiation. A proposed
limitation of this study is that hBMSCs were isolated from
female osteoporotic patients only, and thus, we cannot exclude
possible gender-related effects with regards to the differentia-
tion potential of the isolated hBMSCs. Despite females
representing the majority of osteoporotic (hip) fracture patients,
further investigations into the osteogenic potential of BMSCs
from male osteoporotic patients may therefore be warranted.
Furthermore, our study is somewhat underpowered due to the
limited number of aged (>65 years old) osteoporotic patients
that could be recruited for donation of hBMSCs. This was
especially evident in the case of acquiring samples from oste-
oporotic patients receiving aminobisphosphonate medication.
Future studies using larger numbers of patients, in combination
with more diverse treatment groups, would certainly help
clarify the overall impact of bisphosphonate treatment on
hBMSC osteogenesis and mineralization of differentiating
bone-forming cells isolated from osteoporotic patients.

In summary, we demonstrate here that exposure of osteopo-
rotic hBMSCs to aminobisphosphonates greatly enhances their
capacity for osteoblast-mediated mineral formation and may
thus represent an alternative means by which bisphosphonates
increase BMD in treated patients. Furthermore, downregulation
of osteopontin production is implicated as a possible mecha-
nism of action. It is expected that further investigations into
how bisphosphonates influence hBMSC function will better
our understanding of how these potent synthetic compounds
act to mediate bone quality and turnover in osteoporotic pa-
tients and that these insights may ultimately lead to the
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generation of new and novel approaches to treat age-related
osteoporotic bone loss.
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