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Abstract
Objectives This study aims to evaluate the effect of a min-
imally invasive mesial–occlusal–distal (mod) preparation on
the marginal adaptation of ceramic and composite inlays
with the aim of saving sound dental substance.
Materials and methods Class II mod cavities were prepared
in 50 extracted human molars and randomly allocated to five
groups (n=10). In all groups, themesial–proximal boxmargins
were located in the dentin, 1 mm below the cementoenamel
junction (CEJ), while the distal box margins were 1 mm above
the CEJ. In groups A and B, conventional standard prepara-
tions with a divergent angle of α=6° were prepared. In groups
C, D, and E, minimally invasive standard preparations with a
convergent angle of α=10° were prepared. In groups A and D,
composite inlays and, in groups B and C, ceramic inlays were
fabricated (chairside economical restoration of esthetic ce-
ramics (CEREC)) and adhesively inserted. In group E, a direct
composite filling using the incremental technique was placed.
Replicas were taken before and after thermomechanical load-
ing (1,200,000 cycles, 50/5 °C, max. load 49 N). Marginal
integrity (tooth–luting composite, luting composite–inlay) was
evaluated by scanning electron microscopy (×200). The per-
centage of continuous margins in the different locations was
compared between and within groups before and after cycling,
using ANOVA and Scheffé post hoc test.

Results After the thermomechanical loading, no significant
differences were observed between the different groups with
respect to the interface of luting composite–inlay. At the
interface of tooth–luting composite for preparations involv-
ing the dentin, groups A and B behaved significantly better
compared to the control group E, which in turn were not
different to groups C and D.
Conclusion Composite and ceramic inlays inserted in min-
imally invasive prepared mod cavities result in margins not
different from those of inlays placed in conventional mod
preparations. Direct composite filling margins, however,
were inferior to those attained by conventional indirect
restorations.
Clinical relevance Minimally invasive preparations for mod
inlays with undercuts show marginal adaptation equal to
that of conventional inlay preparation design.

Keywords Composite inlay . Ceramic inlay . Minimally
invasive . Marginal adaption

Introduction

The present study evaluated the effect of minimally invasive
mesial–occlusal–distal (mod) preparations with undercuts
on the marginal adaptation of composite and ceramic inlays,
with the aim of saving healthy dental substance.

Since the introduction of adhesive technology in dentist-
ry [1], Black’s guideline of extension for prevention has
changed to “prevention instead of extension” [2]. Adhesive
systems, allow for new cavity designs to be used with
composite materials [3], as they no longer require a special
retention form as do amalgam or metal inlay restorations.
Attention can now be focused on maximal preservation of
dental hard tissue, and a minimally invasive design should
be selected for the given situation. This is especially
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advantageous in cases of lost or failed restorations. Removal
of sound dental hard tissue can be avoided in these situa-
tions by using a minimally invasive preparation procedure,
thereby increasing the longevity of the tooth.

Resin composites have undergone enormous development
since their first use in dentistry in the 1950s by Buonocore [1,
4]. With improved wear resistance, strength, esthetics, and
reduced water absorption in comparison to previous materials,
composite fillings are increasingly being placed in posterior,
as well as anterior, areas of the mouth [5]. Nevertheless,
polymerization shrinkage [6–8] and microleakage [9] of
resin-based restorative materials remain unsolved problems
in clinical dentistry. Due to shrinkage, especially in direct
class II adhesive restorations, incremental methods [10–14],
the use of ceramic inserts [15], or the application of a base [12,
16] have been suggested to counteract this polymerization
shrinkage and to reduce stress development within the tooth
restoration system. Polymerization shrinkage is influenced by
different parameters [17], such as material properties [18],
configuration factor [19, 20], cavity size, presence or absence
of enamel at cavity margins, and the dentin quality, morphol-
ogy, and location [21, 22]. Especially in larger cavity sizes, the
indirect restoration technique could help in reducing the po-
lymerization contraction, which is restricted to the thin com-
posite cement layer [23].

As an indirect technique, CAD/CAM restorations, such as
the chairside economical restoration of esthetic ceramics
(CEREC) restoration process, come into consideration [24],
showing a survival rate comparable to casted gold restorations
[4, 25–27]. To date, special industrially fabricated ceramic
blocks are used with the CEREC system. But more recently,
composite blocks [28] have demonstrated great potential,
limiting the risk of cuspal fracture below the cementoenamel
junction (CEJ) when compared to porcelain onlays [29, 30].

Using composite resin blocks in CAD/CAM procedures
may present an additional advantage in terms of milling time
and conservation of tooth structure. Physical properties allow
milling in thin layers [31], which may be advantageous in
restoring primary teeth and also for substitution of, for exam-
ple, amalgam fillings or indirect gold restorations. In addition,
the prefabricated blocks are industrially fabricated and highly
homogeneous, which should improve the mechanical proper-
ties and, therefore, the performance of the restoration over
time compared to direct filling procedures [28].

To date, various preparation guidelines exist for inlay
restorations [24, 32–34]. Especially for ceramic inlays, a
cavity angle of approximately 6° to 10° is recommended.
Therefore, sound tooth structure might be sacrificed to
achieve a conventional divergent geometrical design. Espe-
cially the more coronally located parts of the cavity have to
be removed. So, while an undermined preparation design
would save sound tissue, it would also lead to a broader
luting margin cervically.

Due to of the abovementioned considerations, this study
was designed to evaluate the effect of a minimally invasive
mod preparation design with undercuts on the marginal adap-
tation of direct composite fillings, composite inlays, and ce-
ramic inlays, and compare them to conventional divergent
preparations. The null hypothesis tested in this study is that
there will be no difference in marginal adaptation between the
different preparation designs and materials used.

Materials and methods

Sample preparation

Fifty intact, caries-free human molars with completed root
formation, which were stored in 0.1 % thymol solution be-
tween extraction and use, were selected for this in vitro test.
Extracted teeth were collected as anonymous by-products of
regular therapy. According to that, our Medical Ethical Board
stated that the performed research was not conducted under
the regulations of the “Act on Medical Research Involving
Human Subjects” (METc 2009.305). Therefore, a written
informed consent was not required. Before treatment, patients
were informed about the general research purposes and gave
verbal agreement, which was not documented to keep the
procedures anonymously. After cleaning, the molars were
randomly assigned to five experimental groups (n=10). All
teeth were prepared for the simulation of pulpal pressure
according to a protocol described by Krejci et al. [35]. The
roots of the teeth were centrally mounted to roughened spec-
imen carriers (SEM mounts, Bal-Tec AG, Balzers, Liechten-
stein) with a superglue (Renfert Sekundenkleber Nr 1733,
DentexAG, Zürich) and embedded in auto-polymerizing resin
(Paladur, Heraeus Kulzer, Wehrheim, Germany). Intrapulpal
pressure was maintained at 25 mmHg throughout the whole
experiment, i.e., during cavity preparation, restoration place-
ment, finishing, and thermomechanical loading (TML). For
the standard preparations, a drilling machine (Proxxon BFW
40/E, Niersbach, Germany) with a specially developed holder,
adjustable in all three dimensions, was used. In groups A and
B, standardized non-beveled mod class II cavities with a
divergent angle of 6° were prepared using 46-μm diamond
burs (ISO 80610472514040, Busch, Engelskirchen, Germa-
ny) under water cooling. For the minimally invasive conver-
gent preparations, a special bur was turned of carbide metal
and coated with 46-μm diamonds (Intensiv SA, Grancia,
Switzerland). All diamond burs were 4 mm in diameter at
the working end. Firstly, the tooth was adjusted with its
occluso-apical axis perpendicular to the bottom. Based on
the deepest point of the fissure, the bur was positioned
2.5 mm deeper at the proximal side, and the occlusal box
was ground. Thereafter, the mesial box was ground 1 mm
below the CEJ (Fig. 1), and the distal box, 1 mm above the
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CEJ (Fig. 2). Afterwards, all inner line angles of the cavities
were smoothed under ×12 magnification (Stemi 2000, Carl
Zeiss; Feldbach, Switzerland) using a 25-μm diamond bur
(Intensiv SA) and a hand piece under water cooling. Addi-
tionally, for the composite group E, the proximal margins
were beveled using an ultrasonic device [36] (miniPiezon®,
EMS, Nyon, Switzerland). Only one optical impression of
each preparation in groups A, B, C, and D was performed,
and virtual mod inlays were constructed using the CERECAC
Bluecam (Sirona, Bensheim, Germany) with the software
version V3.80. In groups B and C, inlays were milled from
prefabricated leucite-reinforced glass ceramic blocks (IPS
Empress CAD, LTC2, Ivoclar Vivadent, Schaan, Liechten-
stein), and in groups A and D, from industrially produced
composite blocks (ParadigmMZ100, B3, 3M ESPE, St. Paul,
MN, USA) with a CEREC milling machine (MCXL, Sirona).
The fit of the ceramic inlays into the respective cavity was
controlled with a low viscosity polyvinylsiloxane (Fit Check-
er, GC, Tokyo, Japan) and stereomicroscope (Stemi 2000,
Carl Zeiss) at×12 magnification. For cementation, all cavities
were totally etched (enamel, 30 s; dentin, 15 s) with 35 %
phosphoric acid (Ultra-etch, Ultradent, South Jordan, UT,
USA) and rinsed with water for 40 s and followed by drying
with oil-free air. Then, the adhesive system (Syntac Primer,
Syntac Adhesive, Heliobond, Ivoclar Vivadent) was applied
according to the manufacturer’s instructions. The bonding was
light-cured for 40 s (mode: HIP, 1,200 mW/cm2; Bluephase,
Ivoclar Vivadent). The surface conditioning of the milled
composite restorations included airborne-particle abrasion
with 50 μm aluminum oxide followed by cleaning using
35 % phosphoric acid (Ultra-etch, Ultradent) with a gentle
brushing motion for 1 min, rinsing with water for 20 s, and
subsequent silanization (Monobond-S, Ivoclar Vivadent) for

60 s. The internal surface of the ceramic inlays were first
cleaned with alcohol and then etched for 60 s with 5 %
hydrofluoric acid (Vita Ceramics Etch, Vita Zahnfabrik, Bad
Säckingen, Germany). After 60 s of rinsing and drying, a
coupling silane (Monobond-S, Ivoclar Vivadent) was applied
and left undisturbed for 60 s, followed by air-drying. After-
wards, a thin layer of bonding resin (Heliobond, Ivoclar
Vivadent) was applied onto the inner surface of the restora-
tions. The inlays were first manually and then ultrasonically
seated with a nanohybrid composite (Filtek Supreme XT,
XWB, 3 M ESPE), which was preheated for 5 min to 37 °C
(Calset, AdDent, Danbury, CT, USA). With a dental probe,
excess material was carefully removed, and finally, all mar-
gins were covered with glycerin gel (Airblock, DENTSPLY
DeTrey GmbH, Konstanz, Germany) to avoid oxygen-
inhibited layer formation. Each side (mesio- and disto-
buccal/ mesio- and disto-lingual/mesio- and disto-occlusal)
was light-cured for 40 s with a polymerisation light (mode:
HIP, 1,200 mW/cm2; Bluephase, Ivoclar Vivadent) as pro-
posed by Lutz et al. [12]. For controlling the light output of
the LED device, a radiometer (Optilux Radiometer, SDSKerr;
Orange, CA, USA) was used to prove that the power was
always above 1,000 mW/cm2. In group E, an incremental
direct filling technique was used. First, the proximal boxes
were restored with three increments for each box. Then one
buccal and one lingual increment of the occlusal side were
placed. Each increment was light-cured for 40 s using the
same polymerisation light. All restorations were finished with
15-μm fine diamond burs (Intensiv SA) and polishing disks
(Soflex, 3 M ESPE, Rüschlikon, Switzerland) under continu-
ous water cooling and descending roughness. The polishing
procedure was observed under a stereomicroscope (Stemi
2000, Carl Zeiss) at×12 magnification.

Fig. 1 Description of
experimental groups A–E
prepared also in the dentin

Fig. 2 Description of
experimental groups A+–E+

prepared only in the enamel
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Thermomechanical loading

For TML, mesio-palatinal cusps of human maxillary caries-
free molars were separated, embedded in amalgam
(Dispersalloy, DENTSPLY DeTrey GmbH), and fixed onto
a carrier [37]. These samples were later used as antagonists.
The antagonists were stored in water during the whole exper-
iment to avoid desiccation [38]. Then, they were mounted
together with the specimen in the sample chambers of the
TML machine. The occlusal contacts were marked with artic-
ulating paper to ensure that the loading area was in the center
of the occlusal inlay surface, not contacting the margins of the
preparations. All restored teeth were loaded with repeated
thermal and mechanical stresses in a computer-controlled
masticator (CoCoM 2, PPK, Zürich, Switzerland) for 1.2
Mio cycles with 49 N at 1.7 Hz. [37–39]. Thermal cycling
was carried out during the loading cycles by flushing water
with temperature changing 6,000 times from 5 to 50 °C [40].

Quantitative marginal SEM analysis

Before (initial) and after (terminal) TML, impressions of the
mesial and distal boxes were taken using an A-
polyvinylsiloxane (President Light Body, Coltène). The im-
pressions were poured out with epoxy resin (Stycast 1266,
Emerson & Cuming, Westerlo, Belgium), glued (Superglue
1733, Renfert, Hilzing, Germany) onto a customized sample
carrier, and sputter-coated with gold (Sputer SCD 030,
Balzers Union, Balzers, Liechtenstein). All specimens were
examined for quantitative marginal analysis with a scanning
electron microscope (Amray 1810/T, Amray; Bedford, MA,
USA) at 10 kV and ×200 magnification by one examiner,
who was blinded with respect to the group assignment of the
specimens. Two different interfaces were evaluated for mar-
ginal integrity at the proximal cavity walls: first, the inter-
face between tooth and luting composite (tooth–luting
composite); and second, the interface between luting com-
posite and inlay (luting composite–inlay). All specimens
were examined for “continuous” margins (no gap, no inter-
ruption of continuity) and imperfect “noncontinuous” mar-
gins (gap due to adhesive or cohesive failure; restoration or
enamel fractures related to restoration margins).

For the preparation boxes below the CEJ, the percentage
of continuous margins is separated in the margins in the
enamel (groups Ae–Ee) and margins in the dentin (groups
Ad–Ed). For the preparation boxes located only in the
enamel (A+–E+), total values of the percentage of continu-
ous margins are presented.

Statistical analysis

Marginal quality was expressed as a percentage of continu-
ous margins over the margin length (100 % = no

discontinuous aspects) both before (initial) and after
(terminal) TML. Statistical analysis was performed with
SPSS (version 16.0, SPSS Inc., Chicago, IL, USA). Differ-
ences between groups were tested using analysis of variance
and Scheffé post hoc test (p<0.05). Additionally, for each
treatment group, the Wilcoxon signed rank test was used to
investigate the difference between the initial and the termi-
nal value of the continuous margin (p<0.05).

Results

Interface of tooth–luting composite of preparations below
the CEJ for margins only in the enamel (Ae–Ee)

The percentages of continuous margins in the enamel are
given in Fig. 3. Initial percentages of continuous margin of
groups Ae (91.2±9.4 %), Be (89.9±11.5 %), Ce (91.9±6.1),
and Ee (78.4±15.5 %) were not statistically and significant-
ly different when compared with each other (p>0.05, re-
spectively). Furthermore, no significant difference in the
percentages of continuous margin of groups Ae, Be, Ce,
and De (91.9±4.8 %) (p>0.05, respectively) was observed.
The percentage of continuous margin in group Ee was
significantly lower compared to that in group De (p<0.05).

TML led to a significant reduction of continuous margin in
groups Ae, Ce, De, and Ee, while in group Be, no significantly
lower percentage of continuous margin was observed.

After TML, no significant difference in the marginal adap-
tation was observed (p=0.067) between any of the groups.

Interface of tooth–luting composite of preparations
below the CEJ with margins for margins only
in the dentin (Ad–Ed)

The percentages of continuous margins in the dentin are given
in Fig. 4. The percentage of continuous margin in group Ed
(91.9±4.8 %) was significantly lower compared with that in
groups Ad (91.5±12.4 %), Bd (85.0±7.6 %), Cd (87.8±
9.8 %), and Dd (95.6±1.8 %) (p<0.05, respectively). Within
the groups Ad, Bd, Cd, and Dd, no significant difference in the
percentage of continuous margin was found.

TML led to a significantly lower percentage of continu-
ous margin for groups Ad, Cd, and Dd when compared with
the respective initial values (p<0.05, respectively). For the
remaining groups, no significant lower percentage of con-
tinuous margin was observed.

After TML, no significant difference in the percentage of
continuous margin of groups Ad (79.8±27.0 %), Bd (79.9±
16.1 %), Cd (77.7±11.8 %), and Dd (72.1±16.7 %) was
found. Group Ed (49.9±27.0 %) showed a significantly
lower percentage of continuous margin when compared
with groups Ad and Bd (p<0.05, respectively).
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Interface of tooth–luting composite of preparations above
the CEJ for margins in the enamel (A+–E+)

The percentages of continuous margins in the enamel are given
in Fig. 5. Initially, the percentage of continuous margin in group
E+ (82.4±8.6 %) was significantly lower when compared with
the groups A+ (94.5±5.8 %), B+ (94.2±6.0 %), and D+ (94.0±
4.0 %). Groups A+, B+, C+, and D+ were not significantly
different when compared with each other (p>0.05, re-
spectively). For all groups, except group C+, the TML
led to a significant reduction of the percentages of continuous
margin (p<0.05, respectively).

After TML, the percentages of continuous margin of
groups A+ (73.8±17.2 %), B+ (85.6±8.8 %), C+ (89.9±
6.0 %), and D+ (79.5±16.8 %) were not significantly differ-
ent. In group E+ (69.8±15.3 %), a significantly lower per-
centage of continuous margin was observed when compared
with group C+.

Interface of luting composite–inlay

Due to the direct composite filling treatment in group E, no
evaluation was performed for this interface. For all other
treatment groups, no statistically significant influence on the

percentage of continuous margins was observed at terminal
evaluation (p>0.05, respectively).

Discussion

The purpose of this study was to evaluate the effect of a
minimally invasive mod preparation on the marginal adapta-
tion of composite and ceramic inlays, with the aim of saving
sound tooth structure. In this in vitro study, all specimens were
evaluated by SEM after TML. To simulate the clinical envi-
ronment, an especially developed well-proven chewing ma-
chine with additional artificial aging through thermocycling
was used [37, 41, 42]. The advantage of this method is a
reproducible standardized stress for all specimens. In addition,
intrapulpal pressure was used to simulate physiological con-
ditions [43]. Therefore, it could be assumed that the results of
this study might have a certain clinical relevance. However,
TML is influenced by a number of factors, including applied
force, force profile, contact time, sliding movement, and
clearance of worn material. These factors are not controlled
in every phase of the simulation [44].

It must be considered in our study that only one brand of
composite for luting and direct restoration was used.

Fig. 4 Continuous margins in
the dentin of the interface
tooth–luting composite for
groups prepared below the CEJ.
Percentages (mean ± SD) of
continuous margins in
experimental groups Ad–Ed as
determined initially (In) and
terminally (Te) TML in the
dentin. Subsets not significantly
different are indicated by same
superscript letters or numbers,
respectively. Asterisks indicate
significant differences between
In and Te

Fig. 3 Continuous margins in
the enamel of the interface
tooth–luting composite for
groups prepared below the CEJ.
Percentages (mean ± SD) of
continuous margins in
experimental groups Ae–Ee as
determined initially (In) and
terminally (Te) TML in the
enamel. Subsets not
significantly different are
indicated by same superscript
letters or numbers, respectively.
Asterisks indicate significant
differences between In and Te
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Generally, luting composites, even of similar composition,
can differ considerably in their chemical and physical char-
acteristics [45, 46] and are, hence, affected in different ways
by light polymerization [47]. In addition, the use of a highly
filled and viscous composite for luting the restoration has
obvious advantages since it does not flow over all surfaces
and may be easily removed with a probe, spatula, or floss.
This is a critical step in the cementation process and for
removing the remaining overhangs. For the clinical proce-
dure, we recommend to use a spatula with gentle sliding
motions always parallel to the surface, starting from the
inner proximal cervical parts to the lateral more occlusal
box margins. For easier handling and better cervical mar-
ginal adaptation [48], a nanofilled luting composite was
preheated to 37 °C prior to insertion to reduce the viscosity
[49]. The temperature chosen in this study was similar to
that of the oral cavity. With higher temperatures (T > 37 °C),
increased cuspal movement has been observed [50], leading
to a greater challenge on the bond to tooth interface. Addi-
tionally, higher final monomer conversion values can be
achieved with preheated composite, thereby reducing the
amount of unreacted monomer, which may potentially leach
into the oral cavity [51].

Before TML, a good marginal fit was achieved by all
indirect restorations for the tooth–composite margin. This is
in accordance with the literature [52, 53]. After TML, a
reduction of the percentage of continuous margin could be
observed in all groups. This finding demonstrates that the
marginal adaptation of adhesively inserted restorations dis-
integrates through TML [42, 54–56].

In the groups (Ae–Ee) with additional preparations in the
dentin, no significant differences (p<0.05) between all
groups for margins located in the enamel could be detected
after TML. In the literature, larger proportions of enamel
microfractures were observed in in vitro mechanical loading
tests conducted on cavities with a butt margin design [55,
57–59]. The parallel orientation of enamel prisms in the
axial wall, in combination with the weakened region of

non-beveled enamel after phosphoric acid conditioning,
could be an explanation for these findings and may lead to
a reduction of marginal adaptation after TML.

For the groups with preparations extending into the den-
tin, the conventionally prepared cavity groups Ad and Bd
showed significantly higher values (p<0.05) at the tooth–
luting composite margin when compared with the direct
composite group Ed but not significantly in comparison
with the minimally invasive preparations with ceramic
(group Cd) or composite inlays (group Dd). Therefore, the
null hypothesis must be rejected. The lower values of con-
tinuous margins in the direct composite fillings may be
attributed to polymerization shrinkage, which remains an
unavoidable problem and may compromise the integrity
and longevity of posterior restorations [60], particularly
those with margins in the dentin [61]. Additionally, the
potential for marginal gaps and microleakage increases with
cavosurface margins in the dentin due to the biological
variability of this tissue [62]. To minimize the adverse
effects of polymerization shrinkage, an incremental place-
ment technique was performed [43, 63].

CEREC 3 restorations exhibit a luting space, which is
less than 100 μm [26, 64]. This might have led to a reduc-
tion of the polymerization shrinkage, especially in the
groups with a conventional preparation including angles of
approximately α=6°. However, a large cementing space
partially compensates for the polymerization stresses,
allowing the tooth structure and the restoration to undergo
micro movements during the luting procedure [65–67].
However, these observations are in contrast to the findings
of Manhart et al. [68], where almost perfect marginal adap-
tation in class II mod enamel cavities were reported after
loading when direct composite, composite inlays, and ce-
ramic inlays were used as filling or restoration materials. In
the study by Manhart [68], different loading conditions
(only 50,000 cycles against 1.2 million in the present study)
as well as no dentinal fluid simulation were used, which
may have influenced the results. In addition, Manhart

Fig. 5 Continuous margins in
the enamel of the interface
tooth–composite for groups
prepared above the CEJ.
Percentages (mean ± SD) of
continuous margins in
experimental groups A+–E+ as
determined initially (In) and
terminally (Te) TML in the
enamel. Subsets not
significantly different are
indicated by same superscript
letters or numbers, respectively.
Asterisks indicate significant
differences between In and Te
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considered other cavity configurations, which may play an
important role in the absorption and distribution of mechan-
ical stresses.

All composite and ceramic inlay groups (A+–D+) showed
similar values of continuous margin for preparations above
the CEJ (p>0.05) at the tooth–luting composite margin. In
group C+, significantly higher percentages of continuous
margin were observed when compared with the direct filling
in group E+. These results are in agreement with those of
recent investigations [69–71].

The lower Young;s modulus of composites might be
responsible for this observation [72]. In the case of Para-
digm MZ, the results could be transferable to LavaTM Ulti-
mate (3 M ESPE, Seefeld, Germany) due to the similar
mechanical properties like Young’s modulus. Ceramic res-
torations provide a higher modulus of elasticity that reduces
deformation of the tooth and, therefore, deformations at the
margin of the restoration [73].

In the present study, only one optical impression was
performed for the indirect inlay restorations. This strategy
was chosen to take into account that the fabrication of
several optical impressions of the preparation with the cur-
rent software (V3.80 and SW4.0) would lead to undercuts in
the afterwards matched virtual model. The existence of these
undercuts would result in the fabrication of inlays which
could not be inserted into the cavity. For undercuts inside
the preparation, however, the software automatically blocks
out the undercuts with respect to the selected insertion axis.
Due to these facts, only one optical impression was
performed. With this method, the software automatically
interpolates the missing data of the undercuts referring to
the axis of the optical impression, resulting in a calculated
virtual model without undercuts. Accordingly, a special
software mode for undercuts with the option of multiple
optical impressions would be desirable. Additionally, less
loss of dental hard tissue, especially in the occlusal and
proximal parts, offers the advantage that more information
can be extracted for the biogeneric software [74, 75] and, as
a side effect, a better occlusal morphology of the restoration
may be designed.

Considering traditional principles of fixed prosthodontics,
full crown coverage is often recommended to strengthen the
remaining tooth substance. When compared to bonded resto-
rations, traditional full crown coverage restorations, however,
require a sacrifice of more dental hard tissue [76, 77]. Addi-
tionally, full crown reconstructions are more frequently asso-
ciated with gingival inflammation and secondary caries [78].
With the method described, replacement of cusps is not al-
ways necessary, and preservation of sound dental hard tissue
is possible. Especially with chairside CAD/CAMmethods, an
additional advantage is the availability of an optimal dentinal
substrate, allowing adhesion to freshly cut dentin without
contamination by temporary cements [79–81].

Conclusion

Within the limits and considerations of this in vitro study,
the minimally invasive preparation approach with proximal
undercuts for composite and ceramic inlays showed no
differences concerning marginal adaptation when compared
with the conventional divergent preparations and should be
considered as an alternative in clinical practice.
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