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Abstract We construct two-electron scattering states and verify their tensor product struc-
ture in the infrared-regular massless Nelson model. The proof follows the lines of Haag-
Ruelle scattering theory: Scattering state approximants are defined with the help of two
time-dependent renormalized creation operators of the electrons acting on the vacuum. They
depend on the ground state wave functions of the (single-electron) fiber Hamiltonians with
infrared cut-off. The convergence of these approximants as t → ∞ is shown with the help of
Cook’s method combined with a non-stationary phase argument. The removal of the infrared
cut-off in the limit t → ∞ requires sharp estimates on the derivatives of these ground state
wave functions w.r.t. electron and photon momenta, with mild dependence on the infrared
cut-off. These key estimates, which carry information about the localization of the electrons
in space, are obtained in a companion paper with the help of iterative analytic perturbation
theory. Our results hold in the weak coupling regime.

1 Introduction and Results

The last two decades have witnessed substantial progress in the mathematical understanding
of scattering of light and matter in the framework of non-relativistic QED. These advances
provided a rigorous foundation for the physical description of the Compton [5, 6, 20, 24, 25]
and Rayleigh scattering [7–10, 13, 18, 19, 22, 28, 29], involving one massive particle (the
‘electron’) and many massless excitations (‘photons’). However, the case of Coulomb scat-
tering, i.e., collisions of two electrons in the presence of photons, has remained outside of
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the scope of these investigations. This is a serious gap in our understanding of physics, given
the tremendous importance of this scattering process, ranging from Rutherford’s discovery
of the structure of atoms to modern high-energy physics experiments. This paper is a first
part of a larger investigation, the goal of which is to put this important process on rigorous
grounds.

A general framework of scattering theory for several electrons in models of non-
relativistic QED, which has its roots in Haag-Ruelle scattering theory [21, 27], was known
to experts already more than three decades ago [2, 3, 14]. However, a complete construction
of scattering states was only possible in the presence of a fixed infrared cut-off (or non-zero
photon mass), due to infrared- and infraparticle problems. Depending on the structure of
the interaction, one can distinguish the infrared-regular case, in which the physical Hilbert
space of the theory contains single-electron states, and the infrared-singular case in which
the electron is inevitably accompanied by soft photons (i.e., it is an infraparticle). For pro-
cesses involving one electron and photons, scattering states have been constructed in both
cases with the help of a sophisticated multiscale technique [24, 25]. However, scattering of
several electrons has remained outside of the scope of previous investigations, both in the
infrared-regular and infrared-singular situation. In this paper we provide a construction of
two-electron scattering states in the massless, infrared-regular Nelson model without an in-
frared cut-off. (We do not include a two-body quantum mechanical potential between the
electrons, but only the interaction mediated by photons.) Although the infraparticle problem
does not arise in this case, the infrared structure of the model is non-trivial and requires
major refinements of the multiscale technique. To clarify the origin of these new difficulties
and describe our methods to tackle them, we explain below in non-technical terms the main
steps of our analysis. We are confident that similar steps will also appear in a future con-
struction of scattering states of several infraparticles, where they should be combined with
an analysis of soft photons. However, due to the absence of definite results, we refrain from
extensive speculations on the infrared-singular situation here. Brief remarks on this case are
given below equation (1.12).

We consider the translationally invariant, massless Nelson model. It describes second-
quantized non-relativistic particles, which we call electrons (though they obey the Bose
statistics), and massless scalar bosons, which we call photons. The Hamiltonian of this
model is a self-adjoint operator on the physical Hilbert space H which is the tensor product
of the electron Fock space Γ (he) and the photon Fock space Γ (hf). It is given by

H :=
∫

d3p
p2

2
η∗(p)η(p) +

∫
d3k|k|a∗(k)a(k)

+
(∫

d3pd3kvα(k)η∗(p + k)a(k)η(p) + h.c.

)
,

where η∗(p), a∗(k) are the electron and photon creation operators and vα is a form factor
defined in (1.29). (We refer to Sect. 1.1 for a precise definition of the model.) As H pre-
serves the number of electrons, we can restrict it to the one-electron subspace obtaining the
Hamiltonian H(1). This Hamiltonian has the standard decomposition into the fiber Hamilto-
nians at fixed total momentum H(1)

p , which are operators on the Fock space. In the infrared-
regular case (1/2 ≥ α > 0 in (1.29) below), the fiber Hamiltonians have (normalized) ground
states ψp (for p in some ball S centered at zero), corresponding to eigenvalues Ep . Super-
positions of such ground states of the form

ψh := Π∗
∫ ⊕

d3ph(p)ψp, h ∈ C2
0 (S), (1.1)
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give physical single-electron states in H. (Here Π∗ is the standard identification between
the fiber picture and the physical picture.) We note that the time evolution of ψh is given by

e−iH tψh = ψht , (1.2)

where ht (p) := e−iEpth(p). In heuristic terms, to construct a scattering state of two electrons
one has to ‘multiply’ two single-electron states in such a way that the result is a vector in H.
In essence, Haag-Ruelle scattering theory is a prescription to perform such a multiplication.
In the context of persistent models with a trivial infrared structure, for instance Nelson
model with a fixed infrared cut-off, this construction has been implemented in unpublished
notes of J. Fröhlich [14] and in a work of S. Albeverio [2, 3] by making use of the so called
renormalized creation operator: Let {f m

p }m∈N0 be the m-photon components of ψp . Then
(1.1) can be rewritten as follows

ψh =
∞∑

m=0

1√
m!

∫
d3pd3mkh(p)f m

p (k1, . . . , km)a∗(k1) · · ·a∗(km)η∗(p − k)Ω, (1.3)

where Ω ∈ H is the vacuum vector, and k := k1 + · · · + km. This suggests the following
definition of the renormalized creation operator

η̂∗(h) :=
∞∑

m=0

1√
m!

∫
d3pd3mkh(p)f m

p (k1, . . . , km)a∗(k1) · · ·a∗(km)η∗(p − k), (1.4)

which creates the physical single-electron state ψh from the vacuum. Now, given h1, h2 ∈
C2

0 (S) with disjoint velocity supports (cf. formula (1.9) below), the (outgoing) scattering
state Ψ̃ +

h1,h2
describing an asymptotic configuration of two independent electrons ψh1 , ψh2

is given by

Ψ̃ +
h1,h2

= lim
t→∞ eiHt η̂∗(h1,t )η̂

∗(h2,t )Ω, (1.5)

if the approximating vectors on the r.h.s. are well defined and the limit exists. In the absence
of infrared problems scattering states of several electrons can and have been constructed
using formula (1.5) in [2, 3, 14]. Let us now briefly recall this reasoning and assess its
applicability to models with non-trivial infrared structure. This discussion will lead us to a
modified definition of scattering states, given in (1.12) below, which is better suited for such
models.

Let us assume for a moment that H has a fixed (smooth) infrared cut-off σ̄ (i.e., that the
smooth function χκ appearing in the form factor vα in (1.29) vanishes in a ball of radius σ̄ )
and let Ψ̃t be the approximants on the r.h.s. of (1.5). Making use of the fact that ψh = η̂∗(h)Ω

and Hψh = ψEh, where (Eh)(p) := Eph(p), we obtain

∂t Ψ̃t = eitH 1

2
i
[[

H a
I , η̂∗(h1,t )

]
, η̂∗(h2,t )

]
Ω (1.6)

where H a
I is the photon-annihilation part of the interaction Hamiltonian HI, given by (1.30)

below (cf. Proposition 2.2). Since we employ the Cook method, the proof of convergence
of t 	→ Ψ̃t as t → ∞ boils down to the study of the time decay of the vacuum expectation
values

t 	→ ∥∥[[
H a

I , η̂∗(h1,t )
]
, η̂∗(h2,t )

]
Ω

∥∥2
. (1.7)
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Apart from some Fock space combinatorics and the straightforward pointwise estimate
in (1.51), the control of (1.7) as t → ∞ relies on the decay properties of oscillating inte-
grals of the type

∫
d3r̃vα(r̃)e

−i(Eq+r̃+Ep−r̃ )t h1(p − r̃)h2(q + r̃)f n+1
q+r̃

(r, r̃)f m
p−r̃ (k), (1.8)

where we employed the short-hand notation explained in (1.55). The integral in (1.8) can be
estimated by the non-stationary phase method which exploits: (1) the smoothness in q + r̃

and p − r̃ of the functions h1, h2; (2) analyticity of the functions f m
p (k) in p which holds in

the presence of the fixed infrared cut-off σ̄ and for the coupling constant sufficiently small
depending on σ̄ ; (3) the disjointness of the velocity supports of the functions h1, h2, defined
as

V (hi) := {∇Ep |p ∈ supphi}, i ∈ {1,2}. (1.9)

This last property follows from the assumed disjointness of the supports of h1, h2 and the
invertibility of the relation S � p 	→ ∇Ep .

The ideas in the procedure outlined above have been implemented in [14] for models
with a fixed infrared cut-off and in [2, 3] for models with massive photons. However, in the
absence of the fixed infrared cut-off σ̄ we lose information on the regularity properties in
p of the functions f m

p and their derivatives. Such properties are difficult to obtain directly
due to the fact that the corresponding eigenvalue Ep is located at the bottom of the contin-
uous spectrum of H(1)

p . Therefore, we will not construct scattering states with the help of
formula (1.5), but instead we will use more tractable approximating sequences: Let H(1)

p,σ be
the fiber Hamiltonians with an infrared cut-off σ , defined precisely in (1.38). Their ground
states ψp,σ , corresponding to eigenvalues Ep,σ , satisfy

lim
σ→0

ψp,σ = ψp. (1.10)

Let {f m
p,σ }m∈N0 be the m-photon components of ψp,σ . The renormalized creation operators

with the infrared cut-off σ have the form

η̂∗
σ (h) :=

∞∑
m=0

1√
m!

∫
d3pd3mkh(p)f m

p,σ (k1, . . . , km)a∗(k1) · · ·a∗(km)η∗(p − k). (1.11)

We will use them to construct the scattering states as follows

Ψ +
h1,h2

:= lim
t→∞ eiHt η̂∗

σt
(h1,t )η̂

∗
σt

(h2,t )Ω, (1.12)

where σt = κ/tγ , γ ∈ (4, γ0] and κ > 0 is the ultraviolet cut-off. (We consider only outgoing
states as the construction of incoming states is analogous.) The existence of this limit and
its properties, which allow to interpret it as an asymptotic configuration of two electrons,
constitute the main result of this paper stated in Theorem 1.3 below. (A reformulation of
this result in terms of wave operators can be found below this theorem). We do not expect
any problems with generalizing our findings to an arbitrary number of electrons or with
changing the statistics of our ‘electrons’ from Bose to Fermi. However, our aim here is not
to cover the most general situation, but rather to prepare grounds for our future investigation
of Coulomb scattering in the infrared-singular case.

In this case (i.e., infrared singular) we have, instead of (1.10), w − limσ→0 ψp,σ = 0,
which is a manifestation of the infraparticle problem. However, one has the existence of
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φp := limσ→0 WP,σ ψp,σ , where WP,σ is a suitable Weyl operator implementing a singular
Bogoliubov transformation in the limit σ → 0 [24]. Using this fact, it is shown in [25] how
an interpolating Weyl operator used in the L.S.Z. (Lehmann-Symanzik-Zimmermann) ap-
proach to scattering theory applied to a single-electron state ψσt (h) := Π∗ ∫ ⊕

d3ph(p)ψp,σt

yields a well defined vector in the Hilbert space H as t → ∞. In fact, this vector describes an
asymptotic electron, with wave function h, surrounded by a cloud of infinitely many asymp-
totic photons. Taking these results as a guide, there is no doubt that similar clouds will have
to be incorporated into the approximating vectors (1.12) before the existence of the limit
can be proven. We mention in this context that the spectral estimate (1.16) below (proven in
the companion paper [12]), which is one of the main new ingredients of our proof, remains
valid in the infrared-singular situation. We also remark that in this situation we cannot see
much room for improvements of this estimate with available methods.

Let us now return to the infrared-regular case. Here substantial refinements of esti-
mate (1.16) seem to be within reach: we expect that the factor 1/σ δλ0 on the r.h.s. can
be omitted and one can put σ = 0 on both sides. With such refined spectral information
one should be able to show that the limit (1.5) also exists and coincides with (1.12). Addi-
tional supporting evidence to this effect comes from algebraic quantum field theory, where
the existence of scattering states in the infrared-regular situation has been proven without
introducing cut-offs [11]. However, the problem of existence of (1.5) will not be treated
here.

Let us now outline the new ingredients of the proof of existence of the limit in (1.12),
needed in the absence of a fixed infrared cut-off. We define the auxiliary vectors Ψt,σ :=
eiHt η̂∗

σ (h1,t )η̂
∗
σ (h2,t )Ω and study the convergence of t 	→ Ψt,σt as t → ∞. For t2 ≥ t1 ≥ 1

sufficiently large so that σt2 ≤ σt1 ≤ 1 we write

‖Ψt2,σt2
− Ψt1,σt1

‖ ≤ ‖Ψt2,σt2
− Ψt1,σt2

‖ + ‖Ψt1,σt2
− Ψt1,σt1

‖. (1.13)

We will verify the Cauchy criterion by proving that each term on the r.h.s. of (1.13) vanishes
as t1 → ∞. The second term on the r.h.s. of (1.13) can be estimated using that ψp,σ con-
verges to ψp as σ → 0 at a controllable rate and that t 	→ σt tends sufficiently fast to zero.
As for the first term on the r.h.s. of (1.13), we write

Ψt2,σt2
− Ψt1,σt2

=
∫ t2

t1

dt∂tΨt,σt2
(1.14)

and compute the derivative similarly as in (1.6) above. We obtain a term with a double
commutator, familiar from (1.6), and several other terms which vanish in the limit σ → 0
(see Lemma 2.1). In Sect. 3 and in Appendix B we use Fock space combinatorics to express
‖∂tΨt,σt2

‖2 by oscillating integrals of the form (1.8). This part does not differ substantially
from the analysis of Fröhlich in [14]. However, the treatment of these oscillating integrals
in the present situation, (see Sect. 4), is much more involved than in the case of a constant
infrared cut-off, studied in [14]: Given the integral

∫
d3r̃vα(r̃)e

−i(Eq+r̃+Ep−r̃ )t h1(p − r̃)h2(q + r̃)f n+1
q+r̃,σt2

(r, r̃)f m
p−r̃,σt2

(k), t1 < t < t2,

(1.15)
we first introduce an auxiliary slow (smooth) infrared cut-off at the energy scale
κ(σt2/κ)1/(8γ0) so as to split the integration domain into two regions corresponding to
σt2 < |r̃| < κ(σt2/κ)1/(8γ0) and κ(σt2/κ)1/(8γ0) < |r̃| < κ , respectively. In the first region
the decrease of the slow cut-off as t → ∞ facilitates the decay of the integral so that it
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suffices to perform the integration by parts (dictated by the non-stationary phase method)
only once. In this region careful attention has to be paid to boundary terms generated by the
sharp cut-off σt2 . There are no such boundary terms in the second region which is confined
between two smooth cut-offs. In the second region we have to integrate by parts twice. The
ingredients (1) and (3), listed below (1.8), enter into this analysis as in the case of a fixed
cut-off. However, (2) looses validity in the present situation. In order to perform the inte-
gration by parts discussed above, we employ instead bounds of the following form, stated
precisely in Theorem 1.2 below,

∣∣∂β
p f m

p,σ (k1, . . . , km)
∣∣ ≤ 1√

m!
(

1

σ δλ0

)|β|
cvσ

α (k1)

|k1| · · · cvσ
α (km)

|km| . (1.16)

Here β is any multiindex s.t. 0 ≤ |β| ≤ 2, the form-factor vσ
α is given by (1.39), λ0 is the

maximal admissible value of the coupling constant and the function λ0 → δλ0 tends to zero
as λ0 → 0. Thus, although bound (1.16) is not uniform in σ , the dependence on the infrared
cut-off is very mild in the weak coupling regime. Such estimates suffice for the purpose of
completing our non-stationary phase arguments in Sect. 4.

Let us conclude this introductory discussion with some remarks concerning esti-
mate (1.16), whose complete proof is postponed to a separate paper [12]. We recall that
already in [15, 16] a formula for f m

p,σ was derived, which in the case of m = 1 has the form

f 1
p,σ (k) = −

〈
Ω,

{
1

H
(1)
p−k,σ − Ep,σ + |k|v

σ
α (k)

}
ψp,σ

〉
, (1.17)

where the form-factor vσ
α is given by (1.39). It is not difficult to obtain from this formula

that
∣∣f 1

p,σ (k)
∣∣ ≤ cvσ

α (k)

|k| , (1.18)

where the constant c is independent of σ . This gives estimate (1.16) in the special case of
m = 1, β = 0. To indicate various difficulties that have to be tackled in the case β > 0, let
us differentiate (1.17) w.r.t. p:

∂pi f 1
p,σ (k) =

〈
Ω,

{
1

H
(1)
p−k,σ − Ep,σ + |k|

(
(p − k − Pf) − ∇Ep,σ

)i

× 1

H
(1)
p−k,σ − Ep,σ + |k|v

σ
α (k)

}
ψp,σ

〉

−
〈
Ω,

{
1

H
(1)
p−k,σ − Ep,σ + |k|v

σ
α (k)

}
∂pi ψp,σ

〉
, (1.19)

where Pf is the photon momentum operator. As for the last term on the r.h.s. of (1.19) the
main difficulty is to find an estimate on the vector ∂pi ψp,σ with suitable dependence on σ .
We recall that the existing bounds from [24] give only Hölder continuity of p 	→ ψp,σ ,
uniformly in σ . By a refinement of the argument from [24], we obtain in [12] the following
bound, stated precisely in Proposition 1.1 below,

‖∂pi ψp,σ ‖ ≤ c

σ δλ0
, (1.20)
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where c is independent of σ . Denoting by II the last term on the r.h.s. of (1.19), and pro-
ceeding as in the derivation of (1.18), we obtain

|II| ≤ 1

σ δλ0

cvσ
α (k)

|k| . (1.21)

As for the first term on the r.h.s. of (1.19), which we denote by I , a crude estimate gives

|I | ≤ cvσ
α (k)

|k|2 ≤ 1

σ

cvσ
α (k)

|k| , (1.22)

due to the presence of the additional resolvent and the support properties of vσ
α . This bound

is much weaker than (1.16) and does not suffice for the purpose of constructing scattering
states. With the help of the multiscale analysis we improve it to

|I | ≤ 1

σ δλ0

cvσ
α (k)

|k| , (1.23)

which is only slightly worse than (1.18). Altogether we get

∣∣∂pi f 1
p,σ (k)

∣∣ ≤ 1

σ δλ0

cvσ
α (k)

|k| , (1.24)

which gives a special case of (1.16) for m = 1 and |β| = 1. By differentiating (1.17)
again, applying similar arguments as above and carefully exploiting cancellations of cer-
tain infrared-divergent terms we can cover also the case |β| = 2. We refer the reader to
Theorem 1.2 below and to [12] for more details concerning estimate (1.16).

This paper is organized as follows: In Sect. 1.1 we recall the definition of the Nelson
model with many electrons. In Sect. 1.2 we state the relevant results concerning spectral
theory, which are proven in a separate paper [12]. In Sect. 1.3 we state the main result of
the present paper which concerns scattering theory of two electrons in the infrared-regular
massless Nelson model. Section 2 presents the main steps of the proof and in the following
sections we provide the necessary ingredients. Section 3 is devoted to the vacuum expec-
tation values of the renormalized creation operators. In Sect. 4 decay properties of these
vacuum expectation values are derived with the help of the method of non-stationary phase.
Important input in this section are our spectral results proven in [12] and summarized in
Sect. 1.2. The more technical part of our discussion is postponed to the appendices.

1.1 The Model

We consider an interacting system of massive spinless bosons, which we call ‘electrons’,
and massless spinless bosons, which we will call ‘photons’. Let he := L2(R3, d3p) and
hf := L2(R3, d3k) be the single-electron and single-photon spaces, respectively, and let
Γ (he) and Γ (hf) be the corresponding symmetric Fock spaces. The (improper) creation
and annihilation operators on Γ (he) (resp. Γ (hf)) will be denoted by η∗(p), η(p) (resp.
a∗(k), a(k)). They satisfy the canonical commutation relations:

[
η(p), η∗(p′)] = δ

(
p − p′), [

η(p), η
(
p′)] = [

η∗(p), η∗(p′)] = 0, (1.25)[
a(k), a∗(k′)] = δ

(
k − k′), [

a(k), a
(
k′)] = [

a∗(k), a∗(k′)] = 0. (1.26)
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The free Hamiltonians of the electrons and photons are given by

He :=
∫

d3pΩ(p)η∗(p)η(p), Hf :=
∫

d3kω(k)a∗(k)a(k), (1.27)

where Ω(p) = p2

2 and ω(k) = |k|. We recall that these operators are essentially self-adjoint
on Ce, Cf, respectively, where Ce/f ⊂ Γ (he/f) are dense subspaces consisting of finite linear
combinations of symmetrized tensor products of elements of C∞

0 (R3).
The physical Hilbert space of our system is H := Γ (he) ⊗ Γ (hf) and we will follow the

standard convention to denote operators of the form A ⊗ 1 and 1 ⊗ B by A and B , respec-
tively. The Hamiltonian describing the free evolution of the composite system of electrons
and photons is given by

Hfr := He + Hf (1.28)

and it is essentially self-adjoint on C := Ce ⊗ Cf.
Now let us introduce the interaction between electrons and photons. Let λ > 0 be the

coupling constant, κ = 1 be the ultraviolet cut-off1 and let 1/2 ≥ α ≥ 0 be a parameter
which controls the infrared behavior of the system. Given these parameters, we define the
form-factor

vα(k) := λ
χκ(k)|k|α
(2|k|) 1

2

, (1.29)

where χκ ∈ C∞
0 (R3) is rotationally invariant, non-increasing in the radial direction, sup-

ported in Bκ and equal to one on B(1−ε0)κ , for some fixed 0 < ε0 < 1. (We denote by Br the
open ball of radius r centered at zero.) The interaction Hamiltonian, defined as a symmetric
operator on C, is given by the following formula

HI :=
∫

d3pd3kvα(k)η∗(p + k)a(k)η(p) + h.c. (1.30)

For future reference we denote by H a
I the first term on the r.h.s. of (1.30) and set H c

I :=
(H a

I )∗.
As indicated in [15, 16], the full Hamiltonian H := Hfr + HI can be defined as a self-

adjoint operator on a dense domain in H. For the reader’s convenience we outline briefly
this construction: First, we note that both Hfr and HI preserve the number of electrons. Let
us therefore define H(n) := Γ (n)(he) ⊗ Γ (hf), where Γ (n)(he) is the n-particle subspace of
Γ (he) and let H

(n)

fr and H
(n)
I be the restrictions of the respective operators to H(n), defined

on C(n) := C ∩H(n). As shown in Lemma A.1, using the Kato-Rellich theorem, each H(n) =
H

(n)

fr +H
(n)
I can be defined as a bounded from below, self-adjoint operator on the domain of

H
(n)

fr , which is essentially self-adjoint on C(n). Then we can define

H :=
⊕
n∈N0

H(n) (1.31)

as an operator on C. Since H(n) ± i have dense ranges on C(n), H ± i have dense ranges on
C, thus H is essentially self-adjoint on this domain. We stress that the above construction is

1We set κ = 1 to simplify the proofs of Proposition 1.1 and Theorem 1.2, given in the companion paper [12].
In the present paper we will write κ explicitly.
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valid both in the infrared-regular case (1/2 ≥ α > 0) and in the infrared-singular situation
(α = 0).

On C we have the following formula for H

H =
∫

d3pΩ(p)η∗(p)η(p) +
∫

d3kω(k)a∗(k)a(k)

+
(∫

d3pd3kvα(k)η∗(p + k)a(k)η(p) + h.c.

)
. (1.32)

It reduces to a more familiar expression on C(n)

H (n) =
n∑

i=1

(i∇xi
)2

2
+

∫
d3kω(k)a∗(k)a(k) +

n∑
i=1

∫
d3kvα(k)

(
eikxi a(k) + e−ikxi a∗(k)

)
,

(1.33)
where xi is the position operator of the i-th electron. Finally, we introduce the electron and
photon momentum operators

P i
e :=

∫
d3ppiη∗(p)η(p), P i

f :=
∫

d3kkia∗(k)a(k), i ∈ {1,2,3}, (1.34)

which are essentially self-adjoint on C. We recall that H is translationally invariant, that is
it commutes with the total momentum operators P i , given by

P i := P i
e + P i

f , i ∈ {1,2,3}, (1.35)

which are essentially self-adjoint on C as well.

1.2 Spectral Theory

In this section we collect some necessary information about the spectrum of the single-
electron Hamiltonian H(1). We recall that the analysis of the spectrum of H(1)

p was initiated
in [15, 16] and advanced in [24] with the help of iterative analytic perturbation theory. Fur-
ther developments along these lines, which we describe in detail below, can be found in [12].
Interesting results on the spectrum of the Nelson model with a slightly different form factor
were also obtained in [1] by different methods.

We recall that due to the translational invariance H(1) can be decomposed into a direct
integral of the fiber Hamiltonians H(1)

p as follows

H(1) = Π∗
∫ ⊕

d3pH(1)
p Π. (1.36)

Here Π : H(1) → L2(R3;Γ (hfi)) is a unitary map given by Π := FeiPfx , where xi , i = 1, 2,
3 are the components of the electron’s position operator and F is the Fourier transform in
the electron’s variables. The Hamiltonians H(1)

p are self-adjoint operators on the Fock space
Γ (hfi), where hfi = L2(R3, d3k) is the single-photon space in the fiber picture. Denoting by
b∗(k) and b(k) the creation and annihilation operators on Γ (hfi) one easily obtains from
(1.33) that

H(1)
p = 1

2
(p − Pf)

2 + Hf +
∫

d3kvα(k)
(
b(k) + b∗(k)

)
. (1.37)
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As a tool to study the spectrum of this Hamiltonian, we introduce auxiliary fiber Hamiltoni-
ans with infrared cut-offs

H(1)
p,σ = 1

2
(p − Pf)

2 + Hf +
∫

d3kvσ
α (k)

(
b(k) + b∗(k)

)
. (1.38)

The form-factor vσ
α is defined as follows

vσ
α (k) := λ

χ[σ,κ)(k)|k|α
(2|k|) 1

2

, (1.39)

where 0 < σ ≤ κ , χ[σ,κ)(k) := 1B′
σ
(k)χκ(k), B′

σ is the complement of the ball of radius σ and
1� is the characteristic function of a set �. By replacing vα with vσ

α in (1.30), we obtain the
interaction Hamiltonian HI,σ and the corresponding full Hamiltonian Hσ with an infrared
cut-off. The restriction of Hσ to the single-electron subspace, denoted by H(1)

σ , has a fiber
decomposition into the Hamiltonians H(1)

p,σ .
Since we are particularly interested in the bottom of the spectrum of H(1)

p and H(1)
p,σ , let

us define

Ep := infσ
(
H(1)

p

)
, Ep,σ := infσ

(
H(1)

p,σ

)
. (1.40)

As the model is non-relativistic, we restrict attention to small values of the total momentum
p at which the electron moves slower than the photons. More precisely, we consider p from
the set

S := {
p ∈R

3 | |p| < pmax

}
(1.41)

for some pmax > 0. Since we work in the weak coupling regime, we fix some sufficiently
small λ0 > 0, and restrict attention to λ ∈ (0, λ0]. The parameters pmax and λ0 are specified
in Proposition 1.1 and Theorem 1.2 below. pmax remains fixed in the course of our analysis.
The maximal coupling constant λ0 is readjusted only in the last step of our investigation—in
Theorem 2.1—to a new value which is denoted by λ′

0.
In the following proposition we collect the results concerning Ep,Ep,σ which will be

needed in the present investigation. Some of these properties are known, but several are
new, as we explain below.

Proposition 1.1 Fix 0 ≤ α ≤ 1/2 and let pmax = 1/6. Then there exists λ0 > 0 s.t. for all
p ∈ S := Bpmax , λ ∈ (0, λ0] there holds:

(a) S � p 	→ Ep is twice continuously differentiable and strictly convex. S � p 	→ Ep,σ

is analytic and strictly convex, uniformly in σ ∈ (0, κ] (i.e., the minimal distance of the
spectrum of ∇2Ep,σ from zero is larger than some c > 0, c independent of σ ). Moreover,

|Ep − Ep,σ | ≤ cσ, (1.42)∣∣∂β1
p Ep,σ

∣∣ ≤ c,
∣∣∂β2

p Ep,σ

∣∣ ≤ c,
∣∣∂β3

p Ep,σ

∣∣ ≤ c/σ δλ0 (1.43)

for multiindices βj s.t. |βj | = j , j ∈ {1,2,3}.
(b) For σ > 0, Ep,σ is a simple eigenvalue corresponding to a normalized eigenvector ψp,σ ,

whose phase is specified in [12]. There holds
∥∥∂β

p ψp,σ

∥∥ ≤ c/σ δλ0 (1.44)

for multiindices β s.t. 0 < |β| ≤ 2.
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(c) For α > 0, Ep is a simple eigenvalue corresponding to a normalized eigenvector ψp .
Moreover, for a suitable choice of the phase of ψp ,

‖ψp − ψp,σ ‖ ≤ cσα. (1.45)

The constant c above is independent of σ , p, λ, α within the assumed restrictions. Clearly,
all statements above remain true after replacing λ0 by some λ̃0 ∈ (0, λ0]. The resulting
function λ̃0 	→ δλ̃0

can be chosen positive and s.t. limλ̃0→0 δλ̃0
= 0.

In the light of Proposition 1.1 we can define the subspace of renormalized single-electron
states

H1,σ :=
{
Π∗

∫ ⊕
d3ph(p)ψp,σ |h ∈ L2

(
R

3, d3p
)
, supph ⊂ S

}
. (1.46)

In the case of 1/2 ≥ α > 0 we also set H1 := H1,σ=0.
Large part of Proposition 1.1 has already been established in the Nelson model or in

similar models: The fact that S � p 	→ Ep is twice continuously differentiable and con-
vex has been shown in non-relativistic and semi-relativistic QED in [4, 17, 23] and in the
Nelson model with a slightly different form-factor in [1]. The present case is covered by
our analysis in [12]. The bound in (1.42) can be extracted from [24]. The first sentence in
Proposition 1.1(b) has been established already in [16]. Part (c) is implicit in [24] and is
shown explicitly in [12]. The bound on the third derivative of Ep,σ in (1.43) and on the first
and second derivative of ψp,σ in (1.44) are new and are proven in [12].

It turns out that the properties stated in Proposition 1.1 are not quite enough for our
purposes. Scattering theory for several electrons requires much more detailed information
about the electron’s localization in space than scattering of one electron and photons. This
information is contained in regularity properties of the momentum wave functions of the
vectors ψp,σ . Let us express ψp,σ in terms of its m-particle components in the Fock space:

ψp,σ = {
f m

p,σ

}
m∈N0

, (1.47)

where f m
p,σ ∈ L2

sym(R3m,d3mk), i.e., each f m
p,σ is a square-integrable function symmetric in

m variables from R
3. Let us introduce the following auxiliary functions:

gm
σ (k1, . . . , km) :=

m∏
i=1

cλχ[σ,κ∗)(ki)|ki |α
|ki |3/2

, κ∗ := (1 − ε0)
−1κ, 0 < ε0 < 1, (1.48)

where ε0 appeared below (1.29) and c is some positive constant independent of m,σ,p and
λ within the restrictions specified above. (Note that χ[σ,κ∗)(k) = 1 for k ∈ [σ, κ)). Finally,
we introduce the notation

Ar1,r2 := {
k ∈R

3 | r1 < |k| < r2

}
, (1.49)

where 0 ≤ r1 < r2. Now we are ready to state the required properties of the functions f m
p,σ :

Theorem 1.2 Fix 0 ≤ α ≤ 1/2, set pmax = 1/6 and recall that σ > 0. Then there exists
λ0 > 0 s.t. for all p ∈ S = Bpmax , λ ∈ (0, λ0] the following statements are true:

(a) Let {f m
p,σ }m∈N0 be the m-particle components of ψp,σ and let A×m

σ,κ be defined by (1.49).

Then, for any p ∈ S, the function f m
p,σ is supported in A×m

σ,κ .
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(b) The function

S ×A×m
σ,∞ � (p; k1, . . . , km) 	→ f m

p,σ (k1, . . . , km) (1.50)

is twice continuously differentiable and extends by continuity, together with its deriva-
tives, to the set S ×A×m

σ,∞.
(c) For any multiindex β , 0 ≤ |β| ≤ 2, the function (1.50) satisfies

∣∣∂β

kl
f m

p,σ (k1, . . . , km)
∣∣ ≤ 1√

m! |kl |−|β|gm
σ (k1, . . . , km), (1.51)

∣∣∂β
p f m

p,σ (k1, . . . , km)
∣∣ ≤ 1√

m!
(

1

σ δλ0

)|β|
gm

σ (k1, . . . , km), (1.52)

∣∣∂
pi′ ∂ki

l
f m

p,σ (k1, . . . , km)
∣∣ ≤ 1√

m!
1

σ δλ0
|kl |−1gm

σ (k1, . . . , km), (1.53)

where the function λ̃0 	→ δλ̃0
has the properties specified in Proposition 1.1.

Parts (a), (b) of Theorem 1.2 and estimate (1.51) in (c) can be extracted from [14–16]
or proven using the methods from these papers. The key new input are the bounds in (1.52)
and (1.53) on the first and second derivative w.r.t. p with their mild dependence on the in-
frared cut-off σ . These bounds require major refinements of the iterative multi-scale analysis
from [24]. They constitute the main technical result of the companion paper [12].

1.3 Scattering Theory

In this section we outline the construction of two-electron scattering states along the lines
of Haag-Ruelle scattering theory [21, 27], following some ideas from [2, 3, 14]. Since we
are interested here in the infrared-regular situation, we set 1/2 ≥ α > 0. Such α will be kept
fixed in the remaining part of the paper. (The infrared-singular case α = 0 is much more
involved due to the infraparticle problem and will be studied elsewhere).

Let C2
0 (S) be the class of twice continuously differentiable functions with compact sup-

port contained in S. Following [2, 3, 14], for any h ∈ C2
0(S) we define the renormalized

creation operator

η̂∗
σ (h) :=

∞∑
m=0

1√
m!

∫
d3pd3mkh(p)f m

p,σ (k)a∗(k)mη∗(p − k). (1.54)

In this expression we use the following short-hand notation, which will appear frequently
below:

f m
p,σ (k) := f m

p,σ (k1, . . . , km), (1.55)

a∗(k)m := a∗(k1) · · ·a∗(km), (1.56)

k := k1 + · · · + km. (1.57)

It is shown in Lemma A.2 that η̂∗
σ (h) and η̂∗

σ (h1)η̂
∗
σ (h2), for h1, h2 ∈ C2

0(S), are well defined
operators on C. (Since η̂σ (h) := (η̂∗

σ (h))∗ is obviously well defined on C, we obtain that
η̂∗

σ (h) is closable).
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Now let Ωe and Ωf be the vacuum vectors of Γ (he) and Γ (hf), respectively. Then Ω :=
Ωe ⊗ Ωf is the physical vacuum in H. It is easy to see that (cf. Lemma 2.3)

ψh,σ := η̂∗
σ (h)Ω = Π∗

∫ ⊕
d3ph(p)ψp,σ , (1.58)

i.e., ψh,σ is an element of the subspace of renormalized single-electron states H1,σ , defined
in (1.46). Since we assumed that 1/2 ≥ α > 0, we obtain from Proposition 1.1(c) that there
exists the limit

ψh := lim
σ→0

η̂∗
σ (h)Ω = Π∗

∫ ⊕
d3ph(p)ψp. (1.59)

Clearly, ψh belongs to the renormalized single-electron space H1 of the Hamiltonian H .
Let us now proceed to the construction of two-electron scattering states. We fix some

parameter γ0 > 4, which will be kept fixed in our investigation, choose some γ ∈ (4, γ0] and
introduce a time-dependent cut-off

σt := κ/tγ (1.60)

for t ≥ max{1, κ}. Next, we choose h1, h2 ∈ C2
0 (S) with disjoint supports and set

hi,t (p) := e−iEpthi(p), i ∈ {1,2}. (1.61)

Now we are ready to define the two-electron scattering states approximants:

Ψt,h1,h2 := eiHt η̂∗
σt

(h1,t )η̂
∗
σt

(h2,t )Ω. (1.62)

We will show that the limit of Ψt,h1,h2 exists as t → ∞ and can be interpreted as a physical
state describing two independent excitations. This is the content of our main result concern-
ing scattering theory, stated below.

Theorem 1.3 Fix 1/2 ≥ α > 0, γ0 > 4. Let λ ∈ (0, λ′
0], where λ′

0 > 0 is sufficiently small.
Then, for h1, h2 ∈ C2

0 (S) with disjoint supports, the following statements hold:

(a) Let σt = κ/tγ , where γ ∈ (4, γ0]. Then there exists the limit

Ψ +
h1,h2

:= lim
t→∞ eiHt η̂∗

σt
(h1,t )η̂

∗
σt

(h2,t )Ω (1.63)

and it is called the two-electron scattering state. It is independent of the parameter γ

within the above restrictions.
(b) Let Ψ +

h1,h2
, Ψ +

h′
1,h′

2
be two scattering states. Their scalar product has the form

〈
Ψ +

h1,h2
,Ψ +

h′
1,h′

2

〉 = 〈ψh1 ,ψh′
1
〉〈ψh2 ,ψh′

2
〉 + 〈ψh1 ,ψh′

2
〉〈ψh2 ,ψh′

1
〉. (1.64)

Proof Part (a) follows from Theorem 2.1. Assumptions (2.2), (2.3) of Theorem 2.1 are ver-
ified in Proposition 3.4. Assumption 2.4 follows from Propositions 2.2, 3.1, 3.6 and Corol-
lary 3.5. Part (b) of the theorem follows from Proposition 3.4 and Proposition 1.1(c). �

In order to elucidate the meaning of Theorem 1.3, in particular of the clustering rela-
tion (1.63), let us restate it in the language of wave operators. First, we note that the vector
ψh, given by (1.59), is determined uniquely by the function h ∈ C2

0 (S). Moreover, vectors of
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the form ψh1 ⊗s ψh2 , where h1, h2 ∈ C2
0 (S) have disjoint supports, and ⊗s is the symmetric

tensor product, span a dense subspace in H1 ⊗s H1. Thus we can define the wave operator
W+ : H1 ⊗s H1 → H by the following relation (and linearity)

W+(ψh1 ⊗s ψh2) := Ψ +
h1,h2

. (1.65)

Theorem 1.3(b) says that this operator exists and extends to an isometry, similarly as in
quantum mechanical scattering theory.

Standing assumptions and conventions:

1. We will only consider outgoing asymptotic configurations (t → ∞), since the incoming
case (t → −∞) is analogous. The corresponding asymptotic quantities will be denoted
by an upper index +, for example Ψ +

h1,h2
in (1.63).

2. The parameters pmax = 1/6 and 1/2 ≥ α > 0 are kept fixed in the remaining part of the
paper.

3. As specified in Proposition 1.1 and Theorem 1.2, the maximal coupling constant λ0 > 0
corresponds to the values of pmax and 1/2 ≥ α > 0 fixed above. It remains unchanged
in Sects. 3 and 4. It is readjusted to a possibly smaller value λ′

0 > 0 in the last step of
the analysis in Theorem 2.1. λ′

0 may depend of γ0 but not on γ ∈ (4, γ0].
4. λ̃0 	→ δλ̃0

, λ̃0 	→ δ′
λ̃0

will denote positive functions of λ̃0 ∈ (0, λ0], which may differ
from line to line, and have the property

lim
λ̃0→0

δλ̃0
= 0, lim

λ̃0→0
δ′
λ̃0

= 0. (1.66)

Such functions control the infrared behaviour of our estimates listed in the statement of
Theorem 2.1. By reducing the maximal coupling constant from λ0 to λ′

0 we make this
behaviour sufficiently mild.

5. We denote by γ ∈ (4, γ0] the parameter which controls the time dependence of the (fast)
infrared cut-off, i.e., σt = κ/tγ . The parameter γ0 is kept fixed in the remaining part of
the paper. This parameter appears also in the definition of the slow infrared cut-off
σs = κ(σ/κ)1/(8γ0) in the proofs of Lemmas 4.1 and 4.2.

6. We will denote by c, c′, c′′ numerical constants which may depend on S, λ0, ε0, κ , α,
γ0 and functions h1, h2 but not on σ , t or the electron and photon momenta. The values
of these constants may change from line to line.

7. We will denote by (p, q) 	→ D(p,q), (p, q) 	→ D′(p, q) smooth, compactly supported
functions on R

3 ×R
3, which may depend of S,λ0, ε0, κ , α but not on σ , t or the electron

and the photon momenta.
8. We will denote by k = (k1, . . . , km) ∈ R

3m a collection of photon variables. A lower or
upper index m of a function indicates that it is a symmetric function of (k1, . . . , km). For
example:

f m(k) := f m(k1, . . . , km). (1.67)

Similarly, we set a∗(k)m := a∗(k1) · · ·a∗(km). We note that the order in which the com-
ponents of k are listed is irrelevant, since they enter always into symmetric expressions.

9. We separate the electron variable p ∈ R
3 and the photon variables k ∈ R

3m by a semi-
colon. For example:

Gm(p; k) := Gm(p; k1, . . . , km). (1.68)
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10. Two collections of electron and photon variables p ∈ R
3, k ∈ R

3m and q ∈ R
3, r ∈ R

3n

are separated by a bar. For example

Fm,n(p; k |q; r) := Fm,n(p; k1, . . . , km |q; r1, . . . , rn). (1.69)

11. Given k = (k1, . . . , km) we write k := k1 + · · · + km.

2 Main Ingredients of the Proof

Theorem 2.1 below gives the existence of scattering states based on some assumptions
proven in the later part of this paper: (a) Property (2.2)–(2.3) follows from Proposition 3.4;
(b) To establish property (2.4) we derive a formula for time-derivatives of scattering state
approximants in Proposition 2.2 in the later part of this section. The section concludes with
Lemma 2.3 which gives a direct integral representation of the vectors ψh,σ = η̂∗

σ (h)Ω . We
used this result already in (1.54) above.

In our proof of convergence of the scattering state approximants (1.62) we will vary the
time t and the infrared cut-off σ independently. Let us therefore fix h1, h2 ∈ C2

0(S) with
disjoint supports and introduce an auxiliary two-parameter sequence

Ψt,σ := eiHt η̂∗
σ (h1,t )η̂

∗
σ (h2,t )Ω. (2.1)

Now we are ready to state and prove the main result of this section.

Theorem 2.1 Let h1, h2 ∈ C2
0(S) have disjoint supports, let Ψt,σ be given by (2.1). Suppose

that for λ ∈ (0, λ0], infrared cut-offs σ,σ ′ s.t. σ ≤ σ ′ ≤ κ and t ≥ max{1, κ}
〈Ψt,σ ′ ,Ψt,σ 〉 = 〈ψh1,σ ′ ,ψh1,σ 〉〈ψh2,σ ′ ,ψh2,σ 〉 + R

(
t, σ, σ ′) with (2.2)

∣∣R(
t, σ, σ ′)∣∣ ≤ c

σ δλ0

(
1

t

1

σ 1/(8γ0)
+ (

σ ′)α/(4γ0)

)
, (2.3)

‖∂tΨt,σ ‖ ≤ c

σ δλ0

(
σα/(4γ0)

t
+ σ t + 1

t2σ 1/(4γ0)

)

+ cσ 1−δλ0 + cσ 1/2−δλ0

(
1 + 1

t

1

σ 1/(8γ0)

)
. (2.4)

Then one can choose λ′
0 ∈ (0, λ0] s.t. for λ ∈ (0, λ′

0] there exists the limit

Ψ +
h1,h2

= lim
t→∞Ψt,σt , (2.5)

where σt = κ/tγ . This limit is independent of the choice of γ ∈ (4, γ0].

Proof We assume that t2 ≥ t1 ≥ 1 are sufficiently large so that σt2 ≤ σt1 ≤ 1. We write

‖Ψt2,σt2
− Ψt1,σt1

‖ ≤ ‖Ψt2,σt2
− Ψt1,σt2

‖ + ‖Ψt1,σt2
− Ψt1,σt1

‖. (2.6)

Concerning the first term on the r.h.s. of (2.6), we note that the bound in (2.4) implies

‖∂tΨt,σt2
‖ ≤ c

σ
δλ0
t2

(
σ ε

t2

t
+ 1

t2σ
1/(4γ0)
t2

)
+ cσ

1/2−δλ0
t2

t (2.7)
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for some ε > 0, depending on γ0, but independent of λ0. Now we estimate

‖Ψt2,σt2
− Ψt1,σt2

‖ ≤
∫ t2

t1

dt‖∂tΨt,σt2
‖ ≤ cσ

ε−δλ0
t2

log(t2/t1) + c
1

t1

1

σ
δλ0 +1/(4γ0)

t2

+ cσ
1/2−δλ0
t2

t2
2

≤ cσ ε′
t2

+ c
1

t1

1

σ
1/(3γ0)
t2

+ cσ
1/2−δλ0
t2

t2
2 ≤ c

1

t ε
′′

2

+ c
t

1/3
2

t1

≤ c

(
t

1/3
2

t1
+

(
t

1/3
2

t1

)ε′′)
, (2.8)

where in the third step we made use of the fact that t−α
2 log(t2/t1) is uniformly bounded in

t2 ≥ t1 ≥ 1 for any α > 0 and chose λ0 sufficiently small (depending on γ0) to ensure that
ε′ > 0 and that δλ0 + 1/(4γ0) ≤ 1/(3γ0). In the fourth step we chose λ0 sufficiently small
and exploited the bound γ > 4 to ensure that 1 > ε′′ > 0.

As for the second term on the r.h.s. of (2.6), we get

‖Ψt1,σt2
− Ψt1,σt1

‖2

= 〈Ψt1,σt2
,Ψt1,σt2

〉 + 〈Ψt1,σt1
,Ψt1,σt1

〉 − 2Re〈Ψt1,σt2
,Ψt1,σt1

〉
= 〈ψh1,σt2

,ψh1,σt2
〉〈ψh2,σt2

,ψh2,σt2
〉 + R(t1, σt2 , σt2)

+ 〈ψh1,σt1
,ψh1,σt1

〉〈ψh2,σt1
,ψh2,σt1

〉 + R(t1, σt1 , σt1)

− 〈ψh1,σt2
,ψh1,σt1

〉〈ψh2,σt2
,ψh2,σt1

〉 − R(t1, σt2 , σt1)

− 〈ψh1,σt1
,ψh1,σt2

〉〈ψh2,σt1
,ψh2,σt2

〉 − R(t1, σt2 , σt1). (2.9)

Thus making use of Proposition 1.1(c) and (2.3), we obtain

‖Ψt1,σt2
− Ψt1,σt1

‖2 ≤ cσα
t1

+ ∣∣R(t1, σt2 , σt2)
∣∣ + ∣∣R(t1, σt1 , σt1)

∣∣ + 2
∣∣R(t1, σt2 , σt1)

∣∣

≤ cσα
t1

+ c
1

σ
δλ0
t2

(
1

t1

1

σ
1/(8γ0)
t2

+ (σt2)
α/(4γ0)

)

+ c
1

σ
δλ0
t1

(
1

t1

1

σ
1/(8γ0)
t1

+ (σt1)
α/(4γ0)

)

+ c
1

σ
δλ0
t2

(
1

t1

1

σ
1/(8γ0)
t2

+ (σt1)
α/(4γ0)

)
. (2.10)

Thus, by choosing λ0 sufficiently small, we can find 0 < δ1, δ2, δ < 1 s.t.

‖Ψt1,σt2
− Ψt1,σt1

‖2 ≤ c

(
1

t
δ1
1

+ t
1/3
2

t1
+ 1

t
δ2
2

+ t
δλ0
2

t
δ1
1

)

≤ c

(
t
δλ0
2

t δ1
+ t

1/3
2

t1

)
≤ c

((
t

1/3
2

t1

)δ

+ t
1/3
2

t1

)
, (2.11)
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where in the second step we used that t2 ≥ t1. Consequently

‖Ψt1,σt2
− Ψt1,σt1

‖ ≤ c

((
t

1/3
2

t1

)δ/2

+
(

t
1/3
2

t1

)1−δ/2)
. (2.12)

In view of (2.8), we get

‖Ψt2,σt2
− Ψt1,σt1

‖ ≤ c

4∑
i=1

(
t

1/3
2

t1

)εi

(2.13)

for 0 < εi ≤ 1. Let us now set Ψ (t) := Ψt,σt and proceed as in the proof of Theorem 3.1
of [25]: Suppose tn1 ≤ t2 < tn+1

1 . Then we can write

∥∥Ψ (t2) − Ψ (t1)
∥∥ ≤

(
n−1∑
k=1

∥∥Ψ
(
tk+1
1

) − Ψ
(
tk1

)∥∥
)

+ ∥∥Ψ (t2) − Ψ
(
tn1

)∥∥

≤ c

4∑
i=1

n∑
k=1

(
1

t
εi (2k/3−1/3)

1

)
≤ c

4∑
i=1

t
−εi /3
1

1

1 − (1/t1)2εi /3
. (2.14)

Since the last expression tends to zero as t1 → ∞, we obtain convergence of t 	→ Ψ (t) as
t → ∞.

Finally, let us show that the limit Ψ +
h1,h2

is independent of the choice of the parameter

γ ∈ (4, γ0]. Let 4 < γ ′ ≤ γ and let σt = κ/tγ , σ ′
t = κ/tγ

′
so that σt ≤ σ ′

t . We will show that

lim
t→∞‖Ψt,σt − Ψt,σ ′

t
‖ = 0. (2.15)

Similarly as in the first part of the proof, it follows from formula (2.2) and from Proposi-
tion 1.1(c) that

lim
t→∞〈Ψt,σt ,Ψt,σt 〉 = lim

t→∞〈Ψt,σ ′
t
,Ψt,σt 〉 = lim

t→∞〈Ψt,σ ′
t
,Ψt,σ ′

t
〉

= 〈ψh1 ,ψh1〉〈ψh2 ,ψh2〉. (2.16)

This concludes the proof of (2.15). �

In Proposition 2.2 below we derive a formula for ∂tΨt,σ , appearing in assumption (2.4).
For the purpose of this derivation we introduce a suitable domain: First, we fix l ∈ N0,
r1, r2 > 0 and consider vectors of the form

Ψ
r1,r2
l =

∞∑
m=0

1√
m!

∫
d3lpd3mkFl,m(p; k)η∗(p)la∗(k)mΩ, (2.17)

where Fl,m ∈ L2
sym(B×l

r1
× B×m

r2
, d3lpd3mk), i.e., Fl,m are square-integrable functions, sym-

metric (independently) in their electron and photon variables and supported in each electron
(resp. photon) variable in a ball af radius r1 (resp. r2). Moreover, the norms of Fl,m satisfy
the bound

‖Fl,m‖2 ≤ cm

√
m! (2.18)
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for some c ≥ 0, independent of m, which guarantees that the vector (2.17) is well defined.
Now we set

D := Span
{
Ψ

r1,r2
l | l ∈ N0, r1, r2 > 0

}
, (2.19)

where Span means finite linear combinations. This domain is dense and it contains C. We
show in Lemma A.2 that Hσ ,He,Hf,H

a/c
I and η̂∗(h), h ∈ C2

0 (S), are well-defined on D and
leave this domain invariant.

Proposition 2.2 Let h1, h2 ∈ C2
0(S) have disjoint supports and let Ψt,σ be given by (2.1).

Then there holds

∂tΨt,σ = eitH

{
1

2
i
[[

H a
I , η̂∗

σ (h1,t )
]
, η̂∗

σ (h2,t )
]
Ω + iη̂∗

σ (h1,t )Ȟ
c
I,σ η̂∗

σ (h2,t )Ω

+ iη̂∗
σ (h1,t )η̂

∗
σ

(
hσ

2,t

)
Ω

}
+ {1 ↔ 2}. (2.20)

The operators H a
I and Ȟ c

I,σ are defined on C by

H a
I :=

∫
d3pd3kvα(k)η∗(p + k)a(k)η(p), (2.21)

Ȟ c
I,σ :=

∫
d3pd3kv̌σ

α (k)η∗(p − k)a∗(k)η(p), (2.22)

where v̌σ
α (k) := λ

1Bσ (k)|k|α
(2|k|)1/2 and hσ

i (p) = (Ep,σ − Ep)hi(p). (Note that Ȟ c
I,σ involves only

momenta below the infrared cut-off σ ).

Proof We compute

∂tΨt,σ = eiHt iH η̂∗
σ (h1,t )η̂

∗
σ (h2,t )Ω + eiHt η̂∗

σ (∂th1,t )η̂
∗
σ (h2,t )Ω + eiHt η̂∗

σ (h1,t )η̂
∗
σ (∂th2,t )Ω

= eiHt iH η̂∗
σ (h1,t )η̂

∗
σ (h2,t )Ω − eiHt η̂∗

σ (h2,t )η̂
∗
σ

(
i(Eh1)t

)
Ω

− eiHt η̂∗
σ (h1,t )η̂

∗
σ

(
i(Eh2)t

)
Ω, (2.23)

where (Ehi)(p) := Ephi(p), i = 1,2. The first term on the r.h.s. above is well defined by
Lemma A.2. The equality

(
∂t η̂

∗
σ (h1,t )

)
η̂∗

σ (h2,t )Ω = η̂∗
σ (∂th1,t )η̂

∗
σ (h2,t )Ω (2.24)

can easily be justified with the help of Lemmas B.4 and 3.3. Now we note the following
identity, which is meaningful due to Lemma A.2:

iH η̂∗
σ (h1,t )η̂

∗
σ (h2,t )Ω = i

[[
H, η̂∗

σ (h1,t )
]
, η̂∗

σ (h2,t )
]
Ω + η̂∗

σ (h1,t )iH η̂∗
σ (h2,t )Ω

+ η̂∗
σ (h2,t )iH η̂∗

σ (h1,t )Ω, (2.25)

where we made use of the fact that HΩ = 0. As for the first term on the r.h.s. of (2.25), we
note that [Hfr, η̂

∗
σ (h1,t )] and [H c

I , η̂∗
σ (h1,t )] are sums of products of creation operators and

therefore commute with η̂∗
σ (h2,t ). Thus we get

i
[[

H, η̂∗
σ (h1,t )

]
, η̂∗

σ (h2,t )
]
Ω = i

[[
H a

I , η̂∗
σ (h1,t )

]
, η̂∗

σ (h2,t )
]
Ω. (2.26)
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As for the second term on the r.h.s. of (2.25), we obtain

η̂∗
σ (h1,t )iH η̂∗

σ (h2,t )Ω = η̂∗
σ (h1,t )i(H − Hσ )η̂∗

σ (h2,t )Ω + η̂∗
σ (h1,t )η̂

∗
σ

(
i(Eσh2)t

)
Ω

= η̂∗
σ (h1,t )iȞ

c
I,σ η̂∗

σ (h2,t )Ω + η̂∗
σ (h1,t )η̂

∗
σ

(
i
(
(Eσ − E)h2

)
t

)
Ω

+ η̂∗
σ (ih1,t )η̂

∗
σ

(
(Eh2)t

)
Ω. (2.27)

Here in the first step we applied Lemma 2.3 and in the last step we made use of the fact that
the operator

Ȟ a
I,σ :=

∫
d3pd3kv̌σ

α (k)η∗(p + k)a(k)η(p) (2.28)

annihilates η̂∗
σ (h2,t )Ω due to the fact that v̌σ

α is supported below the infrared cut-off. As the
last term on the r.h.s. of (2.25) can be treated analogously, this concludes the proof. �

Lemma 2.3 Let h ∈ C2
0 (S) and ψh,σ := η̂∗

σ (h)Ω . Then the vector ψh,σ equals

Π∗
∫ ⊕

dph(p)ψp,σ . (2.29)

Consequently, Hσ ψh,σ = ψEσ h,σ , where (Eσ h)(p) := Ep,σ h(p).

Proof With the electron’s variables in the configuration space representation, the m-particle
components of ψh,σ have the form

ψm
h,σ (x, k1, . . . , km) = 1

(2π)3/2

∫
d3peipxh(p + k)f m

p+k,σ (k1, . . . , km)

= 1

(2π)3/2
e−ikx

∫
d3peipxh(p)f m

p,σ (k1, . . . , km). (2.30)

Consequently, the m-particle components of Π(ψh,σ ) are

Π(ψh,σ )m(p′, k1, . . . , km) = 1

(2π)3

∫
d3xe−ip′x

∫
d3peipxh(p)f m

p,σ (k1, . . . , km)

= h(p′)f m
p′,σ (k1, . . . , km), (2.31)

which concludes the proof. �

3 Vacuum Expectation Values of Renormalized Creation Operators

In this section we estimate the norms of the terms appearing on the r.h.s. of (2.20) in order to
verify assumption (2.4) in Theorem 2.1. We also derive estimates on the norms of scattering
states which are required in Theorem 2.1 as well. A crucial input is provided by the non-
stationary phase analysis in Sect. 4, which in turn relies on the spectral information from
Theorem 1.2, proven in [12].

In this section we will use the following definitions:

Gi,m(q; k) := e−iEq thi(q)f m
q,σ (k), i ∈ {1,2}, (3.1)
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where h1, h2 ∈ C2
0 (S) and f m

q,σ (k) is defined in (1.55). (We stress that the functions Gi,m are
t -dependent, although this is not reflected by the notation). Moreover, we set

B∗
m(Gi,m) :=

∫
d3qd3mkGi,m(q; k)a∗(k)mη∗(q − k). (3.2)

Another convention, which we will use in this and the next section, concerns contractions
of creation and annihilation operators. It is explained in full detail in Lemma B.2, so it is
enough to illustrate it here by a simple example. Let us set ñ = 3, m̃ = 2, n = 2, m = 3 and
consider photon variables r̃ ∈ R

3ñ, k̃ ∈R
3m̃, r ∈ R

3n, k ∈ R
3m. Then the expectation value

〈
Ω,a(r̃)ña(k̃)m̃a∗(r)na∗(k)mΩ

〉

= 〈
Ω,

{
a(r̃1)a(r̃2)a(r̃3)

}{
a(k̃1)a(k̃2)

}{
a∗(r1)a

∗(r2)
}{

a∗(k1)a
∗(k2)a

∗(k3)
}
Ω

〉
(3.3)

is a sum of (m+n)! terms resulting from all the possible contraction patterns. Let us consider
one of them:

〈
Ω,

{
a(r̃1)a(r̃2)a(r̃3)

}{
a(k̃1)a(k̃2)

}{
a∗(r1)a

∗(r2)
}{

a∗(k1)a
∗(k2)a

∗(k3)
}
Ω

〉
. (3.4)

Given this contraction pattern, we make a decomposition r̃ = ( ˆ̃r, ˇ̃r), where ˆ̃r = (r̃1, r̃2) are
the r̃-variables which are contracted with some r-variables and ˇ̃r = r̃3 is the r̃-variable

contracted with a k-variable. In the case of the k̃-variables we have k̃ = ˆ̃
k, since both k̃1 and

k̃2 are contracted with k-variables. In this situation we say that ˇ̃
k is empty. Similarly, we

have r = r̂ with ř empty and k = (k̂, ǩ) with k̂ = (k2, k3) and ǩ = {k1}.

3.1 Double Commutator

It turns out that the behaviour of the double commutator on the r.h.s. of (2.20) is governed
by the decay of the functions

FG1,G2
n,m (q; r |p; k)

:= (n + 1)

∫
d3rn+1vα(rn+1)G1,n+1(q + rn+1; r, rn+1)G2,m(p − rn+1; k), (3.5)

where q,p ∈R
3, r ∈R

3n, k ∈R
3m. For any such function we define an auxiliary operator

B∗
n,m

(
FG1,G2

n,m

) :=
∫

d3qd3p

∫
d3nrd3mkFG1,G2

n,m (q; r |p; k)a∗(r)na∗(k)m

× η∗(p − k)η∗(q − r). (3.6)

Key properties of expectation values of such operators are given in Lemma B.3 below. Now
we state and prove the estimate on the double commutator which gives rise to the first term
on the r.h.s. of (2.4).

Proposition 3.1 There holds the bound

∥∥[[
H a

I , η̂∗
σ (h1,t )

]
, η̂∗

σ (h2,t )
]
Ω

∥∥ ≤ c

σ δλ0

(
σα/(4γ0)

t
+ σ t + 1

t2σ 1/(4γ0)

)
. (3.7)
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Proof We compute
〈[[

H a
I , η̂∗

σ (h1,t )
]
, η̂∗

σ (h2,t )
]
Ω,

[[
H a

I , η̂∗
σ (h1,t )

]
, η̂∗

σ (h2,t )
]
Ω

〉

=
∑

m,n,m̃,ñ∈N0
m+n=m̃+ñ

1√
m!n!m̃!ñ!

× 〈[[
H a

I ,B∗
ñ (G1,ñ)

]
,B∗

m̃(G2,m̃)
]
Ω,

[[
H a

I ,B∗
n(G1,n)

]
,B∗

m(G2,m)
]
Ω

〉
,

=
∑

m,n,m̃,ñ∈N0
m+n=m̃+ñ

1√
m!n!m̃!ñ!

〈(
B∗

ñ−1,m̃

(
F

G1,G2
ñ−1,m̃

) + B∗
m̃−1,ñ

(
F

G2,G1
m̃−1,ñ

))
Ω,

(
B∗

n−1,m

(
F

G1,G2
n−1,m

) + B∗
m−1,n

(
F

G2,G1
m−1,n

))
Ω

〉
, (3.8)

where in the last step we made use of Lemma 3.2 and the operators B∗
m,n( · ) are defined in

(3.6). (By convention, B∗
−1,m(F

G1,G2
−1,m )Ω = B∗

−1,n(F
G2,G1
−1,n )Ω = 0.) Given families of func-

tions Gi1,n,Gi2,n,Gj1,n,Gj2,n of the form (3.1), with i1, i2, j1, j2 ∈ {1,2}, we define

C(Gi1 ,Gi2;Gj1 ,Gj2)

:=
∑

m,n,m̃,ñ∈N0
m+n=m̃+ñ

1√
m!(n + 1)!m̃!(ñ + 1)!

〈
B∗

ñ,m̃

(
F

Gi1 ,Gi2
ñ,m̃

)
Ω,B∗

n,m

(
F

Gj1 ,Gj2
n,m

)
Ω

〉
. (3.9)

From (3.8) we obtain
∥∥[[

H a
I , η̂∗

σ (h1,t )
]
, η̂∗

σ (h2,t )
]
Ω

∥∥2 = C(G1,G2;G1,G2) + C(G2,G1;G2,G1)

+ 2Re
(
C(G1,G2;G2,G1)

)
. (3.10)

In view of definition (3.1), C(G2,G1;G2,G1) can be obtained from C(G1,G2;G1,G2) by
a substitution (h1, h2) → (h2, h1). Thus it suffices to consider C(G′

1,G
′
2;G1,G2), where

G′
i,m(q; k) := e−iEq th′

i (q)f m
q,σ (k), i ∈ {1,2} (3.11)

and (h′
1, h

′
2) ∈ {(h1, h2), (h2, h1)}. We recall from Lemma B.3 that

〈
B∗

ñ,m̃

(
F

G′
1,G′

2
ñ,m̃

)
Ω,B∗

n,m

(
FG1,G2

n,m

)
Ω

〉

=
∑

ρ∈Sm+n

∫
d3qd3p

∫
d3nrd3mkFG1,G2

n,m (q; r |p; k)

× (
F

G′
1,G′

2
ñ,m̃

(p − k̂ + r̂; r̂ , ǩ |q + k̂ − r̂; k̂, ř)

+ F
G′

1,G′
2

ñ,m̃
(q + ǩ − ř; r̂ , ǩ |p − ǩ + ř; k̂, ř)

)
. (3.12)

The notation k̂, ǩ, r̂, ř is explained in Lemma B.2 and at the beginning of this section. Now
from Lemma 4.1 we obtain

∣∣FG1,G2
n,m (q; r |p; k)

∣∣ ≤ 1

σ δλ0

(
σα/(4γ0)

t
+ σ t + 1

t2σ 1/(4γ0)

)
1√
m!n!D(p,q)gm

σ (k)gn
σ (r),

(3.13)
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where (p, q) 	→ D(p,q) is a smooth, compactly supported function. From this bound we
get

∣∣F G1,G2
n,m (q; r |p; k)F

G′
1,G′

2
ñ,m̃

(p − k̂ + r̂; r̂ , ǩ |q + k̂ − r̂; k̂, ř)
∣∣

≤ 1

σ 2δλ0

(
σα/(4γ0)

t
+ σ t + 1

t2σ 1/(4γ0)

)2

D′(p, q)
1√

m!n!m̃!ñ!g
m
σ (k)2gn

σ (r)2 (3.14)

and similarly

∣∣FG1,G2
n,m (q; r |p; k)F

G′
1,G′

2
ñ,m̃

(q + ǩ − ř; r̂ , ǩ |p − ǩ + ř; k̂, ř)
∣∣

≤ 1

σ 2δλ0

(
σα/(4γ0)

t
+ σ t + 1

t2σ 1/(4γ0)

)2

D′(p, q)
1√

m!n!m̃!ñ!g
m
σ (k)2gn

σ (r)2,

(3.15)

where D′ is again a smooth, compactly supported function. Making use of (3.9), (3.12) and
the last two bounds we get

∣∣C(
G′

1,G
′
2;G1,G2

)∣∣

≤ 1

σ 2δλ0

(
σα/(4γ0)

t
+ σ t + 1

t2σ 1/(4γ0)

)2 ∑
m,n,m̃,ñ∈N0
m+n=m̃+ñ

(m + n)!√
m!(n + 1)!m̃!(ñ + 1)!

× 1√
m!n!m̃!ñ!

∥∥gm
σ

∥∥2

2

∥∥gn
σ

∥∥2

2

≤ 1

σ 2δλ0

(
σα/(4γ0)

t
+ σ t + 1

t2σ 1/(4γ0)

)2(
κ∗
σ

)4λ2c2

≤ c′

σ
δ′
λ0

(
σα/(4γ0)

t
+ σ t + 1

t2σ 1/(4γ0)

)2

, (3.16)

where we made use of Lemma 3.3 and definition (1.48). This concludes the proof. �

Lemma 3.2 For any n,m ∈N0 there holds

[[
H a

I ,B∗
n(G1,n)

]
,B∗

m(G2,m)
]
Ω = B∗

n−1,m

(
F

G1,G2
n−1,m

)
Ω + B∗

m−1,n

(
F

G2,G1
m−1,n

)
Ω, (3.17)

where F
G1,G2
n−1,m is defined in (3.5) and we set B∗

−1,m(F
G1,G2
−1,m )Ω = B∗

−1,n(F
G2,G1
−1,n )Ω = 0.

Proof First we compute the inner commutator on C:

[
H a

I ,B∗
n(G1,n)

] =
∫

d3qd3nrd3ud3wG1,n(q; r)vα(w)

× [
a(w)η∗(u + w)η(u), a∗(r)nη∗(q − r)

]
. (3.18)
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We note that

[
a(w)η∗(u + w)η(u), a∗(r)nη∗(q − r)

] =
n∑

i=1

δ(w − ri)a
∗(ri∗)

n−1η∗(u + w)η(u)η∗(q − r)

+ a(w)a∗(r)nδ(u − q + r)η∗(u + w), (3.19)

where a∗(ri∗)
n−1 = a∗(r1) · · ·a∗(ri−1)a

∗(ri+1) · · ·a∗(rn) for n ≥ 1 and a∗(ri∗)
n−1 = 0 for

n = 0. Since G1,n is symmetric in the photon variables, the contributions to (3.18) propor-
tional to the first and the second term on the r.h.s. of (3.19) are[

H a
I ,B∗

n(G1,n)
]

1

:= n

∫
d3qd3(n−1)rd3rnd

3uG1,n(q; r, rn)vα(rn)a
∗(r)n−1η∗(u + rn)η(u)η∗(q − r − rn),

(3.20)

and
[
H a

I ,B∗
n(G1,n)

]
2
:=

∫
d3qd3nrd3wG1,n(q; r)vα(w)a(w)a∗(r)nη∗(q − r + w), (3.21)

respectively. Now let us compute the first contribution to the double commutator:[[
H a

I ,B∗
n(G1,n)

]
1
,B∗

m(G2,m)
]
Ω

= n

∫
d3qd3(n−1)rd3rnd

3u

∫
d3pd3mkG1,n(q; r, rn)vα(rn)G2,m(p; k)

× [
a∗(r)n−1η∗(u + rn)η(u)η∗(q − r − rn), a

∗(k)mη∗(p − k)
]
Ω

= n

∫
d3qd3p

∫
d3(n−1)rd3rnd

3mkG1,n(q; r, rn)vα(rn)G2,m(p; k)

× a∗(r)n−1a∗(k)mη∗(p − k + rn)η
∗(q − r − rn)Ω. (3.22)

By changing variables p → p − rn and q → q + rn, we get[[
H a

I ,B∗
n(G1,n)

]
1
,B∗

m(G2,m)
]
Ω = B∗

n−1,m

(
F

G1,G2
n−1,m

)
Ω. (3.23)

The second contribution to the double commutator has the form:
[[

H a
I ,B∗

n(G1,n)
]

2
,B∗

m(G2,m)
]
Ω

=
∫

d3qd3nrd3w

∫
d3pd3mkG1,n(q; r)vα(w)G2,m(p; k)

× [
a(w)a∗(r)nη∗(q − r + w),a∗(k)mη∗(p − k)

]
Ω

= m

∫
d3qd3p

∫
d3nrd3(m−1)kd3kmG1,n(q; r)vα(km)G2,m(p; k, km)

× a∗(r)na∗(k)m−1η∗(q − r + km)η∗(p − k − km)Ω. (3.24)

By changing variables q → q − km and p → p + km we obtain
[[

H a
I ,B∗

n(G1,n)
]

2
,B∗

m(G2,m)
]
Ω = B∗

m−1,n

(
F

G2,G1
m−1,n

)
Ω, (3.25)

which concludes the proof. �
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Lemma 3.3 There hold the estimates

∑
m,n,m̃,ñ∈N0,

m+n=m̃+ñ

(m̃ + ñ)!
m!n!m̃!ñ!

∥∥gm
σ

∥∥2

2

∥∥gn
σ

∥∥2

2
≤

(
κ∗
σ

)4λ2c2

, (3.26)

∑
m,n,m̃,ñ∈N0
m+n=m̃+ñ

(m̃ + ñ)!
m!n!m̃!ñ!

∥∥gm−1
σ

∥∥2

2

∥∥gn
σ

∥∥2

2
≤ 2

(
κ∗
σ

)4λ2c2

, (3.27)

∑
m,n,m̃,ñ∈N0
m+n=m̃+ñ

(m̃ + ñ)!
m!n!m̃!ñ!

∥∥gm−1
σ

∥∥2

2

∥∥gn−1
σ

∥∥2

2
≤ 4

(
κ∗
σ

)4λ2c2

, (3.28)

where gm
σ , κ∗ are defined in (1.48) and we set by convention g−1

σ = 0.

Proof By definition of the functions gm
σ in (1.48)

∥∥gm
σ

∥∥2

2
≤ (λc)2m

(
log(κ∗/σ)

)m
. (3.29)

Thus we get

∑
m,n,m̃,ñ∈N0
m+n=m̃+ñ

(m̃ + ñ)!
m!n!m̃!ñ!

∥∥gm
σ

∥∥2

2

∥∥gn
σ

∥∥2

2

≤
∑

m,n∈N0

( ∑
m̃,ñ∈N0

m̃+ñ=m+n

(m̃ + ñ)!
m̃!ñ!

)
(λc)2(m+n)

m!n!
(
log(κ∗/σ)

)m+n

≤
∑

m,n∈N0

(
√

2λc)2(m+n)

m!n!
(
log(κ∗/σ)

)m+n =
(

κ∗
σ

)4λ2c2

. (3.30)

Let us now prove (3.27):

∑
m,n,m̃,ñ∈N0
m+n=m̃+ñ

(m̃ + ñ)!
m!n!m̃!ñ!

∥∥gm−1
σ

∥∥2

2

∥∥gn
σ

∥∥2

2

≤
∑

m,n,m̃,ñ∈N0
m+n+1=m̃+ñ

(m̃ + ñ)!
m!n!m̃!ñ!

∥∥gm
σ

∥∥2

2

∥∥gn
σ

∥∥2

2

≤
∑

m,n∈N0

( ∑
m̃,ñ∈N0

m̃+ñ=m+n+1

(m̃ + ñ)!
m̃!ñ!

)
(λc)2(m+n)

m!n!
(
log(κ∗/σ)

)m+n

≤ 2
∑

m,n∈N0

(
√

2λc)2(m+n)

m!n!
(
log(κ∗/σ)

)m+n = 2

(
κ∗
σ

)4λ2c2

. (3.31)

The bound (3.28) is proven analogously. This concludes the proof. �
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3.2 Clustering of Scalar Products

In this subsection we consider clustering properties of scalar products of scattering states
approximants. We will study the expression

〈
Ψ ′

t,σ ′ ,Ψt,σ

〉 = 〈
Ω, η̂σ ′

(
h′

2,t

)
η̂σ ′

(
h′

1,t

)
η̂∗

σ (h1,t )η̂
∗
σ (h2,t )Ω

〉
. (3.32)

Recalling from (1.54) that the renormalized creation operators have the form

η̂∗
σ (h) =

∞∑
m=0

1√
m!

∫
d3pd3mkh(p)f m

p,σ (k)a∗(k)mη∗(p − k), (3.33)

we obtain that (3.32) is a sum of integrals over vacuum expectation values of the electron
and photon creation and annihilation operators. The contractions of the electron operators
give rise to two terms

〈
Ψ ′

t,σ ′ ,Ψt,σ

〉(1) := 〈
Ω, η̂σ ′

(
h′

2,t

)
η̂σ ′

(
h′

1,t

)
η̂∗

σ (h1,t )η̂
∗
σ (h2,t )Ω

〉
, (3.34)

〈
Ψ ′

t,σ ′ ,Ψt,σ

〉(2) := 〈
Ω, η̂σ ′

(
h′

2,t

)
η̂σ ′

(
h′

1,t

)
η̂∗

σ (h1,t )η̂
∗
σ (h2,t )Ω

〉
, (3.35)

which we call ‘direct’ and ‘exchange’, respectively. We emphasize that the contractions in
(3.34) and (3.35) above do not involve the photon creation and annihilation operators. The
contractions of photon variables are the subject of the remaining part of this discussion.

As for the direct term, we distinguish two types of photon contraction patterns. The first
type has the form

〈
Ω,a(k̃)m̃a(r̃)ña∗(r)na∗(k)mΩ

〉
, (3.36)

where the monomials of creation and annihilation operators above come from the respective
renormalized creation operators in (3.34). By (3.36) we mean that all the k̃-variables are
contracted with the k-variables and all the r̃-variables are contracted with the r-variables,
and that m̃ = m, ñ = n. (That is, ǩ and ř are empty in the terminology introduced below
equation (3.4)). Clearly, for fixed m,n there are m!n! such contraction patterns and, as we
will show in the proof of Proposition 3.4, after summation over m,n they give rise to the first
term on the r.h.s. of (3.38), which is 〈ψh′

1,σ ′ ,ψh1,σ 〉〈ψh′
2,σ ′ ,ψh2,σ 〉. Contraction patterns of

the second type are those for which ǩ or ř are non-empty. With the help of the non-stationary
phase analysis from Lemma 4.2, it will be shown that the resulting terms contribute to the
rest term R(t, σ, σ ′) on the r.h.s. of (3.38), which eventually tends to zero as proven in
Theorem 2.1.

As for the exchange term (3.35), we consider again two types of photon contraction
patterns. Contractions of the first type have the form

〈
Ω,a(k̃)m̃a(r̃)ña∗(r)na∗(k)mΩ

〉
, (3.37)

i.e., r̂ and k̂ are empty. These contraction patterns give rise to the second term on the r.h.s.
of (3.38), which is 〈ψh′

1,σ ′ ,ψh2,σ 〉〈ψh′
2,σ ′ ,ψh1,σ 〉. Contraction patterns of the second type are
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those for which r̂ or k̂ are non-empty. The non-stationary phase analysis from Lemma 4.3
gives that these terms contribute to R(t, σ, σ ′).

After this overview, we are ready to state and prove the main result of this subsection
which yields estimate (2.3).

Proposition 3.4 Let κ ≥ σ ′ ≥ σ > 0 and let Ψt,σ , Ψ ′
t,σ ′ be two scattering states approx-

imants given by (2.1) with momentum wave functions h1, h2 and h′
1, h

′
2, respectively. (We

recall that supph1 ∩ supph2 = ∅ and supph′
1 ∩ supph′

2 = ∅. However, supphi ∩ supph′
j ,

i, j ∈ {1,2} may be non-empty.) Then

〈
Ψ ′

t,σ ′ ,Ψt,σ

〉 = 〈ψh′
1,σ ′ ,ψh1,σ 〉〈ψh′

2,σ ′ ,ψh2,σ 〉
+ 〈ψh′

1,σ ′ ,ψh2,σ 〉〈ψh′
2,σ ′ ,ψh1,σ 〉 + R

(
t, σ, σ ′), (3.38)

where the rest term satisfies

∣∣R(
t, σ, σ ′)∣∣ ≤ C

(
h,h′) 1

σ δλ0

(
1

t

1

σ 1/(8γ0)
+ (

σ ′)α/(4γ0)

)
. (3.39)

Here C(h,h′) := c‖h1‖1‖h2‖1
∑

β1,β2;0≤|β1|+|β2|≤1 ‖∂β1h′
1‖∞‖∂β2h′

2‖∞ and the sum extends
over multiindices β1, β2.

Proof Let us set

Gi,m(q; k) := e−iEq thi(q)f m
q,σ (k), (3.40)

G′
i,m(q; k) := e−iEq th′

i (q)f m
q,σ ′(k), (3.41)

for i ∈ {1,2}. Now we can write

〈
Ψ ′

t,σ ′ ,Ψt,σ

〉 = ∑
m,n,m̃,ñ∈N0
m̃+ñ=m+n

1√
m!n!m̃!ñ!

〈
Ω,Bñ

(
G′

1,ñ

)
Bm̃

(
G′

2,m̃

)
B∗

n(G1,n)B
∗
m(G2,m)Ω

〉
.

(3.42)
Making use of Lemma B.4, we obtain

〈
Ω,Bñ

(
G′

1,ñ

)
Bm̃

(
G′

2,m̃

)
B∗

n(G1,n)B
∗
m(G2,m)Ω

〉

=
∑

ρ∈Sm+n

∫
d3qd3p

∫
d3nrd3mkG1,n(q; r)G2,m(p; k)

× (
G

′
1,ñ(q + ǩ − ř; r̂ , ǩ)G

′
2,m̃(p − ǩ + ř; k̂, ř)

+ G
′
1,ñ(p − k̂ + r̂; r̂ , ǩ)G

′
2,m̃(q + k̂ − r̂; k̂, ř)

)
, (3.43)

where the notation in (3.43) is explained in Lemma B.2 and below (3.4).
Let us denote the summands involving the first term in the bracket on the r.h.s. of (3.43)

by I
(1)

m,n,m̃,ñ
. Let Ǐ

(1)

m,n,m̃,ñ
be such summands coming from permutations for which ǩ or ř

are non-empty (cf. the discussion below formula (3.4)). We note that there are (m + n)! −
m!n! such permutations. Let 〈Ψ ′

t,σ ′ ,Ψt,σ 〉(1̌) be the contribution to (3.42) involving all the
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summands Ǐ
(1)

m,n,m̃,ñ
. Making use of Lemmas 4.2 and 3.3, we get

∣∣〈Ψ ′
t,σ ′ ,Ψt,σ

〉(1̌)∣∣ ≤ C
(
h,h′) 1

σ δλ0

(
1

t

1

σ 1/(8γ0)
+ (

σ ′)α/(4γ0)

)(
κ∗
σ

)4λ2c2

≤ C
(
h,h′) 1

σ
δ′
λ0

(
1

t

1

σ 1/(8γ0)
+ (

σ ′)α/(4γ0)

)
. (3.44)

Clearly, this expression contributes to R(t, σ, σ ′).
Now let Î

(1)

m,n,m̃,ñ
denote the expressions I

(1)

m,n,m̃,ñ
coming from permutations for which ǩ

and ř are empty. (We note that there are m!n! such permutations and that in this case m = m̃,
n = ñ.) We obtain from Lemma B.1 that

Î
(1)

m,n,m̃,ñ
=

∫
d3qd3nrG1,n(q; r)G′

1,ñ(q; r)
∫

d3pd3mkG2,m(p; k)G
′
2,m̃(p; k)

= 1

n!
1

m!
〈
Ω,Bñ

(
G′

1,ñ

)
B∗

n(G1,n)Ω〉〈Ω,Bm̃

(
G′

2,m̃

)
B∗

m(G2,m)Ω
〉
. (3.45)

Let 〈Ψ ′
t,σ ′ ,Ψt,σ 〉(1̂) be the contribution to 〈Ψ ′

t,σ ′ ,Ψt,σ 〉 involving all such Î
(1)

m,n,m̃,ñ
. Since the

sum over permutations in (3.43) gives the compensating factor m!n!, we obtain

〈
Ψ ′

t,σ ′ ,Ψt,σ

〉(1̂) =
∑

m,n,m̃,ñ

1√
m!n!m̃!ñ!

〈
Ω,Bñ

(
G′

1,ñ

)
B∗

n(G1,n)Ω
〉〈
Ω,Bm̃

(
G′

2,m̃

)
B∗

m(G2,m)Ω
〉

= 〈ψh′
1,σ ′ ,ψh1,σ 〉〈ψh′

2,σ ′ ,ψh2,σ 〉, (3.46)

where in the last step we compared definition (3.2) of B∗
n(Gi,n) with definition (1.54) of the

renormalized creation operator and recalled that ψhi ,σ = η̂∗
σ (hi)Ω .

The analysis of the summands involving the second term in bracket on the r.h.s. of (3.43)
is analogous, so we can be brief: Let us denote such summands by I

(2)

m,n,m̃,ñ
and let Î

(2)

m,n,m̃,ñ

be the summands coming from permutations for which k̂ or r̂ are non-empty. We denote by
〈Ψ ′

t,σ ′ ,Ψt,σ 〉(2̂) the contribution to (3.42) involving all Î
(2)

m,n,m̃,ñ
. By Lemmas 4.3 and 3.3, we

get

∣∣〈Ψ ′
t,σ ′ ,Ψt,σ

〉(2̂)∣∣ ≤ C
(
h,h′) 1

σ
δ′
λ0

(
1

t

1

σ 1/(8γ0)
+ (

σ ′)α/(4γ0)

)
. (3.47)

This part contributes to the rest term.
Now let Ǐ

(2)

m,n,m̃,ñ
be the expressions I

(2)

m,n,m̃,ñ
coming from permutations for which k̂ and r̂

are empty. Denoting the corresponding contribution to (3.42) by 〈Ψ ′
t,σ ′ ,Ψt,σ 〉(2̌), we get from

Lemma B.1 that

〈
Ψ ′

t,σ ′ ,Ψt,σ

〉(2̌) = 〈ψh′
1,σ ′ ,ψh2,σ 〉〈ψh′

2,σ ′ ,ψh1,σ 〉. (3.48)

This concludes the proof. �

The above proposition has a simple corollary which gives the last term on the r.h.s. of
estimate (2.4).
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Corollary 3.5 Let h1, h2 ∈ C2
0 (S) have disjoint supports and let hσ

2 (q) = (Eq,σ −Eq)h2(q).
Then

∥∥η̂∗
σ (h1,t )η̂

∗
σ

(
hσ

2,t

)
Ω

∥∥ ≤ cσ 1/2−δλ0

(
1 + 1

t

1

σ 1/(8γ0)

)
. (3.49)

Proof Making use of Proposition 3.4, we get

∥∥η̂∗
σ (h1,t )η̂

∗
σ

(
hσ

2,t

)
Ω

∥∥2 = 〈ψh1,σ ,ψh1,σ 〉〈ψhσ
2 ,σ ,ψhσ

2 ,σ 〉 + R(t, σ, σ ), (3.50)

where R(t, σ, σ ) satisfies

∣∣R(t, σ, σ )
∣∣ ≤ C(h,h)

1

σ δλ0

(
1

t

1

σ 1/(8γ0)
+ (σ )α/(4γ0)

)
, (3.51)

C(h,h) = c‖h1‖1

∥∥hσ
2

∥∥
1

∑
β1,β2;0≤|β1|+|β2|≤1

∥∥∂β1h1

∥∥∞
∥∥∂β2hσ

2

∥∥∞. (3.52)

Making use of (1.42) in Proposition 1.1, we obtain that C(h,h) ≤ c′σ and therefore

∣∣R(t, σ, σ )
∣∣ ≤ cσ 1−δλ0

(
1 + 1

t

1

σ 1/(8γ0)

)
. (3.53)

Now making use of Lemma 2.3, we get ‖ψh1,σ ‖2 = ‖h1‖2
2 and ‖ψhσ

2 ,σ ‖2 = ‖hσ
2 ‖2

2. Exploiting
(1.42) in Proposition 1.1 again, we get ‖ψhσ

2 ,σ ‖2 ≤ cσ 2. Consequently,

∥∥η̂∗
σ (h1,t )η̂

∗
σ

(
hσ

2,t

)
Ω

∥∥2 ≤ c′σ 1−δλ0

(
1 + 1

t

1

σ 1/(8γ0)

)
. (3.54)

This concludes the proof. �

3.3 Contribution Involving Ȟ c
I,σ

This subsection is devoted to the term involving Ȟ c
I,σ on the r.h.s. of (2.20). The following

elementary proposition, which relies on Lemma B.5, gives the second term on the r.h.s.
of (2.4).

Proposition 3.6 Let Ȟ c
I,σ be defined as in (2.22). Then there holds the bound

∥∥η̂∗
σ (h1,t )Ȟ

c
I,σ η̂∗

σ (h2,t )Ω
∥∥ ≤ cσ 1−δλ0 . (3.55)

Proof We rewrite the expression from the statement of the proposition as follows:

〈
η̂∗

σ (h1,t )Ȟ
c
I,σ η̂∗

σ (h2,t )Ω, η̂∗
σ (h1,t )Ȟ

c
I,σ η̂∗

σ (h2,t )Ω
〉

=
∑

m,n,m̃,ñ∈N0
m+n=m̃+ñ

1√
m!n!m̃!ñ!

× 〈
Ω,Bñ(G2,ñ)

(
Ȟ c

I,σ

)∗
Bm̃(G1,m̃)B∗

n(G1,n)Ȟ
c
I,σ B∗

m(G2,m)Ω
〉
. (3.56)
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Now Lemma B.5 gives

〈
Ω,Bñ(G2,ñ)

(
Ȟ c

I,σ

)∗
Bm̃(G1,m̃)B∗

n(G1,n)Ȟ
c
I,σ B∗

m(G2,m)Ω
〉

=
∑

ρ∈Sm+n

∫
d3qd3p

∫
d3nrd3mkG1,n(q; r)G2,m(p; k)

×
(∫

d3p̃v̌σ
α (p̃)2G2,ñ(p − p̃ − k̂ + r̂; r̂ , ǩ)G1,m̃(p̃ + q + k̂ − r̂; k̂, ř)

+ ∥∥v̌σ
α

∥∥2

2
G2,ñ(q + ǩ − ř; r̂ , ǩ)G1,m̃(p − ǩ + ř; k̂, ř)

)
, (3.57)

where Sm+n is the set of permutations of an m + n element set. Making use of Theorem 1.2,
and of definition (3.1), we obtain the bounds

∣∣G1,n(q; r)G2,m(p; k)G2,ñ(p − p̃ − k̂ + r̂; r̂ , ǩ)G1,m̃(p̃ + q + k̂ − r̂; k̂, ř)
∣∣

≤ 1√
m!n!m̃!ñ!D(p,q)gn

σ (r)2gm
σ (k)2, (3.58)

∣∣G1,n(q; r)G2,m(p; k)G2,ñ(q + ǩ − ř; r̂ , ǩ)G1,m̃(p − ǩ + ř; k̂, ř)
∣∣

≤ 1√
m!n!m̃!ñ!D(p,q)gn

σ (r)2gm
σ (k)2, (3.59)

where (p, q) 	→ D(p,q) is some smooth compactly supported function independent of σ , t .
Consequently, the r.h.s. of (3.57) can be estimated by

c
∥∥v̌σ

α

∥∥2

2
(m + n)! 1√

m!n!m̃!ñ!
∥∥gn

σ

∥∥2

2

∥∥gm
σ

∥∥2

2
. (3.60)

Substituting this bound to (3.56) and making use of Lemma 3.3, we get

∥∥η̂∗
σ (h1,t )Ȟ

c
I,σ η̂∗

σ (h2,t )Ω
∥∥2 ≤ c

∥∥v̌σ
α

∥∥2

2

(
κ∗
σ

)4λ2c2

. (3.61)

Exploiting the fact that ‖v̌σ
α ‖2 ≤ cσ , we conclude the proof. �

4 Non-stationary Phase Arguments

In this section we derive non-stationary phase estimates which entered into our analysis in
Sects. 3.1 and 3.2. The spectral information from Proposition 1.1 and Theorem 1.2 is crucial
for this part of our investigation.

Lemma 4.1 Let Gi,m, i ∈ {1,2}, be as specified in (3.1) and let F
G1,G2
n,m be defined as in (3.5)

i.e., it has the form

F G1,G2
n,m (q; r |p; k) = (n + 1)

∫
d3r̃vα(r̃)e

−i(Eq+r̃+Ep−r̃ )t h2(p − r̃)h1(q + r̃)

× f n+1
q+r̃,σ

(r, r̃)f m
p−r̃,σ (k), (4.1)
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where h1, h2 ∈ C2
0 (S) have disjoint supports. There holds the bound

∣∣FG1,G2
n,m (q; r |p; k)

∣∣ ≤ 1

σ δλ0

(
σα/(4γ0)

t
+ σ t + 1

t2σ 1/(4γ0)

)
1√
m!n!D(p,q)gm

σ (k)gn
σ (r),

(4.2)
where D ∈ C∞

0 (R3 ×R
3).

Proof For σ < κ , we introduce the slow cut-off σs := κ(σ/κ)1/(8γ0), which clearly satisfies
σ < σs ≤ κ . Let χ ∈ C∞(R3), 0 ≤ χ ≤ 1, be supported in B1+ε (the ball of radius 1 + ε) for
some 0 < ε < 1 and be equal to one on B1. We set χ1(k̃) := χ(k̃/σs), χ2(k̃) := 1 − χ1(k̃)

and define

F
G1,G2
j,n,m (q; r |p; k) :=

∫
d3r̃vα(r̃)χj (r̃)e

−i(Eq+r̃+Ep−r̃ )t h2(p − r̃)h1(q + r̃)

× f n+1
q+r̃,σ

(r, r̃)f m
p−r̃,σ (k). (4.3)

We set V (q,p, r̃) := Eq+r̃ + Ep−r̃ and note that by disjointness of the velocity supports of
h1, h2, the condition h2(p − r̃)h1(q + r̃) �= 0, together with Proposition 1.1(a), implies that

∣∣∇r̃V (q,p, r̃)
∣∣ ≥ ε′ > 0 (4.4)

for some fixed ε′. Thus we can write

e−iV (q,p,r̃)t = ∇r̃V (q,p, r̃) · ∇r̃ e
−iV (q,p,r̃)t

(−it)|∇r̃V (q,p, r̃)|2 . (4.5)

Now we define the function

J (q,p, r̃) := ∇r̃V (q,p, r̃)

|∇r̃V (q,p, r̃)|2 h2(p − r̃)h1(q + r̃)χκ(r̃), (4.6)

where χκ ∈ C∞
0 (R3) is equal to one on Bκ and vanishes outside of a slightly larger set. We

note that, by Proposition 1.1(a), for any multiindex β s.t. 0 ≤ |β| ≤ 1

∣∣∂β

r̃
J (q,p, r̃)

∣∣ ≤ D(q,p), (4.7)

where (q,p) 	→ D(q,p) is a smooth, compactly supported function. Moreover, for 0 ≤
|β| ≤ 2

∣∣∂β

r̃
vα(r̃)

∣∣ ≤ χ3(r̃)|r̃|α
|r̃| 1

2 +|β| ,
∣∣∂β

r̃
χj (r̃)

∣∣ ≤ c

(σs)|β| , (4.8)

where χ3 is a smooth, compactly supported function, independent of σ . In addition, for
0 ≤ |β| ≤ 2 we obtain from Theorem 1.2(c)

∣∣∂β

r̃
f m

p−r̃,σ (k)
∣∣ ≤ 1√

m!
c

σ δλ0
gm

σ (k), (4.9)

∣∣∂β

r̃
f n+1

q+r̃,σ
(r, r̃)

∣∣ ≤ 1√
n!

c

σ δλ0

|r̃|α
|r̃|3/2+|β| g

n
σ (r). (4.10)
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Now using the Gauss Law we obtain from (4.3)

F
G1,G2
1,n,m (q; r |p; k)

= 1

it

∫
σ≤|r̃|≤σs

d3r̃e−iV (q,p,r̃)t∇r̃ · (J (q,p, r̃)vα(r̃)χ1(r̃)f
n+1
q+r̃,σ

(r, r̃)f m
p−r̃,σ (k)

)

+ σ 2

it

∫
dΩ(n)e−iV (q,p,σn)tn · (J (q,p, r̃)vα(r̃)χ1(r̃)f

n+1
q+r̃ ,σ

(r, r̃)f m
p−r̃,σ (k)

)∣∣
r̃=σn,

(4.11)

where n is the normal vector to the unit sphere and dΩ(n) is the spherical measure, that is

n = (sin θ cosϕ, sin θ sinϕ, cos θ) (4.12)

and dΩ(n) = sin θdθdϕ in the spherical coordinates (θ,φ). (Notice that the contribution
corresponding to the outer surface vanishes because of the smooth cut-off associated with
χ1).

Let us consider the first term on the r.h.s. of (4.11). Let I1 be the corresponding integrand.
Making use of (4.7)–(4.10), we obtain

|I1| ≤ 1√
m!n!

∑
0≤|β1|+|β2|+|β3|≤1

c

(σs)|β1|
D(q,p)

σ δλ0

χ3(r̃)|r̃|2α

|r̃|2+|β2|+|β3| g
n
σ (r)gm

σ (k)

≤ 1√
m!n!

cD(q,p)

σ δλ0

χ3(r̃)|r̃|2α

|r̃|3 gn
σ (r)gm

σ (k), (4.13)

where in the last step above we made use of the fact that |r̃| ≤ (1 + ε)σs in the region
of integration. Now let I2 be the integrand in the boundary integral on the r.h.s. of (4.11).
Making use, again, of bounds (4.7)–(4.10), we get

|I2| ≤ 1√
m!n!

cD(q,p)

σ δλ0

χ3(r̃)|r̃|2α

|r̃|2 gn
σ (r)gm

σ (k)

∣∣∣∣
r̃=σn

= 1√
m!n!

cD(q,p)

σ δλ0

χ3(σn)σ 2α

σ 2
gn

σ (r)gm
σ (k). (4.14)

Thus (4.11), (4.13), (4.14) give

∣∣FG1,G2
1,n,m (q; r |p; k)

∣∣ ≤ 1√
m!n!

cD(q,p)

σ δλ0

(σs)
2α

t
gn

σ (r)gm
σ (k), (4.15)

which is the first contribution to the bound in (4.2).
Now we consider the contribution above the slow cut-off. In this region we will have

to differentiate by parts twice, so a direct application of the non-stationary phase method
would result in third derivatives of the function V (q,p, r̃) := Eq+r̃ + Ep−r̃ . However, our
spectral results do not include the existence of third derivatives of p 	→ Ep , but rather the
bound

∣∣∂β
p Ep,σ

∣∣ ≤ c

σ δλ0
(4.16)



574 W. Dybalski, A. Pizzo

for any multiindex β s.t. 0 ≤ |β| ≤ 3 (cf. Proposition 1.1(a)). To be able to exploit this
bound, we introduce an auxiliary function Vσ (q,p, r̃) := Eq+r̃,σ + Ep−r̃,σ and rewrite
F

G1,G2
2,n,m (q; r |p; k), defined in (4.3), as follows

F
G1,G2
2,n,m (q; r |p; k) =

∫
d3r̃vα(r̃)χ2(r̃)e

−iVσ (q,p,r̃)th2(p − r̃)h1(q + r̃)f n+1
q+r̃,σ

(r, r̃)f m
p−r̃,σ (k)

+ R(σ t). (4.17)

The rest term R(tσ ) satisfies

∣∣R(tσ )
∣∣ ≤

∫
d3r̃vα(r̃)χ2(r̃)

∣∣(1 − ei(V (q,p,r̃)−Vσ (q,p,r̃))t
)
h2(p − r̃)h1(q + r̃)

× f n+1
q+r̃,σ

(r, r̃)f m
p−r̃,σ (k)

∣∣
≤ c

σ t

σ δλ0
gm

σ (k)gn
σ (r), (4.18)

where we made use of the fact that |V (q,p, r̃) − Vσ (q,p, r̃)| ≤ cσ (Proposition 1.1(a)) and
of bounds (4.8), (4.9), (4.10). This gives the second contribution to the bound in (4.2).

Let us denote by F
G1,G2
2,σ,n,m the first term on the r.h.s. of (4.17). We will estimate this term

with the help of the method of non-stationary phase. Similarly as in the first part of the
proof we note that by disjointness of velocity supports of h1, h2, the condition h2(p − r̃) ×
h1(q + r̃) �= 0 implies that ∣∣∇r̃Vσ (q,p, r̃)

∣∣ ≥ ε′′ > 0 (4.19)

for some fixed ε′′, independent of σ ∈ (0, κ]. (Here we made use of the fact that S � p 	→
Ep,σ is strictly convex, uniformly in σ . Cf. Proposition 1.1(a)). Thus we can write

e−iVσ (q,p,r̃)t = ∇r̃Vσ (q,p, r̃) · ∇r̃ e
−iVσ (q,p,r̃)t

(−it)|∇r̃Vσ (q,p, r̃)|2 . (4.20)

We define the function

Jσ (q,p, r̃) := ∇r̃Vσ (q,p, r̃)

|∇r̃Vσ (q,p, r̃)|2 h2(p − r̃)h1(q + r̃)χκ(r̃), (4.21)

which is analogous to the function J introduced in (4.6) above. Making use of (4.16)
and (4.19), we get for all multiindices β s.t. 0 ≤ |β| ≤ 2

∣∣∂β

r̃
Jσ (q,p, r̃)

∣∣ ≤ D(q,p)

σ δλ0
. (4.22)

By integrating twice by parts in the defining expression for F
G1,G2
2,σ,n,m, we get

F
G1,G2
2,σ,n,m(q; r |p; k) = 1

(it)2

∫
d3r̃e−iVσ (q,p,r̃)t

× ∇r̃ ·
( ∇r̃Vσ (q,p, r̃)

|∇r̃Vσ (q,p, r̃)|2

× ∇r̃ · (Jσ (q,p, r̃)vα(r̃)χ2(r̃)f
n+1
q+r̃,σ

(r, r̃)f m
p−r̃,σ (k)

))
. (4.23)
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In view of (4.16), (4.19), the function

(q,p, r̃) 	→ ∇r̃Vσ (q,p, r̃)

|∇r̃Vσ (q,p, r̃)|2 (4.24)

is bounded by c/σ δλ0 , together with its first derivatives, on the support of (q,p, r̃) 	→ h2(p−
r̃)h1(q + r̃)χκ(r̃). Thus we obtain from the bounds (4.8), (4.9), (4.10) and (4.22) that the
integrand I in (4.23) satisfies

|I | ≤ 1√
m!n!

∑
0≤|β1|+|β2|+|β3|≤2

c

(σs)|β1|
D(q,p)

σ δλ0

χ3(r̃)|r̃|2α

|r̃|2+|β2|+|β3| g
n
σ (r)gm

σ (k)

≤ 1√
m!n!

c

(σs)2

D(q,p)

σ δλ0

χ3(r̃)|r̃|2α

|r̃|2 gn
σ (r)gm

σ (k), (4.25)

where in the second step we made use of the fact that σs ≤ |r̃| in the region of integration.
Thus we get from (4.23) that

∣∣FG1,G2
2,σ,n,m(q; r |p; k)

∣∣ ≤ 1√
m!n!

cD(q,p)

σ δλ0

1

t2(σs)2
gn

σ (r)gm
σ (k), (4.26)

which gives the third contribution to (4.2). The factor (n + 1), appearing in (4.1), can be
estimated by 2n and incorporated into the constant appearing in the definition of gn

σ . �

Lemma 4.2 Let Ǐ
(1)

m,n,m̃,ñ
be defined as follows

Ǐ
(1)

m,n,m̃,ñ
:=

∫
d3qd3p

∫
d3nrd3mkG1,n(q; r)G2,m(p; k)

× G
′
1,ñ(q + ǩ − ř; r̂ , ǩ)G

′
2,m̃(p − ǩ + ř; k̂, ř), (4.27)

where Gi,n, G′
i,ñ

, i ∈ {1,2}, appeared in (3.40), (3.41), the notation k = (k̂, ǩ), r = (r̂, ř)

is explained in Lemma B.2 and we consider a permutation in (3.43) for which ǩ or ř are
non-empty. Then there holds

∣∣Ǐ (1)

m,n,m̃,ñ

∣∣ ≤
(

1

t

(
1

σ δλ0
+ 1

σ 1/(8γ0)

)
+ (

σ ′)α/(4γ0)

)
C(h,h′)√
m!n!m̃!ñ!

× (∥∥gn−1
σ

∥∥2

2
+ ∥∥gn

σ

∥∥2

2

)(∥∥gm−1
σ

∥∥2

2
+ ∥∥gm

σ

∥∥2

2

)
, (4.28)

where C(h,h′) := c‖h1‖1‖h2‖1
∑

β1,β2;0≤|β1|+|β2|≤1 ‖∂β1h′
1‖∞‖∂β2h′

2‖∞ and the sum extends

over multiindices β1, β2. We note that for ǩ (resp. ř) non-empty we have m �= 0 (resp. n �= 0)
and there always holds m + n = m̃ + ñ. We set by convention g−1

σ = 0.

Proof By inserting the definitions of Gi,n, G′
i,ñ

, i ∈ {1,2}, we obtain

Ǐ
(1)

m,n,m̃,ñ
=

∫
d3qd3p

∫
d3nrd3mke

i(E
p−ǩ+ř

−Eq)t
e

i(E
q+ǩ−ř

−Ep)t
h2(p)h1(q)

× h
′
2(p − ǩ + ř)h

′
1(q + ǩ − ř)f n

q,σ (r)f m
p,σ (k)f

ñ

q+ǩ−ř,σ ′(r̂, ǩ)f
m̃

p−ǩ+ř,σ ′(k̂, ř).

(4.29)
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Since the expression on the r.h.s. of (4.29) and the bound (4.28) are invariant under the
substitutions k ↔ r , p ↔ q , h1 ↔ h2, h′

1 ↔ h′
2, m ↔ n, m̃ ↔ ñ it suffices to consider the

case of non-empty ǩ. Similarly to the proof of Lemma 4.1, we introduce a slow infrared cut-
off. Let us set σ ′

s := κ(σ ′/κ)1/(8γ0), which clearly satisfies σ ′ < σ ′
s ≤ κ because σ ′ < κ . Let

χ ∈ C∞(R3), 0 ≤ χ ≤ 1, be supported in B1+ε (the ball of radius 1 + ε) for some 0 < ε < 1
and be equal to one on B1. We set χ1(ǩ1) := χ(ǩ1/σ

′
s), χ2(ǩ1) := 1 − χ1(ǩ1), where ǩ1 is the

first component of ǩ, and write for j ∈ {1,2}

Ǐ
(1)(j)

m,n,m̃,ñ
:=

∫
d3qd3p

∫
d3nrd3mke

i(E
p−ǩ+ř

−Eq)t
e

i(E
q+ǩ−ř

−Ep)t

× h2(p)h1(q)h
′
2(p − ǩ + ř)h

′
1(q + ǩ − ř)f n

q,σ (r)f m
p,σ (k)

× (
χj (ǩ1)f

ñ

q+ǩ−ř,σ ′(r̂, ǩ)
)
f

m̃

p−ǩ+ř,σ ′(k̂, ř). (4.30)

Let us first consider (4.30) with j = 1. We conclude from Theorem 1.2 and the definition of
the functions gn

σ that

∣∣χ1(ǩ1)f
n
q,σ (r)f m

p,σ (k)f ñ

q+ǩ−ř ,σ ′(r̂, ǩ)f m̃

p−ǩ+ř ,σ ′(k̂, ř)
∣∣

≤ 1√
m!n!m̃!ñ!χ1(ǩ1)g

n
σ (r)gm

σ (k)gñ
σ ′(r̂, ǩ)gm̃

σ ′(k̂, ř)

≤ 1√
m!n!m̃!ñ!

cχ(ǩ1/σ
′
s)χ[σ ′,κ∗)(ǩ1)

2|ǩ1|2α

|ǩ1|3
gn

σ (r)gm−1
σ

(
k′)gñ−1

σ ′
(
r̂ , ǩ′)gm̃

σ ′(k̂, ř)

≤ 1√
m!n!m̃!ñ!

cχ(ǩ1/σ
′
s)χ[σ ′,κ∗)(ǩ1)

2|ǩ1|2α

|ǩ1|3
gn

σ (r)2gm−1
σ

(
k′)2

, (4.31)

where we decomposed k = (ǩ1, k
′), ǩ = (ǩ1, ǩ

′) and in the last step we made use of the
fact that gm̃

σ ′(k̂, ř) ≤ gm̃
σ (k̂, ř) and gñ−1

σ ′ (r̂, ǩ′) ≤ gñ−1
σ (r̂, ǩ′) for σ ′ ≥ σ . Substituting (4.31) to

(4.30), we get

∣∣Ǐ (1)(1)

m,n,m̃,ñ

∣∣ ≤ (
σ ′

s

)2α c‖h1‖1‖h2‖1‖h′
1‖∞‖h′

2‖∞√
m!n!m̃!ñ!

∥∥gn
σ

∥∥2

2

∥∥gm−1
σ

∥∥2

2
. (4.32)

Let us now consider (4.30) for j = 2. We set w := ǩ′ − ř and define

V (ǩ1,p, q,w) := E−ǩ1+p−w + Eǩ1+q+w. (4.33)

We note that, by disjointness of supports of h′
1, h′

2, the condition h
′
2(−ǩ1 + p − w)h

′
1(ǩ1 +

q + w) �= 0 implies that
∣∣∇ǩ1

V (ǩ1,p, q,w)
∣∣ ≥ ε′ > 0, (4.34)

for some ε′ independent of ǩ1, p, q and w. Thus we can write the following identity

eiV (ǩ1,p,q,w)t = ∇ǩ1
V (ǩ1,p, q,w) · ∇ǩ1

eiV (ǩ1,p,q,w)t

it |∇ǩ1
V (ǩ1,p, q,w)|2 . (4.35)
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Now we define the function

J (ǩ1,p, q,w) := ∇ǩ1
V (ǩ1,p, q,w)

|∇ǩ1
V (ǩ1,p, q,w)|2 h

′
2(−ǩ1 + p − w)h

′
1(ǩ1 + q + w). (4.36)

We note that, by Proposition 1.1(a), for any multiindex β s.t. 0 ≤ |β| ≤ 1 there hold the
bounds

∣∣∂β

ǩ1
J (ǩ1,p, q,w)

∣∣ ≤ c0

(
h′

1, h
′
2

)
,

∣∣∂β

ǩ1
χj (ǩ1)

∣∣ ≤ c

(σ ′
s)

|β| , (4.37)

where c0(h
′
1, h

′
2) has the form

c0

(
h′

1, h
′
2

) = c
∑

β1,β2;0≤|β1|+|β2|≤1

∥∥∂β1h′
1

∥∥∞
∥∥∂β2h′

2

∥∥∞, (4.38)

where β1, β2 are multiindices. Moreover, we obtain from Theorem 1.2(c) that

∣∣f n
q,σ (r)

∣∣ ≤ 1√
n!g

n
σ (r), (4.39)

∣∣∂β

ǩ1
f m̃

p−ǩ+ř,σ ′(k̂, ř)
∣∣ ≤ 1√

m̃!
(

1

(σ ′)δλ0

)|β|
gm̃

σ ′(k̂, ř), (4.40)

∣∣∂β

ǩ1

(
χ2(ǩ1)f

ñ

q+ǩ−ř,σ ′(r̂, ǩ)f m
p,σ (k)

)∣∣ ≤ 1√
ñ!m!

(
1

(σ ′)δλ0
+ 1

σ ′
s

)|β|
gñ

σ ′(r̂, ǩ)gm
σ (k).

(4.41)

Making use of the fact that χ2(ǩ1) vanishes for |ǩ1| ≤ σ ′ we integrate by parts in (4.30). We
obtain

Ǐ
(1)(2)

m,n,m̃,ñ
= − 1

it

∫
d3qd3p

∫
d3nrd3mkei(V (ǩ1,p,q,w)−V (0,p,q,0))th2(p)h1(q)f n

q,σ (r)

× ∇ǩ1
· (J (ǩ1,p, q,w)χ2(ǩ1)f

ñ

q+ǩ−ř,σ ′(r̂, ǩ)f m
p,σ (k)f

m̃

p−ǩ+ř ,σ ′(k̂, ř)
)
.

(4.42)

Making use of the bounds (4.37), (4.39), (4.40), (4.41) and, since σ ′ ≥ σ , of the fact that
gñ

σ ′(r̂, ǩ) ≤ gñ
σ (r̂, ǩ) we estimate

∣∣Ǐ (1)(2)

m,n,m̃,ñ

∣∣ ≤ 1

t

(
1

(σ ′)δλ0
+ 1

σ ′
s

)‖h1‖1‖h2‖1c0(h
′
1, h

′
2)√

m!n!m̃!ñ!
∥∥gn

σ

∥∥2

2

∥∥gm
σ

∥∥2

2
. (4.43)

Exploiting (4.43), (4.32) and the fact that σ ′
s = κ(σ ′/κ)1/(8γ0), we get (4.28). Here we esti-

mated trivially

∥∥gn
σ

∥∥2

2

∥∥gm−1
σ

∥∥2

2
+ ∥∥gn

σ

∥∥2

2

∥∥gm
σ

∥∥2

2
≤ (∥∥gn−1

σ

∥∥2

2
+ ∥∥gn

σ

∥∥2

2

)(∥∥gm−1
σ

∥∥2

2
+ ∥∥gm

σ

∥∥2

2

)
(4.44)

to obtain an expression in (4.28) which is symmetric under the substitution m ↔ n. �



578 W. Dybalski, A. Pizzo

Lemma 4.3 Let Î
(2)

m,n,m̃,ñ
be defined as follows

Î
(2)

m,n,m̃,ñ
:=

∫
d3qd3p

∫
d3nrd3mkG1,n(q; r)G2,m(p; k)

× G
′
1,ñ(p − k̂ + r̂; r̂ , ǩ)G

′
2,m̃(q + k̂ − r̂; k̂, ř), (4.45)

where Gi,m, G′
i,m, i ∈ {1,2}, are defined in (3.40), (3.41), the notation k = (k̂, ǩ), r = (r̂, ř)

is explained in Lemma B.2 and we consider a permutation in (3.43) for which k̂ or r̂ are
non-empty. Then there holds

∣∣Î (2)

m,n,m̃,ñ

∣∣ ≤
(

1

t

(
1

σ δλ0
+ 1

σ 1/(8γ0)

)
+ (

σ ′)α/(4γ0)

)
C(h,h′)√
m!n!m̃!ñ!

× (∥∥gn−1
σ

∥∥2

2
+ ∥∥gn

σ

∥∥2

2

)(∥∥gm−1
σ

∥∥2

2
+ ∥∥gm

σ

∥∥2

2

)
, (4.46)

where C(h,h′) := c‖h1‖1‖h2‖1
∑

β1,β2;0≤|β1|+|β2|≤1 ‖∂β1h′
1‖∞‖∂β2h′

2‖∞ and the sum extends

over multiindices β1, β2. We note that for k̂ (resp. r̂) non-empty we have m �= 0 (resp. n �= 0)
and there always holds m + n = m̃ + ñ. We set by convention g−1

σ = 0.

Proof By inserting the definitions of Gi,m, G′
i,m we obtain

Î
(2)

m,n,m̃,ñ
=

∫
d3qd3p

∫
d3nrd3mke

i(E
q+k̂−r̂

−Eq)t
e

i(E
p−k̂+r̂

−Ep)t
h2(p)h1(q)

× h
′
2(q + k̂ − r̂)h

′
1(p − k̂ + r̂)f n

q,σ (r)f
m̃

q+k̂−r̂,σ ′(k̂, ř)f m
p,σ (k)f

ñ

p−k̂+r̂,σ ′(r̂, ǩ).

(4.47)

We note that by substitutions h′
1 ↔ h′

2, m̃ ↔ ñ, k̂ ↔ ǩ, r̂ ↔ ř we obtain formula (4.29).
Now the statement follows from Lemma 4.2 and the fact that (4.28) does not change under
the above substitutions. �
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Appendix A: Domain Questions

Lemma A.1 Let n ∈ N. There exist constants 0 ≤ a < 1 and b ≥ 0 s.t. for any Ψ ∈ C(n)

there holds the bound ∥∥H
(n)
I Ψ

∥∥ ≤ a
∥∥H

(n)

fr Ψ
∥∥ + b‖Ψ ‖, (A.1)

where H
(n)
I = HI|C(n) , H

(n)

fr = Hfr|C(n) .
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Proof Let us use the form of the interaction Hamiltonian appearing in formula (1.33). We
have H

(n)
I = H

a,(n)
I + H

c,(n)
I , where

H
a,(n)
I :=

n∑
i=1

∫
d3kvα(k)eikxi a(k) (A.2)

and H
c,(n)
I = (H

a,(n)
I )∗. Let us set Cn(k) := ∑n

l=1 eikxl and compute for some Ψ ∈ C(n)

∥∥H
a,(n)
I Ψ

∥∥ ≤
∫

d3kvα(k)
∥∥Cn(k)a(k)Ψ

∥∥ ≤ n

∫
d3kvα(k)

∥∥a(k)Ψ
∥∥

≤ n
∥∥ω−1/2vα

∥∥
2
〈Ψ,HfΨ 〉 1

2 ≤ 1

4
‖HfrΨ ‖ + n2

∥∥ω−1/2vα

∥∥2

2
‖Ψ ‖, (A.3)

where in the last step we anticipate that (A.1) should hold with 0 < a < 1.
Let us now consider the creation part of H

(n)
I . Making use of the canonical commutation

relations, we get
∥∥H

c,(n)
I Ψ

∥∥2 =
∫

d3k1d
3k2vα(k1)vα(k2)

〈
Cn(k1)

∗a∗(k1)Ψ,Cn(k2)
∗a∗(k2)Ψ

〉

≤ ∥∥H
a,(n)
I Ψ

∥∥2 + n2‖vα‖2
2‖Ψ ‖2, (A.4)

which, together with (A.3), concludes the proof. �

Lemma A.2 The domain D, defined in (2.19), is contained in the domains of H , He, Hf,
H

a/c
I , ȞI,σ and η̂∗(h), h ∈ C2

0 (S). Moreover, these operators leave D invariant.

Proof Let Ψ
r1,r2
l be a vector of the form (2.17). Then

η̂∗
σ (h)Ψ

r1,r2
l

=
∑
m,m′

1√
m′!

1√
m!

∫
d3p′d3lpd3m′

k′d3mkF ′
1,m′

(
p′; k′)Fl,m(p; k)

× η∗(p′)η∗(p)la∗(k′)m′
a∗(k)mΩ

=
∞∑

m̃=0

1√
m̃!

∫
d3(l+1)p̃d3m̃k̃F̃m̃(p̃; k̃)η∗(p̃)l+1a∗(k̃)m̃Ω, (A.5)

where F ′
1,m′(p′, k′) := h(p′ + k′)f m′

p′+k,σ
(k′), m̃ := m + m′, k̃ := (k, k′), p̃ := (p,p′) and

F̃m̃(p̃; k̃) =
m̃∑

m=0

√
m̃!√

(m̃ − m)!√m!
(
F ′

1,(m̃−m)Fl,m

)
sym

(p̃; k̃), (A.6)

where the symmetrization is performed in the p̃ and k̃ variables separately. By Theorem 1.2,
F ′

1,m′ satisfies the bound (2.18), and therefore

‖F̃m̃‖2 ≤ cm̃

√
m̃! , (A.7)

for some constant c. Hence η̂∗
σ (h)Ψ

r1,r2
l is well defined and belongs to D.
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Next, we note that

HeΨ
r1,r2
l =

∞∑
m=0

1√
m!

∫
d3lpd3mk

(
Ω(p1) + · · · + Ω(pl)

)
Fl,m(p; k)η∗(p)la∗(k)mΩ,

(A.8)

HfΨ
r1,r2
l =

∞∑
m=0

1√
m!

∫
d3lpd3mk

(
ω(k1) + · · · + ω(km)

)
Fl,m(p; k)η∗(p)la∗(k)mΩ.

(A.9)

Due to the support properties of Fl,m(p; k) these vectors are well defined and belong to D.
Finally, we consider the operators H

a/c
I . We recall that the interaction Hamiltonian re-

stricted to H(l) has the form

H
(l)
I :=

l∑
i=1

∫
d3kvα(k)

(
eikxi a(k) + e−ikxi a∗(k)

)
(A.10)

and we express Ψ
r1,r2
l in terms of its m-photon components, i.e.,

{
Ψ

r1,r2
l

}(l,m)
(p1, . . . , pl; k1, . . . , km) = Fl,m(p1, . . . , pl; k1, . . . , km). (A.11)

Now we can write

(
H a

I Ψ
r1,r2
l

)(l,m)
(p1, . . . , pl; k1, . . . , km)

= √
m + 1

∫
d3kvα(k)

l∑
i=1

(
Ψ

r1,r2
l

)(l,m+1)

× (p1, . . . , pi − k, . . . ,pl; k, k1, . . . , km). (A.12)

It is easy to see that for some constant c, independent of m,

∥∥(
H a

I Ψ
r1,r2
l

)(l,m)∥∥
2
≤ cm

√
m! . (A.13)

Similarly, we obtain that

(
H c

I Ψ
r1,r2
l

)(l,m)
(p1, . . . , pl; k1, . . . , km)

= 1√
m

m∑
i=1

l∑
j=1

vα(ki)
(
Ψ

r1,r2
l

)(l,m−1)

× (p1, . . . , pj + ki, . . . , pl; k1, . . . , ki∗ , . . . , km), (A.14)

where ki∗ means omission of the i-th variable. This gives, again, a bound of the form (A.13).
Since the case of ȞI,σ is analogous, this concludes the proof. �
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Appendix B: Fock Space Combinatorics

In Lemmas B.1, B.3 and B.5 below we deal first with Gi,m,G′
i,m,Fn,m,F ′

n,m of Schwartz
class and then extend the results to square integrable functions using Theorem X.44 of [26].

Lemma B.1 Let Gm,G′
m ∈ L2(R3 × R

3m) be symmetric in their photon variables, see
(1.68). Let us define as operators on C

B∗
m(Gm) :=

∫
d3pd3mkGm(p; k)η∗(p − k)a∗(k)m (B.1)

and Bm(Gm) := (B∗
m(Gm))∗. Then there holds the identity

〈
Ω,Bm

(
G′

m

)
B∗

m(Gm)Ω
〉 = m!

∫
d3pd3mkG

′
m(p; k)Gm(p; k). (B.2)

Proof We compute

〈
Ω,Bm

(
G′

m

)
B∗

m(Gm)Ω
〉

=
∫

d3pd3mk

∫
d3p′d3mk′Gm(p; k)G

′
m

(
p′; k′)

× 〈
Ω,a

(
k′)m

η
(
p′ − k′)η∗(p − k)a∗(k)mΩ

〉

=
∫

d3pd3mk

∫
d3p′d3mk′Gm(p; k)G

′
m

(
p′; k′)δ(p − k − p′ + k′)

× 〈
Ω,a

(
k′)m

a∗(k)mΩ
〉

=
∫

d3pd3mk

∫
d3mk′Gm(p; k)G

′
m

(
p − k + k′; k′)〈Ω,a

(
k′)m

a∗(k)mΩ
〉

=
∫

d3pd3mk

∫
d3mk′Gm(p; k)G

′
m

(
p − k + k′; k′) ∑

ρ∈Sm

m∏
i=1

δ
(
kρ(i) − k′

i

)

= m!
∫

d3pd3mkGm(p; k)G
′
m(p; k), (B.3)

where Sm is the set of all permutations of an m-element set and in the last step we exploited
the fact that G′

m is symmetric in its photon variables. �

Lemma B.2 Let n,m, ñ, m̃ ∈N0 be s.t. n + m = ñ + m̃. Let us choose

r = (r1, . . . , rn) ∈R
3n, k = (k1, . . . , km) ∈R

3m, (B.4)

r̃ = (r̃1, . . . , r̃ñ) ∈R
3ñ, k̃ = (k̃1, . . . , k̃m̃) ∈R

3m̃ (B.5)

and define the sets

Cn := {1, . . . , n}, C ′
n := {n + 1, . . . , n + m}, (B.6)

Cñ := {1, . . . , ñ}, C ′
ñ := {ñ + 1, . . . , ñ + m̃}. (B.7)
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(Note that C ′
n is the complement of Cn in {1, . . . , n + m}. Similarly for C ′

ñ
). Let Sm+n be the

set of permutations of an m + n element set. For any ρ ∈ Sm+n we introduce the following
notation:

r̂ := (ri)(i,ρ(i))∈Cn×Cñ
, ř := (ri)(i,ρ(i))∈Cn×C′

ñ
, (B.8)

k̂ := (ki−n)(i,ρ(i))∈C′
n×C′

ñ
, ǩ := (ki−n)(i,ρ(i))∈C′

n×Cñ
, (B.9)

so that r = (r̂, ř), k = (k̂, ǩ). Similarly,

ˆ̃r := (r̃ρ(i))(i,ρ(i))∈Cn×Cñ
, ˇ̃r := (r̃ρ(i))(i,ρ(i))∈C′

n×Cñ
, (B.10)

ˆ̃
k := (k̃ρ(i)−ñ)(i,ρ(i))∈C′

n×C′
ñ
,

ˇ̃
k := (k̃ρ(i)−ñ)(i,ρ(i))∈Cn×C′

ñ
, (B.11)

so that r̃ = ( ˆ̃r, ˇ̃r) and k̃ = (
ˆ̃
k,

ˇ̃
k). (If {i | (i, ρ(i)) ∈ Cn × Cñ} = ∅ then we say that r̂ is empty,

and analogously for other collections of photon variables introduced above). Finally, we
define

δ(r̂ − ˆ̃r) :=
∏

(i,ρ(i))∈Cn×Cñ

δ(ri − r̃ρ(i)), (B.12)

δ(ř − ˇ̃
k) :=

∏
(i,ρ(i))∈Cn×C′

ñ

δ(ri − k̃ρ(i)−ñ), (B.13)

δ(ǩ − ˇ̃r) :=
∏

(i,ρ(i))∈C′
n×Cñ

δ(ki−n − r̃ρ(i)), (B.14)

δ(k̂ − ˆ̃
k) :=

∏
(i,ρ(i))∈C′

n×C′
ñ

δ(ki−n − k̃ρ(i)−ñ). (B.15)

Then there holds〈
Ω,a(r̃)ña(k̃)m̃a∗(r)na∗(k)mΩ

〉 = ∑
ρ∈Sm+n

δ(r̂ − ˆ̃r)δ(ř − ˇ̃
k)δ(ǩ − ˇ̃r)δ(k̂ − ˆ̃

k). (B.16)

Proof Let (v1, . . . , vn+m) = (r1, . . . , rn, k1, . . . , km) and (ṽ1, . . . , ṽn+m) = (r̃1, . . . , r̃ñ,

k̃1, . . . , k̃m̃). There holds〈
Ω,a(r̃)ña(k̃)m̃a∗(r)na∗(k)mΩ

〉

=
∑

ρ∈Sm+n

m+n∏
j=1

δ(vj − ṽρ(j))

=
∑

ρ∈Sm+n

δ(r1 − ṽρ(1)) · · · δ(rn − ṽρ(n))δ(k1 − ṽρ(n+1)) · · · δ(km − ṽρ(n+m)) (B.17)

=
∑

ρ∈Sm+n

( ∏
(i,ρ(i))∈Cn×Cñ

δ(ri − r̃ρ(i))

)( ∏
(i,ρ(i))∈Cn×C′

ñ

δ(ri − k̃ρ(i)−ñ)

)

×
( ∏

(i,ρ(i))∈C′
n×Cñ

δ(ki−n − r̃ρ(i))

)( ∏
(i,ρ(i))∈C′

n×C′
ñ

δ(ki−n − k̃ρ(i)−ñ)

)
, (B.18)

which concludes the proof. �
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Lemma B.3 Let Fn,m,F ′
n,m ∈ L2((R3 × R

3n) × (R3 × R
3m)) be symmetric in the photon

variables for any n,m ∈N. Let us introduce the following operators on C

B∗
n,m(Fn,m) :=

∫
d3qd3p

∫
d3nrd3mkFn,m(q; r |p; k)a∗(r)na∗(k)mη∗(p − k)η∗(q − r)

(B.19)
and set Bn,m(Fn,m) := (B∗

n,m(Fn,m))∗. There holds

〈
B∗

ñ,m̃

(
F ′

ñ,m̃

)
Ω,B∗

n,m(Fn,m)Ω
〉

=
∑

ρ∈Sm+n

∫
d3qd3p

∫
d3nrd3mkFn,m(q; r |p; k)

× (
F

′
ñ,m̃(p − k̂ + r̂; r̂ , ǩ |q + k̂ − r̂; k̂, ř)

+ F
′
ñ,m̃(q + ǩ − ř; r̂ , ǩ |p − ǩ + ř; k̂, ř)

)
(B.20)

for any ñ, m̃ ∈N s.t. n+m = ñ+m̃. Otherwise the expression on the l.h.s. is zero. Here Sm+n

is the set of permutations of an m + n element set and the notation k̂, ǩ, r̂ , ř is explained in
Lemma B.2.

Proof We compute the expectation value

〈
B∗

ñ,m̃

(
F ′

ñ,m̃

)
Ω,B∗

n,m(Fn,m)Ω
〉

(B.21)

=
∫

d3q̃d3p̃d3qd3p

∫
d3ñr̃d3m̃k̃d3nrd3mkF

′
ñ,m̃(q̃; r̃ | p̃; k̃)Fn,m(q; r |p; k)

× (
δ(q̃ − p + k̃ − r) + δ(q̃ − q − r̃ + r)

)
δ(p̃ + q̃ − p − q)

× 〈
Ω,a(r̃)ña(k̃)m̃a∗(r)na∗(k)mΩ

〉
. (B.22)

The last factor is non-zero only if ñ + m̃ = n + m. Moreover,

〈
Ω,a(r̃)ña(k̃)m̃a∗(r)na∗(k)mΩ

〉 = ∑
ρ∈Sm+n

δ(r̂ − ˆ̃r)δ(ř − ˇ̃
k)δ(ǩ − ˇ̃r)δ(k̂ − ˆ̃

k), (B.23)

where we made use of Lemma B.2. Thus the r.h.s. of (B.22) is a sum over ρ ∈ Sm+n of terms
of the form:∫

d3q̃d3p̃d3qd3p

∫
d3nrd3mkF

′
ñ,m̃(q̃; r̂ , ǩ | p̃; k̂, ř)Fn,m(q; r |p; k)

× δ(p̃ + q̃ − p − q)
(
δ(q̃ − p + k̂ − r̂) + δ(q̃ − q − ǩ + ř)

)

=
∫

d3qd3p

∫
d3nrd3mkFn,m(q; r |p; k)

(
F

′
ñ,m̃(p − k̂ + r̂; r̂ , ǩ |q + k̂ − r̂; k̂, ř)

+ F
′
ñ,m̃(q + ǩ − ř; r̂ , ǩ |p − ǩ + ř; k̂, ř)

)
(B.24)

which concludes the proof. �
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Lemma B.4 Let G1,m,G′
1,m,G2,m,G′

2,m ∈ L2(R3 ×R
3m) be symmetric in the photon vari-

ables for any m ∈ N. We define, as an operator on C,

B∗
m(Gi,m) :=

∫
d3pd3mkGi,m(p; k)η∗(p − k)a∗(k)m (B.25)

and set Bm(Gi,m) = (B∗
m(Gi,m))∗. There holds the identity

〈
Ω,Bñ

(
G′

1,ñ

)
Bm̃

(
G′

2,m̃

)
B∗

n(G1,n)B
∗
m(G2,m)Ω

〉

=
∑

ρ∈Sm+n

∫
d3qd3p

∫
d3nrd3mkG1,n(q; r)G2,m(p; k)

× (
G

′
1,ñ(p − k̂ + r̂; r̂ , ǩ)G

′
2,m̃(q + k̂ − r̂; k̂, ř)

+ G
′
1,ñ(q + ǩ − ř; r̂ , ǩ)G

′
2,m̃(p − ǩ + ř; k̂, ř)

)
, (B.26)

for any n, ñ, m̃ ∈ N s.t. n + m = ñ + m̃. Otherwise the expression on the l.h.s. is zero. Here
Sm+n is the set of permutations of an m+n element set and the notation k̂, ǩ, r̂, ř is explained
in Lemma B.2.

Proof Follows immediately from Lemma B.3. �

Lemma B.5 Let G1,m,G2,m ∈ L2(R3 ×R
3m) be supported in R

3 ×{k ∈R
3 | |k| ≥ σ }×m and

symmetric in their photon variables. There holds the identity

〈
Ω,Bñ(G2,ñ)

(
Ȟ c

I,σ

)∗
Bm̃(G1,m̃)B∗

n(G1,n)Ȟ
c
I,σ B∗

m(G2,m)Ω
〉

=
∑

ρ∈Sm+n

∫
d3qd3p

∫
d3nrd3mkG1,n(q; r)G2,m(p; k)

×
(∫

d3p̃v̌σ
α (p̃)2G2,ñ(p − p̃ − k̂ + r̂; r̂ , ǩ)G1,m̃(p̃ + q + k̂ − r̂; k̂, ř)

+ ∥∥v̌σ
α

∥∥2

2
G2,ñ(q + ǩ − ř; r̂ , ǩ)G1,m̃(p − ǩ + ř; k̂, ř)

)
(B.27)

for m + n = m̃ + ñ, otherwise the l.h.s. is zero. Here Sm+n is the set of permutations of an
m + n element set and the notation k̂, ǩ, r̂, ř is explained in Lemma B.2.

Proof We compute the expectation value

〈
Ω,Bñ(G2,ñ)

(
Ȟ c

I,σ

)∗
Bm̃(G1,m̃)B∗

n(G1,n)Ȟ
c
I,σ B∗

m(G2,m)Ω
〉

=
∫

d3ũd3w̃d3ud3w

∫
d3q̃d3p̃d3qd3p

∫
d3ñr̃d3m̃k̃d3nrd3mk

× v̌σ
α (w̃)v̌σ

α (w)G2,ñ(q̃; r̃)G1,m̃(p̃; k̃)G1,n(q; r)G2,m(p; k)

× 〈
Ω,η(p̃ − k̃)η∗(ũ)η(ũ − w̃)η(q̃ − r̃)η∗(q − r)η∗(u − w)η(u)η∗(p − k)Ω

〉

× 〈
Ω,a(r̃)ña(w̃)a(k̃)m̃a∗(r)na∗(w)a∗(k)mΩ

〉
. (B.28)
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We note that

〈
Ω,η(p̃ − k̃)η∗(ũ)η(ũ − w̃)η(q̃ − r̃)η∗(q − r)η∗(u − w)η(u)η∗(p − k)Ω

〉

= δ(p̃ − k̃ − ũ)δ(p − k − u)
〈
Ω,η(ũ − w̃)η(q̃ − r̃)η∗(q − r)η∗(u − w)Ω

〉

= δ(p̃ − k̃ − ũ)δ(p − k − u)
(
δ(ũ − w̃ − q + r)δ(q̃ − r̃ − u + w)

+ δ(ũ − w̃ − u + w)δ(q̃ − r̃ − q + r)
)
. (B.29)

Let us consider the contribution to (B.28) of the first term in the bracket in (B.29):

〈
Ω,Bñ(G2,ñ)

(
Ȟ c

I,σ

)∗
Bm̃(G1,m̃)B∗

n(G1,n)Ȟ
c
I,σ B∗

m(G2,m)Ω
〉
1

:=
∫

d3ũd3w̃d3ud3w

∫
d3q̃d3p̃d3qd3p

∫
d3ñr̃d3m̃k̃d3nrd3mk

× v̌σ
α (w̃)v̌σ

α (w)G2,ñ(q̃; r̃)G1,m̃(p̃; k̃)G1,n(q; r)G2,m(p; k)

× δ(p̃ − k̃ − ũ)δ(p − k − u)δ(ũ − w̃ − q + r)δ(q̃ − r̃ − u + w)

× 〈
Ω,a(r̃)ña(w̃)a(k̃)m̃a∗(r)na∗(w)a∗(k)mΩ

〉

=
∫

d3q̃d3p̃d3qd3p

∫
d3ñr̃d3m̃k̃d3nrd3mk

× v̌σ
α (w̃∗)v̌σ

α (w∗)G2,ñ(q̃; r̃)G1,m̃(p̃; k̃)G1,n(q; r)G2,m(p; k)

× 〈
Ω,a(r̃)ña(k̃)m̃a(w̃∗)a∗(w∗)a∗(r)na∗(k)mΩ

〉
, (B.30)

where in the last step we integrated over u,w, ũ, w̃ and set w∗ := p − k − q̃ + r̃ , w̃∗ :=
p̃ − k̃ − q + r . Now we consider the expectation value of the photon creation operators:

〈
Ω,a(r̃)ña(k̃)m̃a(w̃∗)a∗(w∗)a∗(r)na∗(k)mΩ

〉

= δ(w∗ − w̃∗)
〈
Ω,a(r̃)ña(k̃)m̃a∗(r)na∗(k)mΩ

〉
, (B.31)

for r, k,w, r̃, k̃, w̃ in the supports of the respective functions. (Here we made use of the
fact that |w̃∗| ≤ σ , whereas |ri | ≥ σ , |kj | ≥ σ ). Let us now substitute the r.h.s. of (B.31)
to (B.30). Making use of Lemma B.2, we obtain

〈
Ω,Bñ(G2,ñ)

(
Ȟ c

I,σ

)∗
Bm̃(G1,m̃)B∗

n(G1,n)Ȟ
c
I,σ B∗

m(G2,m)Ω
〉
1

=
∑

ρ∈Sm+n

∫
d3q̃d3p̃d3qd3p

∫
d3ñr̃d3m̃k̃d3nrd3mk

× v̌σ
α (p̃ − k̃ − q + r)v̌σ

α (p − k − q̃ + r̃)G2,ñ(q̃; r̃)G1,m̃(p̃; k̃)G1,n(q; r)G2,m(p; k)

× δ(p + q − p̃ − q̃)δ( ˆ̃r − r̂)δ( ˇ̃r − ǩ)δ(
ˆ̃
k − k̂)δ(

ˇ̃
k − ř). (B.32)

By integrating over q̃ , r̃ , k̃, we obtain
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〈
Ω,Bñ(G2,ñ)

(
Ȟ c

I,σ

)∗
Bm̃(G1,m̃)B∗

n(G1,n)Ȟ
c
I,σ B∗

m(G2,m)Ω
〉
1

=
∑

ρ∈Sm+n

∫
d3p̃d3qd3p

∫
d3nrd3mkv̌σ

α (p̃ − q − k̂ + r̂)2

× G2,ñ(p + q − p̃; r̂ , ǩ)G1,m̃(p̃; k̂, ř)G1,n(q; r)G2,m(p; k)

=
∑

ρ∈Sm+n

∫
d3p̃d3qd3p

∫
d3nrd3mkv̌σ

α (p̃)2

× G2,ñ(p − p̃ − k̂ + r̂; r̂ , ǩ)G1,m̃(p̃ + q + k̂ − r̂; k̂, ř)G1,n(q; r)G2,m(p; k),

(B.33)

where in the last step we made a change of variables p̃ → p̃ + q + k̂ − r̂ . This gives the first
term on the r.h.s. of (B.27).

Let us now consider the contribution of the second term in the bracket on the r.h.s. of
formula (B.29):

〈
Ω,Bñ(G2,ñ)

(
Ȟ c

I,σ

)∗
Bm̃(G1,m̃)B∗

n(G1,n)Ȟ
c
I,σ B∗

m(G2,m)Ω
〉
2

:=
∫

d3w

∫
d3p̃d3qd3p

∫
d3ñr̃d3m̃k̃d3nrd3mkv̌σ

α (p̃ − k̃ − p + k + w)v̌σ
α (w)

× G2,ñ(q + r̃ − r; r̃)G1,m̃(p̃; k̃)G1,n(q; r)G2,m(p; k)

× 〈
Ω,a(r̃)ña(p̃ − k̃ − p + k + w)a(k̃)m̃a∗(r)na∗(w)a∗(k)mΩ

〉

=
∫

d3w

∫
d3p̃d3qd3p

∫
d3ñr̃d3m̃k̃d3nrd3mkv̌σ

α (p̃ − k̃ − p + k + w)v̌σ
α (w)

× G2,ñ(q + r̃ − r; r̃)G1,m̃(p̃; k̃)G1,n(q; r)G2,m(p; k)δ(p̃ − k̃ − p + k)

× 〈
Ω,a(r̃)ña(k̃)m̃a∗(r)na∗(k)mΩ

〉

= ∥∥v̌σ
α

∥∥2

2

∑
ρ∈Sm+n

∫
d3qd3p

∫
d3nrd3mkG1,n(q; r)G2,m(p; k)

× G2,ñ(q + ǩ − ř; r̂ , ǩ)G1,m̃(p − ǩ + ř; k̂, ř), (B.34)

where in the first step we integrated over ũ, w̃, u, q̃ and in the last step we made use again
of Lemma B.2. This gives the second term on the r.h.s. of (B.27) and concludes the proof. �
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