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Abstract The SLC34 family of sodium-driven phosphate
cotransporters comprises three members: NaPi-IIa
(SLC34A1), NaPi-IIb (SLC34A2), and NaPi-IIc (SLC34A3).
These transporters mediate the translocation of divalent inor-
ganic phosphate (HPO4

2−) together with two (NaPi-IIc) or three
sodium ions (NaPi-IIa and NaPi-IIb), respectively.
Consequently, phosphate transport by NaPi-IIa and NaPi-IIb
is electrogenic. NaPi-IIa and NaPi-IIc are predominantly
expressed in the brush border membrane of the proximal tu-
bule, whereas NaPi-IIb is found inmanymore organs including
the small intestine, lung, liver, and testis. The abundance and
activity of these transporters are mostly regulated by changes in
their expression at the cell surface and are determined by
interactions with proteins involved in scaffolding, trafficking,
or intracellular signaling. All three transporters are highly reg-
ulated by factors including dietary phosphate status, hormones
like parathyroid hormone, 1,25-OH2 vitamin D3 or FGF23,
electrolyte, and acid–base status. The physiological relevance
of the three members of the SLC34 family is underlined by rare
Mendelian disorders causing phosphaturia, hypophosphatemia,
or ectopic organ calcifications.
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Phosphate homeostasis

Essential role of phosphate

Phosphate is the third most abundant anion in the body and
required for a variety of fundamental biologic processes.

Inorganic phosphate is essential for bioenergetics (ATP,
GTP), metabolic regulation (e.g., in glycolysis or oxida-
tive phosphorylation), intracellular signaling pathways,
cell proliferation (as part of the DNA and RNA), and for
structures such as bones and membranes [25, 26].
Phosphate contributes also to acid–base balance as buffer
in blood and in urine. Approximately 85 % of total body
phosphate is accumulated in bone and teeth, about 14 % is
in soft tissues such as skeletal muscle and erythrocytes,
and only 1 % circulates as free phosphate in extracellular
fluids. The concentration of intracellular inorganic phos-
phate may be in the range of 0.7–2.5 mM as determined
by 31P-NMR and chemical analyses [51]. Extracellular
concentrations of inorganic phosphate vary between 0.8
and 1.2 mM in humans. In plasma, phosphate exists in
both the monovalent and the divalent form. Based on the
pK value of 6.8, at blood pH of 7.4, 72 % of plasma
phosphate is present in the divalent (HPO4

2−) and 28 % is
present in the monovalent (H2PO4

−) form.
The extracellular concentration of phosphate depends

to a large extent on mechanisms that control renal excre-
tion of phosphate. Renal handling of phosphate, and to a
lesser extent gastrointestinal absorption of phosphate, is
controlled by complex regulatory networks that involve
several organs and several endocrine factors [20, 38, 88,
96, 98].

Deviations from normal serum phosphate concentrations
cause severe clinical disorders. Even slight chronic elevations
have been associated with increased rates of death due to
cardiovascular complications that are common among pa-
tients with chronic kidney disease [32, 115, 131, 132]. On
the other hand, prolonged hypophosphatemia, caused by,
e.g., malabsorption, renal phosphate losses, or inherited
disorders such as X-linked hypophosphatemia [18], re-
sults in symptoms such as osteomalacia, hypercalciuria,
and bone demineralization [29].
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Intestinal phosphate absorption

Organic phosphate ingested in foods is hydrolyzed in the
gastrointestinal tract releasing inorganic phosphate.
Phosphate absorption along the gastrointestinal tract is
mediated by two pathways, a transcellular absorptive
component, which involves SLC34 and SLC20 sodium-
dependent phosphate cotransporters [54, 96, 118], and a
concentration- or load-dependent absorptive component
that may permeate the paracellular route, which, however,
is poorly characterized. Together, these two processes
results in an overall fractional absorption of phosphate
that ranges between 65 and 70 % of the amount ingested.
Notably, segmental distribution of absorption of phos-
phate varies among different species. In humans and rats,
most of the ingested phosphate is absorbed in duodenum
and jejunum, whereas in mice, most of the phosphate
absorption occurs in the ileum [96, 97, 114]. The role of
the colon is uncertain.

Intestinal absorption of phosphate is regulated and adapts
to dietary phosphate intake as well as to acid–base status and
various hormones such as 1,25-OH2 vitamin D3 or glucocor-
ticoids (see below, regulation of NaPi-IIb).

Renal phosphate handling

Phosphate is almost freely filtered by the glomerulus and
subsequently reabsorbed along the nephron. The extent of
reabsorption depends on dietary intake and a variety of
other factors (see below). For the average diet, fractional
excretion of phosphate in adults is in the range of 10–
30 % of the filtered load. There is no evidence for secre-
tion of phosphate. The main site of phosphate reabsorp-
tion is the proximal tubule, whether and to which extent
more distal segments contribute to phosphate reabsorption
has not been fully clarified [21, 71, 72]. In rodents, the
early proximal segments have higher phosphate transport
rates and juxtamedullary nephrons are more active than
superficial nephrons [21, 103, 104].

Renal phosphate handling is highly regulated by many
factors including dietary phosphate intake, acid–base homeo-
stasis, electrolyte status (e.g., hypokalemia), and a variety of
hormones. The renal excretion of phosphate is increased by
high dietary intake of phosphate, during acidosis, hypokale-
mia, by parathyroid hormone (PTH), 1,25-OH2-vitamin
D3, fibroblast growth factor 23 (FGF23), dopamine, or
glucocorticoids. In contrast, increased renal phosphate
reabsorption occurs due to low dietary phosphate intake,
during alkalosis, or stimulated by insulin, insulin-like growth
factor 1(IGF1), 1,25-OH2-vitamind D3, and thyroid hormone
[17, 21, 27, 103, 104].

The SLC34 family of sodium-dependent phosphate
transporters

NaPi-IIa (SLC34A1)

The human NaPi-IIa isoform comprises 639 amino acids. Rat
and human NaPi-II cDNAs were first isolated by expression
cloning [93]. NaPi-IIa is predominantly expressed in kidney
and localizes to the apical brush border membrane of the
proximal tubule (Fig. 1) [34]. Expression is higher in
early convoluted proximal tubules (S1 segments) and in
juxtamedullary nephrons but spreads to the late proxi-
mal tubule (S2/S3 segments) and to superficial nephrons
during phosphate depletion [89]. NaPi-IIa mRNA has
also been detected in bone and brain, but protein ex-
pression has not been confirmed.

NaPi-IIb (SLC34A2)

NaPi-IIb is a protein of 689 amino acids in humans, and its
mRNA has been detected in many organs including lungs,
testis, salivary gland, thyroid gland, small intestine, liver,
mammary gland, and uterus [68]. In small intestine, NaPi-
IIb is expressed at the luminal brush border membrane, in rats
and humans in the duodenum and jejunum, whereas in mice
mostly in ileum [68, 105, 114].

NaPi-IIc (SLC34A3)

Human NaPi-IIc comprises 599 amino acids and like NaPi-IIa
is mostly expressed in kidney. In kidney, NaPi-IIc is found in
the brush border membrane of the early proximal tubule (S1
segment) of juxtamedullary nephrons and is absent from other
portions of the proximal nephron (Fig. 1). During phosphate
depletion, NaPi-IIc protein is also detected in the early prox-
imal tubule of superficial nephrons [24, 112, 121]. NaPi-IIc
may also be expressed in bone, but its function there has not
been elucidated [125].

Structural and functional characteristics of SLC34
transporters

Transport mechanism and kinetic characteristics of SLC34
proteins

The three SLC34 isoforms (NaPi-IIa,b,c) are selective for
divalent Pi (HPO4

2−) [8, 49] and use the inwardly directed
Na+ electrochemical gradient to catalyze uphill movement of
Pi. Although Na+ and Pi are the preferred substrates, cation
replacement studies have established that Li+ can partly sub-
stitute for Na+ to drive Pi transport, albeit at a significantly
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lower rate [4]. Transport byNaPi-IIb of the phosphate mimetic
arsenate has been demonstrated [138], and given its intestinal
localization, this may have relevance for providing a potential
route for arsenate accumulation, for example in aquatic spe-
cies [16]. Transport capacity of SLC34 proteins is also strong-
ly dependent on external pH. As pH defines the monovalent/
divalent Pi distribution in the extracellular compartment, it
may, for example, influence transport rates for NaPi-IIa and
NaPi-IIc along the proximal tubule. Protons can also directly
modulate the transport kinetics by competing with Na+

binding and by modifying the apparent rate constants associ-
ated with specific kinetic steps in the transport cycle [45].

The SLC34 isoforms display similar apparent substrate
affinity constants of ≤100 μM and ∼40 mM for Pi and Na+,
respectively, at pH 7.4. The transporters probably function
close to their maximum rates at least in the initial segment of
the renal proximal tubule, given that these apparent affinities
are generally well below the typical concentrations found
under normal physiological conditions in the intestine and
renal proximal tubule. The apparent affinity for Pi is somewhat
larger for the mammalian NaPi-IIb compared with the other
isoforms (∼10 μM), and this may partially compensate for the
reduced availability of divalent Pi in a low-pH environment
[47, 50].

The salient functional feature that distinguishes the three
isoforms is whether or not net charge movement accompanies
cotransport. NaPi-IIa and NaPi-IIb are electrogenic and translo-
cate one net positive charge per transport cycle. They mediate
transport with a 3:1 Na+–Pi stoichiometry [49]. Importantly,
their transport rates are a strong function of membrane potential.
In contrast, NaPi-IIc is electroneutral with no net charge trans-
location and its transport kinetics are insensitive to membrane
potential. It mediates transport with a 2:1 stoichiometry [8, 122].
The difference in stoichiometries between these isoforms means
that the theoretical Pi concentrating capacity is approximately
100-fold higher for NaPi-IIa/b compared with NaPi-IIc, at the
cost of a 10-fold greater inward flux of Na+ ions, together with
net charge movement, both of which must be compensated by
the cell through the action of the Na+/K+-ATPase.

The transport process for the electrogenic isoforms can be
described as a sequence of partial reactions between states that
correspond to unique conformations of the protein (Fig. 2).
This model is consistent with an alternating access transport
mechanism, whereby substrate binding can occur from either
the extra- or intra-cellular medium, but not from both simul-
taneously. The development of this model for the electrogenic
NaPi-IIa,b and its extension to include NaPi-IIc has relied on
several experimental approaches based on applying the volt-
age clamp technique to single Xenopus oocytes that heterol-
ogously express the specific isoform. This technique allows
control of a key driving force for transport, membrane poten-
tial. Moreover, assays in which both substrate flux (Na+, Pi)
and net charge translocation are measured simultaneously on
the same oocyte have allowed a definitive determination of
stoichiometry and specification of the preferred Pi species to
be made [49]. Importantly, these assays also confirm the
validity of using Pi-induced membrane current as a measure
of transport activity. Using steady-state and presteady-state
kinetic analysis, electrogenic partial reactions were identified
and apparent substrate affinities, turnover rate, pH depen-
dence, and the substrate binding order were determined
(for review, see [47]).

Pit2NaPi-IIa NaPi-IIc 

Fig. 1 Localization of renal phosphate cotransporters in rodent kidney. In
kidney, at least three Na+-dependent phosphate cotransporters are in-
volved in phosphate reabsorption: the two SLC34 family members
NaPi-IIa and NaPi-IIc and the SLC20 family member Pit-2. The upper
panels show localization of the three transporters in the murine kidney
cortex of animals kept on a low phosphate diet. The nephron models
depict localization of the three transporters under conditions of normal–
high phosphate intake (red shaded parts) which is restricted to the initial
S1 segment of proximal tubules of juxtamedullary nephrons. During
phosphate depletion, expression of all three transporters spreads to prox-
imal tubules of superficial nephrons and NaPi-IIa expression extends also
to S2 and S3 segments of the proximal tubule (yellow shaded nephron
segments)
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Presteady-state charge relaxations, which result from rapid
changes in membrane potential, have proven indispensable to
our understanding of the transduction of membrane potential
as a transport driving force. They are ubiquitous property of
many electrogenic cation-driven symport systems (e.g.,
SGLT1 [63, 91], GAT1 [101], EAAT [58]) and provided the
first indirect evidence that conformational changes occur as
the protein moves from one state to another in response to
changes in membrane potential. For NaPi-IIa/b, the transport
voltage dependence arises intrinsically from the proteins
themselves that adopt favored orientations (outward facing
or inward facing, Fig. 2), together with Na+ ion movement
to binding sites within the transmembrane electric field (for
review, see [47]). From measurements of the total charge
displacement as a function of membrane potential, estimates
of an effective valence per transporter can be obtained,
amounting to 0.3–0.4 for the intrinsic carrier and 0.6–0.7 for
the carrier with Na+ bound.

By substituting cysteines at functionally important sites
and labeling these covalently with fluorophores, it was
established that two Na+ ions bind sequentially and coopera-
tively before Pi and a third Na

+ binding transition precedes the
reorientation of the fully loaded carrier (see Fig. 2) [53, 142].
This conclusion was supported by a detailed cation substitu-
tion study in which presteady-state analysis identified the Li+

interaction site as corresponding to the first Na+ ion binding
site [4]. The apparent affinity for Na+ is determined largely by
the first Na+ interactions, whereas the third Na+ is a strong
determinant of the transport turnover rate. Presteady state

kinetic analysis can also be used to estimate the functional
expression from the ratio of total mobile change to effective
valence. Moreover, by combining with steady-state electro-
physiological measurements, the transport turnover rate can
be estimated. For selected electrogenic NaPi-IIa/b, this was
typically <100 s−1 and may vary among isoforms and species
[50].

The electroneutral NaPi-IIc transport mechanism differs
from the electrogenic scheme in that the first Na+ ion to bind
to the outward facing empty carrier is not transported (Fig. 2).
Thus, for NaPi-IIc, three Na+ ions bind, but only two are
translocated and released to the cytosol [53]. For the electro-
genic isoforms, the first Na+ ion is thought to contribute to an
uncoupled leak in the absence Pi [3]. Although we propose
that Li+ can also compete with Na+ for occupancy at the first
cation binding site and that in the cotransport mode Li+ ions
can indeed translocate, their contribution to the leak current
has not been demonstrated. This “uniport”mode is not detect-
ed in NaPi-IIc, but when electrogenicity is restored through
mutagenesis, the leak mode returns, as evidenced by a change
in holding current induced by the inhibitor phosphonoformic
acid (PFA), a SLC34 inhibitor [8]. Interestingly, naturally
occurring mutations in NaPi-IIc were shown to result in a
significant Na+ leak [73]. Despite considerable progress in
characterizing NaPi-II proteins at the mechanistic level,
two areas still deserve attention. First, we are lacking con-
crete insight into the cytosolic release of substrates, principally
because of the experimental limitations of the intact Xenopus
oocyte preparation. In one study, NaPi-IIc expressing oocytes

Fig. 2 Transport mechanism of SLC34 proteins. For all SLC34 proteins,
transmembrane transport for an inwardly directed Na+ gradient comprises
an ordered sequence of binding steps in which two Na+ ions in the
extracellular medium bind sequentially, followed by divalent Pi and a
third Na+ ion. Cartoons indicate two conformations of the protein. Sub-
strate release to the cytosol occurs after reorientation of the fully loaded
carrier. For electrogenic NaPi-IIa and NaPi-IIb (top), an intrinsic negative
charge (hypothesized to be a conserved aspartic acid located between the
third and fourth predicted transmembrane spanning regions (Fig. 3) and
which senses the transmembrane field) confers voltage dependence to
transport cycle. This allows binding of the first Na+ ion (1) within the

transmembrane electric field and subsequent translocation together with
the other substrates (2, 3, 4), giving a 3:1 Na+–Pi stoichiometry. When
substrates are released to the cytosol, the intrinsic charge senses the
transmembrane field, which leads to a voltage-dependent reorientation
of the empty carrier, ready for the next transport cycle. The electroneutral
NaPi-IIc (bottom), which conserved glycine instead of aspartic acid at the
critical site, has one Na+ ion bound (1) (like NaPi-IIa/b), but cannot be
translocated [53], thus resulting in a 2:1 Na+–Pi transport stoichiometry.
In the absence of phosphate, NaPi-IIa/b shows a Na+-dependent leak
mode, hypothesized to involve the translocation of the first Na+ ion [3].
Cartoons modified from [47]
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were preloaded with tracer substrate, and by establishing an
outward driving force, reverse transport of Pi was demonstrated
in agreement with the kinetic scheme [53]. Recently, evidence
based on presteady-state analysis of the kinetics of the
electroneutral NaPi-IIc, which was modified by mutagenesis
to exhibit electrogenic behavior [8], suggests that the last step
in the transport cycle is indeed the cytosolic release of one Na+

ion [110]. This also agrees with earlier studies on the uncoupled
Na+ leak mode [4] in which it was proposed that the leak mode
is essentially an uniporter involving the empty carrier and two
Na+ bound states [43]. Further insight will only be obtained
using patch clamp or cut-open oocyte techniques to controlling
the cytosol composition.

Second, there is a lack of specific high-affinity inhibitors
for SLC34 proteins. PFA acts as a competitive inhibitor for all
isoforms [135, 137] and is the compound readily available.
However its apparent inhibition constant is relatively large
[90] (typically 1 mM (NaPi-IIa), 0.16 mM (NaPi-IIb), and
0.9 mM (NaPi-IIc) [136]), and at high concentrations, PFA
can induce nonspecific leak in the cell membrane (I. C.
Forster, unpublished observations). Other commercially syn-
thesized substances with greater efficacies show mixed com-
petitive and non-competitive behavior (e.g., JTP-59557, Japan
Tobacco [99], see also [146]). Having access to specific and
high-affinity inhibitors would obviously have considerable
potential for control of dietary Pi intake, for which NaPi-IIb
is a clinical target.

Structure and structure–function relationships

SLC34 proteins are a unique class of membrane transport
proteins and share no obvious homology with the other solute
carrier families, even at the bacterial level. At present a 3-D
structure of the mammalian SLC34 proteins or their bacterial
homologs is lacking, and therefore, all structural information
has been derived from indirect biophysical and biochemical
studies onwild-type and engineeredmutations (for review, see
[47]). NaPi-IIa was shown to be a functional monomer [82];
however, indirect evidence indicates dimeric or tetrameric
structures in the membrane [46, 56, 59]. The primary se-
quences of the mammalian isoforms vary from 599 amino
acids (NaPi-IIc) to ∼640 amino acids (NaPi-IIa and NaPi-IIb).
Sequence differences appear mainly in the intracellular C- and
N-terminal regions and the large extracellular loop which
contains two N-glycosylation sites and a disulfide bridge that
links the two halves of the protein (Fig. 3). The proposed
secondary topology of the eukaryotic isoforms comprises
eight transmembrane domains (TMDs) and two opposed re-
entrant loop domains that most likely contain short α-helical
motifs. This model incorporates predictions from biochemical
and biophysical studies including epitope labeling, cysteine
scanning mutagenesis, and in vitro glycosylation assays (for
review, see [44, 46, 48, 139]). The C-terminal region is

important for targeting, hormonal regulation, and protein–
protein interactions. For example, the TRL motif in the C-
terminal plays a role as a PDZ binding motif [67, 77], and a
KR motif located in an intracellular linker region (Fig. 3) is
critical for PTH sensitivity [76]. Of note from the transport
function perspective is the signature inverted repeat motif
that is conserved among SLC34 isoforms and homologs
in all phyla [147]. Cysteine substitution studies (see
below) confirm the functional role of these repeats in
defining the transport pathway [48, 52]. Given that sim-
ilar motifs are found in the 3-D structures of transporters with
identified architecture, e.g. [1, 42, 120], they most likely
contain substrate coordination sites for NaPi-II proteins also.
Thus, all SLC34 proteins, including bacterial homologs, are
expected to have similar functional core elements comprising
TMDs 2–10 (Fig. 3).

Cysteine scanning mutagenesis, in which cysteines are
substituted at potentially functionally important sites in the
protein and the accessibility by thiol-reactive reagents
(methanesulfonates) is determined (e.g., [79]), has been ap-
plied extensively to SLC34 proteins (for review, see [47, 48])
(see Fig. 3). These studies have yielded both structural infor-
mation as well as mechanistic insights. Substitutions have
been made at sites in the predicted re-entrant regions, and
accessibility studies confirm the reentrant topology [83, 87].
Accessibility of some sites is stronglymembrane potential and
substrate dependent, confirming that the protein conformation
is sensitive to these variables [86, 142], and cross-linking
studies suggest that the two reentrant regions indeed associate
[52]. Finally, new insights into the transport mechanism and
structure–function relationships have been gained by cova-
lently linking fluorophores to engineered cysteines. The
change in fluorescence emission in response to change in
membrane potential and external substrate is an indication of
specific conformational changes affecting the microenviron-
ment of the fluorophore. In addition to establishing the cation
binding order [53, 110, 142], they also provide compelling
evidence of reciprocal movements of the two halves of the
protein during the transport cycle [141].

Finally, insight into the molecular determinants of func-
tional differences between isoforms can be gained by com-
paring sequences and identifying critical amino acids. For
example, the electroneutral NaPi-IIc [122] was used to eluci-
date the molecular determinants of electrogenicity. Three re-
gions were highlighted that differ significantly in amino acid
sequence between electrogenic and electroneutral isoforms. In
one of these regions, three critical amino acids were found by
mutagenesis that are conserved in all electrogenic isoforms.
Their presence confers electrogenic Na+ interactions and
transport-dependent charge translocation [8], and recently, it
was shown that this “re-engineering” of electrogenicity has
most likely only restored charge movement to the empty
carrier and internal release of one Na+ ion [110].
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Regulation of SLC34 transporters

Interacting proteins

In vivo and in vitro experiments have shown that NaPi-IIa
physically interacts with several proteins in the renal brush
border membrane and that some of these interactions have
effects on the expression as well as the regulation of the
cotransporter. Most of the known interactions are PDZ
(PSD-95, Disc-large, ZO-1)-based. The C-terminal residues
of NaPi-IIa (TRL) constitute a PDZ-binding domain that is
engaged in association with the PDZ domains of the four
members of the NHERF (NHE3 regulatory factor) family
[56, 57], as well as with Shank2E [100] (Fig. 4).

Binding to NHERF1 seems to be critical for the stability of
the cotransporter at the brush border membrane, as either
preventing the association in cell culture models [66] or the
absence of NHERF1 in animal models [128] results in a
reduced expression of NaPi-IIa at the cell membrane.
Consistently with this reduction, Nherf1−/− mice have an in-
creased urinary excretion of phosphate that results in
hypophosphatemia [128]. In humans, mutations in NHERF1
have been reported in patients with hypophosphatemia and
relatively low TmP/GFR values [78]. NHERF1 has the poten-
tial to indirectly connect with the actin cytoskeleton via its
association with ezrin, suggesting that the anchoring of NaPi-
IIa to the plasma membrane depends on the formation of a
multiprotein complex. Supporting this hypothesis, Ezrin−/−

mice have a reduced expression of NHERF1 and NaPi-IIa at
the brush border membrane that leads to urinary loss of phos-
phate and hypophosphatemia [60]. Therefore, it is not surpris-
ing that factors that reduce the expression of NaPi-IIa at the
brush border membrane (such as PTH, dopamine or FGF23)
induce the dissociation of NaPi-IIa from NHERF1. Treatment
of renal proximal tubular cells with PTH leads to phosphory-
lation of a serine residue (S77) located within the PDZ domain
of NHERF1 involved in interaction with NaPi-IIa. NHERF1
phosphorylation at S77 then results in a reduced binding to
NaPi-IIa, allowing the retrieval of the cotransporter from the
cell surface [35, 143]. A similar mechanism has been proposed
for dopamine [145] and FGF23 [144]. PTH and dopamine act
at least partially via activation of PKC and/or PKA [10, 14],
and pharmacological activation of either kinase also results in
phosphorylation of S77 [143]. Recently, PKAwas also shown
to phosphorylate ezrin in vitro, and this modification reduces
the interaction of ezrin with NHERF1 [150]. Phosphorylation
of ezrin may provide an additional molecular mechanism for
the destabilization of NaPi-IIa at the cell surface upon hormon-
al activation. NHERF2 has been suggested to control the
intracellular signaling pathway activated upon binding of
PTH to its receptor [95]. Thus, in the absence of NHERF2,
treatment with PTH results in activation of PKA, whereas the
presence of NHERF2 leads preferentially to activation of phos-
pholipase C (PLCβ). This switch is based on the capability of
NHER2 to bind simultaneously to the PTH1R and PLCβ, a
feature also shared with NHERF1 [95]. Accordingly, mice

Fig. 3 Topology and structure–function features of SLC 34 proteins.
Topology model for SLC34 shows the predicted transmembrane domains
(numbered) and repeat regions (dark shading) for each family. The 3-D
folding is currently unknown. For SLC34, evidence suggests that the

reentrant regions (3, 4) and (8, 9) physically associate to form a substrate
coordination site [52]. The disulfide bridge and two glycosylation sites in
the large extracellular loop are indicated for the SLC34 proteins. Critical
residues for targeting/regulation and electrogenicity are highlighted
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lacking NHERF1 show impaired activation of PLC by luminal
PTH receptors and reduced internalization of NaPi-IIa [30].

The PDZ-binding motif of NaPi-IIa is also responsible for
binding to Shank2E [36, 100]. Shank2E also interacts with
dynamin II, a GTPase involved in the pinching off and endo-
cytosis of clathrin-coated vesicles [107]. Unlike the NHERF
proteins, Shank2E is internalized together with NaPi-IIa in
response to high phosphate, suggesting that Shank2E controls
the intracellular trafficking of the cotransporter.

The interaction of NaPi-IIa with GABA receptor-
associated protein (GABARAP) is independent of the PDZ-
binding motif [56, 116]. GABARAP is known to interact with
proteins involved in intracellular trafficking, including tubu-
lin, the N -ethylmaleimide-sensitive factor, and clathrin (for
review, see [102]). GABARAP−/− mice are characterized by
reduced urinary excretion of phosphate associated with in-
creased expression of NaPi-IIa; also, NHERF1 was found to
be upregulated in mutant animals [116]. The increase in NaPi-

IIa does not result in higher levels of phosphate in plasma,
probably due to a reduction in the expression of the intestinal
NaPi-IIb cotransporter (see below).

Regulation of renal NaPi-IIa and NaPi-IIc

Regulation of SLC34 phosphate transporters has been best
defined in the case of NaPi-IIa. In general, regulation occurs
mostly on the posttranscriptional level by altering the rate of
synthesis and degradation and by changing the amount of
NaPi-IIa transporter molecules in the brush border membrane.
There is little evidence for a regulation of NaPi-IIa trans-
porters by altering their activity in the brush border membrane
through phosphorylation or other similar mechanisms.

The biosynthetic pathway and mechanisms governing in-
sertion of NaPi-IIa into the brush border membrane are little
known. NaPi-IIa is N-glycosylated, and experiments in
Xenopus oocytes indicated that lack of glycosylation is not
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Fig. 4 Network of proteins interacting with NaPi-IIa in renal proximal
tubule cells. NaPi-IIa interacts with the four members of the NHERF
family as well as with Shank in the brush border membrane. These
interactions take place between the C-terminal PDZ-binding motif of
NaPi-IIa (TRL) and the PDZ domains of the NHERFs/Shank proteins
indicated with an asterisk . Association with NHERF1/2 controls the
stability of the cotransporter in the apical membrane. In addition,
NHERF1/2 may play a role in the PTH-induced downregulation of
NaPi-IIa by determining the intracellular signaling activated upon

receptor stimulation. The physiological meaning of the association of
NaPi-IIa with NHERF3/4 is less clear, and it is not discussed in this
review. In addition to a PDZ-domain, Shank2E also contains ankyrin
repeats as well as SH3 and proline-rich domains that are not shown in the
figure. PTH-R PTH receptor, PLC phospholipase C, PDZ post-synaptic
density protein (PSD95), Dlg1 Drosophila disc large tumor suppressor,
ZO-1 zonula occludens, and MERM-BD merlin–ezrin–radixin–moesin-
binding domain
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altering transport characteristics but decreased membrane ex-
pression [62]. Thus, glycosylation may be required for inser-
tion into and/or stability in the plasma membrane.

Retrieval of NaPi-IIa from the brush border membrane
occurs rapidly within minutes after injecting PTH into rodents
or after increasing dietary phosphate intake [13, 24]. NaPi-IIa
is internalized via a route involving clathrin-coated pits as well
as early and late endosomes and is routed to lysosomes for
degradation [13, 81, 111, 134]. There is no evidence for
recycling of internalized NaPi-IIa molecules. The pathway
of NaPi-IIa internalization is shared with receptor-mediated
endocytosis occurring in the same cells of the proximal tubule.
The integrity of the machinery involved in receptor-mediated
endocytosis is required for NaPi-IIa internalization. Genetic
deletion of the major endocytic receptor megalin or its chap-
erone receptor-associated protein (RAP) alters the structure of
the subapical compartment and reduces steady-state as well as
PTH-provoked endocytosis leading to accumulation of NaPi-
IIa in the brush border membrane and enhanced phosphate
reabsorption [9, 11].

As indicated above, internalization of NaPi-IIa is initialized
by phosphorylation of NHERF1 at serine 77 and subsequent
dissociation of NaPi-IIa and NHERF1. NaPi-IIa is internal-
ized, whereas NHERF1 and other NaPi-IIa-associated pro-
teins remain at the apical membrane [35, 143]. There is no
evidence for phosphorylation of NaPi-IIa by parathyroid hor-
mone. The exact molecular mechanisms that address NaPi-IIa
to the lysosome and are required for its routing are presently
unknown.

In most cases, NaPiIIa internalization appears to occur
without direct modification of the NaPiIIa transporter in the
plasma membrane. However, downregulation by FGF23-
klotho may involve also an additional mechanism. FGF23-
klotho may induce direct phosphorylation of NHERF1 and
internalization of NaPi-IIa [5]. In addition, klotho alone may
proteolytically degrade NaPi-IIa located in the plasma mem-
brane through a beta-glucuronidase-like mechanism. Klotho
seems to first modify glycan residues on NaPi-IIa, allowing
for cleavage of NaPi-IIa inducing its lysosomal degradation
[69].

Regulation of NaPi-IIc abundance and activity is much less
well studied. NaPi-IIc removal from the brush border mem-
brane in response to PTH or intake of phosphate-rich diets
occurs with much slower kinetics than for NaPi-IIa and re-
quires hours [112, 126, 127]. In contrast to NaPi-IIa, NaPi-IIc
may undergo partial recycling [126].

Regulation by signaling networks and kinases

Activation of parathyroid hormone receptors downregulates
NaPi-IIa abundance at the brush border membrane within
minutes through at least two different signaling pathways
involving either PKA or PKC. Both pathways may eventually

merge in ERK1/2 and lead to the phosphorylation of
NHERF1. PTH leads also to downregulation of NaPi-IIc;
however, this requires hours and the signals mediating this
effect are not known [112].

The signals mediating the downregulation of NaPiIIa and
NaPi-IIc by FGF-23 are not fully elucidated. FGF23 signals
through binding to the FGF1c and FGF4 receptors together
with its co-ligand klotho to reduce NaPi-IIa and NaPi-IIc
protein and mRNA abundance [75, 119, 124]. FGF1c and
klotho are expressed in the proximal tubule and with much
higher abundance in the distal convoluted tubule. Activation
of FGF1c causes phosphorylation of FRS2a and ERK1/2 and
acts downstream on Egr1 [85]. Injection of FGF23 into mice
increases staining for phosphorylated ERK1/2 in the distal
convoluted tubule, and it has thus been suggested that the
distal convoluted tubule may generate signals acting on the
proximal tubule to reduce phosphate reabsorption [37].
Alternatively, FGF23 may directly activate in the proximal
tubule a signaling cascade involving sgk1, ERK1/2, and
NHERF1 phosphorylation to regulate NaPi-IIa [5].

Also activation of guanylate cyclases and increased intra-
cellular cGMP production reduces NaPi-IIa expression in the
brush border membrane. Atrial natriuretic peptide and NO
may reduce renal phosphate reabsorption involving cGMP-
dependent retrieval of NaPi-IIa [12].

Little is known about signals involved in the upregulation
of NaPi-IIa expression and stimulated renal phosphate reab-
sorption. The insulin-like growth factor 1 (IGF1) stimulates
NaPi-IIa expression and activity and may mediate some of the
age- and growth-dependent effects on renal phosphate han-
dling. The phosphorylation and activation of tyrosine kinase
may be required for the IGF1-dependent effects [74].

Various additional kinases are involved in the regulation of
NaPi-IIa function as evident from gene-modified mouse
models. However, it is not clear in all instances if this is by
directly affecting signaling networks in the proximal tubule or
more indirectly by primarily altering the regulation of hor-
mones acting on the kidney. A role for GSK3, Akt2/protein
kinase beta 2, Jak2, Osr1, Spak, and Sgk3 has been found [41,
80, 108, 109, 129].

Regulation of NaPi-IIb

The abundance of NaPi-IIb at the apical membrane of the
small intestine is under the control of a number of factors.
Early studies indicated that phosphate absorption across the
intestinal epithelia decreases during the suckling–weaning
transition [22, 23, 39]. This reduction in the phosphate ab-
sorbing capacity coincides with an increase in the plasma
levels of corticosterone, a glucocorticoid involved in intestinal
maturation [65]. Arima et al. found that corticosterone admin-
istration results in downregulation of NaPi-IIb at the mRNA
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and protein level [6], an effect that may underlay the ontogenic
regulation of the cotransporter.

As for the renal cotransporters, reduction in dietary intake
of phosphate results in increased expression of NaPi-IIb in the
intestinal epithelia [61]. This regulation is most probably
independent of 1,25-OH2 vitamin D3, as it is preserved in
VDR−/− as well as 1αOHase−/− mice [31, 123]. There are
some discrepancies regarding whether or not the dietary ad-
aptation involves changes in NaPi-IIb mRNA expression,
with reports in favor [114, 123] and against [31, 61] transcrip-
tional regulation. Recently, it was shown that NaPi-IIb and
NHERF1 are coexpressed in intestinal epithelia and that they
interact with each other via a C-terminal PDZ-binding motif
of the cotransporter [55]. Furthermore, the dietary upregula-
tion of NaPi-IIb is blunted in NHERF1−/− mice. Improper
dietary regulation of the cotransporter has also been described
in mice deficient for myosin VI [64]. Myosin VI is a minus-
end actin-motor protein involved in a wide range of cellular
functions including clathin-mediated endocytosis. Hegan
et al. reported that feeding a low-Pi diet results in high and
similar levels of NaPi-IIb in wild type and myosin VI−/−mice.
However, upon administration of high phosphate, the
dowregulation of the cotransporter at the cell surface is smaller
in myosin VI−/− than wild-type mice [64]. These findings
suggest that myosin VI is required for the membrane retrieval
of the cotransporter. In addition to NHERF1- and myosin VI-
deficient mice, the expression of NaPi-IIb is also altered in
GABARAP−/−mice. As indicated above, NaPi-IIb expression
is reduced in these mice, most probably as a compensatory
mechanism for the increased expression of the renal NaPi-IIa
[116, 117].

Although not required for the dietary adaptation, 1,25-OH2

vitamin D3 directly upregulates the expression of NaPi-IIb
[61]. Moreover, the abundance of NaPi-IIb (protein and
mRNA) is reduced in the intestinal epithelia of VDR−/− mice
[31, 123]. Experiments in rats indicated that the effect
of 1,25-OH2 vitamin D3 on NaPi-IIb expression involves
changes in mRNA transcription in young but not in adult
animals [148]. This last report also shows that the activity
of the human NaPi-IIb promoter increases in response to
1,25-OH2 vitamin D3. The levels of 1,25-OH2 vitamin D3

are reduced in patients chronically treated with antimicrobial
(rifampicin) or antiepileptic (phenobarbital) drugs [28]. Both
drugs activate the pregnane X receptor (PXR), a nuclear
xenobiotic receptor and ligand-activated transcription factor
responsible for the inactivation and excretion of drugs.
Although the levels of 1,25-OH2 vitamin D3 seem unaffected
in PXR−/− mice, these animals have low serum phosphate
levels associated with reduced intestinal expression of NaPi-
IIb [84]. Furthermore, activation of PXR with rifampicin was
reported to induce the NaPi-IIb promoter activity.

Estrogen administration increases the Na/Pi cotransport
across the intestinal epithelia by upregulating the expression

of NaPi-IIb [149]. Estrogens are known to regulate the pro-
duction of 1,25-OH2 vitamin D3 [7]. However, their effect on
the intestinal cotransporter is, at least partially, independent of
1,25-OH2 vitamin D3 as the activity of the human NaPi-IIb
promoter measured in cell culture is directly stimulated
by β-estradiol [149].

Normalization of the acid–base status upon metabolic aci-
dosis involves an increased urinary excretion of protons.
Acidosis leads to the release of phosphate from bones as well
as to inhibition of renal reabsorption of phosphate, with the
latter contributing to the supply of titrable acids in the urine [2,
106]. In contrast, both the intestinal Na/Pi cotransport and the
expression of NaPi-IIb are increased in metabolic acidosis
[130], suggesting that the gut compensates for the urinary loss
of phosphate.

Inherited disorders of phosphate transport in the SLC34
family

Mutations in SLC34A1 and renal phosphate handling

The role of mutations and gene variants in the SLC34A1 gene
on renal phosphate handling and kidney function are still not
fully understood. Prie and colleagues reported on three pa-
tients with reduced renal threshold for phosphate reabsorption
(TmP/GFR<0.7 mM), hypercalciuria, and kidney stones. In
one patient, a A48F mutation was detected; in the two other
related patients, a V147M mutation was found. In all three
patients, only one allele was foundmutated and no further data
were available whether there was cosegregation of the muta-
tion with the phenotype in relatives of the patients [113].
Subsequent functional analysis of the mutations did not reveal
any differences in the functional transport properties of the
mutants or their trafficking in a mammalian renal cell line
[140]. A second report presented patients from a consanguin-
eous Arab Israeli family that had rickets, hypophosphatemic
Fanconi syndrome, and hypercalcuria with highly elevated
1,25-OH2 vitamin D3 levels. The patients had all a homozy-
gous in-frame duplication (21 bp) G154-V160dup that
completely abolished phosphate-induced currents in the mu-
tant expressed in Xenopus laevis oocytes [94]. Since the
inserted stretch of amino acids affects a putative transmem-
brane domain of NaPi-IIa, it is very likely that the overall
structure of the transporter is severely altered. The occurrence
of the Fanconi syndrome is not complete since plasma bicar-
bonate levels are unchanged and patients are able to increase
levels of active 1,25-OH2 vitamin D3 [94]. Moreover, in two
different mouse models of Slc34a1, deficiency either due to
genetic deletion or to the spontaneous occurrence of the
compound heterozygous mutations at L499Vand V528M no
Fanconi syndrome has been observed [15, 70]. Thus, our
understanding of the importance of SLC34A1 for renal
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phosphate handling in man and the impact of mutations on
generalized proximal tubule functions is incomplete to date.

Mutations in SL34A2: pulmonary microlithiasis

Mutations in SLC34A2 cause pulmonary microlithiasis that is
in some cases associated with testicular microlithiasis [33].
Different mutations have been described including missense
mutations and truncations [40]. The cellular mechanisms how
mutations in SLC34A2 lead to impaired NaPi-IIb function has
not been addressed to date. Pulmonary alveolar microlithiasis
is a very rare lung disease characterized by calcifications
within the alveoli that may eventually lead to loss of lung
function [40]. The pathogenesis of the disease has not been
clarified and may relate to functions of NaPi-IIb in alveolar
type II cells [133]. Whether NaPi-IIb is relevant for removing
phosphate from the alveolar fluid or has other functions has
not been determined. Unfortunately, no information is avail-
able whether patients with SLC34A2 mutations show other
systemic disturbances of phosphate homeostasis and whether
intestinal phosphate absorption is altered.

Mice lacking NaPi-IIb (Slc34a2) are not viable, whereas
inducible NaPi-IIb KO mice with deletion of Slc34a2 in adult
mice cause pulmonary calcification and reduced intestinal
phosphate absorption [118]. Loss of NaPi-IIb is associated
with abolished sodium-dependent phosphate transport in ile-
um suggesting that NaPi-IIb is the major if not only important
phosphate transporter in this segment. However, overall intes-
tinal phosphate absorption was only mildly reduced, suggest-
ing that other segments of the small and large intestine absorb
the largest quantity of phosphate and/or that other pathways
such as the paracellular route may provide for major phos-
phate fluxes in intestine.

Mutations in SLC34A3: hereditary hypophosphatemic rickets
with hypercalcuria

Hereditary hypophosphatemic rickets with hypercalcuria
(HHRH) is a rare autosomal recessive disorder caused by
mutations in the SLC34A3 gene encoding for NaPi-IIc [19,
92]. Patients suffer from hypophosphatemia due to renal phos-
phate losses. Reduced phosphate availability impairs bone
mineralization and growth leading to rickets. Compensatory
increases in 1,25-OH2 vitamin D3 synthesis and levels stimu-
late intestinal phosphate and calcium absorption. However,
excessive calcium uptake is counterbalanced by increased uri-
nary excretion where high urinary levels of calcium and phos-
phate cause nephrolithiasis and nephrocalcinosis.

Patients with HHRH showed SLC34A3 deletions and trun-
cations but also splice site mutations, homozygous missense,
or compound missense mutations [18]. Missense mutations
affect trafficking to the plasma membrane and/or abundance
[73].

Mice lacking NaPi-IIc have been generated, and surprisingly,
no major phenotype could be detected. Renal phosphate han-
dling is similar to wild-type mice, and no hypophosphatemia or
hyperphosphaturia develops. However, NaPi-IIc shows hyper-
calciuria and slightly increased 1,25-OH2 vitamin D3 levels
[125]. Also, a kidney-specific NaPi-IIc-deficient mouse model
has been developed and this mouse model has normal renal
phosphate and calcium handling with no signs for altered
1,25-OH2 vitamin D3 metabolism (Myakala et al., unpub-
lished results). Thus, while NaPi-IIc has a major role in
phosphate metabolism in humans, the role in mice appears
to be minor.

Summary and future perspectives

Twenty years after the molecular identification of the first
member of the SLC34 family, much progress has been made
in understanding the hormonal regulation of these trans-
porters, identification of various interacting proteins, and
gaining insights into the transport mechanism of these trans-
porters. Genetic studies demonstrated that all three trans-
porters have important physiological functions. However, ma-
jor questions have remained unanswered or are only partially
understood. At least three fields are certainly of major interest
and not fully explored to date.

Structural models of SLC34 transporters rely on structure–
functions studies mostly using mutagenesis, chemical label-
ing, and electrophysiology experiments. Obviously, crystal
structures of mammalian SLC34 transporters or homologs
would greatly enhance our understanding of the transport
mechanism and would possibly facilitate development of
isoform specific inhibitors.

NaPi-IIa served as a model protein to examine regulation of
phosphate and other epithelial transporters. The identification
of interacting proteins helped to understand the role of some of
these proteins in epithelial physiology as exemplified for
NHERF1. Nevertheless, our understanding of the “life cycle”
of these transport proteins is incomplete. We miss insight into
the processes regulating translation and trafficking of trans-
porters to the cell membrane and mechanisms that affect the
residence at the plasma membrane.

A third field that will require further attention is the regu-
lation of these transporters by phosphate. This is also of major
clinical importance as dysregulation of phosphate handling by
intestine, bone, and kidney may contribute to chronic kidney
and bone disease and subsequently may increase the risk for
cardiovascular diseases. FGF23 has gained much attention
over the last years, but the mechanisms how increases in
phosphate intake or body content trigger changes in major
phosphate regulating hormones such as parathyroid hormone,
FGF23, or 1,25-OH2 vitamin D3 are largely unknown. The
possibility that phosphate may regulate these transporters also
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independent from known factors remains also open. Thus,
“phosphate-sensing”mechanisms and mediators of regulation
are not fully explored and understood.
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