
ORI GIN AL PA PER

Submicromolar Oxygen Profiles at the Oxic–Anoxic
Boundary of Temperate Lakes

Mathias K. Kirf • Christian Dinkel • Carsten J. Schubert •

Bernhard Wehrli

Received: 13 June 2013 / Accepted: 12 September 2013 / Published online: 17 October 2013
� Springer Science+Business Media Dordrecht 2013

Abstract Elements involved in biogeochemical cycles undergo rapid turnover at the

oxic–anoxic interface of stratified lakes. Here, the presence or absence of oxygen governs

abiotic and biotic processes and rates. However, achieving a detailed sampling resolution

to precisely locate the oxic–anoxic interface is difficult due to a lack of fast, drift-free

sensors in the working range of 10 to a few 1,000 nmol O2 L-1. Here, we demonstrate that

conventional amperometric and optical microsensors can be used to resolve submicromolar

oxygen concentrations in a continuous profiling mode. The amperometric drift was dras-

tically reduced by anoxic preconditioning. In situ offset correction in the anoxic layer and a

high amplification scheme allowed for an excellent detection limit of\ 10 nmol L-1. The

optical microsensors also showed a similar performance with a detection limit of

\ 20 nmol L-1. Their drift stability allowed for a laboratory calibration in combination

with a minor in situ anoxic offset correction. The two different sensor systems showed

virtually identical profiles during parallel use in stratified lakes. Both sensors were able to

resolve the fine-scale structure at the oxic–anoxic interface and revealed hitherto unnoticed

extended zones of submicromolar oxygen concentrations even below a steep oxycline. The

zones extended up to several meters and showed substantial vertical variability. These

results underline the need of a precise localization of the oxic–anoxic interface on a

submicromolar scale in order to constrain the relevant aerobic and anaerobic redox

processes.
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1 Introduction

One of the main questions in analytical biogeochemistry is whether oxygen is present or

not in any given aquatic environment (Berner 1981; Canfield and Thamdrup 2009). Of

particular significance for redox-cycling is hence the oxic–anoxic interface. Most of the

redox processes at the oxic–anoxic interface are mediated by microorganisms which are

either dependent on or inhibited by oxygen. Detecting oxygen at very low concentrations is

therefore of utmost importance to precisely locate the oxic–anoxic interface (Wright et al.

2012; Thamdrup et al. 2012).

Traditionally, anoxic waters are defined by the lowest oxygen concentration measurable

by standard techniques, such as the Winkler method (Winkler 1888), with the accepted

limit being set to *1 lmol L-1 (Berner 1981; Morrison et al. 1999; Canfield and

Thamdrup 2009). Only with the recent introduction of the Switchable Trace OXygen

(STOX)-sensor was this limit pushed to below 10 nmol L-1 (Revsbech et al. 2009). The

STOX-sensor provided new insights into oxygen and nutrient dynamics within the

extensive marine oxygen minimum zones (Kalvelage et al. 2011; Thamdrup et al. 2012;

Ulloa et al. 2012) such as the recent observation of extremely low half saturation constants

below 150 nmol L-1 for aerobic respiration and growth (Revsbech et al. 2009; Stolper

et al. 2010). These studies demonstrated that the traditional detection limit of 1 lmol

O2 L-1 was at least one order of magnitude above the sensitivity needed to fully inves-

tigate when and how oxygen depletion terminates aerobic life and changes redox pathways

that couple the anoxic with the oxic part of aquatic systems (Kalvelage et al. 2011; Lam

et al. 2009; Ulloa et al. 2012). Furthermore, reliable low concentration O2 measurements

would allow to target sampling locations for microbial communities thriving at the oxic–

anoxic transition such like nitrifiers, denitrifiers, anammox bacteria or aerobic methane

oxidizers (Kalvelage et al. 2011; Schubert et al. 2006; Lopes et al. 2011).

Currently, we know little about the extensions, the variability and the biogeochemical

significance of zones with submicromolar oxygen concentrations. In many aquatic systems,

the oxic–anoxic transition is dynamic and the associated reactions occur on relatively small

spatial scales (Murray et al. 1995; Lopes et al. 2011). Achieving a detailed sampling

resolution and a precise localization of the oxic–anoxic interface in the water column is

hence not possible due to a lack in drift-free and fast sensors in the working range of 10 to

a few 1,000 nmol O2 L-1.

Useful profiling and sampling systems for the lower limit of the oxic zone require high

sensitivity down to the nanomolar range. They should provide a continuous, fast

responding signal to give reasonable spatial resolution and a clean, ideally drift-free zero

oxygen signal. Clark-type amperometric oxygen microsensors with a guard cathode

(Revsbech 1989; Clark et al. 1953) do meet most of these requirements. Their output can

be amplified and registered continuously with very high sensitivity. These sensors show

excellent 90 %-response times down to 0.2 s (Berg et al. 2003), and the linear relationship

between the signal and oxygen partial pressure is well documented (Revsbech and

Jørgensen 1986; Reimers 1987; Revsbech 1989). The temperature dependency of the

signal and its stirring-sensitivity are tractable problems, but the drift at low oxygen con-

centrations has so far limited the practical detection limit to about 1 lmol L-1 (Reimers

1987; Revsbech et al. 2011). Zero-signal stability might further deteriorate at euxinic

conditions due to the H2S-sensitivity of these sensors; however, such depths are avoidable

in many aquatic systems.

The Clark-type amperometric STOX-sensor avoids the drift problem by introducing a

secondary (front) cathode that can be polarized in order to prevent oxygen from reaching
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the internal sensing cathode, thus providing in situ zero calibration (Revsbech et al. 2009).

With its differential measurement, the sensor reaches detection limits in the nanomolar

range. This advantage, however, comes at the cost of long measuring intervals of typical

1–4 min per measurement cycle, which limits the continuous profiling capabilities of this

system.

Optical oxygen microsensors with highly oxygen-sensitive fluorescent coatings, here-

after referred to as microoptodes, offer a further possibility to trace low oxygen concen-

trations (Klimant et al. 1995; Holst et al. 2000; Nestler et al. 2007). Their signal-to-noise

ratio at submicromolar oxygen concentrations is excellent as the fluorescence intensity and

fluorescence lifetime increase with decreasing oxygen partial pressure. The temperature-

sensitivity of optodes can be corrected for, minimal signal drift is realized by a lifetime-

based measuring technique, and in addition, they show no sensitivity to stirring rates or

H2S (Lippitsch et al. 1988; Tengberg et al. 2006). Excellent low detection limits of

30–60 nmol O2 L-1 have been reported for optodes with highly oxygen-sensitive fluo-

rescent coatings (Nestler et al. 2007; Balcke et al. 2008), and they offer the potential to

investigate the oxic–anoxic boundary in more detail.

In the present study, we adapted two different in situ oxygen-sensing technics to explore

the submicromolar oxygen distribution at the oxic–anoxic boundaries in lakes. As a tool for

such investigations, we developed the ‘‘Profiling In situ Analyzer’’ (PIA), an online-con-

trolled measurement and sampling platform that allows resolution of the fine-scale struc-

ture of the oxic–anoxic interface by continuous profiling down to nanomolar oxygen levels

and enables targeted sampling.

The system allows for cross-check and validation by two independent sensor systems by

combining amperometric microsensors with microoptodes. Utilizing the anoxic water layer

for preconditioning of the amperometric sensors and as an in situ calibration point dras-

tically improved the amperometric sensor performance at low oxygen conditions, solving

issues of drift and zero oxygen signal offset associated with these sensors. The detection

limits, signal stabilities and reproducibilities between the two systems were tested in the

field. The system was then applied for profiling the oxic–anoxic boundary in two Swiss

lakes to characterize the extension and variability of the submicromolar oxygen zone. With

their broad range of redox conditions and good accessibility, lakes constitute an ideal

laboratory for the assessment of oxygen-sensing technology and to further investigate the

concepts of biogeochemical zonation (Tonolla et al. 2004; Lopes et al. 2011; Canfield and

Thamdrup 2009).

2 Materials and Methods

2.1 Profiling In Situ Analyzer (PIA)

In situ measurements were performed with a custom-built profiling analyzer, which was

designed for flexible online data acquisition, analysis and visualization based on embedded

computing (ZBrain, Schmid Engineering, Switzerland). Instruments are mounted in front

of an open cubic aluminum frame of 50 9 50 9 60 cm which holds on its top the pro-

cessing unit and its power supply in pressure stable housing and leaves room in the center

for a carousel syringe sampler with 12 9 60 ml syringes (KC Denmark, Denmark)

(Fig. 1a). Two-way communication along a galvanically isolated load-carrying data cable

allows online evaluation of depth profiles on shipboard via a laptop computer and thus

targeted sampling. The device was deployed by an electric winch. Customized software for
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embedded computing and data acquisition was written with LabVIEW (National Instru-

ments, USA). Data were further processed with custom MATLAB scripts (The Math-

Works, USA). Oxygen concentrations were measured with two different O2 sensor systems

optimized for low oxygen concentrations as described below.

2.2 Amperometric Oxygen Microsensor

Measurements were performed with Clark-type amperometric microsensors with a tip

diameter of 25 lm and equipped with an internal reference and a back guard as introduced

by Revsbech (1989) (Ox-25, typical 90 %-response time \0.5 s, Unisense, Denmark).

Compared to conventional oxygen microelectrodes, drift at low oxygen concentration was

strongly reduced by a preconditioning procedure which presumably lowered dissolved

oxygen concentrations in the bulk electrolyte of the sensors: 36 h prior to deployment, the

sensor was exposed to anoxic conditions by fitting a closed-bottom plastic tube around the

sensor filled with anoxic solution (0.1 mol L-1 sodium ascorbate mixed with 0.1 mol L-1

sodium hydroxide, solution prepared from degassed water). After removal of the tube in

the field, fast descent of the profiler through the oxic water column limited accumulation of

dissolved oxygen in the microsensor. To further reduce signal drift, the microsensor was

operated for 1–4 h in the anoxic water column and subsequent upcasts during profiling

were limited to low oxic conditions. The amperometric signal at low oxygen concentra-

tions was amplified with factors of up to 20,000 to increase the digital resolution in this

concentration range (Fig. 1b). High amplification factors were only applicable under

submersed in situ conditions due to the prevalent electromagnetic noise in most labora-

tories. Higher oxygen concentrations were recorded with lower amplification on parallel

channels.

Fig. 1 a Typical setup of the Profiling In situ Analyzer (PIA): 1 Pressure housing (embedded computer,
electronics, batteries), 2 CTD probe, 3 optode module, 4 impedance converter for potentiometric channels
(pH, Redox, S2-), 5 oxygen preamplifier, 6 sulfide preamplifier and amperometric sulfide microsensor, 7
syringe sampler, 8 oxygen sensor array: microoptode (syringe), up to two amperometric microsensors.
b Signal-pathway of the amperometric setup. G1 Preamplifier, G2–G5 second amplification stage, Offset
offset correction of the zero oxygen signal to match the input range of the A/D converter
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2.3 Signal-Pathway

The microsensor was connected by an in situ connector system (Unisense, Denmark) to a

custom-built preamplifier. Here, the current signal of the microsensor was converted into a

voltage signal (1 mV pA-1, OPA 128, Burr-Brown, USA) and amplified 10 times

(AD524, Analog Devices, USA). The voltage signal was passed through a low-pass fourth-

order Bessel filter to attenuate electromagnetic noise above 15 Hz in the laboratory and

after that through a galvanic isolation which prevented ground loops (ISO124, Burr-

Brown, USA). The preamplifier was connected with an underwater cable and connectors

(SubConn Circular, SubConn, USA) to the PIA’s processing unit in pressure stable housing

where the signal was transmitted to two channels. The first channel with overall gain of 10

passed directly to a multiplexer, and readings were taken by a 14-bit A/D converter

(Fig. 1b). A single reading consisted of 10 samples taken at 500 Hz, which were averaged

and stored at 2 Hz. This channel captures the whole range of oxygen concentrations from 0

to air saturation. The second channel passed through an offset correction where the zero

oxygen signal could be adjusted online to the input range of the A/D converter before being

transmitted to 4 channels which were amplified to overall gains of 100, 1,000, 4,681 and

20,000. These four channels passed a multiplexer, and their individual readings were taken

consecutively every 0.125 s as described above and stored at 2 Hz. The overall 90 %-

response time of the sensing system was 9 s as determined by moving the sensors rapidly

from air into stirred anoxic solution.

2.4 Oxygen Microoptode

Measurements were performed with needle-type microoptodes coated with dyes optimized

for trace oxygen concentrations (TOS7-dye, 140 lm tip diameter, white optical isolation,

PreSens, Germany), with a 90 %-response time of 7 s (determined as described above).

During dual sensor profiling, the sensor tips of both systems were mounted at the same

height and 1 cm apart. The microoptode was connected by a custom-made optical

underwater connector to a phase detection board for luminescence lifetime detection based

on phase modulation (O2-micro-T4D, PreSens, Germany) placed in a pressure stable

housing. The raw data output provided at 1 Hz (� phase shift, amplitude, temperature) was

transferred via RS-232 interface and logged in the processing unit. A malfunctioning of the

optical unit of the board resulted in strong noise in the microoptode data during the Lake

Lugano campaign in 2009 and prohibited a quantitative evaluation of the microoptode

data. After exchange of the optical unit, the noise was greatly reduced.

2.5 Derived Units and Oxygen Solubility C�o2

Pressure, conductivity and temperature were recorded by a CTD probe (XR-420, RBR,

Canada) with a sampling rate of 2 Hz and logged in the processing unit. Depth was

calculated using a density of water of 1 kg L-1. Density profiles were computed by

expressing any changes in specific conductivity as changes in the calcium–carbonate

concentrations (Imboden and Wüest 1995).

Both types of sensors respond to the partial pressure of oxygen. The oxygen partial

pressure in water was related to oxygen concentrations Co2
in lmol L-1 by the computed

oxygen solubility C�o2
at standard air pressure p* (101,325 Pa). C�o2

was computed as a

function of salinity and temperature according to Garcia and Gordon (1992) using the
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solubility coefficients derived from the data of Benson and Krause (1984). We use the

concentration scale here because it is independent of temperature and pressure, and it

facilitates mass balance calculations and modeling. For the biological response to low

oxygen conditions, the relevant parameter is partial pressure (Hofmann et al. 2011).

2.6 Calibration of the Microoptodes

In 2009, the microoptode was used only qualitatively due to a malfunction of the optical

board. In 2010, the microoptode was calibrated in the laboratory in nanopure water

equilibrated with certified gas mixtures according to:

Co2

C�o2

¼ Co2 gas

Co2 air

� patm:

p�
ð1Þ

where Co2
=C�o2

denotes the air saturation computed at standard pressure p*, Co2 gas the

specified volume fraction of oxygen in the gas mixture and Co2 air the assumed average

volume fraction of oxygen in air of 20.9 % corrected for the deviation of the atmospheric

pressure during calibration patm. from p*.

A 1-L Erlenmeyer flask was filled to its neck with nanopure water and cooled to 1–2 �C

in ice water. The oxygen content of the water was modified with either nitrogen gas

(purity: 99.999 %) or a certified 1.5900 % oxygen in nitrogen gas mixture (PanGas,

Switzerland) by low gas-flow dispersed through Tygon-tubing and an aquarium diffuser

10 cm below water level. The water volume was well mixed by a glass-coated magnetic

stirrer, and the temperature was monitored by a PT 100-sensor connected to the mic-

rooptode-board. A 3-cm-thick, loosely compressed wad-plug placed 4 cm above the water

level ensured a defined gas-filled, pressure-equilibrated headspace. Atmospheric pressure

was recorded with the CTD pressure sensor. The microoptode was placed opposite to the

gas-inflow and calibration values for 0 % and the computed air saturation was only

accepted when the signal was constant for at least 6 min.

In contrast to amperometric microsensors, the microoptodes show a nonlinear decrease

in fluorescence lifetime with increasing oxygen concentration (Holst et al. 1995). For

oxygen concentrations below 35 lmol L-1, the signal of the fluorescent dye type TOS7

follows the Stern–Volmer equation:

s0

s
¼ tan /0

tan /
¼ 1þ KSV �

Co2

C�o2

ð2Þ

where s0 and s are the fluorescence lifetimes, u0 and u are the phase angles in the absence

and presence of oxygen, respectively, and KSV is the Stern–Volmer quenching coefficient

(Lippitsch et al. 1988; Holst et al. 1995). Temperature affects the fluorescence lifetime and

the quenching efficiency of the microoptode (Holst et al. 2000). The temperature depen-

dency of u and KSV were taken into account by a second-order polynomial:

ai; Tb ¼ ai; Ta þ bi Ta � Tb
� �

þ ci T2
a � T2

b

� �
ð3Þ

where ai denotes either u0 or KSV, b and c are the respective dye-specific coefficients

provided by the manufacturer and Ta and Tb are the temperatures during the calibration and

the measurement, respectively. KSV values at 4 �C calculated from the manufacturers

calibration sheet at 4.7 % air saturation at standard pressure p* agreed with our laboratory-

calibration-derived values for the two applied optodes within 3.4 %.
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Below the oxic–anoxic interface, the stabilized in situ zero readings of the microoptode

were averaged over *25 cm and subtracted as offset from the laboratory-calibration-

derived oxygen values (Fig. 2c).

2.7 In Situ Calibration of the Amperometric Microsensors

Linear two-point calibrations were performed in situ using an oxic and an anoxic reading

(Fig. 2a, b). Anoxic readings were obtained by averaging the zero current over *25 cm

directly after signal stabilization in the (anoxic) water column.

In 2010, a lower amplified O2-channel of the amperometric microsensor was anchored

in each profile on a single microoptode-derived in situ concentration in the range of

6–18 lmol O2 L-1 at depths with weak or nearly absent oxygen gradients. The slope

obtained for this lower amplified channel was then used to calculate the slopes of the

remaining channels based on the fixed amplification factors. All channels were individually

offset-corrected in the anoxic water column. The larger dynamic range of the ampero-

metric microsensor system compared to the microoptode allowed then for an additional

validation of the amperometric calibration at higher concentrations of[200 lmol O2 L-1

with a Winkler-calibrated CTD sensor (CTD60M, Sea & Sun Technology, Germany). The

correspondence was typically in the range of 2.5 % (data not shown).

During the Lake Lugano campaign in 2009, the optode allowed only for qualitative

measurements and the oxic reading was taken on the first O2 channel at 60 m on the final

upcast and was set equal to oxygen concentrations derived from water samples taken at

60 m with a Niskin-bottle and analyzed by Winkler titration. The calculated slopes were

then applied to the downcasts with no available oxic reading. All channels were offset-

corrected with a one-point calibration in anoxic waters. This approach relies on the
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Fig. 2 Schematic example of the in situ calibration procedures for the amperometric sensor (a, b) and the
microoptode (c). a Lake Lugano: Example of raw signals from two oxygen channels differing in
amplification. Note The constant signal of O2 channel 5 on the right is set by the limited input range of the
A/D converter. b Scheme illustrating how the oxic reading for a lower amplified O2 channel is matched to
microoptode-derived oxygen concentrations between 6 and 18 lmol L-1 (e.g., channel 3, 2010) or Winkler-
titrated water samples with concentrations above 150 lmol O2 L-1 (channel 1, 2009). Anoxic values are
individually obtained in the anoxic water column. Slopes for channels without oxic readings are calculated
based on the fixed amplification factors. (c) Scheme illustrating how the microoptode’s anoxic reading
calculated as partial pressure based on the ex situ calibration in the laboratory is applied as offset to all
microoptode-derived values
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inherent stability of the dynamic part of the signal from Clark-type microsensors (Reimers

1987; Gundersen et al. 1998).

The response of amperometric microsensors is sensitive to stirring rates, changes in

temperature (&2–3 % per �C) and pressure (&-0.004 % per meter water column)

(Reimers 1987; Gundersen et al. 1998). However, the motion during continuous profiling

deployment suggests full sensor response with respect to stirring rates (Revsbech et al.

2011). Temperature gradients below the thermocline were on the order of ±0.002 �C m-1

in Lake Zug and Lake Lugano, and depths between calibration points were less than

100 m. Thus, the temperature and pressure dependencies were negligible, and no correc-

tions were applied. In Lake Rot, the amperometric oxygen sensor was used below the

thermocline only qualitatively to confirm features in the microoptode data.

2.8 Onset of H2S

In Lake Lugano, the onset of the sulfidic zone was determined qualitatively with an

amperometric sulfide microsensor (H2S-100, Unisense, Denmark, specified detection limit:

0.3 lmol L-1). Resolution at low concentrations was increased by parallel amplification

on 3 channels in a similar way as described for the oxygen electrodes above. For lakes Zug

and Rot, water samples were collected with the syringe sampler on selected casts, 2 ml

preserved with 1 ml of 4 % Zn acetate in 2 % acetic acid and kept dark at 4 �C until

photometric analysis in the laboratory according to Cline (1969) with a 10-mm cuvette at

670 nm (detection limit 2 lmol L-1, Hitachi U-2000, USA). No H2S was detected in the

profiled water column of Lake Zug. In Lake Rot, an onset of H2S was detected *30 cm

below the oxic–anoxic interface during cast Rot1 (Fig. 3).

2.9 Sampling Procedure

The position of the oxic–anoxic interface was monitored online based on the microoptode

data. To reduce the risk of sampling artefacts like self-induced mixing, we retrieved the

profiler very slowly from its anoxic position used for signal stabilization. The boat was

then moved by a few meters before a new profile was recorded at slow dive speeds of 0.7 to

2.9 m min-1 (Table 1). All three lakes provided excellent conditions for boat-based
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Fig. 3 Oxygen and temperature profiles of Lake Lugano (a), Lake Zug (b) and Lake Rot (c). The arrows
indicate the onset of H2S; in Lake Zug no H2S was found in the profiled water column
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profiling and sampling with wind-shielded, calm and nearly smooth water surfaces during

sampling.

2.10 Study Sites

Lake Lugano (46.01�N, 9.02�E) on the border between Switzerland and Italy is separated

into two basins by a dam. Measurements were performed close to Gandria in the northern

basin which is shielded from winds by steep mountains. The basin has a maximum depth of

288 m, a surface area of 27.5 km2, a volume of 4.69 km3 and a mean hydraulic residence

time of 12.3 years (Barbieri and Polli 1992). In October 2009, the oxic–anoxic interface

was found at *125 m in the weakly stratified hypolimnion (DT \ -0.001 �C m-1,

Dj25 \ 0.1 lS cm-1 m-1) (Fig. 3a).

Lake Zug (47.10�N, 8.48�E) in central Switzerland has a maximum depth of 198 m, a

surface area of 38.3 km2, a volume of 3.2 km3 and a mean hydraulic residence time of

*14 years (Maerki et al. 2009). Measurements were performed in the deep south basin

which is shielded from westerly winds by high mountains and not influenced by the main

inflow. The south basin remains permanently anoxic below 160 m despite a weakly

stratified hypolimnion (DT \ 0.002 �C m-1, Dj25 \ 0.1 lS cm-1 m-1) (Fig. 3b).

Lake Rot (47.07�N, 8.32�E) is a dimictic eutrophic prealpine lake close to the city of

Lucerne, Switzerland. Lake Rot has a maximum depth of 16 m, a surface area of 0.46 km2,

a volume of 0.0039 km3 and a mean hydraulic residence time of 0.4 years (Kohler et al.

Table 1 Characteristics of the individual casts taken in Lake Lugano, Lake Zug and Lake Rot

Cast Figure Extension of submicromolar zone
(1,000–10 nmol O2 L-1) (m)

Water depth of oxic–anoxic
interface (10 nmol O2 L-1) (m)

Dive speed
(m min-1)

Location and date of sampling: Lake Lugano, September 27, 2009

Lug1 3a, 4a – *128 2.0

Lug2 1.3 128.2 0.7

Lug3 4b 1.5 128.0 1.1

Lug4 1.9 125.6 1.6

Location and date of sampling: Lake Zug, August 7, 2010

Zug1 2.5 161.8 1.7

Zug2 1.6 161.6 1.0

Zug3 1.7 161.0 2.3

Zug4 5a, b 2.5 158.5 2.4

Zug5 5c, d 0.6 156.1 1.8

Zug6 5e, f 3.0 154.9 1.4

Zug7 5g, h 5.6 158.6 2.5

Zug8 4.3 158.2 2.9

Zug9 5i, j 2.5 157.5 2.3

Location and date of sampling: Lake Rot, October 19, 2010

Rot1 6a, b 0.7 8.7 0.9

Rot2 6a, b 0.2 8.6 0.7

Rot3 6c, d 2.5 10.6 0.8

Rot4 6c, d 0.2 8.5 0.7

Rot5 6c, d 1.3 9.4 0.7
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1984). Measurements were performed in the deepest part of the lake. Lake Rot is shielded

from winds by low hills, and a stable stratification (DT * -2 �C m-1, Dj25 * 10 lS

cm-1 m-1) establishes between May and November with a strong chemocline (8–11 m)

and an anoxic, sulfidic hypolimnion (Fig. 3c).

3 Results and Discussion

We used the PIA-system for continuous profiling down to nanomolar concentrations and

across the oxic–anoxic interface in the water column of three aquatic environments: (1)

The stabilization of amperometric signal drift was assessed in Lake Lugano; (2) in Lake

Zug, the absence of significant temperature gradients and the absence of H2S in the deep

hypolimnion allowed cross-validation of amperometric microsensor and microoptode

results by simultaneous profiling with the two independent systems; (3) in the temperature-

stratified Lake Rot, the performance of the microoptode below a steep oxycline and across

a temperature gradient was investigated. The contrasting field sites allowed exploration of

the extent and variability of the submicromolar oxygen zone in a deep hypolimnion and at

a thermocline.

3.1 Stabilizing Amperometric Drift

The effect of anoxic preconditioning on the reduction in amperometric signal drift at low

oxygen concentrations was assessed during a campaign in Lake Lugano. Direct profiling

from the lake’s surface with an oxygen exposure of 21 min (Fig. 4a) caused the signal of

the amperometric microsensor to drift -560 nmol L-1 min-1 when reaching anoxic

waters. The subsequent profiles were obtained after 133 and 140 min of anoxic condi-

tioning at 130–140 m depth (one profile shown in Fig. 4b). This procedure reduced signal

drift within the first minute in anoxic waters to\0.5 % of the initial drift, e.g., to -2.1 and

-1.5 nmol L-1 min-1, respectively, and allowed the localization of the oxic–anoxic

interface. Within the next 4 min at anoxic conditions, drift was further reduced to -0.4 and

-1.2 nmol L-1 min-1, respectively. The in situ detection limit (calculated as two times

the standard deviation of the anoxic signal) of the amperometric microsensor for the two

downcasts was 4.5 ± 0.7 nmol L-1. The theoretical digital resolution was two orders of

magnitude better (0.06 nmol bit-1). The oxygen microsensor showed excellent stability in

the anoxic water column until H2S appeared about 16 m below the oxic–anoxic interface

(arrow in Fig. 4b). However, electromagnetic noise, e.g., caused by the activation of the

syringe sampler, will propagate as strong peaks into the highly amplified amperometric

signal which impedes exact measurements during sampling (data not shown).

The preconditioning approach presented here was inspired by the observation that signal

drift in anoxic waters was correlated with previous exposure to oxic conditions. Back

diffusion of oxygen from the bulk electrolyte to the sensing cathode in spite of the

polarized guard cathode could explain the observed drift after oxic exposure (Fig. 1b). The

guard cathode contributes significantly to amperometric signal stability at low oxygen

concentrations by consuming such back-diffusing oxygen (Revsbech 1989). However, a

non-quantitative consumption of oxygen by a (front) guard cathode was described recently

for the STOX-sensor (Revsbech et al. 2009). Apparently, preconditioning the ampero-

metric microsensor under anoxic conditions stabilized the signal at trace oxygen condi-

tions. Therefore, the anoxic pre-deployment and the limited exposure to elevated oxygen

concentrations during profiling might have eliminated oxygen in the bulk electrolyte and
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reduced any resupply of oxygen via the tip, thus eventually reducing drift. Submicromolar

oxygen concentrations were well resolved with the high amplification scheme, and

the setup achieved a detection limit below 5 nmol L-1 at a significantly reduced drift

(\-1.5 nmol L-1 min-1) with commercial amperometric microsensors. In contrast to the

STOX-sensor, this conditioning approach allows for continuous profiling across the oxic–

anoxic interface, but it requires a completely anoxic, preferably H2S-free part of the water

column and several hours of pre-deployment.

3.2 Microoptode and Dual Profiling

In the deep hypolimnion of weakly stratified Lake Zug, the microoptode and the amper-

ometric microsensor were evaluated in parallel in the absence of H2S and significant

temperature gradients. The data acquisition for the microoptode was optimized after the

first trial in Lake Lugano. During the Lake Zug campaign, the microoptode resolved

submicromolar oxygen concentrations with an in situ detection limit of

12.9 ± 1.1 nmol L-1 (n = 6) with a digital resolution of 4 nmol L-1 per 0.01� increment

in phase shift and with no detectable drift in the anoxic zone. The ex situ calibration always

showed a positive offset at anoxic in situ conditions, although with a maximum deviation of

\ 24 nmol L-1 (see Fig. 2c).

The amperometric in situ detection limit was 10.6 ± 2.2 nmol L-1 (n = 5), and the

dual sensor setup which acquired two submicromolar profiles in parallel (Fig. 5) allowed

the cross-checking of the microoptode against the amperometric microsensor. The corre-

lation coefficient between amperometric and optical data in Fig. 5 is at least 0.995. The

excellent match of profiles in the submicromolar oxygen range obtained by two completely

different analysis techniques is encouraging and indicates that the observed patterns are

caused by actual concentrations gradients and not by problems of the sensing systems and

their measuring principle. Furthermore, the signals of the two independent systems sta-

bilized at their anoxic reading at similar depths, indicating that the oxygen partial pressure

dropped simultaneously below the sensitivity of both systems (Fig. 5). The sensitivity of

Clark-type amperometric microsensors down to nanomolar concentrations has been

demonstrated by ex situ experiments before (Revsbech et al. 2009). We conclude that at

given in situ conditions both systems are sensitive down to nanomolar oxygen concen-

trations. The long-term drift stability of the microoptode allowed for laboratory calibration

0.0 0.5 1.0 1.5 2.0 2.5

a

0.0 0.2 0.4 0.6 0.8 1.0

126.5
127.0
127.5
128.0
128.5
129.0

b

Oxygen (µmol L-1)

-2 0 2 4 6

D
ep

th
 (

m
)

120

130

140

150

optode
amperometric sensor       

amperometric
sensor

Fig. 4 Lake Lugano, October 27, 2009: Signal drift before (a, 10 m &5 min) and after (b, 10 m &9 min)
*2 h of anoxic incubation of the amperometric microsensor. Optode in a indicates the depth of the oxic–
anoxic interface which was used for anoxic calibration. Negative O2-values of the amperometric
microsensor are caused by drift. Arrow in b: The H2S-microsensor indicates the onset of H2S at 144.5 m,
and at this depth, the O2-signal destabilized again
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and an evaluation of the anoxic offset between this ex situ calibration and field observa-

tions. The maximum deviation of \ 24 nmol L-1 was small and indicates that the mic-

rooptode performance at low oxygen levels is nearly unaffected by previous exposure to

high oxygen concentrations. The amperometric system was then calibrated based on the

microoptode. Thus, the good correspondence of the amperometric results with CTD-

derived oxygen concentrations[ 200 lmol L-1 corroborates the valid calibration of both

systems.
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3.3 Microoptode Profiles Across a Temperature Gradient

The microoptode’s applicability across an anoxic temperature gradient was investigated in

Lake Rot. The deep lakes Lugano and Zug had negligible temperature gradients across the

redoxcline, but at the metalimnion in Lake Rot, the temperature changed by up to -

2.7 �C m-1 on the October 19, 2010 (Fig. 3c).

The temperature dependence of the fluorescence lifetime caused a change in the phase

angle in anoxic waters of -0.09 ± 0.02 �C-1 (n = 4) which corresponded to an uncor-

rected in situ oxygen decrease of *26.7 ± 4.7 nmol L-1 �C-1 (n = 4). After temperature

compensation, this change was reduced to *5.8 ± 2.1 nmol L-1 �C-1 (n = 4). Thus,

already the manufacturer-provided algorithm compensated the microoptode’s temperature

dependency to an acceptable limit and provided close to constant anoxic profiles (Fig. 6b,

c). For the campaign in Lake Rot, the in situ detection limit of the applied microoptode was

9.6 ± 0.3 nmol O2 L-1 (n = 4).

3.4 Submicromolar Zones in a Deep Hypolimnion

To avoid the conceptually ill-defined term ‘‘suboxic zone’’ (Canfield and Thamdrup 2009),

we propose to define the lower end of the oxic zone based on sensitive sensor measure-

ments. In this sense, the submicromolar zone starts below 1 lmol L-1 and ends with the

typical detection limit of 10 nmol O2 L-1. In Lake Zug, the thickness of the submi-

cromolar zone in the hypolimnion between 150 and 160 m water depth was evaluated in

nine profiles recorded with the dual sensor system (see five examples in Fig. 5). The

observed average thickness was 2.7 ± 1.5 m (n = 9) with a maximum extension of 5.6 m
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(Table 1). The thickness of this zone would have been significantly underestimated

(*0.5 m) if calculated from linearly extrapolated oxygen gradients between 20 and

1 lmol L-1. This exemplifies the importance of high-resolution measurements in the

nanomolar range.

The shape of the individual profiles could be classified in two different types. The

smooth profiles showed continually decreasing oxygen concentrations (Fig. 5b, d), while

other oxic–anoxic transitions were characterized by inversions and O2 peaks (Fig. 5f, h, j).

The position of the oxic–anoxic interface (10 nmol O2 L-1) varied several meters in depth

between the casts (Table 1). However, the oxic–anoxic interfaces were not associated with

a specific density-horizon (data not shown), and thus, internal waves cannot explain the

variations in oxic/anoxic interface depth.

Submicromolar zones with similar shapes and a varying depth of the oxic–anoxic

interface were observed as well in Lake Lugano. The submicromolar zones extended on

average over 1.55 ± 0.36 m (n = 3) (Table 1), although the linear extrapolation of the

large-scale oxygen gradient implied an extension over only *0.3 m.

3.5 Submicromolar Zones at a Thermocline

The large-scale oxygen gradient in Lake Zug extended over more than 100 m water depth,

whereas oxygen in Lake Rot dropped from *350 lmol L-1 in the fully mixed epilimnion

(0–7.6 m) to *1 lmol L-1 near 8.1 m due to a strong thermal stratification (Fig. 3c). In

spite of these contrasting differences in the physical regime, the observed features of the

submicromolar zone in Lake Rot were quite similar to those in Lake Zug (Fig. 6). A linear

extrapolation of the O2 gradient predicted a submicromolar zone in the range of centi-

meters. However, the submicromolar zone extended on average over 1.0 m ± 1.0 m

(n = 5), but varied strongly between 0.2 and 2.5 m (Table 1). The depth of the oxic–

anoxic interface varied accordingly. Again, the microoptode recorded both types of pro-

files, smooth transitions of the overall oxygen gradient to the constant anoxic levels and

sharp inversions and maxima in submicromolar O2 concentrations (Fig. 6). However,

distinct structures in the density profiles matched only occasionally with inversed oxygen

gradients (Fig. 6a, cast Rot2 at 8.4 m), while most density discontinuities have no coun-

terpart in the oxygen profiles (Fig. 6a, c, casts Rot1, Rot3 at 8.4 m).

3.6 Governing Factors for Submicromolar O2 Variability

Our profiling study revealed submicromolar layers of a thickness on the order of a meter

within the stable thermocline of Lake Rot and up to several meters in the quasi-homo-

geneous hypolimnion of Lake Zug. The spatial extension of this transition zone, the

considerable variability of the oxygen profiles and the strongly differing depths of the

oxic–anoxic interface were unexpected features of this lower boundary of the oxic zone.

However, we carefully reduced the risk of sampling artefacts like self-induced turbulent

mixing from previous casts by horizontal movement of the probe to an unsampled spot

prior to profiling.

Several physical and biogeochemical factors could contribute to the oxygen variability

at the oxic–anoxic transition: Vertical (diapycnal) mixing occurs mostly at the boundaries

and not in the center of lakes where the profiles were taken. The turbulence in the interior

of the hypolimnion is extremely weak, and the energy transfer from large-scale seiching to

turbulent mixing occurs in the bottom boundary layer (Wüest and Lorke 2003; Goudsmit

et al. 1997). Horizontal mixing in deep lakes is typically 4–5 orders of magnitude more
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effective than vertical mixing with tracer fronts moving in the horizontal direction on the

order of a kilometer per day (Peeters et al. 1996). As a result, the biogeochemical profiles

in the interior of a lake are strongly affected by the intermittent reaction and transport

processes occurring at the boundaries (Lorke et al. 2003; Brand et al. 2008; Müller et al.

2012). In addition, slow respiration reactions with half-lives on the order of days rather

than hours (Stolper et al. 2010) could further modulate the submicromolar O2 concentra-

tions close to the oxic–anoxic boundary. The boundary layer mixing could thus not only

promote lateral injection of oxygen as observed, e.g., in the Black Sea (Konovalov et al.

2003), but could as well continuously feed different concentrations of microorganisms

towards the calm interior of the lake which could further enhance the contrast of bio-

geochemical conditions of adjacent water parcels. Such a regime is quite plausible for Lake

Rot where patchiness in algal activity could modulate the balance of photosynthesis and

respiration even down to the oxic–anoxic interface. Further time-series measurements and

analyses of the microbial activity at the oxic–anoxic interface will help to discriminate

between the governing mechanisms of submicromolar O2 variability.

4 Final Assessment and Conclusion

In this study, we demonstrate that amperometric microsensors as well as microoptodes, and

thus two completely different O2-sensing systems, allow reliable resolution of the fine-

scale structure of the oxic–anoxic interface down to the 10 nmol O2 L-1 range in a

continuous profiling mode. The excellent match of the profiles in the submicromolar

oxygen range during dual profiling indicates that the observed patterns are caused by actual

concentration gradients and not by problems of the sensing system or measuring principle.

The PIA’s combination of high-resolution in situ sensing, sampling capability and

online data transfer makes the observed extensive submicromolar zones now accessible for

detailed studies and provides fast localization of the oxic–anoxic interface which in turn

might be used as anchor point for targeted sampling.

Reduction in amperometric signal drift at low to anoxic oxygen concentrations was the

key to access the nanomolar range without the need for intermittent internal calibration

(Revsbech et al. 2009), thus allowing continuous profiling. The in situ studies demon-

strated that anoxic preconditioning of common amperometric microsensors strongly

reduced signal drift at low oxygen concentration. The stabilized signal then allowed use of

the anoxic part of the water column for zero baseline calibration. Detection limits below

10 nmol L-1 were achieved by the employed high amplification scheme which realized

high signal resolution (\0.06 nmol L-1 bit-1) at low oxygen concentrations. The stable

signals and the low detection limits improved the localization of the oxic–anoxic interface

clearly (Fig. 4). This amperometric approach provides a continuous signal which can be

sampled at the desired temporal resolution which we set at 2 Hz.

The field experiments revealed some limitations for the amperometric system: Stable

zero oxygen signals are currently only achieved after 2–4 h of anoxic preconditioning and

only in H2S-free waters (Fig. 4). Low drift can only be maintained by limiting the sensor’s

exposure to oxygen during profiling. For measurements across a significant temperature

gradient, the temperature dependency (&2–3 % per �C) should be evaluated for each

microsensor (Reimers 1987; Gundersen et al. 1998). Furthermore, electromagnetic noise,

e.g., as emitted during operation of the syringe sampler, will propagate as strong peaks into

the highly amplified amperometric signal which impedes exact measurements during

sampling.
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While achieving nearly similar detection limits, the microoptode offers therefore several

advantages for sampling purposes and in sulfidic waters: The optical principle is insen-

sitive to electromagnetic noise, and drift stability is realized without long preconditioning

times. Precise oxygen measurements are recorded even during sampler operation and

consecutive transfers through the oxic water column, e.g., to retrieve samples are

unproblematic. The small anoxic offsets below 24 nmol L-1 thereby corroborated the

long-term stability of the calibration. The microoptode’s zero oxygen signal is unaffected

by free H2S, and its temperature dependency is well compensated by the manufacturer-

supplied algorithm (Fig. 6).

In contrast to the amperometric system, the microoptode’s fluorescence intensity and

lifetime increase with decreasing oxygen partial pressure which contributes to stable zero

oxygen signals. Compared to the amperometric setup, the microoptode had a lower

maximal digital resolution of *4 nmol L-1 per 0.01� increment in phase shift. But due to

the stable zero oxygen signals, the microoptode’s in situ detection limits were still well

below 20 nmol L-1 and are acceptable for submicromolar profiling. Similar to the

amperometric system, the microoptode could provide a nearly continuous signal, but

currently the maximum sampling frequency is limited to 1 Hz by its opto-electronics.

However, optical systems with faster sampling rates have been described recently

(Chipman et al. 2012).

Surface-wave-induced motion of the probe during casts can set a lower limit to

acceptable dive speeds for ship-based high-resolution profiling, and thus, fast responding

sensing systems are desirable. The 90 %-response times of our amperometric and optical

systems were 9 and 7 s, respectively. Faster sensors are available and would further

improve the performance in profiling highly variable oxygen regimes: The amperometric

system still allows for significant optimization of the response time to B0.2 s (Chipman

et al. 2012; Berg et al. 2003), and a more quantitative design of the back guard cathode

might shorten preconditioning times. Similar, fast optodes with signal responses B0.2 s

have been described recently, and new technologies for high sensitivity measurements are

emerging (Chipman et al. 2012; Mayr et al. 2009). However, for wavy field sites, a free-

falling deployment with slow sinking speeds could be advantageous to achieve high spatial

resolution and to precisely locate the oxic–anoxic interface.

The high-resolution profiles obtained by the two methods and with the PIA-system

revealed hitherto unnoticed extensive submicromolar zones in lakes with strongly differing

vertical stratification. The depth of the oxic–anoxic interface as well as the spatial distri-

bution of submicromolar oxygen concentrations varied between casts, showing highly

dynamic systems. The linear extrapolation from micromolar oxygen gradients to zero

oxygen underestimated the thickness of the submicromolar zones severalfold and cannot

account for the observed small-scale variability. Thus, we cannot assume zero oxygen

concentration and ‘‘anoxic’’ conditions at depths directly below the 1 lmol L-1 detection

limit of conventional O2 sensors. Therefore, part of the discussion of a ‘‘lack of overlap’’ in

gradients of the terminal electron acceptor O2 and reduced substances such as NH4
?, H2S

and CH4 (Murray et al. 1995; Schubert et al. 2010) needs to be refocused on the potential

of chemotrophic reactions occurring at submicromolar O2 concentrations, on the physical

transfer of O2 to the lowest end of the oxic zone, and on the importance of deep oxygenic

photosynthesis in shallow aquatic systems. With their broad range of redox conditions,

lakes are accessible test systems for such studies. Profiling capabilities beyond the

micromolar limit will facilitate the design and execution of further studies on the coupling

of carbon and nutrient cycles at these redox boundaries (Wright et al. 2012; Lam and

Kuypers 2011; Dellwig et al. 2010).
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Holst G, Klimant I, Kühl M, Kohls O (2000) Optical microsensors and microprobes. In: Varney MS (ed)
Chemical sensors in oceanography, vol 1. Gordon and Breach Science Publishers, London
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Peeters F, Wüest A, Piepke G, Imboden DM et al (1996) Horizontal mixing in lakes. J Geophys Res Oceans
101(C8):18361–18375. doi:10.1029/96JC01145

Reimers CE (1987) An in situ microprofiling instrument for measuring interfacial pore water gradients—
methods and oxygen profiles from the North Pacific Ocean. Deep Sea Res Part A 34(12):2019–2035.
doi:10.1016/0198-0149(87)90096-3

Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34(2):474–478.
doi:10.4319/lo.1989.34.2.0474

Revsbech NP, Jørgensen BB (1986) Microelectrodes: their use in microbial ecology. Adv Microb Ecol
9:293–352

Revsbech NP, Larsen LH, Gundersen J, Dalsgaard T, Ulloa O, Thamdrup B (2009) Determination of ultra-
low oxygen concentrations in oxygen minimum zones by the STOX sensor. Limnol Oceanogr Methods
7:371–381. doi:10.4319/lom.2009.7.371

Revsbech NP, Thamdrup B, Dalsgaard T, Canfield DE (2011) Construction of STOX oxygen sensors and
their application for determination of O2 concentrations in oxygen minimum zones. Methods Enzymol
486:325–341. doi:10.1016/B978-0-12-381294-0.00014-6

Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MMM (2006) Anaerobic
ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol 8(10):
1857–1863. doi:10.1111/j.1462-2920.2006.001074.x

Schubert CJ, Lucas FS, Durisch-Kaiser E, Stierli R, Diem T, Scheidegger O, Vazquez F, Müller B (2010)
Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquat Sci 72(4):
455–466. doi:10.1007/s00027-010-0148-5

Stolper DA, Revsbech NP, Canfield DE (2010) Aerobic growth at nanomolar oxygen concentrations. Proc
Natl Acad Sci USA 107(44):18755–18760. doi:10.1073/pnas.1013435107

Tengberg A, Hovdenes J, Andersson HJ, Brocandel O, Diaz R, Hebert D, Arnerich T, Huber C, Kortzinger
A, Khripounoff A, Rey F, Ronning C, Schimanski J, Sommer S, Stangelmayer A (2006) Evaluation of

56 Aquat Geochem (2014) 20:39–57

123

http://dx.doi.org/10.1146/annurev-marine-120709-142814
http://dx.doi.org/10.1073/pnas.0812444106
http://dx.doi.org/10.1016/S0003-2670(00)82310-7
http://dx.doi.org/10.1016/S0003-2670(00)82310-7
http://dx.doi.org/10.1016/j.apgeochem.2011.06.021
http://dx.doi.org/10.4319/lo.2003.48.6.2077
http://dx.doi.org/10.4319/lo.2009.54.2.0428
http://dx.doi.org/10.1021/Ac900662x
http://dx.doi.org/10.1016/S0967-0645(99)00048-X
http://dx.doi.org/10.1021/es301422r
http://dx.doi.org/10.1021/ba-1995-0244.ch007
http://dx.doi.org/10.1021/ba-1995-0244.ch007
http://dx.doi.org/10.1007/s10532-007-9104-z
http://dx.doi.org/10.1029/96JC01145
http://dx.doi.org/10.1016/0198-0149(87)90096-3
http://dx.doi.org/10.4319/lo.1989.34.2.0474
http://dx.doi.org/10.4319/lom.2009.7.371
http://dx.doi.org/10.1016/B978-0-12-381294-0.00014-6
http://dx.doi.org/10.1111/j.1462-2920.2006.001074.x
http://dx.doi.org/10.1007/s00027-010-0148-5
http://dx.doi.org/10.1073/pnas.1013435107


a lifetime-based optode to measure oxygen in aquatic systems. Limnol Oceanogr Methods 4:7–17.
doi:10.4319/lom.2006.4.7

Thamdrup B, Dalsgaard T, Revsbech NP (2012) Widespread functional anoxia in the oxygen minimum zone
of the Eastern South Pacific. Deep Sea Res Part I 65:36–45. doi:10.1016/j.dsr.2012.03.001

Tonolla M, Peduzzi S, Demarta A, Peduzzi R, Hahn D (2004) Phototropic sulfur and sulfate-reducing
bacteria in the chemocline of meromictic Lake Cadagno, Switzerland. J Limnol 63(2):161–170. doi:10.
4081/jlimnol.2004.161

Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ (2012) Microbial oceanography of anoxic
oxygen minimum zones. Proc Natl Acad Sci USA 109(40):15996–16003. doi:10.1073/pnas.120500
9109

Winkler LW (1888) Die Bestimmung des im Wasser gelösten Sauerstoffes. Ber Dtsch Chem Ges
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