
Comput Geosci (2014) 18:969–988
DOI 10.1007/s10596-014-9439-6

ORIGINAL PAPER

Bedrock topography reconstruction of glaciers from surface
topography and mass–balance data

Laurent Michel-Griesser · Marco Picasso ·
Daniel Farinotti · Martin Funk · Heinz Blatter

Received: 13 February 2014 / Accepted: 23 July 2014 / Published online: 23 August 2014
© Springer International Publishing Switzerland 2014

Abstract Three methods based on the three-dimensional
shallow ice approximation of glacier flow are devised that
infer a glacier’s subglacial topography from the observa-
tion of its time-evolving surface and mass balance. The
quasi-stationary inverse method relying on the apparent sur-
face mass-balance description of the glacier’s evolution is
first exposed. Second, the transient inverse method that iter-
atively updates the bedrock topography with the surface
topography discrepancy is formulated. Third, a shape opti-
mization algorithm is presented. The aim of the paper is to
collect these methods, analyze their differences, and iden-
tify what brings the sophistication of shape optimization
for reconstructing subglacial topographies. The three meth-
ods are compared to the ice thickness estimation method
(ITEM) on direct measurements on Gries glacier, Swiss
Alps. The paper concludes with a detailed discussion on the
sensitivity of the shape optimization method to the model
parameters.
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1 Introduction

Ice flow modelling requires accurate boundary conditions
and model parameters. For instance, initializing a glacier
model with an unsuitable approximation of subglacial
topography may result in possibly significant errors in
the predicted glacier’s surface topography. Moreover, the
glacier model’s building blocks, namely ice rheology, sur-
face mass-balance and sliding law, describe physics approx-
imately with parameters that can hardly be determined
accurately and are thus still the subject of current research
[4, 5, 8, 24, 27, 35, 37, 42, 66].

Once the boundary conditions and the model parameters
are known, the numerical simulation of glaciers can pro-
vide the desired forecasts. The most complete description
of ice dynamics is provided by a non-linear Stokes approx-
imation of ice flow coupled with an evolution equation for
the glacier’s surface that transports ice following the Stokes
velocity [24, 40, 80]. Past reconstruction and future predic-
tions of some Swiss glaciers was successfully performed
with a three-dimensional model [41, 42] that usually relies
on large computer resources, therefore making model inver-
sions difficult. Hence, many lower-order models of ice flow
have been developed in the past decades, among which the
widespread shallow ice approximation (SIA) [23, 39, 58].

This paper focuses on the computation of subglacial
topography from knowledge of surface topography evolu-
tion. Although this topography can actually be assessed
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by geophysical means, for practical reasons, its measure-
ment can only be performed at selected locations and for
a limited sample of glaciers [12]. Therefore, several theo-
retical approaches to determine subglacial topography have
been proposed. Assumptions of a parabolic cross section
and perfectly plastic behaviour of glacier ice supply a rough
estimation, where the shear stress at the glacier’s base is
supposed to be constant and close to the plastic yield stress
of ice [63]. The latter estimation can be extended to account
for the effect of side drag on the stress balance [48]. A
similar approach, based on the parallel-sided slab approx-
imation [23], empirically infers the glacier-specific plastic
yield stress as a function of the glacier’s elevation range and
then relates it to the glacier’s thickness and slope [28, 64].
An alternative method exists that relies on mass turnover
and parallel-sided slabs [17]. Subglacial topography of a
very large sample of glaciers is reconstructed with an even
more simplified approach [36]. It is also estimated by means
of inverse approaches relying on surface velocity measure-
ments [15, 25, 52, 60, 68, 69, 73]. Most of these procedures
are direct algorithms in the sense that they use simpli-
fied model equations from which subglacial topography can
be deduced analytically. The transient and quasi-stationary
inverse methods formulated in what follows are simple
iterative methods that can be applied to any flow model.

However, the latter two inverse methods can be improved
with shape optimization. On subglacial topography estima-
tion by means of optimal control, the oldest contribution is
an interpolation method that seeks the best solution fitting
measured data, under the constraint that it also minimizes
topography potential and curvature [38]. Subsequent work
on optimal control algorithms that infer the ice thickness
distribution of a glacier is rather sparse but literature has
lately become more abundant on those that minimize the
surface velocity misfit on steady geometries [52, 60]. With-
out direct consideration of surface velocity data, Clarke et
al. [13] minimize the discrepancy between observed ice
thickness and quasi-stationary shallow ice value. Optimal
control is more commonly used to determine basal slid-
ing law and rheology coefficients [4, 5, 21, 27, 44, 45,
47, 50, 51, 66, 75], where the misfit between computed
and measured surface velocities is minimized with two and
three-dimensional flow models of arbitrary order.

Many of the existing reconstruction methods rely on sur-
face velocity measurements, which makes the problem of
computing both basal topography and model parameters
like rheology, surface mass-balance and sliding coefficients
underdetermined. Because very little velocity information is
available on Swiss Alps glaciers, the algorithms below com-
pute the ice thickness distribution from observed surface
topographies.

The three conceptually different algorithms presented in
this paper are extensions to either three space dimensions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂H
∂t

= ∇ ·
(
D∇(b + H)

)
+ B, in �⊥ × [ti , tf ],

H ≥ 0, in �⊥ × [ti , tf ],
H = 0, on ∂�⊥ × [ti , tf ],
H = si − b, in �⊥ × {ti},

(1)

or the optimal control framework of the transient and quasi-
stationary inverse methods developed in [55, 56, 65]. Our
previous contribution on the latter two methods introduced
their two-dimensional formulation without consideration of
sliding and did not compare them to the shape optimization
algorithm. The main purpose of this paper is to compare
the three methods theoretically and computationally. On
synthetic data, the superiority of the shape optimization
over the other inversion methods is demonstrated. The algo-
rithms are also compared to the ice thickness estimation
method (ITEM, [17]) for reconstructing the bedrock topog-
raphy of Gries glacier, Swiss Alps, for which ice thickness
measurements exist, thus allowing a comparison with real-
world data. Despite its simple underlying ice flow model,
the ITEM showed its efficiency and relevance in estimating
basal topography of several glaciers [16, 17]. The advan-
tages of the three methods over currently existing proce-
dures are that they all incorporate sliding, time-dependence,
and three-dimensional space in a physically consistent way
with respect to the shallow ice model. In particular, they
use neither interpolation nor any kind of surface topography
filtering where the surface slope is too small.

The paper’s outline is the following: first, the shallow
ice equation is recalled. Next, the quasi-stationary inverse,
transient inverse and shape optimization methods are for-
mulated. Then, the three algorithms are compared in per-
formance on synthetic data and the real-world geometry of
Gries glacier, Swiss Alps. In the real-world case, the three
methods are compared to the ITEM. Finally, the sensitivity
of the shape optimization procedure to the model parameters
is discussed and conclusions are drawn.

2 Forward problem

A three-dimensional glacier ice volume is considered whose
time-dependent outline is contained in �⊥ = [0, Lx] ×
[0, Ly] (see Fig. 1), from initial time ti to final time tf . Its
bed and surface topographies are denoted by b and s, respec-
tively, and its ice thickness by H = s−b. Glacial isostasy is
neglected, hence, the bedrock topography is time indepen-
dent. In this contribution, the three-dimensional SIA of flow
dynamics is considered, where the transient forward prob-
lem can be cast into: given a bedrock b, an initial surface
si and a surface mass-balance time series B, find the ice
thickness H : �⊥ × [ti , tf ] −→ R such that
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Fig. 1 Left Example ice extent in the (x, y)-plane of Gries glacier,
Swiss Alps, that illustrates the notations introduced in the text. The
map domain �⊥ consists of the whole rectangle [0, Lx ] × [0, Ly ].

Right Profile of Gries glacier along a flow line. The bedrock topogra-
phy b is the ice-lithosphere interface, while the surface topography is
the ice—air interface. The ice domain is depicted in blue

where the total diffusivity D consists in two contributions,
Df and Ds , due to flow dynamics and Weertman-type [76]
sliding respectively, namely

D = Df + Ds, (2)

where

Df = �Hn+2
∥
∥
∥∇(b+H)

∥
∥
∥

n−1
, Ds = �sHn+1

∥
∥
∥∇(b+H)

∥
∥
∥

n−1
,

(3)

and the diffusion coefficients are defined by

� = 2
A(ρg)n

n + 2
, �s =

(ρg

C

)n

, (4)

where A is the rate factor, ρ is the ice density, g is the accel-
eration due to gravitation, n ≥ 1 is the Glen’s flow law
exponent [20] and C is a position-dependent function [23,
39, 41].

The surface mass balance, in turn, is modelled with the
following four-parameter expression:

B = m1 + m2

2

(
b + H − zELA

)

−
√

(
m1 − m2

2

(
b + H − zELA

))2

+ ε, (5)

where zELA is the equilibrium line altitude (ELA), m1 and
m2 are the mass–balance gradients below and above the
ELA, respectively, and ε > 0 is a regularization parame-
ter. Such a mass–balance parameterization describes snow
accumulation above and snow ablation below the ELA, with
rates m2 and m1, respectively, m2 ≤ m1. The surface mass
balance (5) is widely used with ε = 0.

From the computed thickness H, the elevation sf of the
glacier’s surface topography at final time is deduced from

sf = b + H
∣
∣
∣
∣
t=tf

. (6)

An implicit finite-difference scheme, centred in space, that
solves problem (1), is detailed in the Appendix.

3 Bedrock topography reconstruction methods

In this section, the inversion problem is first exposed. Then,
the inversion methods are formulated, starting with the
quasi-stationary inverse method [17, 55]. Next, the transient
inverse method is formulated [55, 65], before the shape opti-
mization algorithm is introduced. The computational details
underlying the latter method are burdensome and reported
by [56, 57]. A simplified analysis in two space dimensions
without sliding is presented in the Appendix. Its formula-
tion’s complexity is its only inconvenience given that this
method is, by far, the fastest and most accurate, as shown
later.

3.1 Problem statement

Consider the transient problem corresponding to Eq. 1 in
the case where the initial and final surface topographies
and the surface mass–balance B are known and the bedrock
topography is unknown. The initial surface topography is
denoted by si and the observed final surface topography is
sobs. The aim is to find such a bedrock topography b that
minimizes the discrepancy between the known final surface
topography sobs and the computed final surface topography

sf = b+H
∣
∣
∣
t=tf

with Eq. 1. The inversion problem has two

unknowns: the surface geometry s, which is only known at
times ti and tf and the bedrock topography b (or, equiv-
alently, the ice thickness H). The time-dependent inverse
problem can be stated as follows: given the glacier surface
topographies si at time ti and sobs at time tf as well as
the surface mass-balance time series B in the time interval
[ti , tf ], find the bedrock geometry b : �⊥ → R such that

sobs = sf , in �⊥, (7)
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under the constraint that b and H satisfy the shallow ice
Eq. 1. In other words, this means that a bedrock topography
b is sought such that the glacier evolves from surface si to
sobs over the time interval [ti , tf ] under the influence of the
surface mass–balance B. In this paper, the glacier’s outline
is assumed as time dependent. In particular, it may be that
part of the bedrock topography inside domain �⊥ is known
(e.g. the red part of the bedrock topography in Fig. 2). Let
�∗⊥ ⊂ �⊥ be the domain where the bedrock topography
is known (green part of the map domain in Fig. 2). In this
domain, the bedrock topography is denoted by b∗ so that
b = b∗ is enforced in �∗⊥. Additionally, because the source
term B can take negative values, the bedrock topography b

must satisfy

b < min{si , sobs}, in �⊥ \ �∗⊥, (8)

to make any of the below methods applicable. Note the
strict inequality. This leads to the definition of the space of
admissible bedrock topographies [54, 57]

Uad =
{
b ∈ C0(�⊥) : b

= b∗ in �∗⊥and b ≤ min{si , sobs}in �⊥ \ �∗⊥
}
, (9)

where C0(�⊥) is the set of continuous functions on �⊥.

3.2 Quasi-stationary inverse method

The motivation behind the quasi-stationary inverse method
is the straightforward automatization of procedure [17] in
the shallow ice context. Basically, it consists in solving
the stationary version of Eq. 1 with a modified source

Fig. 2 Two-dimensional glacier profile illustrating the surface
topographies si at time ti and sobs at time tf . A profile of the glacier’s
map domain �⊥ is indicated in blue and the subset �∗⊥ of �⊥ where
the bedrock topography is known and marked in green

term that accounts for both the surface mass–balance and
the measured surface topography evolution in time. In the
quasi-stationary approximation, surface topography evolu-
tion is assumed uniform in time. In other words, this means

that the ice thickness change rate
∂H
∂t

in Eq. 1 is approached

with
sobs − si

tf − ti
, so that the evolution (1)1 is transformed into

the stationary equation

sobs − si

tf − ti
= ∇ · (D∇s) + B. (10)

The so-called apparent surface mass-balance [17] is defined
by

B̃ = B − sobs − si

tf − ti
. (11)

Then, the quasi-stationary formulation of the transient
inverse problem in the SIA is: given the glacier surface
topographies si and sobs as well as the surface mass–
balance time series B in the time interval [ti , tf ], find the
thickness H : �⊥ → R such that
⎧
⎨

⎩

∇ · (D∇s) = −B̃, in �⊥ \ �∗⊥
H > 0, in �⊥ \ �∗⊥
H = 0, in �∗⊥,

(12)

where s can be any linear combination of si and sobs and B̃
is given by Eq. 11. In this paper, s = sobs is chosen. When
the thickness H is known, the bedrock topography can be
deduced from the relation b = s − H. However, in gen-
eral, the divergence (12) cannot be solved analytically. An
approximation of the solution can be found after transforma-
tion into the following regularized, pseudo-time-dependent
formulation [46, 55]:
⎧
⎪⎨

⎪⎩

−εQSIM∇ ·(D̃∇H)+ ∂H
∂θ

=∇ · (D∇s) + B̃, in �⊥ \ �∗⊥
H > 0, in �⊥ \ �∗⊥
H = 0, in �∗⊥,

(13)

θ > 0, where εQSIM > 0 is a regularization parameter
(“QSIM” stands for quasi-stationary inverse method), θ is a
virtual time, the surface topography s is fixed to s = sobs

and

D̃ =
(
�H + �s

)
Hn+1

∥
∥
∥∇H

∥
∥
∥

n−1
. (14)

Virtual time θ in Eq. 13 is a purely numerical artifice intro-
duced to solve problem Eq. 12. The stationary solution of
Eq. 13 is a regularized approximation of the solution of
problem Eq. 12. A numerical method that solves problem
Eq. 13 is described in the Appendix. This method is easy to
implement because it only requires slight modifications of
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the forward solver. However, it aims at finding a stationary
geometry whose existence is not guaranteed a priori.

3.3 Transient inverse method

The most important drawback of the previous method is
the linear approximation of the glacier’s time evolution.
The method tailored hereafter takes the glacier’s transient
evolution into account more accurately. Let m > 0 be an
iteration index, bm the bedrock at iteration m and b0 some
initial guess for b. In essence, the idea is to iteratively
update the bedrock with the surface topography discrepancy
at final time, which is equivalent to superimpose the current

bedrock bm and its updated version sobs −Hm
∣
∣
∣
t=tf

[55, 65]:

bm+1 = bm + β
(
sobs − sm

f

)
= bm + β

(
sobs − bm − Hm

∣
∣
∣
t=tf

)

= (1 − β)bm + β
(
sobs − Hm

∣
∣
∣
t=tf

)
, (15)

where sm
f = bm + Hm

∣
∣
∣
t=tf

is the approximated final sur-

face topography at iteration m (see Fig. 3) and 0 < β ≤ 1 a
relaxation parameter. In addition to this update, a smoothing
of the computed ice thickness is necessary to provide con-
vergence. This is done by including a Laplacian term in Eq.
15. Whatever the forward model is, the procedure remains
unchanged: first, the forward simulation is performed in
order to determine the final surface topography. Then, that
topography is compared to the measured topography sobs

and the discrepancy is added to the bedrock. This approach
is close to that exposed by [32] but, here, steady as well as
transient problems can be solved. Therefore, the procedure
is the following: let δ > 0. Then,

1. initialize the bedrock topography with b0

2. while ‖bm+1 − bm‖ > δ

(a) solve the forward problem (1) with bedrock topog-
raphy bm and initial surface si , whose output is the

ice thickness Hm
∣
∣
∣
t=tf

at final time;

(b) solve

{
Hm = Hm

∣
∣
∣
t=tf

+ β
(
bm + Hm

∣
∣
∣
t=tf

− sobs
)

+ εTIMβ�Hm, in �⊥ \ �∗⊥,

Hm = 0, in �∗⊥,

(16)

for Hm, where 0 < β ≤ 1 is a relaxation parame-
ter and εTIM ≥ 0 a regularization parameter;

(c) set

bm+1 = sobs − Hm. (17)

This method aims at minimizing local surface topogra-
phy discrepancy at time tf . It is easy to implement because

Fig. 3 Example glacier profile illustrating Eq. 15. The idea is to report
the discrepancy sobs − sm

f on the bedrock topography at each iteration.

The bedrock is lifted where sm
f < sobs and lowered otherwise

it relies on the iterative use of the forward model. Conse-
quently, it has the further advantage of being as memory-
demanding as the forward solver. However, the procedure
is based on a local bedrock-to-surface perturbation transfer,
which is not occurring in nature [67].

3.4 Shape optimization method

The last method consists in seeking the optimal bedrock
elevation b such that the misfit between computed and
observed surface topographies at final time tf is as small
as possible. This is an optimal control problem where the
ice thickness H = s − b is termed “state variable” and
the bedrock topography b “control variable”. The misfit
functional to be minimized is

J (H, b) = 1

2

∫

�⊥
(sf (H, b) − sobs)2dx + εSOAR(b), (18)

where the first term represents the misfit between computed
and observed surface topographies, R is a Tikhonov regu-
larization [74] and εSOA ≥ 0 is a regularization parameter.
Traditionally, the regularization’s purpose is to minimize
the topography’s potential or even its curvature [38, 60],
that is the bedrock topography’s gradient or its Laplacian.
However, [54] showed that such regularizations do not pro-
vide satisfactory estimations in practical applications of
the shape optimization method introduced here. The more
appropriate minimal perimeter constraint is advocated that
turns R(b) into the area spanned by the bedrock topography
b [57].

Minimizing misfit (18) is slightly different from mini-
mizing discrepancy between computed and observed sur-
face topographies, as addressed previously. Here, the cost
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functional (18) is minimized, which corresponds to find-
ing a bedrock topography that minimizes the overall surface
topography misfit. In both the quasi-stationary and tran-
sient inverse methods, the surface topography discrepancy
is minimized locally and everywhere in the computational
domain.

The shallow ice Eq. 1 links control b to state variable
H(b). The cost functional to be minimized can thus be
expressed as

J (b) = J (H(b), b). (19)

The shape optimization problem is cast into: find

argmin
b∈U ad

J (b) (20)

under the constraint that the ice thickness and the bedrock
topography satisfy problem Eq. 1, where Uad is defined by
Eq. 9. In order to minimize the cost functional (19), the
solution of equation

dJ

db
(b) = 0 (21)

is sought in the space Uad, which is realized by means of a
quasi-Newton method [45, 62] coupled to a projection of b
onto Uad. Let m be an iteration index and bm the bedrock
topography at iteration m. The m + 1 iterate is found by
solving

bm+1 = bm +
(

d2J

db2
(bm)

)−1
dJ

db
(bm), (22)

where the gradient of J is computed exactly with a primal–
dual method while its Hessian is approximated with the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [7, 18,
22, 72]. An intuition of the primal–dual method is given
in the Appendix in the non-regularized, non-sliding, two-
dimensional case. The full three-dimensional computation
is reported by [57]. Basically, the method advocated here
consists in augmenting cost functional (18) to a Lagrangian
functional that incorporates the shallow ice constraints (1)
in a “first discretize, then optimize” approach [33]. In the
minimization process, forward problem (1) and a backward-
in-time, diffusion–transport problem, the so-called primal
and dual problems, respectively, are solved iteratively so
that the cost functional’s gradient can actually be evalu-
ated. In summary, the shape optimization procedure is the
following: let δ > 0. Then,

1. Set glacier geometry with initial bedrock b0 and surface
si

2. while |J (bm+1)− J (bm)| > δ

(a) solve the primal problem (1)
(b) solve the dual problem of Eq. 1

(c) compute the gradient dJ
db from the value of the

state (solution to the primal problem) and the
costate (solution to the dual problem) variables

(d) solve Eq. 22 with the Bounded, Limited Memory,
Variable Metric method (BLMVM) of the Toolkit
for Advanced Optimization (TAO, [61]), where the
Hessian is approximated with the BFGS method

(e) project bm+1 onto space of admissible controls
Uad.

The procedure can be extended to concurrently compute
some model parameters, like surface mass balance or rhe-
ology parameters [57], contrary to the quasi-stationary and
transient inverse methods. This, however, goes beyond the
scope of this contribution.

The shape optimization algorithm is a direct extension
of the transient inverse method that takes into account the
non-locality of the bedrock-to-surface perturbation trans-
fers, which are known to be non-trivial [67]. To understand
how the two methods are linked together, let us adopt a
more straightforward way to update bedrock topography
than the quasi-Newton method (22). The analysis that fol-
lows is exclusively aimed at building the theoretical relation
between the two algorithms. In practice, bedrock topog-
raphy reconstruction is performed with the quasi-Newton
method (22). As in the transient inverse method, introduce a
pseudo-time θ and consider the following pseudo-transport
equation [3, 77]:

∂b

∂θ
+www · ∇b = 0, (23)

with pseudo-velocity

www = V ∇b

‖∇b‖2
, (24)

where V is defined, for εSOA = 0, by weak expression [57]

dJ

db
b̂ =

∫

�⊥
V b̂d−−− sobs + λ

∣
∣
∣
t=ti

b
]
dxxxx =

∫

�⊥

[(
sf

−
∫ tf

ti

∫

�⊥
λ
∂B
∂b

b̂dxxxdt

−
∫ tf

ti

∫

�⊥
∇ ·

[
(n− 1)G∇s · ∇λ∇s +D∇λ

]
b̂dxxxdt

−
∫ tf

ti

∫

�⊥

(ρg

C

)n
Hn+1‖∇s‖n−1∇s · ∇λb̂dxxxdt,

(25)

for any continuous function b̂, where λ is the dual variable
of H and G is a function of H and b (see also Appendices).
From transport Eq. 23, a variation δb of b obeys

δb = −www · ∇bδθ, (26)
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Fig. 4 Numerical validation process of the inversion methods: first, a
forward simulation is performed over some time frame from a known
bedrock and initial surface topography, whose outcome is a computed
final surface topography (top figures). Then, the bedrock topography
is assumed unknown and aimed at being reconstructed from the initial
surface topography and the previously computed final surface topog-
raphy. An initial guess is required for each method, depicted in red on
the bottom figure

where δθ is a pseudo-time variation. The choice of pseudo-
velocity (24) is made because, in this case,

dJ

db
δb = −

∫

�⊥
V2δθdxxx < 0, (27)

that is, (23), ensures a decrease of cost functional J . Explic-
itly discretized in time, transport Eq. 23 becomes, for
iteration index m,

bm+1 = bm+�θ
(
sobs − smf

)

−�θ

[

λm
∣
∣
∣
t=ti

−
∫ tf

ti

[
λm

∂Bm

∂b

+∇ ·
(
(n − 1)Gm∇sm · ∇λm∇sm +Dm∇λm

)

+
(ρg

C

)n (
Hm

)n+1‖∇sm‖n−1∇sm · ∇λm
]
dt

]

,

(28)

which is precisely (15) augmented with additional terms that
account for the way a bedrock topography perturbation is
transferred up to the surface topography and the regulariza-
tion. The quasi-Newton approach Eq. 22 is a sophisticated
way of solving Eq. 28.

The quasi-Newton method (22) is much more difficult
to implement than the previous transient and the quasi-
stationary inverse methods. It requires solving of the dual
problem: it is a backward-in-time diffusion-transport prob-
lem, which can be either computed by hand or gener-
ated automatically by means of automatic differentiation
[31, 70]. Its solving relies on storage of the ice thick-
ness H at every time step, which makes the method much
more memory-demanding. Finally, contrary to the quasi-
stationary and transient inverse methods, this sophisticated
method needs external algorithms that make use of the com-
puted gradient dJ

db in order to calculate a reasonable descent
direction as well as the BFGS approximation of the Hessian

matrix d2J

db2 . All these algorithms can be used as a black box
through the TAO library.

The three methods presented in this section depend on
a regularization parameter (εQSIM, εTIM and εSOA) that
sets a compromise between data under- and overfitting. In
the transient inverse method and the shape optimization
algorithm, the choice of this parameter is based on an L-
curve criterion [11, 57, 65]. In the quasi-stationary inverse
method, a small enough parameter that allows convergence
is chosen.

To conclude, none of the proposed methods guarantees
that the computed estimation corresponds to the global min-
imum of the cost functional. Genetic algorithms or particle
swarm methods [34, 43] are known to be more efficient to
get the global minimum at the expense of a much slower
convergence.

4 Numerical results

The purpose of this section is to first validate the inver-
sion methods presented in the previous section on synthetic
data, compare their performance and then apply them to a
measured real-world geometry. Both the synthetic and the
real-world calculations are performed on the same glacier,
namely Gries glacier, Swiss Alps, for which bedrock topog-
raphy measurements are available [16]. Hereafter, the initial
surface topography si is always the topography measured
in 2003. In the synthetic validation, the input values of the
model parameters are chosen arbitrarily and the final surface
topography is generated by means of Eq. 1. The feasibility
of the inversion of the shallow ice model is demonstrated
in this case. A qualitative estimation of the error due to the
purely mathematical inversion is shown, which is free of any
other kind of errors, such as errors in the measurements or
the physical model. In the real-world validation, the model
parameters are set to their measured values on this partic-
ular glacier and the final surface topography is the surface
topography measured in year 2007.

4.1 Synthetic validation

To validate the three algorithms, a set of bedrock topogra-
phies, surface topographies and surface mass–balance time
series is assumed that satisfies Eq. 1 on a synthetic geometry
inspired from Gries glacier, Swiss Alps (see the large map
of Fig. 6). The time frame considered below is tf − ti = 5a
(5 years) and sliding is included. In other words, the mea-
sured bedrock and initial surface geometries of the glacier
[16] are used to construct the initial state of the reference
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Fig. 5 Evolution of the surface and bedrock topography misfits (a,
b, d and e) and convergence of the bedrock topography (c and f) as
functions of the iteration number m when the transient inverse method
(TIM, green curve), the shape optimization algorithm (SOA, blue
curve) and the quasi-stationary inverse method (QSIM, purple curve)
are applied to a synthetic geometry inspired from Gries glacier, Swiss
Alps. Recall that the number of iterations is not comparable in the two
rows. Plots a and d show the surface topography misfit (18) without

regularization. Plots b and e display the bedrock topography misfit.
In c and f, the maximal discrepancy between two successive bedrock
topography estimations is plotted. The quasi-stationary inverse method
is applied with εQSIM = 0.1 and �t = 10−6a, the transient inverse
method with β = 1, εTIM = 100 and �t = 10−2a and the shape
optimization algorithm with εSOA = 10−4 and �t = 10−2a. The grid
resolution is �x = 50m

forward simulation so that the chosen geometry is a relevant
representative of alpine glaciers. The target (or observed)
surface topographies are generated synthetically by means
of the shallow ice Eq. 1. The validation process is illus-
trated by Fig. 4: first, from the known bedrock and initial
surface topographies, the simulation of the glacier’s evolu-
tion with Eq. 1 provides a reference surface topography at
the final time tf = 5a. Then, the glacier’s bedrock topogra-
phy is assumed unknown and each algorithm is applied for
its reconstruction.

For validations, the coefficient C in expression (4)2 is
set to C = 1 in the light-grey region of the map domain
depicted by Fig. 6. The surface mass–balance parame-
ters are arbitrarily set to zELA = 2, 800 m, m1 =
m2 = 0.01 w.e.a−1 (water equivalent per year) and
ε = 0.1 m2as−2, while the rheology parameters are A =
0.1 bar−3a−1 and n = 3.

The numerical experiments are performed on a Cartesian
grid of space step �x = 50 m. The time step is cho-
sen in such a way that the numerical scheme is stable (see
Appendix), namely �t = 10−2 a for both the transient
inverse method and the shape optimization algorithm and
�t = 10−6 a for the quasi-stationary inverse method. The
regularization parameters of the quasi-stationary inverse

method, the transient inverse method and the shape opti-
mization algorithm are set to εQSIM = 0.1, εTIM = 100 and
εSOA = 10−4, respectively. The regularization parameters
are chosen in such a way that the methods converge within a
reasonable time or satisfy an L-curve criterion [57, 65]. All
the methods presented in this paper converge in the sense
that the misfit between two successive bedrock topography
iterates goes to zero when the number of iterations goes
to infinity. Each algorithm is stopped when convergence is
judged satisfactory, that is to say when the bedrock topogra-
phy misfit is small enough. The transient inverse method’s
relaxation parameter is set to β = 1. Large values of β

accelerate the inversion process at the expense of numerical
stability. This parameter has an upper bound that should not
be exceeded [65].

The fastest procedure is the shape optimization algo-
rithm. The quasi-stationary inverse method converges with
the highest difficulty. All these algorithms run within a few
hours on a single processor. A systematic comparison of
the time needed by the transient inverse method and the
shape optimization algorithm is performed by [56] for the
two-dimensional shallow ice model.

The results of the inversion of the synthetic data are
shown in Figs. 5 and 6. For each method, Fig. 5 shows the
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Fig. 6 Bedrock topography estimations along profile lines across a
synthetic geometry inspired from Gries glacier, Swiss Alps. The large
map delineates the glacier’s outline at initial time and the sliding
region (light grey), where the sliding coefficient is set to C = 1. On
each subplot, the abscissa s and ordinate z represent the coordinate
following the profile and the altitude of the depicted topographies,

respectively. The depicted target surface topography (in black) is the
surface obtained after simulation of the glacier’s evolution with Eq.
1 from the solution bedrock topography, delineated by the thick red
curve. The same colour code holds as in Fig 5. The best estimation is
provided by the shape optimization algorithm

differences in convergence and accuracy of the solution. It
can be seen that the shape optimization algorithm lets the
surface topography misfit (Eq. 18) decrease the most signifi-
cantly. A minimal surface topography misfit is also achieved
with the transient inverse method. However, it lies several
orders of magnitude higher than that obtained with the
shape optimization algorithm. The quasi-stationary inverse
method provides another solution whose surface topog-
raphy misfit is higher than that of the transient inverse
method. The number of iterations in this case is much
higher than in the two previous methods. In both the tran-
sient inverse method or the shape optimization algorithm,
one iteration consists in essentially one simulation of the
glacier’s evolution over 5a followed by a smoothing or a
dual step respectively. By contrast, one quasi-stationary
iteration is the regularized simulation of the glacier’s
stationary evolution over one single time step �t which
makes this method the least demanding in terms of

computational costs. The shape optimization algorithm is
the most demanding because the dual problem must be
solved for each time step. The transient inverse method
has an intermediate computational cost since its smoothing
procedure consists in solving a linear system only at the
end of each simulation of the forward problem.

Figure 6 shows how accurate each inversion method is.
Each subplot of Fig. 6 represents a profile across the glacier.
Basically, all the estimations are satisfactory, the largest
discrepancies being located at the glacier’s tongue (pro-
file (e)). The most accurate estimation is provided by the
shape optimization algorithm that supplies a satisfactory ice
thickness distribution everywhere in the domain, even near
the glacier’s tongue. The quasi-stationary inverse method
performs the most poorly. In view of its simplicity, the
results are, however, satisfactory. The obtained results con-
firm that the shape optimization algorithm is reliable and
accurate. Various numerical experiments were performed
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Fig. 7 Estimation of the
bedrock topography from
measurements collected on
Gries glacier, Swiss Alps, with
the ice thickness estimation
method (ITEM, cyan), the
quasi-stationary inverse method
(QSIM, magenta), the transient
inverse method (TIM, green) and
the shape optimization algorithm
(SOA, blue). The black and red
thick curves delineate the
observed final surface and the
bedrock topographies,
respectively. The abscissa s and
ordinate z represent the
coordinate following the profile
and the altitude of the depicted
topographies respectively.
Bedrock topography
measurements and sliding are
not taken into account in the
computations. The result of the
ITEM is comparable to that of
the QSIM

with different initial guesses, parameters and time frames
[54]. Obviously, the larger the time interval between ti
and tf , the larger the computational time. Moreover, with
increasing time frame, the quasi-stationary inverse method
performs more and more poorly and the shape optimization
needs an initial guess that is closer and closer to the solution,
essentially because it is based on the quasi-Newton method.

The main reason why the quasi-stationary inverse method
performs the most poorly is the assumption that the ice
thickness distribution evolves linearly in time. The apparent
surface mass-balance description is too crude to make such
a method accurate. In turn, the drawback of the transient
inverse method is related to the way the bedrock-to-surface
perturbation transfers occur [54, 67]. Due to their non-local
behaviours, these transfers induce unwanted corrections to
the bedrock topography that cannot be controlled efficiently
and may impede convergence.

By contrast, the shape optimization method provides a
bedrock topography estimation that is very close to the
solution. This demonstrates the feasibility of an accurate
bedrock topography reconstruction in the SIA. Because the
synthetic inversions are performed with the exact physi-
cal model and input data, the defects of both the quasi-
stationary and the transient inverse methods displayed at
the glacier’s tongue in Fig. 6e are necessarily due to the
numerical method applied.

4.2 Real-world validation

The three methods are now applied to the measured sur-
face topographies of Gries glacier in years 2003 and 2007.
The surface mass–balance parameters were computed by
[35] and correspond to the approximated annual averages
of the mass-balance gradient and the ELA. Their values
are zELA = 2, 937 m, m1 = m2 = 0.0088 w.e.a−1.
The surface mass-balance regularization parameter is set to
ε = 0.1 m2a−2. No sliding is assumed (i.e. C = ∞ in
Eq. 4) and the rheology parameters are set to n = 3 and
A = 0.076 bar−3a−1. The regularization and relaxation
parameters are set to εQSIM = 0.1, εTIM = 100, β = 0.25
and εSOA = 0.03. None of the inversions is forced with
the available bedrock topography measurements. The pur-
pose is to compare the output of the three methods to actual
measurements without forcing them with more data than the
surface topography and mass–balance measurements.

The various bedrock topography estimations along some
of the profiles represented in Fig. 6 are depicted by Fig. 7.
The figure additionally displays the corresponding result of
the ice thickness estimation method (ITEM) of [16]. The
bedrock topography estimation is the most accurate on the
top of the glacier (Fig. 7a) in each case. Near the glacier’s
tongue (Fig. 7e), most of the algorithms underestimate the
thickness. In the middle of the glacier (Fig. 7b, d), it has
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Fig. 8 Subglacial topography
estimation with the shape
optimization algorithm for
various values of the melting
rate m1 (in w.e.a−1), m2 = m1,
zELA = 2, 937 m, rate factor
A = 0.076 bar−3 a−1 and no
sliding. The regularization
parameter is set to εSOA = 0.03.
The thick black, red and
dash-dotted black curves
delineate the measured surface
topography in 2007, the
measured bedrock topography
and the bedrock topography
estimation obtained in Fig. 7,
respectively. The thin coloured
curves delineate the subglacial
topography estimation with the
shape optimization algorithm for
various values of m1. The
abscissa s and ordinate z

represent the coordinate
following the profile and the
altitude of the depicted
topographies, respectively. The
profile letters a to e refer to those
shown on the large map of Fig. 6

the tendency to be rather overestimated. Despite its per-
formance on synthetic data, the shape optimization method
provides an estimation that is particularly far from the mea-
sured topography near the glacier’s tongue. Because the
numerical efficiency of the method was demonstrated in
the previous section, such a result can only be explained
by the choice of too simple ice flow and surface mass–
balance models and by the measurement errors contained in
the surface topographies si and sf .

4.3 Discussion

This section is devoted to a short discussion on the sensi-
tivity of the shape optimization algorithm to the aforemen-
tioned quantities that are prone to errors when applied to
real-world data. The sensitivity of the other methods is sim-
ilar and was already discussed in the two-dimensional case
for the surface mass balance and the surface topography
[55].

In view of the investigation of the bedrock-to-surface per-
turbation transfers in [67], it is clear that the bedrock topog-
raphy estimation is very sensitive to defects in the surface
topography. Indeed, small perturbations of said topography
are responsible for large oscillations in the subglacial topog-
raphy estimation [55–57], which can be smoothed by means
of a suitable regularization. However, the larger the regular-
ization’s effects, the less physically consistent the resulting

estimation. In the analysis below, the regularization param-
eter is set to εSOA = 0.03 in all cases.

Surface mass–balance data are available only for a lim-
ited number of glaciers over a limited time frame. Hence,
calibration of parametersm1, m2, and zELA in [35] is subject
to errors. Figures 8 and 9 show how the bedrock topogra-
phy estimation is perturbed by the variation of one of these
parameters while the other ones are kept fixed. As before,
both the melting and accumulation rates are assumed to
hold the same value. According to Fig. 8, an underestimated
melting rate m1 is responsible for an underestimation of the
glacier’s ice thickness everywhere in the domain. Larger
values of m1, that is to say in the neighbourhood of m1 =
0.01 w.e.a−1, yield more reasonable bedrock topographies.
If m1 is overestimated, then the ice thickness is essen-
tially overestimated everywhere in the domain, the glacier’s
tongue being the most suffering region (Figs. 8 and 9e).
This result is not surprising, given the fact that the optimiza-
tion method is based on the comparison between a measured
and a computed topography at final time. Large melting
rates are responsible for fast melting at the glacier’s tongue.
Because the method’s purpose is to let the computed surface
topography match the measured one, a larger ice thickness
is provided in this case than with small melting rates. The
sensitivity of the bedrock topography estimation to the melt-
ing rate is high. By contrast, the effects of a misestimated
equilibrium line altitude are smaller, as depicted by Fig. 9.
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Fig. 9 Subglacial topography
estimation with the shape
optimization algorithm for
various values of the equilibrium
line altitude zELA (in meters),
m1 = m2 = 0.0088 w.e.a−1 ,
rate factor A = 0.076 bar−3 a−1

and no sliding. The
regularization parameter is set to
εSOA = 0.03. The thick black,
red and dash-dotted black
curves delineate the measured
surface topography in 2007, the
measured bedrock topography
and the bedrock topography
estimation obtained in Fig. 7,
respectively. The thin coloured
curves delineate the subglacial
topography estimation with the
shape optimization algorithm for
various values of zELA. The
abscissa s and ordinate z

represent the coordinate
following the profile and the
altitude of the depicted
topographies, respectively. The
profile letters a to e refer to those
shown on the large map of Fig. 6

Again, the tongue is the most sensitive region of the glacier,
where fluctuations in ice thickness are very large depend-
ing on the input zELA. With increasing zELA, the glacier’s
tongue is more likely to be thinner because melting is more
important. Therefore, the whole glacier must be globally
thinner. Conversely, a low equilibrium line altitude favours
more accumulation, a consequence of which is an essen-
tially thicker glacier. The effects of the surface mass-balance
parameters are basically linear in these parameters.

The influence of rate factor A on the provided estima-
tion is reported by Fig. 10. The smaller the rate factor,
the higher the ice viscosity and, therefore, the lower the
ice velocity. In this case, the whole glacier dynamics are
slowed. It is difficult to explain clearly the effects depicted
by Fig. 10 because they are strongly non-linear func-
tions of the rate factor. The most significant effects of A

are observed near the glacier’s tongue (profile e). In the
middle and at the top of the glacier, the effects are not
significant.

Lastly, the effects of a finite sliding coefficient are shown
on Fig. 11. In the real-world validation above, no sliding was
assumed, which is unlikely in nature. As with an increas-
ing rate factor, a decreasing sliding coefficient increases the
ice velocity. While the effects of the rate factor are localized
near the glacier’s tongue, the sliding coefficient signifi-
cantly changes the ice thickness everywhere in the domain,
the largest differences occurring near the tongue.

The aforementioned parameters can be computed con-
currently with the bedrock topography when surface ice
velocities are available. However, it is difficult to estimate
some of them, like namely the ELA and the shape of
the sliding domain, because of the problem’s ill-posedness
[57]. Moreover, the available surface ice velocity data are
usually insufficient to infer precise sliding and surface
mass–balance distributions.

In addition to the incertitudes on the model parameters,
approximation errors due to the shallow ice model (1) of
flow are responsible for the misestimation of the subglacial
topography. The Stokes approximation [23, 24, 41, 80] is
better suited to the description of a mountain glacier’s ice
flow. However, the optimal control of a Stokes ice flow
addresses several additional difficulties. The main issues
are due to mesh deformation. There are basically two ways
to tackle the problem: the mesh can be either deformed or
fixed during the whole optimization process. Since topology
changes often occur in glaciers, an extension of the so-called
variational volume-of-fluid or level-set optimization [1, 3,
14, 79] is advocated for this purpose, where the mesh is
never deformed. This, however, goes beyond the scope of
this contribution.

Finally, it must be remembered that the above estimations
can obviously be improved significantly when the available
bedrock topography measurements are taken into account.
At least two fundamentally different ways to proceed can be
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Fig. 10 Subglacial topography
estimation with the shape
optimization algorithm for
various values of the rate factor
A (in bar−3a−1), surface
mass–balance parameters
m1 = m2 = 0.0088 w.e.a−1 ,
zELA = 2, 937 m and no sliding.
The regularization parameter is
set to εSOA = 0.03. The thick
black, red and dash-dotted black
curves delineate the measured
surface topography in 2007, the
measured bedrock topography
and the bedrock topography
estimation obtained in Fig. 7,
respectively. The thin coloured
curves delineate the subglacial
topography estimation with the
shape optimization algorithm for
various values of A. The
abscissa s and ordinate z

represent the coordinate
following the profile and the
altitude of the depicted
topographies, respectively. The
profile letters a to e refer to those
shown on the large map of Fig. 6

Fig. 11 Subglacial topography
estimation with the shape
optimization algorithm for
various values of the sliding

coefficient C (in bar a
1
3 m− 1

3 ),
surface mass-balance parameters
m1 = m2 = 0.0088 w.e.a−1 ,
zELA = 2, 937 m and rate factor
A = 0.076 bar−3a−1. The
regularization parameter is set to
εSOA = 0.03. The thick black,
red and dash-dotted black
curves delineate the measured
surface topography in 2007, the
measured bedrock topography
and the bedrock topography
estimation obtained in Fig. 7,
respectively. The thin coloured
curves delineate the subglacial
topography estimation with the
shape optimization algorithm for
various values of A. The
abscissa s and ordinate z

represent the coordinate
following the profile and the
altitude of the depicted
topographies, respectively. The
profile letters a to e refer to those
shown on the large map of Fig. 6
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applied. First, in the shape optimization algorithm, the cost
functional (18) can be augmented with the misfit between
the measured and the computed bedrock topographies. Sim-
ilarly, in the transient and quasi-stationary inverse methods,
the ice thickness can be forced to take fixed values where
bedrock topography measurements are available. In this
case, each method supplies an estimation that is as close as
desired to the measurements at the expense of worse con-
vergence because the system is more constrained. Second,
each method can be wrapped by yet another minimization
method, for example, a particle swarm method [43], whose
aim is to minimize the bedrock topography misfit when
it is the output of one of the inversion methods presented
above and for which the control variables are the model
parameters. Nevertheless, a detailed description of such a
meta-optimization algorithm [53] goes beyond the scope of
this contribution.

5 Conclusion

This paper focuses on the analytical and numerical com-
parison of three conceptually different methods aiming
at the estimation of a glacier’s ice thickness distribution.
Each approach is based on the three-dimensional, time-
dependent, shallow ice approximation of glacier flow. The
quasi-stationary inverse method handles the inverse prob-
lem as a stationary transport problem with the approx-
imation of a uniform-in-time surface topography evolu-
tion. The transient inverse method, in turn, relies on
the assumption of a local bedrock-to-surface topography
response, which is only partially true, even in the SIA.
The glacier’s final surface topography is computed itera-
tively and compared to the observed surface topography.
Their discrepancy is then reported onto bedrock topogra-
phy until convergence is reached. These two procedures
demand very little work once a forward model solver
is available and only require small computer resources.
However, they converge slowly. Based on the optimal con-
trol of the surface topography misfit, the more sophisti-
cated shape optimization algorithm converges better and
can compute model parameters concurrently with bedrock
topography if surface ice velocity observations are avail-
able [57] at the expense of being both more difficult to
implement and more memory-demanding. A mathematical
relationship between this algorithm and the transient inverse
method is established that describes how bedrock-to-surface
perturbation transfers are taken into account to improve
convergence.

The presented methods are validated on a synthetic
geometry generated by the forward solver. Convergence,
number of iterations, bedrock topography misfit and sur-
face topography misfit are depicted for each method for
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the sake of comparison. The shape optimization algo-
rithm converges within the smallest number of iterations.
Given that each iteration of the method runs one sin-
gle forward simulation most of the time (in addition
to solving its corresponding linear dual equation), this
makes this algorithm the fastest of the set. Moreover, it
inverts the shallow ice equation with the highest accu-
racy. It is indeed responsible for an almost perfect agree-
ment between the synthetic and the reconstructed bedrock
topographies while the estimations obtained by means of
the other methods suffer from significant defects, espe-
cially near the glacier’s tongue. This shows that the shal-
low ice equation can be efficiently inverted with accuracy
without any other artifice than the Tikhonov regulariza-
tion.

Each method provides a satisfactory bedrock topography
estimation when applied to real-world input measurements
observed on Gries glacier, Swiss Alps, for which bedrock
topography profiles are available [17]. The algorithms are
compared in performance to the ITEM. The quasi-stationary
inverse method is the closest estimation to the ITEM.
The shape optimization algorithm and the transient inverse
method provide improved bedrock topography estimations,
especially at locations where the ice thickness is large. The
deviations of obtained estimations from measured bedrock
topography are much larger than in the synthetic cases.
This phenomenon is explained by the possible unrelia-
bility of the input model parameters (that is the surface
mass–balance, sliding and rheology parameters), as shown
in various sensitivity experiments presented in the previ-
ous section. The measurement errors in surface topography
are also responsible for defects in subglacial topography
estimation. The best trade-off between data under- and
overfitting is set by the value of the regularization param-
eter for each method, which is chosen by means of an
L-curve criterion [57, 65]. Finally, the model order of the
ice flow approximation plays a role in the bedrock topogra-
phy reconstruction. However, the inversion of higher-order
models is much harder and more resource-consuming. In
order to keep the procedures as fast as possible, small
enhancements of the SIA may be incorporated to make the
presented algorithms more suitable for mountain glaciers
[59].

The results presented in this contribution show that
shape optimization of the ice flow model supplies the most
reliable, versatile and physical subglacial topography esti-
mation, which is sufficient motivation for developing its
extensions to higher order flow models.
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Appendix

A Forward numerical scheme

An implicit, centred-in-space, finite-difference scheme is
advocated to solve Eq. 1. Let �x > 0 be some space step
and (ξj , ζk) = (j, k)�x, 0 ≤ j ≤ Nx + 1, 0 ≤ k ≤ Ny + 1,
vertices of the so-called “direct grid” �̃⊥ of �⊥. In particu-
lar, Lx = (Nx+1)�x and Ly = (Ny+1)�x. Moreover, let
�t > 0 be some time step and t� = ti+��t , 0 ≤ � ≤ M+1,
such that t0 = ti and tM+1 = tf .

Let us denote the approximation of the bedrock topog-
raphy b(ξj , ζk), ice thickness H(ξj , ζk, t

�), surface topog-
raphy s(ξj , ζk, t

�) and surface mass-balance B(ξj , ζk, t�) at
location (ξj , ζk) and time t� with bjk , H�

jk , s�jk = bjk+H�
jk ,

and B�
jk . Denote by bbb, HHH�, sss� and BBB� as the corresponding

vectors. Moreover, let us write sssi and sssf as the vectors of
components si(ξj , ζk) and (sf )jk = bjk + HM+1

jk , that are
the glacier’s surface at initial and final times, respectively.
Recall that the initial surface topography si is known while
sf is computed with the numerical scheme. The notations
introduced here remain valid throughout all appendices.

The solving process is based on the equation’s time-
splitting. The finite-difference scheme, centred in space,
discretizing (1), consists in initializing the ice thickness with

H0
jk = si(ξj , ζk)− bjk (29)

for 1 ≤ j ≤ Nx , 1 ≤ k ≤ Ny ; then, for 0 ≤ � ≤ M , first
solve the advection-diffusion scheme [2, 9, 10, 49, 71]

H�

jk −H�
jk

�t
= T �

jk, (30)

where T �
jk is the discretization

T �
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of ∇ · (D∇s), s�jk = bjk + H�

jk and the diffusivity’s
discretization is given later below; second, solve the mass-
balance equation

H
�

jk −H�

jk

�t
= ϑ(Hjk)B

�

jk, (32)

where B
�

jk is the surface mass-balance (5) evaluated with

s
�

jk = bjk +H
�

jk and ϑ is the Heaviside function

ϑ(x) =
{

1, ifx > 0,
0, otherwise; (33)

finally, project the thickness such that it is positive:

H�+1
jk =

[
H

�

jk

]+ = ϑ(H
�

jk)H
�

jk. (34)

In Eq. 31, D�
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is the discretization of the diffusivity
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D is the diffusivity D evaluated with H and
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The half-integer indices refer to the mid-points
(
j − 1

2 , k−
1
2

)
�x that are artificially introduced for the centred evalua-

tion of the involved gradients.
Theoretically, the numerical scheme (29)–(34) is likely

to suffer from convergence issues because it is solved
with a Newton method at each time iteration and, hence,
a good initial guess must be provided each time. How-
ever, in all the computations performed throughout this
paper, no such problem arises. Furthermore, although it is
second order in both time and space, the approximation
of the glacier’s boundaries is first order in space, hence,
the scheme is first order in space overall. This can be
improved by using either finite-elements or sophisticated,
finite-difference techniques that take the boundaries into
account more appropriately. A large precision on the SIA
is not useful for this article’s purposes considering that it
is already a rough approximation of a Stokes ice flow. This
scheme was validated by [57] on Halfar’s glacier [29, 30].
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B Quasi-stationary Inverse Method

The notations and definitions are the same as in the previous
section. For the sake of simplicity and small computational
times, the following finite-difference scheme, centred in
space, explicit in time, is advocated. It is deduced from the
semi-implicit discretization of Eq. 1 [2, 54, 55] where the
surface topography is fixed and the ice thickness is sought:
initialize the ice thickness with

H0
jk = H0(ξj , ζk),

for 1 ≤ j ≤ Nx , 1 ≤ k ≤ Ny , where H0 is an initial guess
for the ice thickness at initial time; then, for � ≥ 0, first
solve the regularized advection scheme

H�

jk−H�
jk

�t
= 1

�x

[

D�

j+ 1
2 ,k

sj+1,k−sjk

�x
− D�

j− 1
2 ,k

sjk−sj−1,k

�x

+D�

j,k+ 1
2

sj,k+1−sjk

�x
− D�

j,k− 1
2

sjk−sj,k−1
�x

]

+ εQSIM
�x

[

D̃�

j+ 1
2 ,k

H�

j+1,k−H�

jk

�x
− D̃�

j− 1
2 ,k

H�

jk−H�

j−1,k

�x

+D̃�

j,k+ 1
2

H�

j,k+1−H�

jk

�x
− D̃�

j,k− 1
2

H�

jk−H�

j,k−1
�x

]

(35)

where

D̃�

j− 1
2 ,k− 1

2
=

(

�H�

j− 1
2 ,k− 1

2
+ (�s)j− 1

2 ,k− 1
2

)

×
(

H�

j− 1
2 ,k− 1

2

)n+1 (
α̃�

j− 1
2 ,k− 1

2

)n−1
,

with

α̃�

j− 1
2 ,k− 1

2
=

[(
H�

jk − H�
j−1,k + H�

j,k−1 − H�
j−1,k−1

2�x

)2

+
(
H�

jk − H�
j,k−1 + H�

j−1,k − H�
j−1,k−1

2�x

)2 ] 1
2

,

is the discrete counterpart of Eq. 14; second, solve the mass–
balance equation

H
�

jk − H�

jk

�t
= B̃�

jk,

where B̃�
jk is the apparent surface mass balance (11) eval-

uated with sjk; finally, project the thickness such that it is
positive:

H�+1
jk =

[
H

�

jk

]+
,

where the notation [·]+ is defined by Eq. 34. Equations 35,
(B) and (B) are solved for every couple of indices (j, k)

lying in such grid positions that the ice thickness is known
to be larger than zero. Once the forward scheme (29)–(34)

has been implemented, Eqs. 35 and (B) are slight modifi-
cations of their direct counterparts (31) and (32). Naturally,
other numerical schemes can be considered. In this paper,
this explicit version is used in order to keep the method as
simple as possible. The outcome of this algorithm is a con-
verged ice thickness distribution from which the bedrock
topography can obviously be deduced.

C Shape optimization method

The method is presented with continuous equations in the
core of this paper, for the sake of simplicity. However, the
minimization is performed on the discrete counterparts of
all the introduced quantities. The purpose of this section
is to formulate the basic ideas underlying the method. The
computations are essentially the same in two- as in three-
space dimensions. They are much more cumbersome in
three dimensions. Hence, the two-dimensional version of
scheme (29)–(34) is considered here without sliding. The
calculations in the three-dimensional case are reported by
[57]. The notations are the same as before. In two space
dimensions, the forward scheme is the following: initialize
the ice thickness with

H0
j = si(ξj ) − bj , (36)

for 1 ≤ j ≤ Nx ; then, for 0 ≤ � ≤ M , first solve the
advection-diffusion scheme

H�

j − H�
j

�t
= T �

j = 1

2�x

[

D�

j+ 1
2

s�
j+1 − s�

j

�x
− D�

j− 1
2

s�
j − s�

j−1

�x

+D�

j+ 1
2

s�
j+1 − s�

j

�x
− D�

j− 1
2

s�
j − s�

j−1

�x

]

, (37)

where the diffusivity’s discretization is

D�

j− 1
2

= �

(
H�

j + H�
j−1

2

)n+2 ∣
∣
∣
∣

s�
j − s�

j−1

�x

∣
∣
∣
∣

n−1

, (38)

and D is the diffusivity D evaluated with H; second, solve
the mass–balance equation

H
�

j − H�

j

�t
= ϑ(Hj )B

�

j , (39)

where B
�

j is the surface mass balance (5) evaluated with

s
�

j = bj + H
�

j and ϑ is the Heaviside function (33); finally,
project the thickness such that it is positive:

H�+1
j =

[
H

�

j

]+ = ϑ(H
�

j )H
�

j . (40)
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The shape optimization method consists in determining the
optimal elevations bj , 1 ≤ j ≤ Nx , of the bedrock
topography such that the misfit between the computed and
the observed surface topographies at final time tf is as
small as possible. This is an optimal control problem where
the ice thickness HHH = sss − bbb is termed “state variable”
and the bedrock topography bbb “control variable.” For the
sake of simplicity, let us consider the unregularized misfit
functional

Jh(HHH, bbb) = 1

2

∥
∥
∥sssf (HHH, bbb) − sobssobssobs

∥
∥
∥

2
, (41)

where ‖ · ‖ stands for the usual Euclidean norm, sssf =
bbb + HHHM+1 is the computed surface at time tf = tM+1,
and sobssobssobs the vector of components sobs(ξj ). This represents
the misfit between the computed and the observed surface
topographies. Now, the numerical scheme (36)–(40) links
the control bbb to the state variable HHH(bbb). The cost functional
to be minimized can thus be expressed as

Jh(bbb) = Jh(HHH(bbb),bbb). (42)

The shape optimization problem is cast into: find

argmin
bbb∈U ad

h

Jh(bbb) (43)

under the constraint that the ice thickness and the bedrock
topography satisfy scheme (36)–(40), where Uad

h is the dis-
crete counterpart of Eq. 9. In order to minimize the cost
functional (42), the solution of the equation

dJh

dbbb
(bbb) = 0 (44)

is sought in the space Uad
h , which is realized by means of a

quasi-Newton method while projecting the control variable
onto Uad

h . Let m be an iteration index and bbbm the bedrock
topography at iteration m. The m + 1 iterate is found by
solving

bbbm+1 = bbbm +
(

d2Jh

dbbb2
(bbbm)

)−1
dJh

dbbb
(bbbm), (45)

where the gradient of Jh is computed exactly with a primal–
dual method and the Hessian of Jh is approximated from the
value of Jh and its derivative with the BFGS method. The

primal–dual method aims at computing the cost functional’s
gradient and basically consists in finding the stationary
points of the Lagrangian functional

Lh(HHH,HHH,HHH,λλλ,λλλ,λλλ,bbb) = Jh(HHH,bbb) +
[

HHH0 − sssi + bbb

]T

λλλ0

+
M∑

�=0

�t

[HHH� −HHH�

�t
−TTT �

]T

λλλ�

+
M∑

�=0

�t

[HHH� −HHH�

�t
− ϑ(HHH�)BBB�

]T

λλλ�

+
M∑

�=0

[

HHH�+1 −
[
HHH�

]+]T

λλλ�+1, (46)

where BBB� is the surface mass balance evaluated in HHH�, λλλ�,

λλλ� and λλλ� are the costate variables ofHHH�,HHH� andHHH�, that is
the Lagrange multipliers of constraints (36), (37), (39) and
(40). Note that the inequality constraint H�

j ≥ 0 is trans-
formed into an equality constraint and, as a consequence, is
included in the Lagrangian. The solutions of the minimiza-
tion problem are then among the stationary points of Lh that
satisfy optimality condition [6, 19, 26, 78]

∇Lh(HHH,HHH,HHH,λλλ,λλλ,λλλ,bbb) = 0. (47)

From this condition, the dual problem of Eqs. 36 – 40 and,
therefore, the gradient of Jh, with respect to the bedrock
topography, can be deduced.

Stationarity of Lh, with respect to the costate variables

λλλ, λλλ and λλλ yields constraint Eqs. 36–40. Stationarity of Lh

with respect to the state variables HHH, HHH and HHH corresponds
to the dual problem, which can be cast into the following
formulation: finalize the dual variable with

λM+1
j = sobs(ξj ) − (sf )j . (48)

Then, for � = M, M − 1, . . . , 1, 0, first solve

λ
�

j = ϑ(H
�

j )λ
�+1
j

1 − �tϑ(H�

j )
∂B�

j

∂Hj

, (49)

where ϑ is the Heaviside function (33); second, solve the
discretized linear, backward advection–diffusion equation

−λ
�

j − λ
�

j

�t
= n

2�x

⎛

⎝D�

j+ 1
2

λ
�

j+1 − λ
�

j

�x
− D�

j− 1
2

λ
�

j − λ
�

j−1

�x

⎞

⎠

−n + 2

4

⎛

⎝F�

j+ 1
2

s�
j+1 − s�

j

�x

λ
�

j+1 − λ
�

j

�x

+F�

j− 1
2

s�
j − s�

j−1

�x

λ
�

j − λ
�

j−1

�x

⎞

⎠ ; (50)
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finally, solve

−λ
�

j − λ�
j

�t
= n

2�x

⎛

⎝D�

j+ 1
2

λ
�

j+1 − λ
�

j

�x
− D�

j− 1
2

λ
�

j − λ
�

j−1

�x

⎞

⎠

−n + 2

4
⎛

⎝F�

j+ 1
2

s�
j+1 − s�

j

�x

λ
�

j+1 − λ
�

j

�x
+ F�

j− 1
2

s�
j − s�

j−1

�x

λ
�

j − λ
�

j−1

�x

⎞

⎠ , (51)

where

F�

j− 1
2

= �

(
H�

j + H�
j−1

2

)n+1 ∣
∣
∣
∣

s�
j − s�

j−1

�x

∣
∣
∣
∣

n−1

and accordingly for F�

j− 1
2
. Equations 50 and 51 constitute

the discretization of the continuous, backward diffusion-
transport equation

−∂λ

∂t
= n∇ ·

(
D∇λ

)
− (n + 2)F ∂s

∂x

∂λ

∂x
,

in �⊥ × [ti , tf ], where

F = �Hn+1
∣
∣
∣
∂s

∂x

∣
∣
∣
n−1

.

Finally, stationarity of Lh with respect to control bbb gives

∂Lh

∂bj

= λ0
j +

(
(sf )j − sobs(ξj )

)
− �t

M∑

�=0

ϑ(H�

j )
∂B

�

j

∂bj

λ
�

j

− n�t

2�x

M∑

�=0

[(
D�

j+ 1
2

+ D�

j+ 1
2

)λ
�

j+1 − λ
�

j

�x

−
(
D�

j− 1
2

+ D�

j− 1
2

)λ
�

j − λ
�

j−1

�x

]

,

which is the discrete counterpart of the continuous expres-
sion

∂L
∂b

b̂ =
∫

�⊥

[(
sf − sobs + λ

∣
∣
∣
t=ti

)
b̂
]
dxxx

−
∫ tf

ti

∫

�⊥
λ

∂B
∂b

b̂dxxxdt − n

∫ tf

ti

∫

�⊥
∇ ·

(
D∇λ

)
b̂dxxxdt

for any continuous function b̂.
When the state and costate variables satisfy the constraint

Eqs. 36–40 and the dual problem (48)–(51), the Lagrangian
(46) is precisely the cost functional (42), namely

Lh(HHH(bbb),λλλ(bbb),bbb) = Jh(HHH(bbb),bbb) = Jh(bbb). (52)

The dual problem links the control bbb to the costate variable
λλλ(bbb). Because of Eqs. 36–40 and 48–51, the derivative of
Eq. 52 with respect to bbb is, by the chain rule,

dJh

dbj

(bbb) = ∂Lh

∂bj

(HHH(bbb),λλλ(bbb),bbb).

The computations in the three-dimensional case are per-
formed in the same way. The arising expressions are,
however, much more complicated.
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