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Abstract Regional climate model (RCM) outputs are

often used in hydrological modeling, in particular for

streamflow forecasting. The heterogeneity of the meteo-

rological variables such as precipitation, temperature, wind

speed and solar radiation often limits the ability of the

hydrological model performance. This paper assessed the

sensitivity of RCM outputs from the PRUDENCE project

and their performance in reproducing the streamflow. The

soil and water assessment tool was used to simulate the

streamflow of the Rhone River watershed located in the

southwestern part of Switzerland, with the climate vari-

ables obtained from four RCMs. We analyzed the differ-

ence in magnitude of precipitation, maximum and

minimum air temperature, and wind speed with respect to

the observed values from the meteorological stations. In

addition, we also focused on the impact of the grid reso-

lution on model performance, by analyzing grids with

resolutions of 50 9 50 and 25 9 25 km2. The variability

of the meteorological inputs from various RCMs is quite

severe in the studied watershed. Among the four different

RCMs, the Danish Meteorological Institute provided the

best performance when simulating runoff. We found that

temperature lapse rate is significantly important in the

mountainous snow and glacier dominated watershed as

compared to other variables like precipitation, and wind

speed for hydrological performance. Therefore, emphasis

should be given to minimum and maximum temperature in

the bias correction studies for downscaling climatic data

for impact modeling in the mountainous snow and glacier

dominated complex watersheds.

Keywords RCM � SWAT � Grid size � Runoff �
Hydrological model

Introduction

Regional climate models (RCMs) are frequently used for

climate change studies (Beniston and Goyette 2007; Ben-

iston et al. 2011; Christensen et al. 2002). Since they

provide climatic variables such as precipitation and tem-

perature, they are used by hydrological modelers to simu-

late streamflow and flood frequency analysis for climate

change studies (Ahl et al. 2008; Pradhanang et al. 2011;

Wang and Melesse 2005; Zhang et al. 2008; Graham et al.

2007). The heterogeneity of the meteorological variables is

often reported as a drawback for simulating a range of

processes in climate models (Christensen et al. 2002).

Several studies were performed on the impact of grid size
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of the digital elevation model, land use and type of soil

datasets. The influences of the catchment subdivision on

flow simulations were also studied, but it was seen that

meteorological parameters exert the most significant

influence on model performance. Different methodological

inputs have been tested with hydrological models like soil

and water assessment tool (SWAT) such as areal precipi-

tation (Masih et al. 2011), interpolation techniques of

radar-driven precipitation (Liechti et al. 2012), and multi-

model comparison with different sources of meteorological

datasets (Chen et al. 2012). Climatic data for developing

hydrological models is basically of two types: one is local

meteorological station data and the other is gridded data

obtained from the global circulation models (GCMs) and

RCMs. They are often useful when the available local

meteorological data is sparse and when predicting future

changes (Liu et al. 2013). Climate models provide meteo-

rological data mostly with the reanalysis based on the

availability of the local stations, and thus it is important to

test the sensitivity of the individual models before applying

their outputs in the watershed with varying topography.

It is obvious that the climate model generated variables

are not often homogeneous to the observed variables,

therefore, the bias correction studies are conducted for the

impact modeling studies (Bordoy and Burlando 2012;

Murphy 1999; Schoetter et al. 2012). Various techniques

are used for bias correction studies starting from simple

scaling to rather sophisticated method (Pavlik et al. 2012).

Among the different techniques, widely accepted ‘delta

change approach’ (Bosshard et al. 2011; Lettenmaier et al.

1999) where it is recommended to use the RCM simulated

future change (e.g., anomalies) for a perturbation of

observed data rather than to use direct RCM generated

variables. The linear-scaling approach (Lenderink et al.

2007) works based on monthly correction values on the

differences between measured and present-day model

generated values. By definition, corrected RCM generated

variables will perfectly agree in their monthly mean values

with the observations. Meanwhile linear scaling considers

for a bias in the mean, it does not account differences in the

variance to be corrected. It is important to mention that high

altitude watersheds where snow and glacier melt plays

significant role in streamflow generation the mean value

often limits the statistical performance of the model as the

hydrology is quite sensitive to melt rate. Therefore, a non-

linear correction studies are often conducted (Leander and

Buishand 2007), which helps to specify the adjustment of

variance statistics of a precipitation time series. The

advantages and limitation of various bias correction tech-

nique is beyond the scope of our study because the hydro-

logical model structure often determines the simulated flow

patterns considering the meteorological variables like mean

value or minimum and maximum values as input.

In this research we focused on the built-in interpolation

function of SWAT with the different sources of climate

data taken from the PRUDENCE (Prediction of Regional

scenarios and Uncertainties for Defining European Climate

change risks and Effects) project. PRUDENCE (Christen-

sen et al. 2002), whose aim was to test the capacity of a

suite of RCMs to reproduce current European climate and

to compare model projections for a ‘‘greenhouse climate’’

by 2100. Outputs from this project have been used for

various impact studies, such as discharge estimations

(Beniston 2010) and hydropower potential (Schaefli et al.

2007). The SWAT model (Arnold et al. 1998) uses a

simplified way of inserting climatic model inputs from the

nearest station, i.e., for instance the closest to the centroid

of the sub catchment is used for that sub catchment (Nei-

tsch et al. 2005). This may lead to a certain inaccuracy due

to spatial heterogeneity linked to meteriological data,

especially in mountainous terrain. This can have significant

implications on the runoff produced by the hydrological

model used. Input uncertainty reduction is often a chal-

lenging task for hydrological models. Given the large un-

certainity encountered when RCM are used as input data

for SWAT, this study tested a number of RCMs at two

different spatial resolutions by comparing simulated and

observed runoff. Therefore the objective of this research is

to assess the variability of the meteorological inputs gen-

erated from different RCMs for reproducing streamflow

using SWAT hydrological model and performance evalu-

ation of individual RCM.

Study area

The upper Rhone River is located in the south-western part

of Switzerland; it originates in the Rhone glacier (Fette

et al. 2007) and completes its alpine course in Lake Gen-

eva. This segment is 167.5 km in length with a drainage

basin of 5,220 km2. Approximately 14 % of its surface is

covered with glaciers (Meile et al. 2010) and 46 % is

covered with forest. The runoff behavior is characterized

by two important regimes, namely the high flow period that

occurs in the summer due to snow and ice melt, and the low

flow period that occurs during the winter. The average

observed precipitation of the basin is 1,435 mm/year. The

upper Rhone is considered a seven order tributary; lower

orders are illustrated in Fig. 1. Two major modifications

were undertaken in 1930 and 1960 for flood protection for

which 91 % of its length was affected. This channeling

reduced its original length from 424 to 251 km (Meile et al.

2010). In total 11 high head hydropower plants are located

in the upper Rhone and most of them started functioning

between 1951 and 1975. Therefore a shift of natural

behavior has been observed since the construction of these
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dams due to both high flow and low flow periods because

of controlled storage or release of water for hydropower

operations. The complexity of the water transfer were

therefore implemented in the model based on energy

demand curve since the release of water has significant

correlation with energy consumption. The river represents

a very important source of water for the cantons of Valais

and Vaud in Switzerland.

Elevation ranges from 400 m MSL at the floodplain part

of the valley and 4,634 m MSL at the top of the Duf-

ourspitze, the highest peak of Switzerland. Variability of

precipitation is large due to its complex topography, the

lowland is one of the most driest place in Switzerland with

annual precipitation less than 600 mm and highest is at

alpine part generally greater than 2,100 mm (Bordoy and

Burlando 2012).

Methodology

Soil and water assessment tool

Soil and water assessment tool (Arnold et al. 1998) is a

process-based distributed parameter watershed scale sim-

ulation model. It subdivides the watershed into numerous

sub watersheds connected with the river network and

smaller units called hydrological response units (HRU).

Each HRU represents unique combination of land use, soil

type and slope values. HRUs are non-spatially distributed

assuming that there is no interaction or spatial dependency

(Neitsch et al. 2005). SWAT has been successfully applied

in different parts of the world but relatively less often in

snow and glacier dominated mountainous terrain. How-

ever, several studies have been performed or are ongoing to

explore hydrological fluxes in mountain regions (Fontaine

et al. 2002; Morid et al. 2004; Wang and Melesse 2005;

Abbaspour et al. 2007; Ahl et al. 2008; Zhang et al. 2008;

Debele et al. 2010; Pradhanang et al. 2011). The meteo-

rological variables needed to run the model include pre-

cipitation, temperature, wind speed, solar radiation, and

relative humidity on daily or sub daily time steps. SWAT

simulates energy, hydrology, soil temperature, mass

transport and land management at the sub basin and HRU

levels. For this specific study, variables related to discharge

and snow melt in mountainous terrain will be addressed;

more detailed information about the other processes can be

obtained from Neitsch et al. (2005). Reason of selection of

SWAT model was because of its free availability along

with prior application of the model for climate model

performance test in various regions (Raneesh and Santosh

2011). Geographic and climatic data used for this study and

their sources are listed in Table 1.

The hydrological routine of SWAT consists of dis-

charge, snow melt, and both actual and potential evapo-

transpiration. The soil conservation services SCS curve

number method from USDA was used for the surface

runoff volume estimation. SWAT evaluates evapotranspi-

ration through various approaches, such as FAO Penman–

Monteith, Hargreaves, and Priestley–Taylor. For this study

Penman–Monteith was found suitable based on the results

Fig. 1 Upper Rhone river catchment located in Valais (Switzerland)
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obtained in the initial model performance before calibra-

tion. Since the hydrology of the Rhone watershed is driven

by snow and glacier melt the we focused on the snow and

glacier melt algorithms. For the detail description of the

individual process of SWAT, readers are referred to the

documentation (Neitsch et al. 2005).

Temperature is considered as driving factor for snow

melt in the temperature index method (Hock 2003). The

snow melt in SWAT is calculated as a linear function of the

difference between the average snow pack-maximum air

temperature and the base or threshold temperature for snow

melt

SNOmlt ¼ bmlt � snocov �
Tsnow þ Tmx

2
� Tmlt

� �
: ð1Þ

SNOmlt is the amount of snow melt on a given day (mm

H2O), bmlt is the melt factor for the day (mm H2O/day-�C),

snocov is the fraction of HRU area covered by snow, Tsnow

is the snow pack temperature on a given day (oC), Tmx

maximum air temperature on a given day (oC), Tmlt base

temperature above which snow melt is allowed (oC).The

melt factor is allowed seasonal variation with maximum

and minimum values occurring on summer and winter

solstices

bmlt ¼
bmlt6 þ bmlt12

2

� �
þ bmlt6 � bmlt12

2

� �

� sin
2p
365

dn � 81ð Þ
� �

ð2Þ

where, bmlt is the melt factor for the day (mm H2O/day-oC),

bmlt6 is the melt factor for June 21 (mm H2O/day-oC), bmlt12

is the melt factor for December 21 (mm H2O/day-oC), dn is

the day number of the year. This melt factors are param-

eterized for June (SMFMX) and for December (SMFMN)

in the SWAT code. The glaciers are simulated as multi

reservoir approach and melt rate is calculated as a function

of daily air temperature (Rahman et al. 2013).

PRUDENCE project

The PRUDENCE project consists of numerous RCMs that

were applied to Europe to assess a number of key climate

variables, and to investigate eventual shifts of their mean

values in a changing climate (Christensen et al. 2002). We

analyzed four RCM-generated variables from DMI (Danish

Meteorological Institute), SMHI (Swedish Meteorological

and Hydrological Institute), METNO (Norwegian Meteo-

rological Institute) and ICTP (International Center for

Theoretical Physics, Italy). It is to be mentioned that sev-

eral other RCMs output are available in the PRUDENCE

web portal but we choose these four based on the avail-

ability of the input parameters. The input parameters are

precipitation, temperature (daily mean and max). The

inputs are: precipitation, minimum and maximum temper-

ature, and wind speed. All the models used in this Euro-

pean project have been applied to two series of 30-year

simulations, for the 1961–1990 period regarded as the

control period, and for the last 30 years of the 21st century

2071–2100, is considered as simulation period. All models

have roughly the same spatial scale resolution, with grid

sizes varying between 0.44� and 0.5�, which correspond to

approximately 50 km. Moreover, some models have been

tested at finer resolutions, with grid sizes as small as 0.22�
(SMHI and DMI) or even 0.11� (DMI).

The models within the PRUDENCE project provide

daily, monthly or seasonal outputs; in this study, only the

daily outputs were used. Details regarding all the models

used in this study are listed in Table 2.

Applications of RCMs are widely used for hydrological

study and meteorological variable assessment with obser-

vation, e.g., Christensen and Christensen (2007), Maurer

and Hidalgo (2008), Pal et al. (2004).

To assess the quality of the PRUDENCE simulations for

the Rhone watershed, the daily outputs from the listed

models for the four climatic variables of interest for this

Table 1 Data used and sources

Data type Data sources Scale Description

DEM Swiss-topo (Grid cell:

25 m 9 25 m)

Elevation

Land use Swiss Federal Statistical

Office

(Grid cell:

100 m 9 100 m)

Classified land use such as crop, urban forest water etc.

Soil Swiss Federal Statistical

Office

1:200,000 Classified soil and physical properties as sand silt clay bulk

density etc.

Hydro network Swiss-topo 1:25,000 River network-diversion

River flow FOEN – River discharge at daily time step

Weather MeteoSwiss – Precipitation temperature wind speed solar radiation

Hydropower

discharge

Alpiq, KW Mattmark – Inflow and outflow, lake level
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study (Tmin, Tmax, precipitation and mean wind speed), were

extracted for the model grid points that are located in the

watershed (Fig. 2), for the control period (1961–1990). The

extraction of meteorological variables were done specifying

the geographic location of the watershed considering the

min and max latitude and longitude (45.82 47.46; 5.3 7.68).

All the conversion from NetCDF to time series has been

done with MATLAB and the scripts are provided as sup-

plementary document with this paper. The purpose is to

assess the quality of these output variables regarding their

orders of magnitude and their variability compared to

observations provided by the eight MeteoSwiss meteoro-

logical stations located inside the study area. Knowing that

the statistical records of observations are fully available

only since 1981, the comparisons were merely investigated

for the 10-year matching period from 1981 to 1990. For all

the daily datasets (PRUDENCE outputs and meteorological

observations), yearly means of all points located in the

Fig. 2 Profiles for the 1981–1990 Periods of yearly means of PRUDENCE simulations and MeteoSwiss observations and of daily values of four

climatic variables: precipitation (a), mean wind speeds (b), minimum (c) and maximum temperatures (d)

Table 2 Climate models and

grid size
Model Acronym Scale Number of grid

points in the

watershed

Variables References

DMI HC1

F25

50 km

25 km

3

15

Tmin, Tmax, Wind, Precip (Christensen et al. 1996)

SMHI HCCTL

HCCTL_22

50 km

22 km

3

17

Tmin, Tmax, Wind, Precip (Doscher et al. 2002)

METNO HADCN 50 km 3 Tmin, Tmax, Wind, Precip (Christensen et al. 1996)

ICTP ref 50 km 3 Tmin, Tmax, Precip (Giorgi et al. 1993; Pal

et al. 2000)
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watershed were calculated from 1981 to 1990 in order to

compare the profiles of the different models. The correla-

tion between the different simulated outputs from RCMs

with the observed meteorological data using tailor diagrams

(Taylor 2001) are represented by Fig. 3.

Hydrological model performance evaluation

Various statistics used for hydrological model performance

analysis frequently employ Nash and Sutcliffe efficiency

(NSE), mean square error (MSE) approaches. The percent

bias (PBIAS) and root mean square error (RMSE) are also

used for hydrological time series analysis. For this study we

followed NSE, PBIAS and R2 as model evaluation statistics

(Moriasi et al. 2007). The model performance were

considered satisfactory if NSE [ 0.5 and PBIAS = ±25 %

and R2 [ 0.6

NSE ¼ 1�
PT

t¼1 Qm;t � Qs;t

� �2

PT
t¼1 Qm;t � Qm

� �2
ð3Þ

PBIAS ¼
PT

t¼1 Qs;t � Qm;t

� �
PT

t¼1 Qm;t

" #
� 100 ð4Þ

R2 ¼
PT

t¼1 Qm;t � Qm

� �
Qs;t � Qs

� �
PT

t¼1 Qm;t�Qm

� �2
h i0:5PT

t¼1 Qs;t�Qs

� �2
h i0:5

2
64

3
75

2

: ð5Þ

NSE indicates the strength of the relationship of

observed and simulated values where Qm,t is the observed

Fig. 3 Taylor diagrams plotting the MeteoSwiss data versus the

simulation outputs for seven PRUDENCE models. Graphs show three

axis, the R2 correlation coefficients (in blue), the standard deviation

(x and y axis, in black) and the centered root-mean-square errors (in

green). Observations are intersecting the x-axis. a Precipitation,

b mean wind speeds at 10 m elevation, c minimum, d maximum

temperatures are given
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data value at time t and Qs,t is the simulated data value at

time t. NSE values lie between -? to ?1, (Nash and

Sutcliffe 1970). Values close to ?1 indicates the better

model performance.

The PBIAS indicates the average tendency of the sim-

ulated data to be larger or smaller than their observed

values. According to Gupta et al. (1999), the PBIAS can be

utilized as an indicator of under- or over-estimation.

Negative PBIAS indicates the underestimation of model-

generated values with respect to the measured values. The

square of Pearson’s product moment correlation is indi-

cated by R2 which represent the proportions of total vari-

ance of the measured data that can be explained by the

simulated data. Higher values of R2 for simulated data

close to 1 represent better model performance.

Results and discussion

This part of the paper contains five sections. In the first

section meteorological variables were represented with the

observed variables and in the second section comparison

with the observed value were plotted with tailor diagram.

In the third section, the calibration of the hydrological

model based on the local data and the list of parameters

responsible were described. In the fourth section, the per-

formance test of climatic variables for reproducing runoff

is represented. Finally the impact of grid resolution of

reproducing the observed hydrograph is assessed in the

fifth section.

Profiles analysis of SWAT input variables

The results obtained for the comparison between the sim-

ulated and observed values for the four climate variables

for the watershed are shown in Fig. 2. All graphs plot the

yearly mean values from 1981 to 1990 for the various

PRUDENCE models and for the meteorological observa-

tions (bold lines). Apart from the wind speeds, the graphs

indicate that all PRUDENCE models either overestimate or

underestimate the observed values. For precipitation

(Fig. 2a), the PRUDENCE models overestimate the

observed precipitation amounts. The two DMI simulations

provided the best results. The grid resolution seems to have

less influence on the effectiveness of the outputs, as the

HC1 run seem to be better matching observations than the

F25 runs. Overall, simulations and observations seem to

indicate a slight decrease of precipitation in the Rhone

watershed.

For the two temperature graphs (Fig. 2c, d), the SMHI

HCCTL outputs are the closest to the meteorological

observations. Nevertheless, although they differ in their

orders of magnitude, all PRUDENCE runs have similar

trends for both the minimum and maximum temperatures.

The DMI values are very close to each other (especially for

the T2max values), but rather far away from the observa-

tions. Trends can be observed on both temperature graphs

for the 1981–1990 decade: Fig. 2c shows an increase of the

minimum temperatures, whereas the maximum tempera-

tures seem to be gently decreasing. These trends need to be

investigated for longer periods before making any con-

cluding remarks regarding the climate of Rhone watershed.

The wind graph (Fig. 2b) reveals little variability in the

mean wind speeds during the 1981–1990 periods for all

datasets. This is particularly the case for the two DMI runs,

which show a constant close to zero wind speed. The

METNO outputs provide values just below 2 m/s that are

the closest to the observations.

Taylor diagrams of SWAT input variables

After having assessed the orders of magnitude of the sim-

ulated variables compared to the meteorological observa-

tions, one needs to investigate the correlation between

datasets. These are shown in Fig. 3 in the form of Taylor

diagrams (Taylor 2001) for each of the four climatic vari-

ables. These diagrams are very useful when assessing the

performance of many models as they graphically summa-

rize their patterns into a single plot and allow comparing

them to the observed data. The models performances are

expressed in terms of their correlation, their centered RMS

difference and their standard deviations compared to

observations. These diagrams have been widely used in the

past to assess the quality of various simulated outputs

(Maurer et al. 2002). The radial coordinate gives the stan-

dard deviation and the angular coordinate provides the

correlation with the observations. Furthermore, the distance

between the observation point and the models’ point is

proportional to the RMSE model error.

Precipitation (4a): coefficients values are scaled from

0.4 to 0.8, with the SMHI HCCTL_22, the METNO and the

ICTP models having the highest coefficients. However,

when analyzing the standard deviations, Fig. 3a indicates

that METNO and ICTP provide the patterns that are the

most similar to the observations. This graph indicates that

although the DMI precipitation outputs are of the same

order of magnitude as the observations (Fig. 2a), other

models can provide better performance in terms of their

correlations and patterns. Concerning wind speeds

(Fig. 3b): the graph indicates that correlations are very low,

with values even being negative. The variability between

all datasets is similar and close to zero. Minimum tem-

peratures (Fig. 3c): the SMHI HCCTL model seems to

provide the best results, with coefficients reaching 0.85, but

with a more important variability compared to the obser-

vations. Moreover, as plotted in Fig. 2c, outputs are of
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similar values than the observed, indicating that SMHI

HCCTL is providing satisfying results for minimum tem-

peratures. All other models have coefficients that are

between 0.4 and 0.7. Maximum temperatures (Fig. 3d):

coefficients are lower than for the minimum temperatures

as they are all below 0.5. Furthermore, except for the ICTP,

standard deviations for simulations are higher than the

observation data. One important signature of DMI can be

noticed that the correlation is highest compared to other

RCMs.

Hydrological model calibration and validation

The Hydrological model calibrations were done on daily

simulations in order to satisfy the statistical performance

listed in Eqs. (3), (4) and (5). Comparing pre- and post-

calibration (Fig. 4a, b) and the major problems identified

were the overestimation of peak flow, the underestimation

of low flow and the influence of secondary peaks. The

sensitivity test was done using parasol (van Griensven et al.

2006), a built in sensitivity technique embedded in SWAT.

The parameter adjustments were done by manual calibra-

tion. We tried to calibrate the model with a lower number

of parameters in order to avoid the over parameterization

problem. Both high flow and low flow parameters were

tuned based on expert knowledge and existing literature

(Klok et al. 2001). The surface water lag coefficient

(SURLAG) was set to 1 instead of the default value of 4

considering the steep gradient of the mountainous terrain.

The melt factor for June (SMFMX) was adjusted to 5.9

from the default value of 4.5. Similarly melt factor for

December (SMFMN) was adjusted to 4.6. The snow

Fig. 4 Observed and simulated

relationship based on station

data at the most downstream

point of the watershed a before

calibration, b after calibration,

c validation
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parameter lag factor (TIMP) was adjusted to 0.572 within

its range of 0 and 1. The threshold temperature for snow

melt was adjusted to the value of 4.5 The overall precipi-

tation lapse rate value was kept as 10 mm/km, and tem-

perature lapse rate was tuned to -3.920 �C/km following

the results from the literature (Klok et al. 2001). Among the

nine parameters TIMP was found most sensitive for model

performance statistics because it is directly related to the

melt process. Along with TIMP other snow related

parameters like initial snow content were assigned as

300 mm as the simulation starts from January. We used

30 years measured daily discharges for our study at the

downstream points of the watershed (Porte du seux) start-

ing from 1981 to 2010. We split the time line for three

slices, first 10 years for warming up the model, 10 years

(1991–2000) for calibration and 10 years (2001–2010) was

used for validation of the model illustrated in Fig. 4.

Hydrograph generated from different RCMs

We compared the model-generated hydrographs with the

observed hydrographs based on high flow period, low flow

period, occurrence of high flow period and duration of high

flow period. In Fig. 5 (blue colored) the bell-shaped hyd-

rograph illustrates the monthly average discharge obtained

from the observed data and the red the local station data.

The high flow occurs in the summer time and the low flow

period in winter time. The flow periods are highly corre-

lated with the temperature and precipitation of the study

area. Because the study area is located at a high altitude

during the winter period it is covered with snow and ice,

the snow accumulation process occurs during the winter

therefore the flow is low compared with summer. Consid-

ering the shape of the hydrograph, only with the input from

DMI could we produce a similar pattern, although there is a

systematic over estimation during the high flow period, the

peak flow is also overestimated. For instance, naturally,

average peak flow occurs around 350 m3/s, whereas the

DMI-generated hydrograph, at 450 m3/s. None of the other

climatic model generated output could reproduce a similar

hydrograph pattern. Besides the DMI model, the output

from ICTP has a similar pattern, but the peak flow is again

highly over estimated; moreover there is an influence of the

secondary peak during the recession limb of the hydro-

graph. The hydrograph generated from both SMHI and

METNO models has a different shape and does not

reproduce the similar time of occurrence of peak flow; the

duration of high flow also does not match the natural flow.

The hydrograph generated with the METNO model present

a pattern that has less similarity with the natural flow

regime.

Usually the discharge pattern of Switzerland is rather

like a bell-shaped curve, which physically means that high

flow periods are occurring during the summer and the low

flow periods are occurring during the winter. This is due to

the melting of snow and ice during summer. We therefore

see, based on the discharge curves, that only the DMI

output could produce a similar curve despite a sharper drop

in the recession limb of the hydrograph.

Impact of grid resolution

In total three grid points fall within the watershed from the

50 9 50 km2 grid of DMI as well as in the SMHI model

(Fig. 6). Whereas a total of 15 points fall within the

25 9 25 km2 grid from DMI and 17 points from SMHI.

The hydrograph generated from 25 9 25 km2 and

50 9 50 km2 grids exhibit similar peak flows, but in the

low flow period 25 9 25 km2 grids provided slightly

improved statistical values, when comparing the observed

hydrograph. For the DMI output, the main difference

between the 50 9 50 and 25 9 25 km2 grids is visible at

the start of the high flow period (February to May).

Whereas in the SMHI 22 9 22 km2 grid the values better

reproduce the results during the peak flow period. The

duration of high flow period was highly overestimated for

both grid sizes when compared to the observed value. For

instance the observed peak flow reduction process starts in

July–August whereas the model generated discharge still

continues until September–October. Compared to the 50

and 22 km grid point resolutions, the 22 km grid produces

better statistics (Table 3), changing the hydrograph to a

more skewed shape.

Statistical performance

Streamflow simulation based on the model generated

variables provided little correlation with the observed

value. When considering the models’ statistical perfor-

mance [based on the Eqs. (3) to (5)], of the four models,Fig. 5 Monthly average hydrograph and outputs with RCMs
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the DMI with the higher resolution grid shows better

results than the other models. Instead of using indepen-

dent model results, ensemble multi-model means can also

be used. However for performance analysis of specific

application as discharge or return periods, the single

model output can be more adequate than a multi-model

ensemble mean. Similar results were reported by (Salz-

mann and Mearns 2012) that ensemble means do not

necessarily provide better performance than single mod-

els. Therefore, after the sensitivity test of the RCMs with

the observed data, it is important to apply an adjustment

factor, e.g., the lapse rate for precipitation or temperature

based on the physical characteristics of the watershed.

These adjustment factors could be spatial or temporal, for

spatial characteristics it can be elevation and slope of the

region. For instance, Pepin and Losleben (2002) proposed

the adjustment for the Colorado River basin with temporal

adjustment, applying a monthly average lapse rate. NSE is

often considered as the most significant correlation

between the simulated and observed relationship. How-

ever, the volume estimations can be establish with

PBIAS, it is always recommended that PBIAS should be

within negative and positive value near around 10

(Moriasi et al. 2007). Negative and positive values of

PBIAS are based on overestimation and under estimation

of simulated relationship as we can see from the result of

DMI and METNO.

Discussion

The performance evaluation of global and RCM generated

variables are analyzed in various ongoing studies, among

the recent literatures, Jiang et al. (2013) examined the

precipitation generated from 16 GCMs and 10 RCMs for

four US cities and found the variability is quite significant.

Their finding suggests current GCMs/RCMs tend to sim-

ulate longer storm duration and lower storm intensity

comparing to observed records. Also, most GCMs/RCMs

failed to produce the high-intensity summer storms when

they are not bias corrected. Similar to our objective Hwang

et al. (2013) focused streamflow response to dynamically-

downscaled regional reanalysis data in central Tampa Bay

region of Florida utilizing a hydrological model, where

they noticed the reanalysis data provided better hydrolog-

ical model generated streamflow then the raw data obtained

from RCMs. Therefore, there is a need to focus on

reanalysis techniques which in terms emphasizes the need

of bias correction of meteorological variables. Not only for

streamflow simulation, other variables like evapotranspi-

ration (Obeysekera 2013) can also be an important element

that often utilize RCMs for future forecast using hydro-

logical models.

The bias correction algorithms are various types, among

them statistical approach like quantile mapping, histogram

equalization, and rank matching are notable. New tech-

niques are immerging along with the recognized methods

however they are often controversial while applying in a

set of RCMs. A realistic representation is yet to be a

challenge due to our limited knowledge in the atmospheric

physics and due to involvement of large number of vari-

ables. Most often bias corrections are done when the cli-

mate model generated outputs are systematically

underestimated or over estimated. Therefore, there is a

certain need to improve our understanding on bias cor-

rection technique not only spatial analysis but also with

time series, more importantly seasonal basis.

Considering the performance evaluation criteria based

on tailor diagram (Fig. 3) in connection with the

Fig. 6 Grid points from

different PRUDENCE models

that were used in this study.

a Points of models at 50 km

grid size, b points at 25 km

Table 3 Statistical performance of individual RCMs and local

stations

Data sources NSE R2 PBIAS

MeteoSwiss 0.71 0.81 -5.27

DMI 25 0.37 0.63 -10.87

DMI 50 0.22 0.59 -12.52

SMHI 22 -0.47 0.25 -22.46

SMHI 50 -0.9 0.14 -25.82

METNO 50 -2.4 0.012 44.12

ICTP 50 -1.2 0.35 21.46
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streamflow (Fig. 5) it is depicted that there is no strong

harmonization of independent model generated variables

with observation records. Especially the profile analysis

illustration of maximum temperature (Fig. 3d) DMI has

highest correlation value (0.475) whereas SMHI has lowest

(0.01). This is reflected in the hydrograph because the melt

rate of snow and glaciers are significantly correlated with

daily maximum temperature denoted in the denominator of

the Eq. (1). Moreover, glacier melt uses the similar

approach as temperature index, where melt rate is linear

function of daily maximum air temperature, hence a sig-

nificant percentage of streamflow is generated from glacier

melt it is apparent that the daily maximum temperature will

affect the model performance. It is visible that DMI gen-

erated variables provided streamflow with an overestima-

tion of the entire period which is quite systematic. Our

assumption is that this systematic overestimation can be

resolved using the temperature lapse rate. Similarly the

lapse rate of precipitation can also help providing signifi-

cant improvement in bias correction techniques.

Conclusions

This study compared the gridded meteorological variables

obtained from RCM outputs along with the local stations.

As the hydrological models are driven by meteorological

inputs such as precipitation and temperature we analyzed

different climate models as input of the hydrological

model. The variability found was quite significant com-

pared to the local station which influences the model per-

formance. The hydrological model (SWAT) was used for

simulating discharge based on the climate inputs for

reproducing runoff in the upper Rhone River watershed. At

first we built the hydrological model based on the local

station data and calibrated the model, later the

meteorological inputs were replaced and simulated each

time. We considered the hydrograph analysis both visually

and statistically. Considerations were made for high flow

period, low flow period, time of flow occurrence and

duration of high flow period. We found temperature driven

variables are more sensitive in the high altitude catchment

as the melt processes are highly linked with the variability

of temperature (min and max). Among the set of climate

models driven hydrograph, the DMI model generated

variables were able to reproduce similar patterns of high

flows. Despite generating a similar pattern of hydrograph

shape, the simulated hydrograph underestimated low flow

and overestimated high flow. Apparently, a set of RCM

driven variables could not produce similar pattern of hyd-

rograph. Some of the climate models reproduced hydro-

graphs with secondary peaks which have not been observed

in reality. We analyzed 50 and 25 km grid resolutions for

the DMI model and the 50 and 22 km scales for the SMHI

model. The output from both resolutions reproduced sim-

ilar patterns, but finer grids provided better performance

with respect to the shape of the hydrograph and overall

statistical performance (Fig. 7). Therefore, our conclusion

is to test the acceptability of the RCM-generated variables

before applying them to the decision making level espe-

cially for mountainous watershed emphasizing the tem-

perature as a driving variable for bias correction studies.

Our recommendation would be to use a correction factor

for meteorological variables (ex. lapse rate along with

elevation) before implementing them in complex terrain for

impact modeling.
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