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Abstract Given a polyhedron L with h facets, whose interior contains no integral
points, and a polyhedron P , recent work in integer programming has focused on
characterizing the convex hull of P minus the interior of L . We show that to obtain such
a characterization it suffices to consider all relaxations of P defined by at most n(h−1)

among the inequalities defining P . This extends a result by Andersen, Cornuéjols,
and Li.
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1 Introduction

Given polyhedra P, L ⊆ R
n , we denote with

P\L := conv(P − intL), (1)
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where “conv” indicates the closed convex hull, “−” the set difference, and “int” the
topological interior. Let Ax ≤ b be a system of inequalities defining P . We denote by
Rq(A, b) the family of the polyhedral relaxations of P that consist of the intersection
of the half-spaces corresponding to at most q inequalities of the system Ax ≤ b. In
this note we prove the following theorem:

Theorem 1 Let P = {x ∈ R
n : Ax ≤ b} and L be polyhedra in R

n and let h ≥ 2
be the number of facets of L. Then

P\L =
⋂

R∈Rn(h−1)(A,b)

R\L .

In the next section we provide a proof of this theorem, and we sketch a construction
showing that the result does not hold if one considers polyhedra in Rn(h−1)−1(A, b).
We now motivate it by providing an application to mixed integer programming.

Let P = {x ∈ R
n : Ax ≤ b} be a polyhedron and let S = Z

p × R
n−p, for some

p, 1 ≤ p ≤ n. A mixed-integer set F is a set of the form {x ∈ P ∩ S}. Most of the
research has focused on obtaining inequalities that are valid for F , or equivalently, for
convF , where “conv” indicates the convex hull. The operator defined in (1) was first
considered in the mixed integer programming community by Andersen et al. [2], and
it may be viewed as a special case of the disjunctive programming approach invented
by Balas [3]. A convex set L is S-free if intL does not contain any point in S. Given
a mixed-integer set F in the form described above and an S-free polyhedron L , F is
obviously contained in P\L . It follows that any valid inequality for P\L is also valid
for F . The converse is also true: If P is a rational polyhedron and ax ≤ β is a valid
inequality for F , then ax ≤ β is valid for P\L , for some S-free polyhedron L [13,7].
This provides a motivation for the study of valid inequalities for P\L when L is a
polyhedron, a setting that is receiving extensive interest from the community (see for
example [4,6,10–13]).

Theorem 1 shows that in order to derive the inequalities that are essential in a
description of P\L , it is necessary and sufficient to consider inequalities that are valid
for a relaxation of P comprising a number of inequalities that is a function of the
dimension of the ambient space and of the number of facets of L .

Let S = Z
p × R

n−p, for some p, 1 ≤ p ≤ n. A split is a set L such that
L = {x ∈ R

n : π0 ≤ (π, 0) x ≤ π0 + 1}, for some π ∈ Z
p, π0 ∈ Z. Clearly a split is

an S-free convex set. Balas and Perregaard [5] prove Theorem 1 when P is contained
in the unit cube and L is a split of the form {x ∈ R

n : 0 ≤ xi ≤ 1}, 1 ≤ i ≤ p.
Andersen et al. [1] prove Theorem 1 when L is a split, and they pose as an open
question if their result generalizes to other polyhedra L . A shorter proof of the same
result has been recently provided by Dash et al. [9], and uses the equivalence between
split cuts and mixed-integer rounding (MIR) cuts. All these proofs do not seem to be
extendable to a more general case.

Andersen et al. [1] also prove that, if L is a split in R
n , in Theorem 1 it is enough

to consider polyhedra in Rn(A, b) defined by linearly independent inequalities.
Furthermore they show that if L is defined by only two inequalities, one cannot gen-
erally restrict to polyhedra in Rn(A, b) defined by linearly independent inequalities.
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2 Proof of main result

The following lemma is well-known, as it is an equivalent formulation of Carathéodory’s
theorem (see for example [14]).

Lemma 1 Let G be a matrix of size m × d and let r̄ be an extreme ray of the cone
{r ∈ R

m : r ≥ 0, rG = 0}. Then r̄ has at most d + 1 positive components.

Corollary 1 Let Ai , i = 1, . . . , k be mi × n matrices and let bi , i = 1, . . . , k be
vectors of dimension mi . Let (r̄ i ∈ R

mi
, s̄i ∈ R : i = 1, . . . , k) be an extreme ray of

the cone defined by the system

−r1 A1 + r i Ai = 0 i = 2, . . . , k

r1b1 − r i bi + s1 − si = 0 i = 2, . . . , k

r i ≥ 0 i = 1, . . . , k

si ≥ 0 i = 1, . . . , k.

Then (r̄ i , s̄i : i = 1, . . . , k) has at most n(k − 1) + k positive components.

Proof The system

−r1 A1 + r i Ai = 0 i = 2, . . . , k

r1b1 − r i bi + s1 − si = 0 i = 2, . . . , k

comprises of (n + 1)(k − 1) equations. By Lemma 1, (r̄ i , s̄i : i = 1, . . . , k) has at
most (n + 1)(k − 1) + 1 = n(k − 1) + k positive components. ��

(In the above proof, if k = 1 we intend the set of indices i = 2, . . . , k to be empty.)
For i = 1, . . . , k consider polyhedra Pi = {x ∈ R

n : Ai x ≤ bi } and cones
Ci := {x ∈ R

n : Ai x ≤ 0}. So Ci is the recession cone of Pi if Pi is nonempty.
By Minkowski-Weil’s theorem (see for example [14]) there exist polytopes Qi , for
i = 1, . . . , k, such that

Pi = Qi + Ci , i = 1, . . . , k,

where Pi = ∅ if and only if Qi = ∅. Let

P̃ := conv
k⋃

i=1

Qi + cone
k⋃

i=1

Ci , (2)

where “cone” denotes the conic hull. Again, P̃ = ∅ if and only if
⋃k

i=1 Qi = ∅.
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Let S′ be the following system of inequalities:

Ai xi − biλi ≤ 0 i = 1, . . . , k (3)

x −
k∑

i=1

xi = 0 (4)

k∑

i=1

λi = 1 (5)

λi ≥ 0 i = 1, . . . , k. (6)

Given a polyhedron P = {(x, y) ∈ R
n+d : Ax + Gy ≤ b}, we denote with

projx P ⊆ R
n the orthogonal projection of P onto the space of the x-variables. More

precisely projx P := {x ∈ R
n, ∃y ∈ R

d : Ax + Gy ≤ b}. The following theorem is
similar to Balas’ theorem on union of polyhedra [3].

Theorem 2 [8] Given k polyhedra Pi = {x ∈ R
n : Ai x ≤ bi } = Qi + Ci , let P̃

defined as in (2), and let Y ′ ⊂ R
n+(n+1)k be the polyhedron defined by the system

(3)–(6). Then P̃ = projx Y ′.
Furthermore, if either Pi = ∅, i = 1, . . . , k, or if Pi = ∅, i = 1, . . . , k, then
P̃ = conv

⋃k
i=1 Pi .

We now prove Theorem 1.

Proof Clearly P\L ⊆ ⋂
R∈Rn(h−1)(A,b) R\L , thus we need to show the reverse inclu-

sion.
Every inequality in the system Ax ≤ b is valid for some R ∈ R1(A, b). Since

h ≥ 2, R ∈ Rn(h−1)(A, b) and therefore P ⊇ ⋂
R∈Rn(h−1)(A,b) R\L .

If L is not full-dimensional, intL = ∅, P\L = P ⊇ ⋂
R∈Rn(h−1)(A,b) R\L , and the

theorem follows. So we assume that L is a full-dimensional polyhedron with h facets.
Hence L = {x ∈ R

n : ci x ≤ δi , i = 1, . . . , h}, where each inequality ci x ≤ δi

defines a facet of L .
For i = 1, . . . , h, let Ai x ≤ bi be the system obtained from Ax ≤ b by adding

inequality −ci x ≤ −δi and let Pi := {x ∈ R
n : Ai x ≤ bi }. Let k be defined

as follows. If Pi = ∅ for every i = 1, . . . , h, let k = h. Otherwise let k ≥ 1
be the number of nonempty polyhedra among Pi , i = 1, . . . , h, and we assume
that the nonempty polyhedra are P1, . . . , Pk . It follows from the definition of P\L
that

P\L = conv
k⋃

i=1

Pi .

Let S be the following system, obtained from (3)–(6) by using Eqs. (4) and (5) to
eliminate vector x1 and scalar λ1:
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A1x − A1
k∑

i=2

xi + b1
k∑

i=2

λi ≤ b1

Ai xi − biλi ≤ 0 i = 2, . . . , k
k∑

i=2

λi ≤ 1

λi ≥ 0 i = 2, . . . , k.

Let Y be the polyhedron defined by S. Note that Y is a polyhedron in R
n+(n+1)(k−1)

involving vectors x, x2, . . . , xk and scalars λ2, . . . , λk . Furthermore Theorem 2
implies that

P\L = projx Y.

Let U be the set of the extreme rays (r i , si : i = 1, . . . , k) of the cone defined by the
system

− r1 A1 + r i Ai = 0 i = 2, . . . , k (7)

r1b1 − r i bi + s1 − si = 0 i = 2, . . . , k (8)

r i ≥ 0 i = 1, . . . , k (9)

si ≥ 0 i = 1, . . . , k. (10)

Since P\L = projx Y , it is well-known that

P\L = {x ∈ R
n : r1 A1x ≤ r1b1 + s1, ∀(r i , si : i = 1, . . . , k) ∈ U }. (11)

Let (r̄ i , s̄i : i = 1, . . . , k) be a ray in U , and let ax ≤ β be the corre-
sponding valid inequality for P\L , where a = r̄1 A1, β = r̄1b1 + s̄1. To prove
P\L ⊇ ⋂

R∈Rn(h−1)(A,b) R\L , it suffices to show that there exists a polyhedron R̄ ∈
Rn(h−1)(A, b) such that ax ≤ β is valid for R̄\L . Since P ⊇ ⋂

R∈Rn(h−1)(A,b) R\L ,
we assume that the inequality ax ≤ β is not valid for P . We now construct a polyhe-
dron R̄ ∈ Rn(h−1)(A, b) such that ax ≤ β is valid for R̄\L .

For i = 1, . . . , k, let Ri be the polyhedron defined by the inequalities in Ax ≤ b
corresponding to positive components of r̄ i .

Note that when k < h, by definition of k, P = ∅ and for i = k + 1, . . . , h, Pi =
P ∩ {x ∈ R

n : ci x ≥ δi } = ∅. Since P = ∅, it follows by Carathéodory’s theorem
(see for example [14]) that, for i = k + 1, . . . , h, there exist a polyhedron Ri defined
by at most n linearly independent inequalities in Ax ≤ b such that Ri ∩ {x ∈ R

n :
ci x ≥ δi } = ∅.

We now show that for i = 1, . . . , h, inequality ax ≤ β is valid for Ri ∩ {x ∈ R
n :

ci x ≥ δi }. For i = 1, . . . , k, by (7)–(11) we have that a = r̄ i Ai , β = r̄ i bi + s̄i ,
and r̄ i , s̄i ≥ 0, thus ax ≤ β is valid for Ri ∩ {x ∈ R

n : ci x ≥ δi }. Moreover
for i = k + 1, . . . , h, ax ≤ β is valid for Ri ∩ {x ∈ R

n : ci x ≥ δi } = ∅. Now
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let R̄ = ⋂h
i=1 Ri . Hence ax ≤ β is valid for R̄ ∩ {x ∈ R

n : ci x ≥ δi } for every
i = 1, . . . , h. This shows that ax ≤ β is valid for R̄\L .

We finally show R̄ ∈ Rn(h−1)(A, b). For i = 1, . . . , k, since ax ≤ β is not
valid for P and P ⊆ Ri , ax ≤ β is not valid for Ri . Since by (7)–(11) we have
that a = r̄ i Ai , β = r̄ i bi + s̄i , and r̄ i , s̄i ≥ 0, it follows that the component of r̄ i

corresponding to ci x ≥ δi must be positive. By Corollary 1 the positive components
of the vector (r̄ i : i = 1, . . . , k) are at most n(k − 1) + k, and by the previous
argument, the k components of (r̄ i : i = 1, . . . , k) corresponding to the inequalities
ci x ≥ δi , i = 1, . . . , k, are all positive. This shows that

⋂k
i=1 Ri is defined by

at most n(k − 1) inequalities of Ax ≤ b. Moreover for i = k + 1, . . . , h, Ri is
defined by at most n inequalities of Ax ≤ b. It follows that R̄ is defined by at most
n(k − 1) + n(h − k) = n(h − 1) inequalities of Ax ≤ b, hence R̄ ∈ Rn(h−1)(A, b).

��
We conclude this paper showing that the bound given in Theorem 1 is tight. For

n = 1 the result is trivial since L has at most 2 facets, so assume n ≥ 2. For every
n ≥ 2 and h ≥ 2, we sketch the construction of a polyhedron P in R

n and a polyhedron
L with h facets such that

P\L ⊂
⋂

R∈Rn(h−1)−1(A,b)

R\L .

Figure 1 illustrates the construction for n = 2, h = 3.
Let L ′ = {x ∈ R

n : ci x ≤ δi , i = 1, . . . , h} be a full dimensional polyhedron,
where inequalities ci x ≤ δi are in one to one correspondence with the h ≥ 2 facets
Fi of L ′. For every i = 1, . . . , h, let f i be a point in the relative interior of Fi . Let
ε > 0 be such that for every i = 1, . . . , h

Fig. 1 Construction for n = 2, h = 3
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i) the strict inequalities c j x < δ j are valid for f i +εB, for j = 1, . . . , h with j = i ,
where B is the unit ball in R

n .

For every i = 2, . . . , h, let Ai x ≤ bi be a system of n linearly independent inequalities,
such that:

ii) Ai f i = bi ,
iii) ci x ≤ δi is valid for Ri := {x ∈ R

n : Ai x ≤ bi }, and Ri ∩ {x ∈ R
n : ci x =

δi } = f i ,
iv) f j + εB ⊆ Ri , for j = 1, . . . , h with j = i .

(The existence of such systems follows from the definition of f i , i = 1, . . . , h, and
by i)). For i = 2, . . . , h and j = 1, . . . , n, let ai j x ≤ β i j be the j th inequality of
the system Ai x ≤ bi , and let Ai j x ≤ bi j be the system obtained from Ai x ≤ bi by
removing ai j x ≤ β i j .

Since for i = 2, . . . , h, the polyhedra Ri are translate of polyhedral cones and by
ii) Ri has apex f i , it follows from iii) that for every i = 2, . . . , h, j = 1, . . . , n, and
δ > 0, there exists a unique point xi j that satisfies

v) Ai j xi j = bi j and ci xi j = δi + δ.

Let δ > 0 be small enough such that xi j ∈ f i + εB for every i = 2, . . . , h and
j = 1, . . . , n.

Let L := {x ∈ R
n : c1x ≤ δ1, ci x ≤ δi +δ, i = 2, . . . , h} and let P = ⋂h

i=2 Ri .
Note that P is defined by the system Ax ≤ b consisting of all inequalities in systems
Ai x ≤ bi , i = 2, . . . , h. Since by iii), for i = 2, . . . , h, inequalities ci x ≤ δi are valid
for P and δ > 0, then P ∩ {x ∈ R

n : ci x ≥ δi + δ} = ∅ for every i = 2, . . . , h. This
shows that P\L = P ∩ {x ∈ R

n : c1x ≥ δ1}. Since by i), c1 f 2 < δ1 and by ii), iv),
f 2 ∈ P , the inequality c1x ≥ δ1 is not valid for P , and so c1x ≥ δ1 is irredundant for
the system defining P\L .

We now show that for every R ∈ Rn(h−1)−1(A, b), the inequality c1x ≥ δ1 is not
valid for R\L .

Let R ∈ Rn(h−1)−1(A, b). Since the system Ax ≤ b contains n(h − 1) inequali-
ties, R contains the polyhedron defined by the system Ax ≤ b deprived of a single
inequality. We assume without loss of generality that this inequality is a21 x ≤ β21 ,
and so is the first inequality of the system A2x ≤ b2. By v), the point x21 is such that
A21 x21 = b21 and c2x21 = δ2 + δ. By the choice of δ, x21 ∈ f 2 + εB, so it follows
by iv) that x21 ∈ Ri for every i = 3, . . . , h. Hence x21 ∈ R.

Since c2x21 = δ2 + δ, and c2x ≤ δ2 + δ is valid for L , x21 does not belong to the
interior of L . This shows that x21 belongs to R\L . Since x21 belongs to f 2 + εB, then
by i), c1x21 < δ1. Hence c1x ≥ δ1 is not valid for R\L .
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