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Abstract The goal of this paper is to review the main trends in the domain of uncer-
tainty principles and localization, highlight their mutual connections and investigate
practical consequences. The discussion is strongly oriented towards, and motivated
by signal processing problems, from which significant advances have been made
recently. Relations with sparse approximation and coding problems are emphasized.
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1 Introduction

Uncertainty inequalities generally express the impossibility for a function (or a vec-
tor in the discrete case) to be simultaneously sharply concentrated in two different
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representations, provided the latter are incoherent enough. Such a loose definition
can be made concrete by further specifying the following main ingredients:

– A global setting, generally a couple of Hilbert spaces (of functions or vectors)
providing two representations for the objects of interest (e.g. time and frequency,
or more general phase space variables).

– An invertible linear transform (operator, matrix) mapping the initial represen-
tation to the other one, without information loss.

– A concentration measure for the elements of the two representation spaces:
variance, entropy, Lp norms,...

Many such settings have been proposed in the literature during the last century, for
various purposes. The first formulation was proposed in quantum mechanics where
the uncertainty principle is still a major concern. However it is not restricted to this
field and appears whenever one has to represent functions and vectors in different
manners, to extract some specific information. This is basically what is done in signal
processing where the uncertainty principle is of growing interest.

The basic (quantum mechanical) prototype is provided by the so-called Robertson-
Schrödinger inequality, which establishes a lower bound for the product of variances
of any two self-adjoint operators on a generic Hilbert space. The most common
version of the principle is as follows:

Theorem 1 Let f ∈ H (Hilbert space), with ‖f ‖ = 1. Let A and B be (possibly
unbounded) self-adjoint operators on H with respective domains D(A) and D(B).
Define the mean and variance of A in state f ∈ D(A) by

ef (A) = 〈Af, f 〉 , vf (A) = ef

(
A2
)
− ef (A)

2 .

Setting [A,B] = AB−BA and {A,B} = AB+BA, we have ∀f ∈ D(AB)∩D(BA),

vf (A)vf (B) ≥ 1

4

[∣∣ef ([A,B])∣∣2 + ∣∣ef
({A− ef (A), B − ef (B)})∣∣2

]
.

The quantities vf (A) and vf (B) can also be interpreted as the variances of two
representations of f given by its projection onto the respectives bases of (possibly
generalized) eigenvectors of A and B. From the self-adjointness of A and B, there
exists a unitary operator mapping one representation to the other.

The proof of this result is quite generic and carries over many situations. However,
the choice of the variance to measure concentration properties may be quite question-
able in a number of practical situations, and several alternatives have been proposed
and studied in the literature.

The goal of this paper is to summarize a part of the literature on this topic, dis-
cuss a few recent results and focus on specific signal processing applications. We
shall first describe the continuous setting, before moving to discrete formulations and
emphasizing the main differences. Given the space limitations, the current paper can-
not be exhaustive. We have selected a few examples which highlight the structure and
some important aspects of the uncertainty principle. We refer for example to [15] for
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a very good and complete account of classical uncertainty relations, focused on time-
frequency uncertainty. An information theory point of view of the uncertainty princi-
ple may be found in [5] and a review of entropic uncertainty principles has been given
in [30]. More recent contributions, mainly in the sparse approximation literature,
introducing new localization measures will be mentioned in the core of the paper.

2 Some fundamental aspects of the uncertainty principle

2.1 Signal representations

The uncertainty principle is usually understood as a relation between the simultane-
ous spreadings of a function and its Fourier transform. More generally, as expressed
in Theorem 1 an uncertainty principle also provides a relation between any two rep-
resentations of a function, here the ones given by its projections onto the (possibly
generalized) eigenbases of A and B. Can a representation be something else than the
projection onto a (generalized) eigenbasis? The answer is yes: representations can be
made by introducing frames. A set of vectors U = {uk}k in a Hilbert space H is a
frame of H if for all f ∈ H:

A‖f ‖2 ≤
∑
k

∣∣〈f, uk〉
∣∣2 ≤ B

∥∥f ∥∥2
, (1)

where A, B are two constants such that 0 < A ≤ B < ∞. Since A > 0, any
f ∈ H can be recovered from its frame coefficients {〈f, uk〉}k. This is a key point:
in order to compare two representations, information must not be lost in the process.
Orthonormal bases are particular cases of frames for which A = B = 1 and the
frame vectors are orthogonal.

Denote by U : f ∈ H → {〈f, uk〉}k the so-called analysis operator. U is left
invertible, which yields inversion formulas of the form

f =
∑
k

〈f, uk〉ũk ,

where Ũ = {ũk}k is an other family of vectors in H, which can also be shown
to be a frame, termed dual frame of U . Choosing as left inverse the Moore-
Penrose pseudo-inverse U−1 = U† yields the so called canonical dual frame Ũ◦ ={
ũ◦k = (UU∗)−1uk

}
k
, but other choices are possible.

The uncertainty principle can be naturally extended to frame representations, i.e.
representations of vectors f ∈ H by their frame coefficients. As before, uncertainty
inequalities limit the extend to which a vector can have two arbitrarily concentrated
frame representations. Since variances are not necessarily well defined in such a
case, other concentrations measures such as entropies have to be used. For example,
bounds for the entropic uncertainty principle are derived in [28].

2.2 The mutual coherence: how different are two representations?

A second main aspect of uncertainty inequalities is the heuristic remark that the more
different the representations, the more constraining the bounds. However, one needs
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to be able to measure how different two representations are. This is where the notion
of coherence enters.

Let us first stick to frames in the discrete setting. Let U = {uk}k and V = {vk}k
be two frames of H. Let us define the operator T = VU−1 which allows one to pass
from the representation of f in U to the one in V . It is given by:

T Uf (j) =
〈∑

k

(Uf )(k) ũk, vj

〉
=
∑
k

(Uf )(k) 〈ũk, vj 〉.

This relation shows that in finite dimension T is represented by a matrix G =
G(Ũ ,V) (the cross Gram matrix of Ũ and V) defined by Gj,k = 〈ũk, vj 〉. The matrix
G encodes the differences of the two frames. The latter can be measured by various
norms of T, among which the so-called mutual coherence:

μ = μ(Ũ,V) = max
j,k

∣∣〈ũk, vj 〉
∣∣ = max

j,k

∣∣Gj,k

∣∣ = ‖T ‖�1→�∞ . (2)

This quantity encodes (to some extend) the algebraic properties of T.

Remark 1 This particular quantity (norm) may be generalized to other kinds of norms
which would be, depending on the setting, more appropriate for the estimation of the
correlation between the two representations. Indeed, it is the characterization of the
matrix which quantify how close two representations actually are.

Remark 2 In the standard case (N-dimensional) where the uncertainty is stated
between the Kronecker and Fourier bases, |Tj,k | = 1

/√
N for all j, k. These bases

are said to be mutually unbiased and μ = 1
/√

N is the smallest possible value of μ.

In the case of the entropic uncertainty principle, the demonstration of the inequal-
ity is based on the Riesz interpolation theorem and it rely on bounds of T as an
operator from �1 → �∞ and from �2 → �2 (see Section 4.3). As we shall see, this
notion of mutual coherence appears in most of the uncertainty relations. A noticeable
exception is the variance-based uncertainty principle. In this case it is replaced by the
commutation relation between the two self-adjoint operators and the connection with
the coherence is not straightforward.

2.3 The notion of phase space

Standard uncertainty principles are associated with pairs of representations: time
localization vs frequency localization, time localization vs scale localization,... How-
ever, in some situations, it is possible to introduce directly a phase space, which
involves jointly the two representation domains, in which (non-separable) uncertainty
principles can be directly formulated: joint time-frequency space, joint time-scale
space,...

Uncertainty principles associated with pairs of representations often have counter-
parts defined directly in the joint space. We shall see a few examples in the course of
the current paper. In such situations, the mutual coherence is replaced with a notion
of phase space coherence.
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3 Uncertainty inequalities in continuous settings: a few remarkable examples

To get better insights on the uncertainty principle we state here a few remarkable
results which illustrate the effect of changing (even slightly) the main ingredients.
This helps understanding the choices made below in discrete settings.

The most popular and widespread form of the uncertainty principle uses the vari-
ance as spreading measure of a function and its Fourier transform. This leads to
the inequality stated in Theorem 1, where A = X is the multiplication operator
Xf (t) = tf (t) and B = P = −i∂t /2π is the derivative operator. This first instance
of uncertainty inequalities is associated to the so-called canonical phase space, i.e. the
time-frequency, or position-momentum space. Let us first introduce some notations.
Given f ∈ L2(R), denote by f̂ its Fourier transform, defined by

f̂ (ν) =
∫ ∞

−∞
f (t)e−2iπνt dt .

With this definition, the Fourier transformation is an unitary operator L2(R) →
L2(R). The classical uncertainty inequalities state that for any f ∈ L2(R), f and f̂

cannot be simultaneously sharply localized.

Heisenberg’s inequality Let H = L2(R) and consider the self-adjoint operators X
and P, defined by Xf (t) = tf (t) and Pf (t) = −if ′(t)/2π . X and P satisfy the
commutation relations [X,P ] = i 1, where 1 is the identity operator. For f ∈ L2(R),
denote by ef and vf its expectation and variance (see Theorem 1):

ef =ef (X)= 1

‖f ‖2

∫ ∞

−∞
t
∣∣f (t)∣∣2 dt , vf =vf (X)= 1

‖f ‖2

∫ ∞

−∞
(t − ef )

2
∣∣f (t)∣∣2 dt.

(3)

Then the Robertson-Schrödinger inequality takes the form

Corollary 1 For all f ∈ L2(R),

vf · v
f̂
≥ 1

16π2
, (4)

with equality if and only if f : t → f (t) = ae−b(t−μ)2/2 is a Gaussian function, up
to time shifts, modulations, rescalings and chirping (a, b, μ ∈ C, with �(b) > 0).

3.1 Variance time-frequency uncertainty principles on different spaces

Usual variance inequalities are defined for functions on the real line, or on Euclidian
spaces. It is important to stress that these inequalities do not generalize easily to other
settings, such as periodic functions, or more general functions on bounded domains.
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First, the definition of mean and variance themselves can be difficult issues.1 For
example, the definition of the mean of a function on the circle S1 is problematic.
Sticking to the above notations, the operator X is not well defined on L2(S1) because
of the periodicity, the meaning of ef (X) is not clear, and does definitely not represent
the mean value of f. Adapted definitions of mean and variance are required. For
example, the case H = L2(M), where M is a Riemannian manifold, has been studied
by various authors (see [11] and references therein).

For example, in the case of the circle one definition of the mean value is given by
ef = arg〈f,Ef 〉 where Eψ(t) = exp(i2πt)ψ(t) (the so-called von Mises’s mean,
see [4]). From this, an angle-momentum uncertainty inequality has been obtained
in [4, 21]. Yet, additional difficulties appear: first the bound of the uncertainty prin-
ciple is modified (compared to the L2(R) case) and depends non trivially on the
function f involved. This implies that functions whose uncertainty product attains
the bounds are not necessarily minimizers and the strict positivity of the lower
bound may not be guaranteed. The answer of the authors is to suggest to modify the
definition of the variance (in addition to the modification of the mean).

Similar problems are encountered in various different situations, such as the affine
uncertainty which we account for below. All this shows that alternatives to variance-
based spreading measures are necessary. We will address these in Section 3.3 below.

3.2 Different representations

In the Robertson-Schrödinger formulation, the two representation spaces under con-
sideration (which form the phase space) are L2 spaces of the spectrum of two
self-adjoint operators A and B. The spectral theorem establishes the existence of two
unitary maps UA and UB mapping H to the two L2 spaces; the images of elements
of H by these operators yield the two representations, for which uncertainty inequal-
ities can be proven. It is worth noticing that these representations can be (possibly
formally) interpreted as scalar products of elements of H with (possibly generalized)
eigenbases of A and B.

This allows one to go beyond the time-frequency representation and introduce gen-
eralized phase spaces. We shall assume that the generalized phase space is associated
with self-adjoint operators A1, . . . Ak , which are infinitesimal generators of general-
ized translations, acting on some signal (Hilbert) space H. Whenever two operators
Aj , Al are such that there exists a unitary transform U which turn these two operators
into the standard case (operator X, P defined above), one can obtain time-frequency
type uncertainty inequalities. In such cases, the lower bound is attained for specific
choices of f, which are the images of gaussian functions by the unitary transformation
U. We will refer to this construction as a canonization process. An example where
canonization is possible can be found in Remark 3 below.

When this is not the case, the commutator [Aj ,Al] is not a multiple of the identity
and the lower bound generally depends on f. This implies phenomena described in

1The definition and properties of the variance (and other moments) on compact manifolds is by itself a
well defined field of research named directional statistics.
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Section 3.1. Even worse, if the spectrum of the operator i[Aj ,Al] include zero then
the lower bound is zero, revealing that the variance may not be a spreading measure
in this case.

3.2.1 Time-scale variance inequality

The classical affine variance inequality is another particular instance of the
Robertson-Schrödinger inequality: let A = X and B = D = (XP + PX)/2 denote
the infinitesimal generators of translations and dilations, acting on the Hardy space
H 2(R) = {f ∈ L2(R), f̂ (ν) = 0 ∀ν ≤ 0}, which is the natural setting here.

Explicit calculation shows that [X,D] = iX, and it is worth introducing the scale
transform f ∈ H 2(R) → f̃ , which is a unitary mapping H 2(R) ↔ L2(R) defined
by

f̃ (s) =
∫ ∞

0
f̂ (ν)e2iπs dν√

ν
=
∫ ∞

−∞
f̂ (eu)eu/2e2iπus du . (5)

The corresponding Robertson-Schrödinger inequality states

Corollary 2 For all f ∈ H 2(R),

v
f̂
.vf̃ ≥ 1

16π2
e2
f̂
, (6)

with equality if and only if f̂ is a Klauder waveform (Fig. 1), defined by

f̂ (ν) = K exp{a ln(ν)− bν + i(c ln(ν)+ d)} , ν ∈ R
+ (7)

for some constants K ∈ C, a > −1/2, b ∈ R
+ and c, d ∈ R.

It is worth noticing that the right hand side explicitly depends on f, so that the
Klauder waveform, which saturates this inequality, is not necessarily a minimizer of
the product of variances, as analyzed in [24].

Fig. 1 Examples of Klauder waveform (left) and Altes waveform (right)
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3.2.2 Modified time-scale inequality

The above remark prompted several authors (see [14] for a review) to seek different
forms of averaging, adapted to the affine geometry. This led to the introduction of
adapted means and variances: for f ∈ H 2(R), set

ẽ
f̂
= exp

{
1

‖f̂ ‖2

∫ ∞

0

∣∣f̂ (ν)∣∣2 ln(ν) dν
}

ṽ
f̂
= 1

‖f̂ ‖2

∫ ∞

0

[
ln(ν/ẽ

f̂
)
]2 ∣∣f̂ (ν)∣∣2 dν.

(8)

In this new setting, one obtains a more familiar inequality

Proposition 1 For all f ∈ H 2(R),

ṽ
f̂
.vf̃ ≥ 1

16π2
, (9)

with equality if and only if f takes the form of an Altes waveform (Fig. 1), defined by

f̂ (ν) = K exp

{
−1

2
ln(ν)− a ln2(ν/b)+ i(c ln(ν)+ d)

}
, ν ∈ R

+ , (10)

which is now a variance minimizer.

Remark 3 (Canonization) The connection between Klauder’s construction and Altes’
can also be interpreted in terms of canonization. Let U : H 2(R) → L2(R) denote
the unitary linear operator defined by Ûf (ν) = eν/2f̂ (eν), for ν ∈ R+. The adjoint
operator reads U∗f (s) = f (ln(s))/

√
s (for s ∈ R+), and it is readily verified

that U is unitary. Consider now the linear operators X̃ and P̃ on H 2(R) defined
by X̃ = U∗XU and P̃ = U∗PU . Simple calculations show that X̃ = D/2π and
P̃ = 2π ln(P/2π), these two operators being well defined on H 2(R). Hence X̃ and
P̃ satisfy the canonical commutation relations on H 2(R):

[D, ln(P )] = [D, ln(P/2π)] = [X̃, P̃ ] = U∗[X,P ]U = i 12
H (R) .

Now, given any self adjoint operator A on H 2(R), and for any f ∈ H 2(R), set
g = Uf , and one has ef (A) = eg(UAU∗) and vf (A) = vg(UAU∗). Therefore,

vf (D).vf (ln(P )) = vg(X).vg(P ) ≥ 1

16π2
,

with equality if and only if g is a Gaussian function, i.e. f is an Altes wavelet.

3.3 Different dispersion measures

As stressed above, variance is not always well defined, and even when it is so, vari-
ance inequalities may not yield meaningful informations. Alternatives have been
proposed in the literature, and we review some of them here. Some of then show
better stability to generalizations, and will be more easily transposed to the discrete
case.
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3.3.1 Hirschman-Beckner entropic inequality

Following a conjecture by Everett [12] and Hirschman [18], Beckner [2] proved an
inequality involving entropies. Assume ‖f ‖ = 1, and define Shannon’s differential
entropy by

H(f ) =
∫ ∣∣f (t)∣∣2 ln

(
|f (t)|2

)
dt . (11)

Then the Hirschman-Beckner uncertainty principle states

Theorem 2 For all f ∈ L2(R),

H(f )+H(f̂ ) ≥ 1 − ln(2) , (12)

with equality if and only if f is a Gaussian function (up to the usual modifications).

The proof originates from the Babenko-Beckner inequality (also called sharp
Hausdorff-Young inequality) [2]: for f ∈ Lp(R), let 1/p + 1/p′ = 1; then
‖f̂ ‖p′ ≤ Ap‖f ‖p , where Ap = √

p1/p/p′1/p′ . Taking logarithms after suitable nor-
malization yields an inequality involving Rényi entropies (see below for a definition),
that reduces to the Hirschman-Beckner inequality for p = p′ = 2. As remarked
in [14], for the time-scale uncertainty, the canonization trick applies in this case as
well, and yields a corresponding entropic uncertainty inequality for time and scale
variables.

3.3.2 Concentration on subsets, the Donoho-Stark inequalities

In [9], Donoho and Stark prove a series of uncertainty inequalities, in both continuous
and discrete settings, using different concentration measures. One of these is the
following: for f ∈ L2(R), and ε > 0, f is said to be ε-concentrated in the measurable
set U if there exists g supported in U such that ‖f −g‖ ≤ ε. Donoho and Stark prove

Theorem 3 Assume that f is εT concentrated in T and f̂ is εF concentrated in F;
then

|T | · |F | ≥ (1 − (εT + εF ))
2 . (13)

Remark 4 (Gerchberg-Papoulis algorithm) This uncertainty inequality is used to
prove the convergence of the Gerchberg-Papoulis algorithm for missing samples
restoration for band-limited signals, as follows. Let F, T be bounded measurable sub-
sets of the real line. Given x ∈ L2(R) such that Supp(x̂) ⊂ F , assume observations
of the form

y(t) =
{
x(t)+ n(t) if t �∈ T

n(t) otherwise

where n is some noise, simply assumed to be bounded.
Denote by PT the orthogonal projection onto L2 signals supported by

T in the time domain, and by PF the corresponding projection in the
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frequency domain. If |F | · |T | < 1, then ‖PT PF‖ < 1 and x is stably recovered by
solving

x̃ = (1 − PT PF )
−1y ,

where stability means ‖x − x̃‖ ≤ C‖n‖.

The same paper by Donoho and Stark provides several other versions of the
uncertainty principle, in view of different applications.

In a similar spirit, Benedicks theorem states that every pair of sets of finite measure
(T , F ) is strongly annihilating, i.e. there exists a constant C(T , F ) such that for all
f ∈ L2(R),

‖f ‖2
L2(R\T ) + ‖f̂ ‖2

L2(R\F)
≥ ‖f ‖2/C(T , F ) . (14)

We refer to [20] for more details, together with generalizations to higher dimensions
as well as explicit estimates for the constants C(T , F ).

3.4 Non-separable dispersion measures

Traditional uncertainty principles bound joint concentration in two different repre-
sentation spaces. In some situations, it is possible to define a joint representation
space (phase space) and derive corresponding uncertainty principles. This is in
particular the case for time-frequency uncertainty. The quantities of interest are
then functions defined directly on the time-frequency plane, such as the short time
Fourier transform and the ambiguity function. Given f, g ∈ L2(R), the STFT (Short
time Fourier transform) of f with window g and the ambiguity function of f are
respectively the functions Vgf,Af ∈ L2(R2) defined by

Vgf (b, ν) =
∫ ∞

−∞
f (t)g(t − b)e−2iπνt dt , Af = Vf f . (15)

Concentration properties of such functions have been shown to be relevant in various
contexts, including radar theory (see [23]) or time-frequency operator approximation
theory [6]. We highlight a few relevant criteria and results.

3.4.1 Lp-norm of the ambiguity function: Lieb’s inequality

E. Lieb (see [3] for example) gives bounds on the concentration of the Ambiguity
function (resp. STFT). Contrary to Heisenberg type uncertainty inequalities, which
privilege a coordinate system in the phase space (i.e. choose a time and a frequency
axis), bounds on the ambiguity function don’t. Here, concentration is measured by
Lp norms, and the bounds are as follows

Theorem 4 For all f, g ∈ L2(R),
⎧
⎪⎨
⎪⎩

‖Af ‖p ≥ Bp‖f ‖2
2 for p < 2

‖Af ‖p ≤ Bp‖f ‖2
2 for p > 2

‖Af ‖2 = ‖f ‖2
2

,

{ ‖Vgf ‖p ≥ Bp‖g‖2‖f ‖2 for p < 2
‖Vgf ‖p ≤ Bp‖g‖2‖f ‖2 for p > 2
‖Vgf ‖2 = ‖g‖2‖f ‖2

(16)

where Bp = (2/p)1/p is related to the Beckner-Babenko constants.
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The norm ‖ · ‖p can be regarded as a diversity, or spreading measure for p < 2
and as a sparsity, or concentration measure for p > 2 (see Section 4.2). Again, the
optimum is attained for Gaussian functions. It is worth noticing that as opposed to
the measures on subsets, these concentration estimates are strongly influenced by the
tail of the Gabor transform or the ambiguity function. It is not clear at all that the
latter is actually relevant in practical applications.

3.4.2 Time-frequency concentration on compact sets

As a consequence of Lieb’s inequalities, one can show (see [17] for a detailed
account) the following concentration properties for ambiguity functions and STFTs:
let � ⊂ R

2, measurable, and ε > 0 be such that
∫

�

|Vgf (b, ν)|2 dbdν ≥ (1 − ε)‖g‖2‖f ‖2 , (17)

then ∀p > 2, |�| ≥ (1 − ε)p/(p−2)(p/2)2/(p−2). In particular, for p = 4, this yields

|�| ≥ 2(1 − ε)2 . (18)

Remark 5 It would actually be worth investigating possible corollaries of such esti-
mates, in the sense of Gerchberg-Papoulis. For instance, assume a measurable region
� of a STFT has been discarded, under which assumptions can one expect to be
able to reconstruct stably the region? Also, when T is large, one can probably not
expect much stability for the reconstruction, however what would be reasonable
regularizations for solving such a time-frequency inpainting problem?

3.4.3 Peakyness of ambiguity function

Concentration properties of the ambiguity function actually play a central role in
radar detection theory (see e.g. [31]). However, the key desired property of ambiguity
functions, namely peakyness, otherwise stated the existence of a sharp peak at the
origin, is hardly accounted for by Lp norms, entropies or concentration on compact
sets as discussed above.

Ambiguity function peakyness optimization can be formulated in a discrete setting
as follows. Suppose one is given a sampling lattice 	 = b0Z × ν0Z in the time-
frequency domain, peakyness of Ag can be optimized by maximizing (with respect
to g) the quantity

μ(g) = max
(m,n) �=(0,0)

Ag(mb0, nν0) . (19)

Two examples of waveforms with different concentration properties are given in
Fig. 2. The gaussian function (left) has well known concentration properties, while
the ambiguity function of a high order hermite function (right) is much more
peaky, even though the function itself is poorly time localized and poorly frequency
localized.
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Fig. 2 3D plots of the ambiguity functions of a standard Gaussian (left) and a Hermite function of hight
order (right)

The quantity in Eq. 19 is actually closely connected (as remarked in [29]) to the
so-called coherence, or self-coherence of the Gabor family D = {gm,n, m, n ∈ Z}
generated by time-frequency shifts gmn(t) = e2iπnν0t g(t − mb0) of g on the lattice
	 (see [17] for a detailed account), as

μ = max
(m′,n′) �=(m,n)

|〈gmn, gm′n′ 〉| .

Hence, optimizing the peakyness of the ambiguity function is closely connected to
minimizing the coherence of the corresponding Gabor family, a property which has
been often advocated in the sparse coding literature.

Remark 6 As mentioned earlier, sparsity requirements lead to minimize the joint
coherence in the case of separable uncertainty principles, and the self-coherence in
the case of non-separable uncertainty principles.

4 Discrete inequalities

4.1 Introduction

The uncertainty principle in the discrete setting has gained increasing interest dur-
ing the last years due to its connection with sparse analysis and compressive sensing.
Sparsity has been shown to be an instrumental concept in various applications, such
as signal compression (obviously), signal denoising, blind signal separation,... We
first review here the main sparsity/diversity measures that have been used in the signal
processing literature, show that they are closely connected and present several ver-
sions of the uncertainty principle. Then we present a few examples of their adaptation
to phase space concentration problems.

In the discrete finite-dimensional setting, we shall use the Hilbert space H = C
L

as a model signal space. In terms of signal representations, we consider finite frames
U = {uλ ∈ H, λ ∈ 	} (see Section 2.1 for motivations and definitions) in H, and
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denote by U : x ∈ H → {〈x, uλ〉, λ ∈ 	} the corresponding analysis operator, and
by its adjoint U∗ the synthesis operator.

The time-frequency frames offer a convenient and well established framework for
developing ideas and concepts, and most of the approaches described below have
been developed using Gabor frames. For the sake of completeness, we give here the
basic notations that will be used in the sequel. Given a reference vector ψ ∈ H (called
the mother waveform, or the window), a corresponding Gabor system associates with
ψ a family of time-frequency translates

ψmn(t) = e2iπmν0tψ(t − nb0) , m ∈ ZM, n ∈ ZN, t ∈ ZL ,

where b0 = a/L and ν0 = b/L (with a, b integers that divide L) are constants that
define a time-frequency lattice 	. The corresponding transform Vψ associates with
any x ∈ H a function (m, n) ∈ 	 → Vψx(m, n) = 〈x, ψmn〉. When a = b = 1, the
corresponding transform is called the Short-time Fourier transform (STFT).

The ambiguity function of the window ψ is the function Aψ defined as the STFT
of the waveform ψ using ψ as mother waveform, in other words Aψ = Vψψ .

4.2 Sparsity measures

As mentioned earlier, the variance as a measure of spreading is problematic in the
finite setting both with its definition and the inequalities it yields (see neverthe-
less [26] for an analysis of the connection between continuous and finite variance
inequalities). More adapted measures have been proposed in the literature, among
which the celebrated �1-norm used in optimization problems, entropy used by physi-
cists and in information theory and support measures favored for sparsity related
problems.

4.2.1 �p-norms and support measure

Given a finite-dimensional vector x ∈ C
L, it is customary in signal processing appli-

cations to use �p (quasi-) norms of x to measure the sparsity (p > 2) or diversity
(p < 2) of the vector x:

‖x‖p = p

√√√√ L∑
�=1

|x�|p . (20)

These quantities (except for p = 0) do not fully qualify as sparsity or diversity mea-
sures since they depend on the �2-norm of x. To circumvent this problem, normalized
�p-norms are also considered:

γp(x) = ‖x‖p
‖x‖2

= ‖x̃‖p , with x̃ = x/‖x‖2 . (21)

The normalized quantity |̃x|2 may be seen as a probability distribution function.
The special case p = 0 gives the support measure (number of non-zero

coefficients) also denoted �0. This is not a norm but is obviously a sparsity measure.



642 B. Ricaud, B. Torrésani

4.2.2 Rényi entropies

Entropy is a notion of disorder or spreading for physicists and a well-established
notion for estimating the amount of information in information theory. Given α ∈ R

+
and a vector x ∈ C

L, the corresponding Rényi entropy [27] Rα(x) is defined as

Rα(x) = 2α

1 − α
ln(γ2α(x)) α �= 1 . (22)

Rényi entropies provide diversity measures, i.e. sparsity is obtained by minimizing
the entropies. The limit α → 1 is not singular, and yields the Shannon entropy

S(x) = −
L∑

�=1

|x�|2
‖x‖2

2

ln

(
|x�|2
‖x‖2

2

)
. (23)

These notions have been proven useful for measuring energy concentration in signal
processing, especially in the time-frequency framework [1] and [19].

4.2.3 Relations between sparsity measures

Equation 22 shows that minimizing the �p-norm with p < 2 is equivalent to mini-
mizing the Rényi entropy for α = p/2. Note also that for p = 2α > 2, 1/(1 − α)

is negative and minimizing the α-entropy leads to the same results as for maximizing
the �p-norm. The limit α → 1 gives the Shannon entropy. Note also that the limit
α = 0 is not singular and gives the logarithm of the support size. Hence, all these
measures a related through Eq. 22 and belong to the same family.

So far, the focus has been put on the Rényi entropies and their limit, the Shannon
entropy; Tsallis entropies Tα(x) = − (γ 2α

2α (x)− 1
)
/(α − 1), initially introduced in

statistical physics, may be seen as some first order approximations of Rényi entropies
and can also be used along the same lines. Comparison between these measures could
be an interesting issue.

4.3 Sparsity related uncertainties in finite dimensional settings

Discrete uncertainty inequalities have received significant attention in many domains
of mathematics, physics and engineering. We focus here on the aspects that have been
mostly used in signal processing.

4.3.1 Support uncertainty principles

The core idea is that in finite dimensional settings, two orthonormal bases provide
two different representations of the same object, and that the same object cannot be
represented sparsely in two “very different bases”. In the original work by Donoho
and Huo [8], the finite-dimensional Kronecker and Fourier bases were used, and
Elad and Bruckstein [10] extended the result to arbitrary orthonormal bases. The �0

quasi-norm is used to measure diversity.
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Theorem 5 Let  = {ϕn, n ∈ ZN } and � = {ψn, n ∈ ZN } denote two orthonormal
bases of CN . For all x ∈ C

N , denote by α ∈ C
N and β ∈ C

N the coefficients of the
expansion of x on  and � respectively. Then if x �= 0

‖α‖0 · ‖β‖0 ≥ 1

μ2
and ‖α‖0 + ‖β‖0 ≥ 2

μ
, (24)

where μ = μ(,�) is the mutual coherence of  and � (see Eq. (2)).

Remark 7 The Welch bound states that the mutual coherence of the union of two
orthonormal bases of CN cannot be smaller than 1/

√
N ; the bound is sharp, equality

being attained in the case of the Kronecker and Fourier bases.

Remark 8 The result was extended later on by Donoho and Elad [7] to arbitrary
frames, using the notion of Kruskal’s rank (or spark): the Kruskal rank of a family of
vectors D = {ϕ0, . . . ϕN−1} in a finite-dimensional space is the smallest number rK
such that there exists a family of rK linearly dependent vectors. Assume that x ∈ C

N ,
x �= 0 has two different representations in D:

if x =
N−1∑
n=0

αnϕn =
N−1∑
n=0

βnϕn , then ‖α‖0 + ‖β‖0 ≥ rK .

Bounds describing the relationship between the Kruskal rank and coherence have
also been given in [7].

Let us also mention at this point the discrete versions of the concentration inequal-
ity (Eq. 14), obtained in [16]. Given two bases in C

N , let T , F be two subsets of the
two index sets {0, 1 · · · , N − 1} and assume |T | · |F | < 1/μ2. Then for all x,

‖α‖�2(ZN \T ) + ‖β‖�2(ZN \F) ≥
(

1 + 1

1 − μ
√|T | · |F |

)−1

‖x‖2 . (25)

Remark 9 As expected, all these inequalities imply a strictly positive lower bound
and the coherence μ.

In a recent study [28] the support inequalities have been extended from basis rep-
resentations to frame ones. More precisely, for any vector x ∈ H, bounds of the
following form have been obtained

Theorem 6 Let U = {U (1), . . .U (n)} denote a set of K frames in a Hilbert space H.
Then for any x ∈ H

n∑
k=1

‖U(k)x‖0 ≥ n

μ�

, (26)

where μ� is a generalized coherence, defined as follows:

μ� = inf
Ũ

inf
1≤r≤2

n

√
μr

(Ũ (1),U (2)
)
. . . μr

(Ũ (n−1),U (n)
)
μr

(Ũ (n),U (1)
)
, (27)
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where the infimum over Ũ is taken over the family of all possible dual frames Ũ =
{Ũ (1), . . . Ũ (n)} of the elements of U , and the r-coherences μr are defined as

μr(U,V) = sup
v∈V

(∑
u∈U

|〈u, v〉|r ′
)r/r ′

,
1

r
+ 1

r ′
= 1 . (28)

Therefore, the control parameter here is the generalized coherence μ�. If the canon-
ical dual frame is chosen, μr is often smaller than μ which shows an improvement.
This suggests new definitions for the coherence which may improve further the
inequality bound.

4.3.2 Entropic uncertainty

In Section 4.2 we introduced the entropy as a measure of concentration and we also
stated earlier an entropic version of the uncertainty principle for the continuous case
(Hirschman-Beckner). It turns out that the latter can be extended to more general
situations than simply time-frequency uncertainty. For example, in a discrete setting,
given two orthonormal bases it was proven by Maassen and Uffink [25] and Dembo
et al. [5] independently that for any x, the coefficient sequences α, β of the two
corresponding representations of x satisfy

S(α)+ S(β) ≥ −2 lnμ , (29)

with μ the mutual coherence of the two bases. In the particular case of Fourier-
Kronecker bases, μ = 1/

√
N , which leads to the similar result given in Prop. 2 for

ambiguity function; the picket fences are the minimizers (see next section).
These results were generalized recently in [28], where entropic inequality for

frame analysis coefficients were obtained.

Theorem 7 Let H be a separable Hilbert space, let U and V be two frames of H,
with bounds AU , BU and AV , BV . Let Ũ and Ṽ denote corresponding dual frames,
and set

ρ(U,V) =
√
BV
AU

, σ (U,V) =
√
BUBV
AUAV

≥ 1 , νr (U, Ũ,V) = μr(Ũ,V)
ρ(U,V)r . (30)

Let r ∈ [1, 2). For all α ∈ [r/2, 1], let β = α(r − 2)/(r − 2α) ∈ [1,∞]. For x ∈ H,
denote by a and b the sequences of analysis coefficient of x with respect to U and V .
Then

1. The Rényi entropies satisfy the following bound:

(2 − r)Rα(a)+ rRβ(b) ≥ −2 ln(νr (U, Ũ,V))− 2rβ

β − 1
ln(σ (U,V)) (31)

2. If U and V are tight frames, the bound becomes

(2 − r)Rα(a)+ rRβ(b) ≥ −2 ln(νr (U, Ũ,V)) . (32)
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3. In this case, the following inequalities between Shannon entropies hold true:

S(a)+ S(b) ≥ −2 ln
(
μ�(U, Ũ,V, Ṽ)

)
, (33)

where μ� is defined in Eq. 27.

The proof is both a refinement and a frame generalization of the proof in [5, 25]. A
main result of [28] is the fact that these (significatly more complex) bounds indeed
provide stronger estimates than the Maassen-Uffink inequalities, even in the case of
orthonormal bases. They are however presumably sub-optimal for non tight frames,
as they yield in some specific limit support inequalities that turn out to be weaker
than the ones presented above.

4.3.3 Phase space uncertainty and localization

Again, as in the continuous case, uncertainty inequalities defined directly in
phase space can be proven. For example, in the joint time-frequency case, finite-
dimensional analogues of Lieb’s inequalities have been proven in [13].

Proposition 2 Let ψ ∈ C
N be such that ‖ψ‖2 = 1. Then, assuming p < 2,

‖Aψ‖p ≥ N
1
p− 1

2 , and S(Aψ) ≥ log(N) . (34)

The inequality is an equality for the family of “picket fence” signals, translated and
modulated copies of the following periodic series of Kronecker deltas:

ω(t) = 1√
b

b∑
n=1

δ(t − an), ab = N .

Hence, the result is now completely different from the result obtained in the contin-
uous case: The optimum is not the Gaussian function (which by the way is not well
defined in finite-dimensional situations) any more, and is now a completely differ-
ent object, as examplified in Fig. 3, where a picket fence and a periodized Gaussian
window are displayed. This is mainly due to the choice of underlying model signal
spaces (generally L2(R)), which impose some decay at infinity.

Remark 10 It is worth noticing that the above diversity measures (norms or entropy
of the ambiguity function) are non-convex functionals of the window sequence.

Fig. 3 Picket fence (left) vs periodized gaussian (right)



646 B. Ricaud, B. Torrésani

For example, if N is a prime number, there are (up to normalization) 2N window vec-
tors (picket fences) whose ambiguity function is optimally concentrated (in terms of
entropy). When N is not prime, the degeneracy is even higher.

4.4 Two signal processing applications

The uncertainty principle and its consequences have long been considered as con-
straints and barriers to access precise knowledge and measurement. The innovative
idea behind compressive sensing where the uncertainty principle is turned into an
advantage for retrieving information promise many exciting developments. In this
section we present two prototype applications which involve the uncertainty princi-
ple. In the same spirit as compressive sensing, the first one shows how the uncertainty
principle can be used for the separation of signals. The second application is a more
classical one which provides time-frequency windows with minimum uncertainty,
under some additional constraints.

4.4.1 Sparsity-based signal separation problem

The signal separation problem is an extremely ill-defined signal processing problem,
which is also important in many engineering problems. In a nutshell, it consists in
splitting a signal x into a sum of components xk , or parts, of different nature:

x = x1 + x2 + · · · + xn .

While this notion of different nature often makes sense in applied domains, it is
generally extremely difficult to formalize mathematically. Sparsity (see [22] for
an introduction in the data separation context) offers a convenient framework for
approaching such a notion, according to the following paradigm:

Signals of different nature are sparsely represented in different waveform systems.
Given a union of several frames (or frames of subspaces) U (1),U (2), . . .U (n) in a

reference Hilbert space H, the separation problem can be given various formulations,
among which the so-called analysis and synthesis formulations.

– In the synthesis formulation, each component xk will be synthesized using the k-
th frame in the form

∑
j α

(k)
j u

(k)
j , and the synthesis coefficients α will be sparsity

constrained. The problem is then settled as

min
n∑

k=1

‖α(k)‖0 , under constraint x =
n∑

k=1

∑
j

α
(k)
j u

(k)
j .

– In analysis formulations the splitting of x is sought directly as the solution of

min
x1,...xn∈H

n∑
k=1

‖U(k)xk‖0 , under constraint x = x1 + x2 + . . . xn ,

where U(k) denotes the analysis operator of frame k.



A survey of uncertainty principles and some signal processing applications 647

In the case of two frames, it may be proven that if one is given a splitting x =
x1 + x2, obtained via any algorithm, if ‖U(1)x1‖0 +‖U(2)x2‖0 is small enough, then
this splitting is necessarily optimal. More precisely [28]

Corollary 3 Let U (1) and U (2) denote two frames in H. For any x ∈ H, let x =
x1 + x2 denote a splitting such that

∥∥∥U(1)x1

∥∥∥
0
+
∥∥∥U(2)x2

∥∥∥
0
<

1

μ�

.

Then this splitting minimizes
∥∥U(1)x1

∥∥
0 +

∥∥U(2)x2
∥∥

0.

Hence, the performances of the analysis-based signal separation problems rely
heavily on the value of this generalized coherence function.

The extension to splittings involving more than two parts is more cumbersome. It
can be attacked recursively, but this involves combinatorial problems which are likely
to be difficult to solve.

4.4.2 Sparsity-based algorithms for window optimization in time-frequency analysis

Proposition 2 shows that the finite dimensional waveforms that optimize standard
sparsity measures in the ambiguity domain are not localized, neither in time nor
in frequency. This was also confirmed by numerical experiments reported in [13],
where numerical schemes for ambiguity function optimization were proposed. This
approach has so far been developed mainly with time-frequency representations, but
is generic enough to be adapted to various situations.

More precisely, the problem addressed by these algorithms is the following: solve

ψopt = arg max
ψ :‖ψ‖=1

∑
z

F
(|Aψ(z)|, z

) ∣∣Aψ(z)
∣∣2, (35)

for some density function F : R+ ×	 → R
+, chosen so as to enforce some specific

localization or sparsity properties. A simple approach, based upon quadratic approx-
imations of the target functional, reduces the problem to iterative diagonalizations of
Gabor multipliers.

Two specific situations were considered and analyzed, namely:

– the optimization of the ambiguity function sparsity through the maximization of
some �p norm (with p > 2), which naturally leads to choose F(|Aψ(z)|, z) =
|Aψ(z)|p−2. The functional to optimize is non-convex, and the outcome of the
algorithm depends on the initialization. In agreement with the theory, numerical
experiments can converge to picket fence signals (Dirac combs) as limit win-
dows. In addition, for some choices of the initial input window, a Gaussian-like
function (the Gaussian is the sparsest window in the continuous case) may also
be obtained (local minimum).

– the optimization of the concentration within specific regions, through choices
such as F(|Aψ(z)|, z) = F0(z), for some non-negative function F0 satisfying
symmetry constraints, due to the particular properties of the ambiguity function
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Fig. 4 Logarithm of modulus of optimal ambiguity functions with mask F(|Aψ (z)|, z) = F(0, z). Left:
Optimal function obtained for F the indicator of a disk. Right: Optimal function obtained for F the
indicator of a diamond

(A(0, 0) = 1, A(z) = A(−z)). The algorithm were shown to converge to opti-
mal windows matching the shape of F in the ambiguity plane. That is to say
this window is sharply concentrated and satisfy the shape constraint provided
by F. However, the convergence is not guaranteed for all F and convergence
issues should be treated in more details in future works. The algorithm has been
shown to converge for simple shapes such as discs, ellipses or rectangles in the
ambiguity plane. Numerical illustrations can be found in Fig. 4 (disc shape and
rectangular/diamond shape). Since the Ambiguity plane is discrete, the masks
are polygons rather that perfect circle and diamonds, and this implies the amaz-
ing shape of the ambiguity function, with interferences. For some more complex
shapes (such as stars for examples), the algorithm was found not to converge;
convergence problems are important issues, currently under study.

Such approaches are actually fairly generic, and there is hope that they can be
generalized so as to be able to generate waveforms that are optimal with respect to
large classes of criteria.

5 Conclusions

We have reviewed in this paper a number of instances of uncertainty inequalities, in
both continuous and discrete situations. Through these particular examples we have
focused on specific properties and connections between these different instances.
Indeed, from its first statement in quantum mechanics to its newest developments in
signal processing, the uncertainty principle has encountered many parallel evolutions
and generalizations in different domains. It was not a smooth and straightforward
progress, as different situations call for adapted spreading measures, yield different
inequalities, bounds and different minimizers (if any), and involve different proof
techniques. A main point we have tried to make in this paper is that several classical
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approaches, developed in the continuous setting, do not go through in more general
situations, such as discrete settings. For example, the very notions of mean and vari-
ance do not necessarily make sense in general. In such situations other, more generic,
spreading measures such as the (Rényi) entropies and �p-norms can be used. We
attempted in this paper to point out the close connection between these quantities and
suggest other candidates for further research.

Signal representations were first understood as the function itself and its Fourier
transform. It was then generalized to any projection on orthonormal bases and now
any set of frame coefficients. These latter representations play an important role in
signal processing and bring some new insight on the uncertainty bounds. The intro-
duction of the mutual coherence measuring how close two representations can be, as
well as the phase space coherence that measures the redundancy of a corresponding
waveform system, lead to new corresponding bounds. A careful choice for this quan-
tity is needed for obtaining the sharpest bound possible. We showed how this notion
of coherence can be extended and generalized, using �p-norms with p �= ∞.

Concerning the uncertainty optimizers, i.e. waveforms that optimize an uncer-
tainty inequality, they are of very different nature in the discrete and continuous
cases. In a few words, in the continuous situations, some underlying choice of func-
tional space implies localization as a consequence of concentration (as measured by
the chosen spreading criterion). This is no longer the case in the discrete world where
localization and concentration have different meanings.

Therefore, the transition from continuous to discrete spaces is far more com-
plex than simply replacing integrals by sums and a more thorough analysis of the
connections between them is clearly needed.

References

1. Baraniuk, R., Flandrin, P., Janssen, A.J., Michel, O.: Measuring time frequency information content
using the renyi entropies. IEEE Trans. Inf. Theory 47(4), 1391–1409 (2001)

2. Beckner, W.: Inequalities in Fourier analysis. Ann. Math. 102(1), 159–182 (1975)
3. Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalization

to more than three functions. Adv. Math. 20, 151–173 (1976)
4. Breitenberger, E.: Uncertainty measures and uncertainty relations for angle observables. Found. Phys.

15(3), 353–364 (1985)
5. Dembo, A., Cover, T.M., Thomas, J.A.: Information theoretic inequalities. IEEE Trans. Inf. Theory

37, 1501–1518 (1991)
6. Doerfler, M., Torrésani, B.: Representation of operators by sampling in the time-frequency domain.

Sampl. Theory Sign Image Process. 10(1–2), 171–190 (2011)
7. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via

l1 minimization. Proc. Natl. Acad. Sci. 100, 2197–2202 (2003)
8. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf.

Theory 47, 2845–2862 (2001)
9. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3),

906–931 (1989)
10. Elad, M., Bruckstein, A.: A generalized uncertainty principle and sparse representation in pairs of

bases. IEEE Trans. Inf. Theory 48, 2558–2567 (2002)
11. Erb, W.: Uncertainty Principles on Riemannian Manifolds. Logos Berlin (2011)
12. Everett, H.I.: The Many-Worlds Interpretation of Quantum Mechanics: The Theory of the Universal

Wave Function. Mathematics, Princeton University, Princeton (1957)



650 B. Ricaud, B. Torrésani

23. Lieb, E.H.: Integral bounds for radar ambiguity functions and wigner distributions. J. Math. Phys. 31,
594–599 (1990)

24. Maass, P., Sagiv, C., Sochen, N., Stark, H.-G.: Do uncertainty minimizers attain minimal uncertainty?
J. Fourier Anal. Appl. 16(3), 448–469 (2010)

25. Maassen, H., Uffink, J.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60(12), 1103–
1106 (1988)

26. Nam, S.: An uncertainty principle for discrete signals. In: Proceedings of SAMPTA’ 13. Technical
report, LATP, Aix-Marseille Université, Marseille. to appear (2013)
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