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Abstract: We consider a general class of two-dimensional spin systems, with continu-
ous but not necessarily smooth, possibly long-range, O(N )-symmetric interactions, for
which we establish algebraically decaying upper bounds on spin-spin correlations under
all infinite-volume Gibbs measures.

As a by-product, we also obtain estimates on the effective resistance of a (possibly
long-range) resistor network in which randomly selected edges are shorted.
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1. Introduction, Statement of Results

1.1. Settings and earlier results. We consider the following class of lattice spin systems.
To each site i ∈ Z

2, we associate a spin Si ∈ R
N such that ‖Si‖2 = 1. Given Λ � Z

2,
we define the Hamiltonian

HΛ(S) = −
∑

(u,v)∈EΛ

Ju,vV (Su, Sv), (1)

where EΛ = {(x, y) : {x, y}∩Λ �= ∅} is the set of all (unoriented) edges intersecting Λ.
The coupling constants are assumed to satisfy Ju,v = Ju−v = Jv−u ≥ 0 and

∑
x∈Z2 Jx <

∞; we shall actually assume, without loss of generality, that
∑

x∈Z2 Jx =1.
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The interaction V is assumed to be invariant under simultaneous rotation of its two
arguments; in other words, it is assumed that V (Su, Sv) depends only on the scalar
product Su · Sv .

The corresponding finite-volume Gibbs measure in Λ, with boundary condition S̄
and at inverse temperature β is then defined by

μS̄
Λ;β(dΛS) =

{ 1
Z S̄

Λ;β
e−βHΛ(S) dΛS if Sy = S̄y for all y �∈ Λ,

0 otherwise,

where we used the notation dΛS = ∏
x∈Λ dSx , with dSx denoting the Haar measure on

S
N−1. The expectation with respect to this measure will be denoted 〈·〉S̄

Λ,β or 〈·〉μ. The
conditions we will impose on V in Sect. 1.2 will guarantee the existence of the Gibbs
measure above (that is, that ∞ > Z S̄

Λ;β > 0).
It is well-known that in this setting, under some mild conditions, all infinite-volume

Gibbs measures associated to such a system are necessarily rotation-invariant. Since
the classical result of Mermin and Wagner [20], numerous works have been devoted
to strengthening the claims and weakening the hypotheses. In the present context, the
strongest statement to date is proven in [11]. In the latter paper, rotation invariance of
the infinite-volume Gibbs measures was established under the following assumptions:

– the random walk on Z
2 with transition probabilities from u to v given by Ju,v is

recurrent;
– the interaction V is continuous (actually, a weaker integral condition is also given

there).

The recurrence assumption is known to be optimal in general, as there are versions of the
two-dimensional O(N ) model for which rotation invariance is spontaneously broken at
sufficiently low temperatures, whenever the random walk is transient
(see [9, Theorem 20.15] and references therein). The absence of any smoothness as-
sumption on V was the main contribution of [11], such assumptions having played a
crucial role in earlier approaches (see, for example, [2,4,7,12,14,23]).

A particular consequence of the rotation-invariance of the infinite-volume Gibbs
measures is the fact that spin-spin correlations 〈S0 · Sx 〉 vanish as ‖x‖ → ∞. A natural
problem is then to quantify the speed of decay of these quantities.

The first class of systems that have been studied had finite-range (usually nearest-
neighbor) interactions. An upper bound on the decay of the form 〈S0 · Sx 〉 ≤ (log ‖x‖)−c,
c > 0, was first derived by Fisher and Jasnow [6] for the O(N ) models (which correspond
to V (Su, Sv) = Su · Sv), N ≥ 2. Their result was then extended by McBryan and
Spencer [18], who obtained an algebraically decaying upper bound of the form 〈S0 ·Sx 〉 ≤
‖x‖−c/β , which is best possible in general. Indeed, Fröhlich and Spencer have proved
an algebraically decaying lower bound of that type for the two-dimensional XY model
(O(2) model) at low temperatures [8]. Building on [4], Shlosman managed to obtain
upper bounds of the same type for a much larger class of interactions [26], under some
smoothness assumption on V . A similar, but less general, result was later obtained by
Naddaf [22], using an adaptation of the McBryan-Spencer approach. More recently,
Ioffe, Shlosman and Velenik showed how to dispense with the smoothness assumption,
extending Shlosman’s result to very general interactions V [11].

The first results for models with infinite-range interactions provided an upper bound
à la Fisher-Jasnow [2,12] for models with Jx such that the corresponding random walk is
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recurrent. An algebraically decaying upper bound was obtained by Shlosman [26] for a
general class of models (with a smoothness assumption on V ) in the case of exponentially
decaying coupling constants. Algebraically decaying upper bounds were obtained for
O(N ) models by Messager, Miracle-Sole and Ruiz [21], when the coupling constants
satisfy Jx ≤ C‖x‖−α with α > 4.

1.2. Assumptions and results. Let us now turn to the results contained in the present
paper. Since, as is explained in [18], the case N ≥ 3 can be reduced to the case N = 2,
we restrict our attention to the latter. In that case, it is convenient to parametrize the spins
by their angle, that is, to associate to each vertex u ∈ Z

2 the angle θu ∈ [0, 2π) such
that Su = (cos θu, sin θu). One can then rewrite the interaction as

βV (Su, Sv) = f (θu − θv),

which we shall do from now on. (Of course, addition is mod 2π and f is even.) Our
analysis will rely on two assumptions:1

A1. There exist α > 4 and J ≥ 0 such that Jx ≤ J‖x‖−α
1 , for all x ∈ Z

d .
A2. The function f is continuous.

The main result of this paper is the following claim, which substantially increases
the range of models for which algebraically decreasing upper bounds on spin-spin cor-
relations can be established.

Theorem 1. Under Assumptions A1 and A2, there exist C and c (depending on the
interaction f and the coupling constants (Jx )x∈Zd ) such that, for any infinite-volume
Gibbs measure μ associated to the Hamiltonian (1),

∣∣〈cos(θ0 − θx )〉μ
∣∣ ≤ c‖x‖−C , ∀x ∈ Z

d .

Remark 1. The above result does not specify the dependence of the constant C on the
inverse temperature β. To obtain such information, the method of proof we use requires
some assumptions on the smoothness of f . For example, as explained in Remark 6, if
f is assumed to be s-Hölder, for some s > 3, then we obtain that

∣∣〈cos(θ0 − θx )〉μ
∣∣ ≤

c‖x‖−C/β for large enough values of β.

Remark 2. We have assumed above that the coupling constants (Jx )x∈Zd were nonneg-
ative, but as can easily be checked from the proof, this assumption can be removed, as
long as

∑
x |Jx | < ∞.

Remark 3. Note that, when Jx ∼ ‖x‖−α with α < 4, the result is actually not true in
general, as long-range order has been established in that case in some models [15].

The proof of Theorem 1 is given in Sect. 2. It is based on a suitable combination of the
McBryan-Spencer approach, in the form derived in [21], with the expansion technique
developed in [11] in order to deal with not necessarily smooth interactions.

1 Throughout this paper, we use the notation a � b when there exists a constant C , depending maybe on
the value of α below, but not on any other parameters, such that a ≤ Cb. When a � b and b � a, we write
a ∼ b.
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1.3. A result on a random resistor network. The proof of Theorem 1 is closely linked to
the properties of a random resistor network, and can be used to extract some information
on the latter. We refer to [5] for a gentle introduction to resistor networks.

We now interpret 1/Jx,y as the resistance of a wire between the vertices x and y. The
quantity

Eeff = min
{1

2

∑

u,v∈Z2

Ju,v

(
g(u) − g(v)

)2 : g(0) = 1, g(x) = 0
}

represents the energy dissipated by the network when a voltage of 1 volt is imposed
between 0 and x . It is related in a simple way to the effective resistance R(0, x) of the
resistor network:

R(0, x) = (Eeff
)−1

.

It is classical in random walk theory (see, for example, [16, Theorem 4.4.6]) that under
the Assumption A1 on the coupling constants (Jx )x∈Zd , the effective resistance satisfies

R(0, x) ∼ log ‖x‖.
Note that an assumption of type A1 is necessary: there are examples for which R(0, x)

grows more slowly than log ‖x‖. It is the case if the transition probabilities Jx,y are
proportional to 1/‖x − y‖4, as can be shown by a direct computation.2 An adaptation
of the proof of Theorem 1 yields an extension of this result to a random resistor model,
in which the resistance Rx,y between two vertices x and y is taken to be

Rx,y =
{

1/Jx,y with probability 1 − ε Jx,y,

0 with probability ε Jx,y,

the choice being done independently for each pair (x, y). In other words, randomly
selected resistors are “shorted” (which amounts to identifying endpoints). This, of course,
can only lower the effective resistance, compared to the above deterministic case. The
following result shows that, when ε is small enough, this decrease typically does not
change the qualitative behavior of R(0, x).

Theorem 2. Under Condition A1, we have that, for all ε small enough, there exist C, κ

and c̃ > 0 such that, uniformly in x ∈ Z
2,

P
(R(0, x) ≥ c̃ log ‖x‖) ≥ 1 − C

‖x‖κ
.

Remark 4. Of course, the upper bound

P
(R(0, x) ≥ c̃ log ‖x‖) ≤ 1 − ε Jx ,

always holds, since R(0, x) = 0 whenever R0,x = 0.

2 This is ultimately due to the change of behavior of the characteristic function of the increments of the
random walk associated to the coupling constant (Jx )x∈Zd : assume that Jx = C‖x‖s , then [1, (3.11)], as
k → 0,

1 −
∑

x
Jx eik·x ∼

⎧
⎪⎨

⎪⎩

‖k‖2 if s > 4,
‖k‖2 log(1/‖k‖) if s = 4,
‖k‖s−2 if s < 4.

This implies, in particular, that the random walk is transient when s < 4, and that the potential kernel a(x)

satisfies a(x) ∼ log ‖x‖ when s > 4, but a(x) ∼ log log ‖x‖ when s = 4.



Decay of Correlations in O(N ) Models 1239

1.4. Open problems.

– We have only obtained an explicit dependence of the decay exponent on β when f is
sufficiently smooth, as described in Remark 1. It would be interesting to determine
whether such a behavior can be established for any continuous interaction.

– Our results above are restricted to α > 4. It may seem more natural to assume
only recurrence of the random walk with transition probabilities Jx (note that, as
already mentioned, if Jx ∼ ‖x‖−α with α < 4, then the corresponding random
walk is transient). Indeed, recurrence is the optimal condition for the validity of
Mermin-Wagner type theorems. However, it seems unlikely (for the reason outlined
in Footnote 2) that the correlations admit an algebraically decaying upper bound
in the whole recurrence regime. Some upper bounds with slower decay have been
obtained under weaker conditions than A1 (in particular, when α = 4) in [21] in the
case of the O(N ) model. It would be interesting to clarify these issues.

– As mentioned above, negative coupling constants can be accommodated in our ap-
proach, but only in a very rough way. In general, situations in which the sign of the
coupling constants is not constant should allow an extension of this type of result to
interactions with slower decay; see [3] for a discussion of the XY and Heisenberg
models with oscillatory interactions of the form Jx ∼ cos(a‖x‖ + b)/‖x‖α . Alter-
natively, one can consider disordered O(N )-models in which the coupling constants
are i.i.d. random variables with zero mean (satisfying suitable moment conditions);
algebraic decay of correlations has been established in this setting in [24] and [27].
It would be interesting to determine whether our approach also applies in such situ-
ations.

– Of course, by far the most important open problem in this area is the proof of the
conjecture stating that the spin-spin correlations in short-range O(N ) models with
N ≥ 3 decay exponentially fast at any temperature [25].

2. Proof of Theorem 1

We consider the model in a large box ΛM = {−M, . . . , M}2, with fixed, but arbitrary,
boundary condition θ̄ . Our goal in this section is to prove that there exist C and c such
that ∣∣〈cos(θ0 − θx )〉θ̄ΛM

∣∣ ≤ c‖x‖−C , (2)

uniformly in M, θ̄ and x ∈ ΛM . The main claim easily follows from (2) and the DLR
equations. Indeed, for an arbitrary infinite-volume Gibbs measure μ,

∣∣〈cos(θ0 − θx )〉μ
∣∣ = ∣∣〈〈cos(θ0 − θx )〉·ΛM

〉
μ

∣∣ ≤ 〈∣∣〈cos(θ0 − θx )〉·ΛM

∣∣〉
μ

≤ c‖x‖−C .

The remainder of this section is devoted to the proof of (2). As we shall always
work in the fixed big box ΛM , with the fixed boundary condition θ̄ there won’t be any
ambiguity if we use the following lighter notations: 〈·〉 ≡ 〈·〉θ̄ΛM

, H ≡ HΛM , Z = Z θ̄
ΛM

and E ≡ EΛM . Also, we shall write ‖x‖ ≡ ‖x‖∞.

2.1. Warm-up: f given by a trigonometric polynomial. We first consider an easier case,
in which the interaction f can be written as a trigonometric polynomial,

f (x) =
K∑

k=1

ck cos(kx).
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Although this case can be treated by a straightforward adaptation of the arguments
in [21], we include the complete argument here, as we shall need it when considering
the general case in Sect. 2.2.

2.1.1. McBryan and Spencer’s complex rotation. In [18], McBryan and Spencer used a
complex rotation of the spin variables in order to reduce the analysis of the correlations
of the nearest-neighbor O(N ) model to a variational problem. The same can be done
here. First, observe that

|〈cos(θ0 − θx )〉| ≤ |〈cos(θ0 − θx ) + i sin(θ0 − θx )〉| = ∣∣ 1

Z

∫
ei(θ0−θx )−H(θ)dΛθ

∣∣.

Now, thanks to the periodicity and analyticity of the function i(θ0 −θx )− H(θ), applying
the (inhomogeneous) complex rotation θz → θz + iaz leaves the integral unchanged as
long as az = 0 for all z �∈ Λ. Therefore,

∣∣∣
1

Z

∫
ei(θ0−θx )−H(θ)dθ

∣∣∣ =
∣∣∣

1

Z

∫
ei(θ0+ia0−θx −iax )−H(θ+ia)dΛθ

∣∣∣

≤ eax −a0
1

Z

∫
exp

{ ∑

(u,v)∈E
Ju,v

K∑

k=1

ck cos(k∇u,vθ) cosh(k∇u,va)
}

dΛθ,

where we used the identity cos(x + ia) = cos(x) cosh(a) − i sin(x) sinh(a) and the
notation ∇u,va = av − au . We now reconstruct the original Gibbs measure by adding
and subtracting H(θ):

eax −a0
1

Z

∫
exp

{ ∑

(u,v)∈E
Ju,v

K∑

k=1

ck cos(k∇u,vθ) cosh(k∇u,va)
}

dΛθ

= eax −a0
1

Z

∫
exp

{ ∑

(u,v)∈E
Ju,v

K∑

k=1

ck cos(k∇u,vθ)

× (
cosh(k∇u,va) − 1

) − H(θ)
}

dΛθ

= eax −a0
〈
exp

{ ∑

(u,v)∈E
Ju,v

K∑

k=1

ck cos(k∇u,vθ)
(
cosh(k∇u,va) − 1

)}〉

≤ exp
{

ax − a0 +
∑

(u,v)∈E
Ju,v

K∑

k=1

|ck |
(
cosh(k∇u,va) − 1

)}
. (3)

2.1.2. Choice of a. The problem is now reduced to obtaining a good upper bound on

F(a) = exp
{

ax − a0 +
∑

(u,v)∈E
Ju,v

K∑

k=1

|ck |
(
cosh(k∇u,va) − 1

)}
. (4)

As in [21], we define a particular function a and check that it gives the desired decay of
correlation. Let us first define the function ā : N → R by ā(0) = 0 and
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āi = −δ

i∑

j=1

1

j
, i ≥ 1, (5)

where the parameter δ will be chosen (small) later.
It will be convenient to decompose Z

2 into layers: Li = {z ∈ Z
2 : ‖z‖ = i}. Note

that |Li | = 8i for all i ≥ 1.
Let R = ‖x‖. Our choice of the function a will be radially symmetric:

az =
{

ā‖z‖ − āR if ‖z‖ ≤ R,
0 otherwise.

Let us now return to the derivation of an upper bound on F(a). Note that au = av =
āi whenever u, v belong to the same layer Li , i ≤ R; in particular, in such a case,
cosh(k∇u,va) − 1 = 0. Therefore,

F(a) ≤ exp
{

āR +
R∑

i=0

∑

u∈Li

∑

j≥1

∑

v∈Li+ j

Ju,v

K∑

k=1

|ck |
(
cosh(k(∇u,va)) − 1

)}

= exp
{

āR +
R∑

i=0

∑

j≥1

K∑

k=1

|ck |
(
cosh(k(āi − āi+ j )) − 1

) ∑

u∈Li

∑

v∈Li+ j

Ju,v

}

≤ exp
{

āR + 8J2α
R∑

i=0

|Li |
∑

j≥1

j1−α
K∑

k=1

|ck |
(
cosh(k(āi − āi+ j )) − 1

)}
,

since

∑

u∈Li

∑

v∈Li+ j

Ju,v ≤ |Li |8
∑


≥0

J j+
 ≤ 8|Li |
∑


≥0

J

( j + 
)α
≤ 8J2α |Li |

jα−1 .

To estimate the sum over j , we treat separately the cases j > i and j ≤ i . Let

CK =
K∑

k=1

|ck | and DK =
K∑

k=1

|ck |k2.

We start with the case j > i . Since cosh(z) − 1 ≤ ez for all z ≥ 0,

∑

j>i

j1−α
K∑

k=1

|ck |
{
cosh(k(āi − āi+ j )) − 1

} ≤ CK

∑

j>i

j1−α
{
cosh(K (āi − āi+ j )) − 1

}

≤CK

∑

j>i

j1−α
{
cosh

(
K δ log

(
(i + j)/ i

))−1
}

≤ CK

∑

j>i

j1−α exp
{

K δ log
(
(i + j)/ i

)}

≤ CK

∑

j>i

j1−α exp
{

K δ log(2 j/ i)
}



1242 M. Gagnebin, Y. Velenik

≤ CK

∑

j>i

j1−α(
2 j

i
)K δ

≤ 2CK i2−α.

Note that we need δ small enough to ensure that α − 1 − K δ > 1; this can be done, for
example, by choosing δ ≤ 2/K (remember that α > 4). It will actually be convenient
to assume the stronger condition K δ ≤ 1, which we already used above to make the
constants in the last line a bit simpler.

To treat the case j ≤ i we use the fact that cosh(t) − 1 ≤ 2
3 t2 when |t | < 1:

i∑

j=1

j1−α
K∑

k=1

|ck |
(
cosh(kδ

i+ j∑


=i+1

1/
 ) − 1
) ≤

i∑

j=1

j1−α
K∑

k=1

|ck |
(
cosh(kδ j/ i) − 1

)

≤
i∑

j=1

j1−α
K∑

k=1

|ck | 2
3

(
kδ j/ i

)2

≤ 2
3 DK δ2i−2

∑

j≥1

j3−α

= 2
3 DK δ2i−2ζ(α − 3),

where ζ(·) denotes the Riemann zeta function (notice that ζ(α − 3) < ∞ since α > 4).
Bringing all the pieces together, we see that

F(a) ≤ exp
{

āR + 64J2α
R∑

i=1

i
(
2CK i2−α + 2

3 DK δ2ζ(α − 3)i−2) + 8J2αCK ζ(α − 2)
}

≤ exp
{(−δ + δ2 2

3 DK 64J2αζ(α − 3)
)

log R + 72CK J2αζ(α − 3)
}
, (6)

provided that we choose δ such that the factor multiplying log R be negative (and K δ ≤
1). This can always be done. With such a choice, we conclude that there exist c, C < ∞,
uniform in x, M, θ̄ , such that

|〈cos(θ0 − θx )〉| ≤ c‖x‖−C .

Remark 5. Note that, if we write explicitly the dependence on β in the above expressions,
then Dk is actually βDK . This yields the classical bound

|〈cos(θ0 − θx )〉| ≤ c(β)‖x‖−C/β .

2.2. General case. We now turn our attention to the general case of functions satisfying
assumption A2.

2.2.1. Measure decomposition In order to treat general interactions, we proceed as
in [11]. Namely, we first fix ε > 0 (which will be assumed to be small enough later on).
Trigonometric polynomials being dense (w.r.t. the sup-norm) in the set of continuous
functions on S

1, it is possible to find a number K = K (ε) such that
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f (x) =
K∑

k=0

ck cos(kx) + ε̄(x)

= f̃ (x) + ε̄(x),

with ε̄ satisfying the conditions

‖ε̄‖∞ ≤ ε and ε̄ ≥ 0.

Note that the constant c0 doesn’t affect the Gibbs measure and can thus be assumed to
be equal to 0, which we will do from now on.

Following [11], we then make a high-temperature expansion of the singular part:

Z =
∫

e−H(θ)dΛθ =
∫

exp
{ ∑

(u,v)∈E
Ju,v

(
ε̄(∇u,vθ) + f̃ (∇u,vθ)

)}
dΛθ

=
∫

exp
{ ∑

(u,v)∈E
Ju,v f̃ (∇u,vθ)

} ∏

(u,v)∈E

(
eJu,v ε̄(∇u,vθ) − 1 + 1

)
dΛθ

=
∑

A∈A

∫
exp

{ ∑

(u,v)∈E
Ju,v f̃ (∇u,vθ)

} ∏

(u,v)∈A

(
eJu,v ε̄(∇u,vθ) − 1

)
dΛθ

=
∑

A∈A
Z A,

where we have introduced the set A = {A ⊂ E}. This allows us to decompose the
original measure as the convex combination

〈g(θ)〉 =
∑

A∈A
π(A) 〈g(θ)〉A,

where π(A) = Z A/Z and

〈g(θ)〉A = 1

Z A

∫
g(θ) exp

{ ∑

(u,v)∈E
Ju,v f̃ (∇u,vθ)

} ∏

(u,v)∈A

(
eJu,v ε̄(∇u,vθ) − 1

)
dΛθ.

If we take a look at the quantity of interest, |〈cos(θx − θ0)〉|, we can split the sum over
A ∈ A into two: a set G of “good” configurations, and a set B of “bad” configurations,
thus leading to an upper bound

|〈cos(θx − θ0)〉| =
∣∣∣
∑

A∈G
〈cos(θx − θ0)〉Aπ(A) +

∑

A∈B
〈cos(θx − θ0)〉Aπ(A)

∣∣∣

≤
∑

A∈G
π(A) | 〈cos(θx − θ0)〉A | +

∑

A∈B
π(A).

We will choose G and B in such a way that the quantities |〈cos(θx − θ0)〉A| can be
estimated appropriately, while keeping the probability π(B) sufficiently small.

2.2.2. Working with 〈·〉A. The above decomposition is very helpful because it fixes the
set A. We shall see how the complex rotation method can also be used in this case.
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|〈cos(θ0 − θx )〉A| ≤
∣∣∣

1

Z A

∫
exp

{
i(θ0 − θx ) +

∑

(u,v)∈E
Ju,v f̃ (∇u,vθ)

}

×
∏

(u,v)∈A

(
eJu,v ε̄(∇u,vθ) − 1

)
dΛθ

∣∣∣.

Of course, the fact that one has absolutely no information on the smoothness of
the function ε̄ has to be addressed now. Since this function is not analytic in general,
one cannot directly apply the translation θ → θ + ia. The key observation is that
the interaction can be factorized into an interaction on each cluster of A and another
interaction between different clusters of A.

Let C be one of the clusters of A, and let us denote its vertices by {c1, . . . , cn}.
Assume first that 0, x /∈ C and C ⊂ Λ. We can then factorize the above integral as
follows:

∣∣∣
1

Z A

∫
dΛ\Cθ ( . . . )

∫
dCθ F(θ, C)

∏

u∈C
v /∈C

eJu,v f̃ (∇u,vθ)
∣∣∣

where ( . . . ) represents the terms depending only on the variables (θi , i /∈ C), and

F(θ, C) =
∏

u,v∈C
(u,v)∈A

(
eJu,v ε̄(∇u,vθ) − 1

) ∏

u,v∈C

eJu,v f̃ (∇u,vθ).

For i = 2, . . . , n, let us define ηi = θci − θc1 . Since the function F depends only
on the values of the gradients of θ inside the cluster C and is therefore a function of
η = (ηi , i = 2, . . . , n), changing variables from (θci , i = 1, . . . , n) to (θc1 , η2, . . . , ηn)

yields

∫
dCθ F(θ, C)

∏

u∈C
v /∈C

eJu,v f̃ (∇u,vθ) =
∫ n∏

i=2

dηi F(η, C)

∫
dθC1

∏

u∈C
v /∈C

eJu,v f̃ (∇u,vθ).

The function in the last integral is now analytic and periodic in c1. We are thus entitled
to make the complex shift θc1 �→ θc1 + iac1 . In terms of the original variables, this shift
corresponds to θci �→ θc1 + iac1 +ηi , which implies that the whole cluster C is shifted by
the same amount ac1 . This procedure can be reproduced on each cluster of A (including
isolated vertices) to obtain a global shift θ �→ θ + ia with the constraint that au = av

whenever u and v belong to the same cluster of A.
In the preceding discussion, we have made the hypothesis that 0, x /∈ C. The case

where either 0, x or both belong to C is treated in exactly the same way. The only change
is that we apply the complex shift to ei(θ0−θx )

∏
eJu,v f̃ (∇u,vθ) which is also an analytic

function.
Finally, the assumption that C ⊂ Λ cannot be discarded. If a point of the boundary

condition is in C then this point “fixes” the whole cluster, which cannot be shifted.
We thus add the constraint that a ≡ 0 on the connected component of the exterior
of Λ.

In order to emphasize the above constraints, we shall henceforth write a A instead of
a. We thus have, proceeding as in (3),
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|〈cos(θ0 − θx )〉A|

≤ ea A
x −a A

0
1

Z A

∫
exp

{ ∑

(u,v)∈E
Ju,v

K∑

k=1

ck cos(k∇u,vθ) cosh(k∇u,va A)
}

×
∏

(u,v)∈A

(
eJu,v ε̄(∇u,vθ) − 1

)
dΛθ

≤ ea A
x −a A

0 exp
{ ∑

(u,v)∈E
Ju,v

K∑

k=1

|ck |
{
cosh(k∇u,va A) − 1

}} = F(a A).

We thus get the exact same result as in Sect. 2.1 (but, of course, with additional constraints
on admissible a A).

2.2.3. Good and Bad sets of edges. In order to proceed, we must now provide a suitable
definition of the sets G and B and prove that they have the required properties. To this
end, we need some terminology.

Definition 1. Given A ∈ A, we say that u and v are connected if there exists a sequence
x0, x1, . . . , xn such that x0 = u, xn = v and (xi , xi+1) ∈ A for all i = 0, . . . , n − 1; we
denote this by u ↔ v. We need the following three quantities: for any u ∈ Z

2, set

m A(u) = max{‖v‖ : v ↔ u}, the norm of the furthest point connected to u;
n A(u) = |{v : v ↔ u}|, the number of points connected to u;
rA(u) = m A(u) − ‖u‖, the “outwards radius” of the cluster of u.

Definition 2. Let ΔR = ΛR\ΛR1/2 . We say that a configuration of open edges A is
c1-good if:

1. For all u ∈ ΛR1/2 , we have that u � Λc
2R1/2 , where Λc

2R1/2 = Z
2\Λ2R1/2 .

2. For all u ∈ ΔR, we have that m A(u) ≤ 2‖u‖ (equivalently, rA(u) ≤ ‖u‖).

3.
∑

u∈ΔR

rA(u)2

‖u‖2 ≤ c1 log R.

We then define G = {A ∈ A : A is c1-good} and B = A\G.

2.3. Estimate on the good set G. Let us now see how the approach from [21] can be used
to obtain the same estimate we had in Eq. (6), when A ∈ G. As we have seen above, the
complex rotation argument leads to the following bound:

|〈cos(θ0−θx )〉A|≤exp
{

a A
x −a A

0 +
K∑

k=1

|ck |
∑

(u,v)∈E
Ju,v

{
cosh

(
k(a A

u − a A
v )

)−1
}}

. (7)

We now have to make a choice for the function a A : Z
2 → R, compatible with our

two requirements that a A
u = a A

v whenever u ↔ v, and a A ≡ 0 outside Λ. To make that
choice, we first modify the function used in Sect. 2.1, making a A grow only for points
sufficiently far from the origin. Namely, we first define, for i ∈ N, (remember (5))

ãi =

⎧
⎪⎨

⎪⎩

0 if i ≤ 2R1/2,
āi − ā2R1/2 if i ∈ {2R1/2, . . . , R},
āR − ā2R1/2 if i ≥ R.
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The actual rotation a A
u is then defined similarly to what we did in Sect. 2.1, using ã

instead of ā, but taking its value on the furthest point v to which u is connected, thus
ensuring that it remains constant on each cluster:

a A
u = ãm A(u) − ãR . (8)

Now, since f (x + y + z) ≤ f (3x) + f (3y) + f (3z) for any nonnegative increasing
function f , we can write

cosh
(
k(ãm A(u) − ãm A(v))

) − 1

≤ {
cosh

(
3k(ãm A(u) − ã‖u‖)

) − 1
}

+
{
cosh

(
3k(ã‖u‖ − ã‖v‖)

) − 1
}

+
{
cosh

(
3k(ã‖v‖ − ãm A(v))

) − 1
}
.

After multiplying them by Ju,v and summing over u, v ∈ Z
2, the contributions from the

first and third terms above will be the same. Since
∑

v∈Z2 Ju,v = 1, we get
∑

u,v∈Z2

Ju,v

{
cosh

(
k(a A

u − a A
v )

) − 1
}

≤ 2
∑

u∈Z2

{
cosh

(
3k(ãm A(u) − ã‖u‖)

) − 1
}

+
∑

u,v∈Z2

Ju,v

{
cosh

(
3k(ã‖u‖ − ã‖v‖)

) − 1
}
. (9)

The contribution from the second term in the right-hand side of (9) is bounded as in
Sect. 2.1:

∑

u,v∈Z2

K∑

k=1

|ck |
{
cosh

(
3k(ã‖u‖ − ã‖v‖)

) − 1
} ≤ c2CK + c3 DK δ2 log R.

To estimate the first term in the right-hand side of (9), we rely on the fact that A is
assumed to be good: choosing δ small enough so that K δ < 1/3,

∑

u∈Z2

K∑

k=1

|ck |
{
cosh

(
3k(ãm A(u)−ã‖u‖)

)−1
}≤

∑

u∈ΔR

K∑

k=1

|ck |
{
cosh

(
3k(ām A(u)−ā‖u‖)

)−1
}

=
∑

u∈ΔR

K∑

k=1

|ck |
{
cosh

(
3kδ

m A(u)∑


=‖u‖+1

1




) − 1
}

≤
∑

u∈ΔR

K∑

k=1

|ck |
(
3kδ

rA(u)

‖u‖
)2

≤ 9DK δ2c1 log R.

The last piece of (7) left to estimate is a A
x − a A

0 , with x ∈ L R ,

a A
x − a A

0 = −δ

⎛

⎝
R∑

i=1

1

i
−

2R1/2∑

i=1

1

i

⎞

⎠ ≤ − 1
8δ log R.
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(The factor 1
8 in the last expression is just here to get rid of the constant additional terms,

a better bound is δ+δ log(2)−δ 1
2 log(R).) We are now ready to bring the pieces together,

|〈cos(θ0 − θx )〉A| ≤ exp
{− 1

8δ log R + (c2CK + c3 DK δ2 log R + 9DK δ2c1 log R)
}
.

Again taking δ sufficiently small for the constant multiplying log R to be negative.

|〈cos(θ0 − θx )〉A| ≤ cR−C .

Remark 6. We now explain how additional information on the smoothness of f can be
used in order to obtain an explicit dependence of the constant C above on the inverse
temperature β.

The main place such information is useful is when we approximate f by the trigono-
metric polynomial f̃ and the error term ε̄. Indeed, in order for the percolation arguments
of Appendix A.1 to work, we need ε to be small enough (which ensures a sufficiently
subcritical percolation model). If the β dependence is spelled out explicitly, this means
that we need ε � 1/β. To ensure this, we need to let the number K of terms appearing
in f̃ grow. The question is: how fast?

Let us assume that f is s-Hölder for some s > 3. In that case, we can draw two
conclusions [10,13]: If f̂ (x) = ∑∞

k=1 ĉk cos(kx) is the Fourier series associated to f ,
then

– supx | f (x) − ∑K
k=1 ĉk cos(kx)| � K −s log K .

– |ĉk | � k−s , and thus
∑∞

k=1 |ĉk |k2 = D∞ < ∞.

We can thus set f̃ = ∑K
k=1 ĉk cos(kx) with K �

√
β (any o(β) would work). We then

choose δ = δ1/β, for δ1 small enough. In that case:

– the condition K δ ≤ 1/3 is automatically satisfied for large β.
– Rewriting explicitly the dependance of DK in β, DK � βD∞ yields the classical

upper bound |〈cos(θ0 − θx )〉A| ≤ c(β)R−C/β .

2.4. The bad set B has small probability. Of course, not all configurations are good. The
rest of this section is devoted to showing that bad configurations have an appropriately
small probability. The following observation is very useful.

Proposition 1. On the set A, with the natural partial ordering, the measure π (defined
in Sect. 2.2.1) is dominated by the independent Bernoulli percolation process P in which
an edge (x, y) is opened with probability 2ε Jx,y .

Proof. To establish this domination, we will show that the probability for an edge (x, y)

to be open is bounded by 2ε Jx,y uniformly in the states of all the other edges.
Let D ∈ A such that (x, y) /∈ D. It suffices [17] to show that

π(D ∪ (x, y))

π(D) + π(D ∪ (x, y))
≤ 2ε Jx,y,

which will clearly follow if we prove that π(D ∪(x, y)) ≤ 2ε Jx,yπ(D). This is straight-
forward using the definition of π :
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π(D ∪ (x, y)) = 1

Z

∫
dΛθ exp{

∑

x,y∈Z2

Jx,y f (∇x,yθ)}

×
∏

(u,v)∈D

(
eJu,v ε̄(θu−θv) − 1

)(
eJx,y ε̄(θx −θy) − 1

)

≤ 2ε Jx,yπ(D),

where we have used that 0 ≤ ε̄(x) ≤ ε, for all x . This concludes the proof. ��
The three properties characterizing the set B are bounds on increasing functions of

A. Proposition 1 thus implies that π(B) ≤ P(B), which means that we can henceforth
work with the measure P instead of π .

We shall consider the three conditions characterizing B one at a time.

Condition 1. For u ∈ ΛR1/2 , Proposition 2 (see Appendix A.1) yields the following
estimate:

P(u ↔ Λc
2R1/2) ≤

∑

k≥R1/2

P(rA(u) = k) ≤
∑

k≥R1/2

c6

kα−1 � R−(α−2)/2.

Hence,

P(ΛR1/2 ↔ Λc
2R1/2) ≤

∑

u∈ΛR1/2

P(u ↔ Λc
2R1/2) � R · R−(α−2)/2 = R−(α−4)/2,

which decreases algebraically with R, since α > 4.

Condition 2. The proof is similar. For u ∈ Li , we have that

P(m A(u) ≥ 2‖u‖) =
∑

k≥i

P(m A(u) = i + k) ≤
∑

k≥i

c6

kα−1 � i2−α.

Thus,

P(∃u �∈ ΛR1/2 : m A(u) ≥ 2‖u‖) �
∑

i≥R1/2

∑

u∈Li

i2−α � R−(α−4)/2,

which is also algebraically decreasing.

Condition 3. In order to control
∑

u∈ΔR

rA(u)2

‖u‖2 , it is convenient to introduce a new family
(N (u), R(u))u∈ΔR of i.i.d. random variables with the same distribution as (n A(0), rA(0));
their joint law will be denoted by Q. It is proven in Proposition 3 of Appendix A.2 that
the following holds:

P

( ∑

u∈ΔR

rA(u)2

‖u‖2 > c1 log R
)

≤ Q

( ∑

u∈ΔR

N (u)R(u)2

‖u‖2 > c1 log R
)
. (10)
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A first indication that the latter probability is small is given by the expectation of the
sum. Thus,

E

[ ∑

u∈ΔR

N (u)R(u)2

‖u‖2

]
=

∑

u∈ΔR

1

‖u‖2 E

[
N (u)R(u)2

]
≤

R∑

i=1

1

i2

∑

u∈Li

E

[
n A(0)rA(0)2

]

≤
R∑

i=1

8

i

∑

k≥0

P(n A(0)rA(0)2 > k).

The latter probability can be bounded using Proposition 2 and Lemma 1:

P(n A(0)rA(0)2 > k) ≤ P(n A(0) > log k) + P
(
rA(0) >

√
k/ log k

)

� ε(1/2) log k +
∑

t>
√

k/ log k

c6 t1−α

� ε(1/2) log k + (k/ log k)(2−α)/2

� (k/ log k)(2−α)/2, (11)

provided that ε be chosen small enough. The latter expression is summable, since α > 4,
and we obtain

E

[ ∑

u∈ΔR

N (u)R(u)2

‖u‖2

]
≤ c4 log R.

Let us now define the event S = {N (u)R(u)2 ≤ ‖u‖2,∀u ∈ ΔR}. The probability of
Sc is easily bounded using the estimate in Eq. (11):

Q(Sc) ≤
∑

u∈ΔR

Q(N (u)R(u)2 > ‖u‖2) �
∑

u∈ΔR

(‖u‖/√log ‖u‖)2−α

�
R∑

i=R1/2

i3−α(log i)(α−2)/2 � R(4−α)/2(log R)(α−2)/2.

Note that this probability is algebraically decreasing in R. Then, choosing c1 = 2c4, we
have

Q

( ∑

u∈ΔR

N (u)R(u)2

‖u‖2 > c1 log R
)

≤ Q

({ ∑

u∈ΔR

N (u)R(u)2

‖u‖2 > c1 log R
}

∩ S
)

+ Q

( ∑

u∈ΔR

N (u)R(u)2

‖u‖2 > c1 log R
∣∣∣ Sc

)
Q(Sc)

≤ Q

( ∑

u∈ΔR

( N (u)R(u)2

‖u‖2 ∧ 1
)

> c1 log R
)

+ Q(Sc).
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We have already bounded the second term in the right-hand side. To bound the first term,
we use Lemma 3 (note that truncating the summands can only decrease the expectation):

Q

( ∑

u∈ΔR

( N (u)R(u)2

‖u‖2 ∧ 1
)

> c1 log R
)

≤ R−c5 .

This concludes the bound for Condition 3.
The desired upper bound on the probability of B follows.

3. Proof of Theorem 2

Let us denote by A the (random) set of all edges with 0 resistance. In view of our target
estimate and our bound on the probability of B, we can assume that A ∈ G. In this case,
a variant of the computations done in Sect. 2.1 yields

∑

u,v∈Z2

Ju,v

(
a A

u − a A
v

)2 =
∑

u,v∈Z2

Ju,v

(
ãm A(u) − ãm A(v)

)2

≤ 6
∑

u,v∈ΔR

Ju,v

(
ãm A(u) − ã‖u‖

)2 + 3
∑

u,v∈Z2

Ju,v

(
ã‖u‖ − ã‖v‖

)2

≤ 6
∑

u∈ΔR

(
δ

rA(u)

‖u‖
)2 + 6

R∑

i=1

∑

j≥1

∑

u∈Li

∑

v∈Li+ j

Ju,v(δ j/ i)2

≤ 6c1δ
2 log R + 6

R∑

i=1

∑

j≥1

64J
i

jα−1 (δ j/ i)2

≤ 6c1δ
2 log R + 384δ2 J

R∑

i=1

1

i

∑

j≥1

j3−α

� δ2 log R.

Now, in order to have a(x) = 0 and a(0) = 1, δ must satisfy δ2 ∼ log(R1/2)2 =
log(R)2/4. This leads to the bound

Eeff � 1

log R
,

and the result follows.
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and useful suggestions. This research was partially supported by the Swiss National Science Foundation.

A. Appendix

A.1. Percolation estimates. In this subsection, we collect a number of elementary results
on long-range percolation, that are needed in the proof of Theorem 1. Below, A always
denotes a configuration of the Bernoulli bond percolation process P on Z

2, in which an
edge (x, y) is open with probability ε Jx,y . The quantities of interest are
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n A(x) = |{y : y ↔ x}|, the cardinality of the cluster of x ;
m A(x) = max{‖y‖ : y ↔ x}, the norm of the furthest vertex connected to x ;
rA(x) = m A(x) − ‖x‖, the “radius” of the cluster of x .

Lemma 1. For any ε < 1
2 ,

P(n A(0) > k) � εk/2.

Proof. For any finite connected graph G = (V, E), it is possible to find a path γ of
length 2|E | crossing each edge of G exactly twice, starting from any vertex of G. This
implies that

P(n A(0) > k) ≤
∑

n≥k/2

∑

G=(V,E)
V �0,|E |=n

P(e is open,∀e ∈ E) =
∑

n≥k/2

∑

G=(V,E)
V �0,|E |=n

∏

e∈E

ε Je

≤
∑

n≥k/2

∑

γ :
γ (0)=0,|γ |=2n

∏

e∈γ

√
ε Je ≤

∑

n≥k/2

εn
(∑

x∈Z2

√
Jx

)2n
,

and the conclusion follows since
∑

x∈Z2
√

Jx �
∑

i≥1 i (α−2)/2 = ζ((α − 2)/2). ��

Proposition 2. For any ε small enough, there exists c6 such that, for x ∈ Z
2 and k > ‖x‖,

we have the following bound

P(m A(x) = k) ≤ c6

(k − ‖x‖)α−1 .

Proof. Let Dm(x, k) be the event that there exists an edge-self-avoiding path of length
m from x to Lk , staying inside Λk−1 and using only edges from A:

Dm(x, k) = {∃ x0, . . . , xm : (xi−1, xi ) ∈ A ∀i = 1, . . . , m;
(xi−1, xi ) �= (x j−1, x j ) if i �= j; x0 = x; x1, . . . , xm−1 ∈ Λk−1; ‖xm‖ = k

}
.

Obviously, {m A(x) = k} ⊂ ⋃
m≥1 Dm(x, k). We will prove below that P(Dm(x, k)) ≤

(ε16c7)
m/(k − ‖x‖)α−1, which will conclude our proof, since

P(m A(x) = k) ≤
∑

m≥1

P(Dm(x, k)) ≤
∑

m≥1

(ε16c7)
m

(k − ‖x‖)α−1 ≤ c6

(k − ‖x‖)α−1 .

We are left with the proof of the bound on P(Dm(x, k)), which is done by induction. For
m = 1,

∑

x1∈Lk

P((x, x1) ∈ A) ≤ 8
∑

j≥k−‖x‖

ε J

jα

≤ ε16J

(k − ‖x‖)α−1 .
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Assuming now that the claim is true for any m ≤ M − 1, let us prove it for m = M :

P(Dm(x, k)) ≤
∑

y∈Λk−1

P((x, y) ∈ A)P(Dm−1(y, k))

=
k−1∑


=0

∑

y∈L


P((x, y) ∈ A)P(Dm−1(y, k))

≤
k−1∑


=0

(ε16c7)
m−1

(k − 
)α−1

∑

y∈L


P((x, y) ∈ A)

≤ (‖x‖−1∑


=0

+
k−1∑


=‖x‖+1

) (ε16c7)
m−1

(k − 
)α−1

ε16J

|
 − ‖x‖|α−1

+
(ε16c7)

m−1

(k − ‖x‖)α−1

∑

y∈L‖x‖
P((x, y) ∈ A)

≤ (ε16c7)
m−1ε16J

{‖x‖−1∑


=0

1

(k − ‖x‖)α−1

1

(‖x‖ − 
)α−1

+
k−1∑


=‖x‖+1

1

(k − 
)α−1

1

(
 − ‖x‖)α−1

+
ζ(α − 1)

(k − ‖x‖)α−1

}

≤ (ε16c7)
m−1ε16J

{ 2ζ(α − 1)

(k − ‖x‖)α−1

+
k−‖x‖−1∑


=1

1

(k − ‖x‖ − 
)α−1

1


α−1

}

≤ (ε16c7)
m−1ε16Jζ(α − 1)(2 + 2α)

1

(k − ‖x‖)α−1 ,

where we have used Lemma 2 of Appendix A.2 in the second to last inequality. This
ends the proof with c7 = Jζ(α − 1)(2 + 2α). ��

Proposition 3. The random variable
∑

x∈ΔR

rA(x)2

‖x‖2 is stochastically dominated by
∑

x∈ΔR

N (x)R(x)2

‖x‖2 , where the random variables (N (x), R(x))x∈ΛR are independent and
have the same distribution as (n A(0), rA(0)).

Proof. The proof follows the line of the construction of the percolation process cluster
by cluster.

Step 1: Let (Ax )x∈ΛR be independent realizations of the percolation process. To each
x ∈ ΛR , we associate its cluster Cx in the configuration Ax . Let also C̄x be the set of
all edges of E with at least one endpoint in common with Cx , and set ∂Cx = C̄x \ Cx .
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Step 2: Choose an ordering (x1, x2, . . . , x|ΛR |) of the vertices in ΛR such that ‖xi‖ ≥
‖x j‖ whenever i ≥ j . We want to construct a percolation configuration A; we thus need
to decide for each edge (x, y) whether it is open or closed in A.

Step 3: We start with x1 = 0. Each edge in Cx1 is declared open in A and each edge
in ∂Cx1 is declared to be closed in A. Set k = 2 and let Eexp be the set of all edges the
state of which has already been decided (those of C̄x1 ).

Step 4: If k > |ΛR |, stop the procedure. Otherwise, let C̄ ′
xk

be the connected component
of xk in C̄xk \Eexp. Note that C̄ ′

xk
may be empty and that it is not the same as C̄ ′

xk
\ Eexp;

indeed Eexp could separate C̄ ′
xk

into several connected component and we only want to
keep the one containing xk . Declare all edges e ∈ C̄ ′

xk
to be open in A if they belong to

Cxk and closed if they belong to ∂Cxk . Let Eexp be the set of all edges the state of which
has already been defined. Increment k and return to Step 4.

Let Ak be the cluster of xk in A produced using the above procedure, and ∂ Ak its
boundary. Since each edge e ∈ ⋃|ΛR |

k=1 (Ak ∪ ∂ Ak) has been examined exactly once, and
set to be open or closed independently with probabilities ε Je and (1−ε)Je, respectively,
the joint law of all these clusters is identical to that under P.
We shall need the following three quantities:

N (x), the number of points of Cx ;
r(x) = max{‖y‖ : y ↔ x} − ‖x‖, the outwards “radius” of Cx ;
b(xi ) = 1{xi �∈⋃

j<i A j };
R(x) = max{‖y − x‖ : y ∈ Cx }, the “radius” of Cx . Notice here that R(x) ≥ r(x),
and that the distribution of this quantity is actually independent of x .

By construction, if x, y are in the same cluster of A we have that m A(x) = m A(y).
Moreover, if b(x) = 1 then x minimizes ‖y‖ among all y ∈ Ax ; in particular, vertices
x with b(x) = 1 maximize the ratio rA(x)/‖x‖. We thus have

∑

x∈ΔR

rA(x)2

‖x‖2 ≤
∑

x∈ΔR

b(x)n A(x)
rA(x)2

‖x‖2

≤
∑

x∈ΔR

b(x)N (x)
r(x)2

‖x‖2 ≤
∑

x∈ΔR

N (x)
R(x)2

‖x‖2 .

��

A.2. Some technical estimates.

Lemma 2. For all k ≥ 1 and α > 1,

k−1∑


=1

1

(k − 
)α
α
≤ 2α+1ζ(α)

kα
.

Proof. Since α > 1,

k−1∑


=1

1

(k − 
)α
α
≤ 2

(k−1)/2∑


=1

1

(k − 
)α
α
≤ 2

(k−1)/2∑


=1

1

(k/2)α
α
≤ 21+αk−αζ(α).

��
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The next result is classical (see, e.g. [19]); we include its short proof for the conve-
nience of the reader.

Lemma 3. Let (Xk)k≥1 be independent random variables such that 0 ≤ Xk ≤ 1. Define
Sn = ∑n

k=1 Xk, μ ≥ E[Sn] and p = E[Sn]/n. Then, for all ε > 0,

P(Sn ≥ (1 + ε)μ) ≤ e−((1+ε) log(1+ε)−ε)μ.

Proof. The proof uses a control of the exponential moments of Sn and the Markov
inequality. Let h > 0 and recall that for t ∈ [0, 1] we have eht ≤ 1 − t + teh . Using the
inequality between arithmetic and geometric means,

E
[
ehSn

] =
n∏

k=1

E
[
eh Xk

] ≤
n∏

k=1

(
1 − E[Xk] + E[Xk]eh)

≤
(1

n

n∑

k=1

(
1 − E[Xk] + E[Xk]eh))n

≤
(

1 − E[Sn]
n

+ eh E[Sn]
n

)n

≤ (
1 − p + peh)n

.

Now, we can apply Markov’s inequality to obtain, for all h > 0,

P(Sn ≥ m) ≤ e−hm
E
[
ehSn

] ≤ e−hm(
1 − p + peh)n

.

Setting m = (1 + ε)μ and choosing h such that eh = (1 + ε) yields

P(Sn ≥ (1 + ε)μ) ≤ (1 + ε)−(1+ε)μ (1 − p + p(1 + ε))n ≤ e−(1+ε) log(1+ε)μeεpn

≤ e−(1+ε) log(1+ε)μeεμ.

��
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