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Abstract Performance in working memory (WM) tasks de-
pends on the capacity for storing objects and on the allocation
of attention to these objects. Here, we explored how capacity
models need to be augmented to account for the benefit of
focusing attention on the target of recall. Participants encoded
six colored disks (Experiment 1) or a set of one to eight
colored disks (Experiment 2) and were cued to recall the color
of a target on a color wheel. In the no-delay condition, the
recall-cue was presented after a 1,000-ms retention interval,
and participants could report the retrieved color immediately.
In the delay condition, the recall-cue was presented at the
same time as in the no-delay condition, but the opportunity
to report the color was delayed. During this delay, participants
could focus attention exclusively on the target. Responses
deviated less from the target’s color in the delay than in the
no-delay condition. Mixture modeling assigned this benefit to
a reduction in guessing (Experiments | and 2) and transposi-
tion errors (Experiment 2). We tested several computational
models implementing flexible or discrete capacity allocation,
aiming to explain both the effect of set size, reflecting the
limited capacity of WM, and the effect of delay, reflecting the
role of attention to WM representations. Both models fit the
data better when a spatially graded source of transposition
error is added to its assumptions. The benefits of focusing
attention could be explained by allocating to this object a
higher proportion of the capacity to represent color.
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Our ability to hold in mind information about our visual envi-
ronment is constrained by the capacity of a system known as
visual working memory (WM). Visual WM enables us to form a
representation of our surroundings, to maintain it after the visual
input has disappeared, and to manipulate in mind representa-
tions of previously seen objects. This is the reason why consid-
erable research has been devoted to understand how represen-
tations are encoded, maintained, and retrieved from visual WM.

Research on visual WM has shown, on the one hand, that
people can retain only a handful of the information presented
on a visual display. These studies have put forward that both
the quantity and quality of the representations that are stored
in WM are limited (e.g., Bays & Husain, 2008; Zhang &
Luck, 2008). On the other hand, studies examining the inter-
play of attention and WM have shown that performance is
improved when attention is focused on a subset of the infor-
mation held in WM (e.g., Griffin & Nobre, 2003; Landman,
Spekreijse, & Lamme, 2003). These two lines of research
have highlighted complementary aspects of WM. its capacity
limitations and the flexibility with which its limited capacity
can be allocated.

The main aim of the present article is to put the findings of
these two fields in relation to each other. To achieve this goal,
we combined the experimental paradigms of both fields to
empirically examine how focused attention affects the quan-
tity and the quality of the representations held in visual WM.
Despite the ample literature showing that focused attention
improves WM, it is still unclear whether focused attention
impacts the quantity, the quality, or both of these mnemonic
parameters. Next, we used computational modeling to instan-
tiate versions of two popular models of WM capacity—name-
ly, the flexible-resource model and the discrete-capacity mod-
el. Our goal was to explore how these models could be
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expanded to accommodate the effect of focusing attention on
some of WM's contents.

The structure of the present article is the following. First,
we briefly introduce the two mainstream models of capacity
limits in visual WM and summarize some of the findings that
have fueled the debate over what is the source of capacity
limits in WM. Next, we present the main findings of studies
concerned with the role of attention to WM contents. We then
present two experiments testing how focused attention im-
proves performance in WM tasks. Finally, we present our
modeling approach to WM capacity and to the role of focused
attention to WM contents.

Capacity limits on quantity and quality of representations
in visual WM

The question of what limits the capacity of visual WM has
been a matter of a vivid debate in the literature. According to
the flexible-resource model, WM capacity consists of a con-
tinuous resource divided among the objects to be represented:
the larger the number of objects, the lower the quality
(precision) of each object representation in memory (Bays,
Catalao, & Husain, 2009; Bays & Husain, 2008; Wilken &
Ma, 2004). Consequently, the flexible-resource model pre-
dicts a trade-off between the quantity and quality of represen-
tations in WM.

Alternatively, one can think of WM capacity as a limited
number of discrete units or slots. Within a slot, an object is
represented with good, although not perfect, quality (Cowan,
2001; Luck & Vogel, 1997; Vogel, Woodman, & Luck, 2001;
Zhang & Luck, 2008, 2009, 2011). According to this discrete-
capacity model, one cannot trade-off quantity with quality: Either
an object receives a whole slot, thereby being represented with
good precision, or no information is stored about it at all. There
is, however, some room for flexibility: According to one imple-
mentation of the discrete-capacity model (the slottaveraging
model proposed by Zhang & Luck, 2008), multiple slots can
be assigned to a single object to achieve higher precision for that
object. By averaging across slots, the noise associated with a
representation is reduced, and quality improves.

To test the predictions of WM capacity models, researchers
have developed tasks to assess not only the number, but also
the precision of WM representations. One of these tasks is the
continuous recall task (Prinzmetal, Amiri, Allen, & Edwards,
1998; Wilken & Ma, 2004). In a prototypical task, participants
are asked to retain the feature values of an array of objects
(e.g., the colors of solid disks; the orientations of tilted bars).
At the end of a brief interval, the participant is prompted to
reproduce the relevant feature of a target object in a continu-
ous feature space (e.g., select the color of the target in a color
wheel; reproduce the target’s orientation using a dial). The
dependent measure in this task is the deviation between the

reported feature value and the target's true feature value. A set
of mixture models has been proposed to analyze the distribu-
tion of response deviations (cf. Bays et al., 2009; Zhang &
Luck, 2008). These models allow the extraction of several
memory parameters, such as (1) the precision with which the
target is recalled, given that it is recalled, and (2) failures in
recalling the target object’s feature (in which case, the partic-
ipant either guesses or wrongly reports another object from the
memory array).

By using these mixture models, it has been established that
the estimated precision of representations decreases as the
number of objects in the memory set increases, producing the
so-called set size effect (Anderson & Awh, 2012; Anderson,
Vogel, & Awh, 2011; Bays et al., 2009; Bays, Gorgoraptis,
Wee, Marshall, & Husain, 2011; Bays & Husain, 2008;
Fougnie, Asplund, & Marois, 2010; Fougnie, Suchow, &
Alvarez, 2012; Gorgoraptis, Catalao, Bays, & Husain, 2011;
Zhang & Luck, 2008, 2009). However, there is still dispute
over whether precision can decrease infinitely as the number of
objects increases, as implied by the flexible-resource model; or
whether precision plateaus when the set size reaches the max-
imum number of objects that can be maintained in WM, as
predicted by the discrete-capacity model. Some studies have
failed to find a plateau in mnemonic resolution (Bays et al.,
2009; Bays, Gorgoraptis, et al., 2011; Bays & Husain, 2008;
Gorgoraptis et al., 2011), whereas others have reported that
precision does not decrease any further after the memory set
size exceeds the individual's estimated capacity limit
(Anderson & Awh, 2012; Anderson et al., 2011; Gorgoraptis
et al., 2011, Experiment 3; Zhang & Luck, 2008).

To date, adjudicating between flexible-resource and
discrete-capacity models has proven to be a difficult enter-
prise, mainly because the behavioral predictions of these
models considerably overlap. In most cases, mixture modeling
has been applied to the data, and the pattern of findings has
been interpreted on the basis of the predictions of either
flexible-resource or discrete-capacity models. The mixture
models, however, make no assumptions regarding the effects
of memory set size on performance. As a consequence, they
are neutral regarding the nature of capacity limitations. Later,
we will present models that implement flexible-resource and
discrete-capacity assumptions and that, therefore, could be
potentially used to inform the debate of capacity limits in
WM. Our goal, however, was mainly to probe how these
models could potentially explain the benefit of focusing at-
tention on some WM contents.

Attention to objects in WM
Performance in WM tasks depends not only on the capacity

for encoding and maintaining a set of objects, as implied by
capacity models, but also on the allocation of attention to
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objects within the memory set. Any successful model of WM
capacity should also explain how people efficiently use their
capacity by selectively attending to the objects in WM that are
likely to be most relevant.

We define attention as the prioritization of information
matching the individual’s task goals (Nobre & Stokes,
2011). This prioritization can occur for perceptually present
stimuli, sometimes referred to as external attention, or for a set
of mental representations, referred to as internal attention
(Chun, Golomb, & Turk-Browne, 2011) or as the focus of
attention in WM (Cowan, 2011; Oberauer & Hein, 2012). In
the present article, we will mainly focus on the effects of
attention to information that is already maintained in WM
and, therefore, is regarded as prioritized by internal attention.

In WM tasks, internal attention can be directed to a WM
object by presenting a cue during the retention interval
(known as a retro-cue). The effect of retro-cues is well
established in change detection tasks (Astle, Summerfield,
Griffin, & Nobre, 2012; Berryhill, Richmond, Shay, & Olson,
2012; Griffin & Nobre, 2003; Kuo, Stokes, & Nobre, 2012;
Landman et al., 2003; Lepsien, Griffin, Devlin, & Nobre,
2005; Lepsien, Thornton, & Nobre, 2011; Matsukura,
Cosman, Ropper, Vatterott, & Vecera, 2014; Matsukura &
Hollingworth, 2011; Matsukura, Luck, & Vecera, 2007;
Maxcey-Richard & Hollingworth, 2013; Nobre, Griffin, &
Rao, 2008; Rerko & Oberauer, 2013; Rerko, Souza, &
Oberauer, 2014a; Schmidt, Vogel, Woodman, & Luck, 2002;
Souza, Rerko, & Oberauer, 2014; Tanoue & Berryhill, 2012;
Williams & Woodman, 2012). In these tasks, participants are
asked to decide whether a probe stimulus is the same or
changed, as compared with the object presented in the same
location in the memory array. When an objects is retro-cued
before being probed, responses are faster and more accurate,
as compared with baseline trials without cues (or with
noninformative cues) or as compared with responses to probes
presented in one of the noncued locations (Griffin & Nobre,
2003). This finding is known as the retro-cue benefit. How-
ever, because supra-threshold changes are often used in
change detection tasks, it is not possible to determine what
kind of memory error is reduced by cuing.

By combining the retro-cue paradigm with precision tasks,
one can assess which source of memory errors is reduced by
attention—that is, whether focusing attention on the target of
recall improves its probability of being recalled, its precision,
or both. This information can advance the explanations of the
retro-cue benefit, and it can help to establish a link between
capacity limitations and control mechanisms that determine
how capacity is allocated to retrieve relevant information from
WM.

To the best of our knowledge, only three studies have used
retro-cues on tasks assessing the quality of WM
representations. In the study by Pertzov, Bays, Joseph, and
Husain (2013), participants were shown tilted bars and, at the
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end of a variable retention interval, were asked to adjust the
orientation of a probe-bar to match the orientation of the target
in the memory display. Pertzov et al. compared performance
on baseline (no-cue) trials with performance on retro-cue trials
on which a retro-cue indicated one of the memory objects as
likely to be tested. As compared with the baseline trials,
deviations between the reported orientation and the target
orientation were smaller when the tested object was the
retro-cued one but larger when the tested object was one of
the noncued ones. Furthermore, deviations in reporting the
target orientation increased over the retention interval, with
the exception of the retro-cued object, which was reported
with low error after all retention interval durations. These
findings were interpreted as evidence that focusing attention
on a memory object protects it from degradation over time.
However, in this study, mixture modeling was not applied to
the distributions of errors, and therefore it is difficult to esti-
mate whether the retro-cue benefit was due to an effect on
precision, on the probability of having the object in memory,
or both.

In the study by Murray, Nobre, Clark, Cravo, and Stokes
(2013), participants discriminated whether a probe-arrow was
rotated clockwise or counterclockwise, as compared with the
orientation of a memory object. The precision of the memory
representation was assessed by varying the degree of change
between the probe and the target orientation: Larger changes
can be discriminated even with a coarse memory representa-
tion, whereas smaller changes require fine resolution. Retro-
cuing an object significantly increased the estimated probabil-
ity of having that object in memory but did not affect the
precision with which it was remembered. This retro-cue ben-
efit was obtained even in comparison with baseline trials
whose retention interval was matched to the time between
memory encoding and presentation of the cue on retro-cue
trials. This result rules out protection from degradation over
time as the cause of the retro-cue benefit, suggesting instead
that the retro-cue can be used to access a representation that
would be otherwise unavailable when the test display is
shown at the same point in time. However, because a probe
with a random orientation was displayed in the location of the
memory object, it is possible that the retro-cue benefit arose
because attention protected the cued object from interference
from the probe (Makovski & Jiang, 2007; Makovski,
Sussman, & Jiang, 2008). If this were the case, the retro-cue
benefit would not be observed in tasks not using a probe,
including the cued-recall paradigm typically used to assess the
quantity and quality of representations in WM.

Williams, Hong, Kang, Carlisle, and Woodman (2013)
used a cued-recall task: Participants encoded the color of
one or two disks and, after a brief delay, selected the color
of a target from a color wheel. On half of the two-object trials,
a retro-cue (an arrow) was shown in the middle of the reten-
tion interval. The cue pointed to one of the locations of a
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memory object, thereby indicating that this object was not
going to be tested and could be forgotten. Recall improved on
retro-cue trials, as compared with no-cue trials. Unlike the
study of Murray et al. (2013), however, both the probability of
correctly recalling the target and the precision with which it
was reported improved on retro-cue trials.

To sum up, these studies show that retro-cues improve
performance in tasks assessing the quality of memory repre-
sentations in a continuous feature space. The results, however,
are mixed regarding whether retro-cues improve only the
probability of recall (Murray et al., 2013) or both the proba-
bility of having the prioritized object in memory and its
precision (Williams et al., 2013). There are several methodo-
logical differences between these studies that could possibly
explain their discrepant findings: the set size examined (four
and eight objects in Murray et al., 2013, vs. two objects in
Williams et al., 2013), the information conveyed by the retro-
cue (a cue that pointed to the object to be retained vs. a cue that
pointed to the object to be forgotten), and also regarding how
the retention interval on retro-cue and no-cue trials was
matched (ruling out protection from time-based degradation
vs. not ruling out the contribution of this variable).

The present study

Here, we further explored the effects of directing attention to
an object held in WM using a continuous cued-recall task. In
our experiments, an array of colored disks was presented to be
memorized over a brief retention interval. At the end of this
interval, a recall cue identified one memory object as the
target, and participants had to recall its color using a color
wheel. To assess the benefit of focusing attention in this task,
we created two conditions that differed in how long partici-
pants could use the recall cue before reporting the color of the
target. In the no-delay condition, participants could immedi-
ately report the color of the target after presentation of the
recall cue. This condition is similar to what is usually done in
experiments testing the capacity of visual WM (cf. Zhang &
Luck, 2008). We considered this condition to be equivalent to
a simultaneous-cue condition in the traditional recognition or
change detection paradigm—that is, a condition in which a
cue is shown together with the probe stimulus and participants
can immediately compare the probe with the object in mem-
ory and report whether they match or mismatch. The presen-
tation of a simultaneous cue (or simu-cue for short) does not
enhance performance, as compared with a no-cue condition,
in recognition tests, and retro-cue benefits have been observed
when retro-cue trials are compared with both baselines (cf.
Makovski et al., 2008). In the delay condition, the recall cue is
displayed at the same point in time as in the no-delay condi-
tion, but the opportunity to report the target color is delayed by
a full second. We assume that during this delay, the only thing

participants can do is to focus attention on the target of recall.
This is equivalent to what a retro-cue affords in the traditional
cuing paradigm: Participants cannot respond after a retro-cue;
they can only focus attention on the cued object.

The choice of this design has two advantages that help to
constrain explanations of the retro-cue benefit. First, we equat-
ed the time for which representations could undergo degrada-
tion (by decay or some other process) across our no-delay and
delay conditions. If anything, our focused attention condition
(aka delay condition) has a longer overall retention interval,
thereby ruling out protection from time-based degradation as
an explanation of our focusing benefit. Second, by presenting
a recall cue in both conditions, we avoided the interference
that could be produced by presenting a probe stimulus in the
location of the memory object. Consequently, in our design,
the focusing benefit cannot be explained as protection from
probe interference. Ruling out these explanations is an impor-
tant first step to consider what the focusing benefit reveals
about the structure of WM. If performance in the cued-recall
paradigm reflects something about an individual's capacity,
what changes when attention is focused on one object?

We conducted two experiments. In Experiment 1, the
memory array contained six objects, and trials were equally
split into no-delay and delay conditions. In Experiment 2, in
addition to manipulating delay, we varied the number of
objects participants had to memorize (one to eight objects).
The manipulation of set size allows the examination of how
focused attention impacts performance when WM is taxed at
different levels. We applied two kinds of models to our data.
First, to assess which source of error is affected by focusing
attention on the target representation during the delay, we
fitted a three-parameter mixture model (Bays et al., 2009) to
the data of both experiments. This model estimates (1) the
precision with which the target color is retrieved, given that it
is available; (2) the probability that the participant confuses
memory objects with each other and, therefore, reports one of
the nontarget objects (making a transposition error); and (3)
the probability that no object was available to be retrieved and
the participant guessed.

To foreshadow our results, the delay condition reduced the
mean deviation in reporting the target color, relative to the no-
delay condition. The mixture modeling assigned this benefit to
a reduced probability of memory failures (reduction in guess-
ing in Experiments | and 2 and, to a lesser extent, in transpo-
sition errors in Experiment 2), but not in the precision with
which the target was recalled.

In a second step, we tested two families of computational
models of WM capacity: flexible-resource models (Bays et al.,
2009), on the one hand, and fixed-capacity or slot models, on
the other hand, the latter building on the slot+averaging model
(Zhang & Luck, 2008). Because none of the published models
of WM capacity provides a mechanism for adequately
explaining the focusing benefit we observed, we explored a
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set of plausible models in each family to find out how such a
benefit could arise. The main goal of this modeling work is to
determine which features are necessary for a flexible-resource
model or for a discrete-capacity model to explain both the
effect of memory set size, reflecting the limited capacity of
WM, and the effect of delaying recall after a retro-cue,
reflecting the role of attention to representations in WM.

General method
Participants

Sixteen students (11 women; mean age = 23.8 years) at the
University of Zurich participated in a 1-h session in Experi-
ment 1, and 22 students (15 women; mean age = 23.7 years)
participated in two 1-h sessions in Experiment 2. There was
no overlap between the two samples. Participation was com-
pensated with course credit or 15 Swiss francs per session.
One participant completed only one experimental session in
Experiment 2, due to experimenter error, and was excluded
from subsequent analyses. Participants read and signed an
informed consent form prior to the study and were debriefed
regarding the purpose of the experiment at the end.

Materials and procedure

The experimental task was programmed in MATLAB using
the Psychophysics Toolbox extension (Brainard, 1997; Pelli,
1997). Participants were tested in individual booths where
they sat approximately 50 cm from the computer screen
(viewing distance was unconstrained).

The task required the memorization of a set of colored
disks for a subsequent memory recall test. In Experiment
1, six disks were presented in the memory display, where-
as in Experiment 2, memory set size was varied from one
to eight. The disks (radius of 1.1 cm) appeared evenly
spaced around an imaginary circle (radius of 5.5 cm)
centered in the middle of the screen. In Experiment 1,
the memoranda were presented evenly at fixed positions
(starting with an angle of 60°). In Experiment 2, the exact
positions of the disks varied on a trial-by-trial basis: The
position (angle) of the first object was selected at random,
and the positions of the other objects were distributed at
even angular distances from this point. The edge-to-edge
distance between two objects varied between 9 cm (set
size 2) and 2.1 cm (set size 8).

Each disk color in a memory array was sampled from a
color wheel consisting of 360 values evenly distributed on the
hue dimension in the cylindrical HSL (hue, saturation, and
lightness) color model, with the values for saturation fixed to 1
and lightness to .5. Color values were selected randomly, with
the constraint that all objects’ colors on a given trial were at a
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minimum distance of 20° on the color wheel from each
other. At the end of the trial, participants were cued to
recall the color of a single object, selected at random. The
target of recall was indicated by presenting a white
outlined circle at the target’s location in the memory array.
Participants had to report the color of the target object by
clicking on a point on the color wheel. The color wheel
was rotated randomly on each trial. The instructions em-
phasized accuracy but not speed.

Across two experimental conditions, we varied the time
between presentation of the prompt to recall an object and the
presentation of the color wheel (opportunity to recall): 0 ms
(no-delay condition) or 1,000 ms (delay condition). Figure 1
illustrates the flow of events on these trials. Each trial started
with the presentation of a white fixation cross against a gray
background. In the no-delay condition, we presented the color
wheel together with the fixation cross, and the color wheel
remained on-screen throughtout the trial. After 500 ms, the
memory array was displayed for 1,000 ms. The offset of the
memory array was followed by a 1,000-ms retention interval,
after which the cue to recall (circle outline) was displayed in
both conditions. In the no-delay condition, the color wheel
was already available when the cue to recall was shown'; in
the delay condition, the color wheel was presented only after
an additional 1,000-ms delay had elapsed. In both conditions,
the recall cue remained on the screen until participants clicked
on a color on the color wheel. No performance feedback was
provided. After response, a blank intertrial interval of
1,000 ms followed. To prevent articulatory rehearsal, partici-
pants were asked to repeat the sequence der—die—das through-
out the trial (articulatory suppression).

In Experiment 1, participants completed a total of 500 trials
in one 1-h session. Trials were equally split into the two delay
conditions (i.e., 250 trials per conditon). In Experiment 2,
participants completed a total of 992 trials across two 1-h
sessions. In this experiment, the delay (no-delay or delay)
and set size (one to eight objects) variables were orthogonally
manipulated, producing a total of 16 conditions (62 trials per
condition). Trials in all conditions were randomly intermixed.
Trials in each session were divided among 10 blocks, and
between blocks, short breaks were allowed. Participants were
reminded to continue with the articulatory suppression task at
the beginning of each block. At the beginning of each session,
participants completed an additional set of 10 (Experiment 1)
or 16 (Experiment 2) practice trials that were discarded from
subsequent analyses.

! We did not present the color wheel simultaneously with the recall cue to
avoid possible visual competition between the two events. We also have
conducted experiments in our lab in which the color wheel was shown at
the moment of test in the no-delay condition or was displayed during
encoding and retention in both the no-delay and delay conditions, and in
both cases, delay benefits were obtained.
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NO-DELAY CONDITION

500 ms 1000 ms

DELAY CONDITION

500 ms 1000 ms

Fig.1 Sequence of events in the no-delay and delay conditions, showing
memory arrays with set sizes 6 and 8, respectively. At the beginning of a
trial, a fixation cross was shown for 500 ms, after which a memory array
consisting of six colored disks (Experiment 1) or one to eight colored
disks (Experiment 2) was presented for 1,000 ms. Participants were
instructed to remember the colors of the disks and their locations. The
offset of the memory array was followed by a 1,000-ms retention interval,
at the end of which one object from the memory array was cued (white

Data analysis

We performed two set of analyses. First, we computed re-
sponse deviations on each trial by calculating the angular
distance in color space between the color reported by the
participant and the target object’s true color. Deviations could
fall between 0° (perfect recall) and +180° (color opposite to
the correct color). We then used the absolute deviation to
compute the mean deviation in each experimental condition.
This measure provides a raw indication of performance dif-
ferences across experimental conditions.

In a second step, we fitted the three-parameter mixture
model to the distributions of response deviations in each
condition. The mixture model served as a measurement model
to decompose the distributions into several sources of memory
errors.

Mixture modeling

If the target object is in memory, the distribution of responses
should be centered on the target’s color (0°), with the frequen-
cy of responses falling off with increasing distance between
the target's color and a response on the color dimension. The
standard deviation (SD) of this distribution reflects the preci-
sion of the target object in memory: the larger the SD, the
lower the precision. We will refer to SD and precision as
interchangeable terms hereafter. If the target is not retrieved,
there are two possible alternatives: (1) Participants can guess
at random, thereby selecting any color from the color wheel
with equal probability; or (2) participants can erroneously
report the color of another object from the memory array,

1000 ms

1000 ms

+
(0]

1000 ms Until response

circle outline) as the target of recall. Participants had to indicate the color
of the target object by clicking on a color wheel. In the no-delay condi-
tion, the color wheel was available throughout the trial, and participants
could respond immediately to the recall cue; in the delay condition, the
color wheel was shown 1,000 ms after the the presentation of the recall
cue, delaying the opportunity to select the retrieved color. During this
delay, participants could focus their attention exclusively on retrieving the
target color

thereby making a transposition error, in which case the distri-
bution of errors will be centered on the color of a nontarget
object. The three-parameter model” estimates these three mne-
monic parameters (namely, SD, guessing, and transpositions)
from the distributions of response deviations. The distribution
of responses centered on the color of the target object (and on
the color of nontargets) is described by a normal distribution
for circular data, the so-called von Mises distribution, and
guessing is modeled as a uniform distribution (see Bays
et al., 2009). The probability of retrieving the target color
was defined as 1 — (Guessing + Transpositions). The mean
of the von Mises distribution was set to 0 under the assump-
tion that there was no response bias, which is the usual finding
in the literature (e.g., Anderson & Awh, 2012; Anderson et al.,
2011; Bays et al., 2009; Fougnie et al., 2010; Zhang & Luck,
2008, 2011). Maximum-likelihood estimation procedures
were used to fit the mixture model (using the simplex algo-
rithm in MATLAB). The estimation procedure was repeated a
minimum of five times with different initial parameters.

2 We also fitted a two-parameter model to the data of both experiments,
which estimates only precision and guessing rate. However, the fit of the
three-parameter mixture model was better, as indexed by the Bayesian
information criterion (BIC). The BIC = =2 * In(L,ax) + & In(n), in which
Linax refers to the likelihood of the best-fitting model given the data; &
refers to the number of free parameters; and » refers to the number of
trials. The difference in the BIC between the two models was of 199
points (Experiment 1) and of 251 points (Experiment 2). We used this
difference to compute the Bayes factor for the comparison between two
models (Raftery, 1995). The Bayes factor equals exp(ABIC/2), which
was equal to 1.7 x 10** (Experiment 1) and 3.82 x 10°* (Experiment 2),
showing that our data are overwhelmingly more likely under the three-
parameter model than under the two-parameter model.
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Results
Experiment 1

On average, the reported target color deviated less from the
true target color in the delay condition (M = 38.3, SD = 11.1)
than in the no-delay condition (M =48.7, SD = 11.0), #15) =
542, p < .001. To examine which mnemonic parameter is
improved by focusing attention in the target during the reten-
tion interval, we fitted a series of mixture models to the data.
First, we fitted the traditional three-parameter mixture model
in which SD, guessing rate, and transposition rate were esti-
mated separately and independently for each delay condition.
Next, we fitted a series of reduced models in which some
parameters were fixed to be equal across delay conditions.
Table 1 presents the estimated parameters from the fitted
models and model fit.

As is shown in Table 1, when the traditional mixture model
was applied to the data, the average estimated SD and trans-
position rate were similar and nonsignificantly different across
delay conditions [precision, #15) = —0.645, p = .529; trans-
position, #(15) = 0.909, p = .378]. The difference between the
conditions was limited to the guessing rate, which was signif-
icantly lower in the delay condition, #(15) = 2.735, p = .015.
To examine whether this difference was related to possible
trade-offs between the estimation of the parameters in the
mixture model (Suchow, Brady, Fougnie, & Alvarez, 2013),
we fitted several mixture models in which we constrained
some of the parameters to be equal across delay conditions,
whereas we let the other parameters vary freely while fitting
the mixture model to both conditions simultaneously. These

models are shown in Table 1 as versions 1-6. Parameters that
were fixed to equal values across conditions are printed in
bold. We ranked the model versions in relation to their fit, as
compared with the traditional model. Fixing the precision and
transposition rate to be equal across conditions substantially
improved the fit, leading to the best fitting model (i.e., version
6). In contrast, forcing the model to assign the differences
between delay conditions to the precision parameter substan-
tially impaired the fit, leading to the worst model (i.e., version
4). Moreover, in all model versions in which the guessing rate
was fixed to be equal between delay conditions, model fit was
worsened, as compared with models without this constraint.
These results strengthen our conclusion that focused attention
increases the probability of retrieving the target object, but not
the precision with which it is reported.

Experiment 2

In Experiment 2, in addition to varying the delay before
reporting the target color, we also varied set size from one to
eight. To test the effect of both delay and set size on recall
performance, we used repeated measures analyses of variance
(ANOVAs). For these analyses, whenever the sphericity as-
sumption was violated, corrected Greenhouse—Geisser de-
grees of freedom (recognizable by noninteger values) were
reported. The results of the ANOVAs are shown in Table 2.
Furthermore, we followed up on the significant main effects of
set size and set size % delay interactions by running repeated
contrast tests, which compare each variable level with the
following one. The results of these analyses are presented in
Table 3.

Table 1 Parameters and fit obtained from fitting mixture models to the data of Experiment 1

Parameter Mixture models
Condition Traditional Version 1 Version 2 Version 3 Version 4 Version 5 Version 6
SD
No-delay 18.07 18.79 19.25 18.19 20.66 18.87 18.88
Delay 18.83 18.79 18.58 19.02 17.66 18.87 18.88
Guessing
No-delay 0.30 0.29 0.22 031 0.22 0.22 0.30
Delay 0.17 0.17 0.22 0.16 0.22 0.22 0.16
Transpositions
No-delay 0.18 0.18 0.23 0.17 0.17 0.23 0.17
Delay 0.16 0.16 0.12 0.17 0.17 0.12 0.17
BIC 85,435 85,433 85,459 85,424 85,632 85,444 85,419
Ranking 3 5 2 6 4 1

Note. SD: standard deviation. This is the precision parameter in the mixture model. Parameters printed in bold were constrained to be equal across the no-
delay and delay conditions. BIC: Bayesian information criterion. BIC = =2 In (L,.x) + & In (n); in which L., refers to the likelihood of the best-fitting
model given the data; k refers to the number of free parameters; and » refers to the number of trials. The BIC is a measure of model fit. Lower values
reflect better fit and indicate that the data are more probable under this model. Model versions were ranked in relation to their fit, as compared with the fit
of the traditional three-paramenter mixture model in which all parameters were free to vary between the experimental conditions
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Table 2 Results of the repeated measures ANOVA with the variables set size and delay condition for Experiment 2
Measure Variables dfl df2 F P npz
Mean deviation Set size 2.5 50.3 250.994 <.001 .926
Delay 1 20 64.783 <.001 764
Set size x delay 43 87.2 11.770 <.001 370
Standard deviation Set size 3.5 64.1 22.862 <.001 533
Delay 1 20 1.039 320 .049
Set size x delay 2.9 593 1.848 .149 .085
Guessing Set size 35 69.9 14.073 <.001 413
Delay 1 20 13.623 .001 405
Set size x delay 29 577 1.169 329 .055
Transpositions Set size 33 66.5 28.196 <.001 585
Delay 1 20 7.251 014 266
Set size x delay 2.5 49.8 462 .675 .023
K Set size 23 46.5 67.276 <.001 71
Delay 1 20 39.459 <.001 .664
Set size x delay 293 58.5 7.006 <.001 259
K (after plateau) Set size 2 40 140 .869 .007
Delay 1 20 23.115 <.001 536
Set size x delay 2 40 1.921 .160 .088

Note. K = capacity, computed as the probability of recalling the target multiplied by set size

Figure 2a shows the mean absolute angular deviation be-
tween the response selected by the participant and the target’s
true color in each set size and delay condition. Deviations
increased as set size increased, as indicated by the significant
effect of set size in the ANOVA (Table 2), and this effect was
significant between each set size and the next (Table 3).
Furthermore, the main effect of delay condition was signifi-
cant, showing that focusing attention on the target object
reduced the deviation in reporting its color. The interaction
of set size and delay was also significant. Repeated contrast
tests indicated that the interaction was significant up to set size
4. This analysis shows that the magnitude of the improvement
produced by the delay increased from set sizes 1 to 4 and
remained stable thereafter.

In the following, we describe the results of the three-
parameter model. Figure 2b shows the average recall error
predicted by this model using the best-fitting parameters. On
average, the predictions of the model closely resemble the data
(shown in gray for comparison). Panels c—e present the esti-
mated model parameters (SD, guessing, and transpositions),
and panel f shows a capacity estimate, known as K.

Figure 2¢ shows the SD in each set size and delay condi-
tion. The ANOVA results in Table 2 confirm the visual im-
pression that set size, but not delay, significantly affected SD.
Repeated contrast tests (Table 3) showed that SD significantly
increased until set size 5; the increase in SD from set sizes 6 to
8 was not significant. In sum, the precision of representations
in memory declined with the number of objects to be retained

up to set size 5, but it was not modulated by our delay
manipulation, replicating the results of Experiment 1.

Figure 2d shows the probability of guessing estimated from
the three-parameter mixture model. As is confirmed by the
ANOVA results in Table 2, guessing rate increased over set
size and was significantly reduced in the delay condition, as
compared with the no-delay condition. Set size and delay did
not interact. We also conducted repeated contrast tests to
follow up on the main effect of set size (see Table 3), which
revealed a significant increase on guessing only until set size
4.

Figure 2e shows the probability of making a transposition
error. For this measure, we excluded set size 1 from the
analysis (because a nontarget recall could not occur at this
set size). As is shown in Table 2, transposition errors increased
over set size and were reduced in the delay condition. Repeat-
ed contrast tests (Table 3) indicated that transpositions in-
creased up to set size 6, after which the values were not
statistically different. The set size x delay interaction was
not significant.

The probability of reporting the target object can be derived
from the estimated parameters by computing target recall = 1
— (guessing + transpositions) We used this measure to calcu-
late the number of objects participants can access from mem-
ory. This measure, computed as target recall x set size, is often
referred to as an estimate of capacity, called K, in the context
of discrete-capacity models (Anderson et al., 2011; Cowan,
2001; Zhang & Luck, 2008). The K estimates produced by
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Table 3 Repeated contrast tests following up on the main effect of set
size and the set size x delay interaction found in the ANOVA for
Experiment 2

Measure Levels F(1,200 p npz
Mean deviation Set size 1 vs. 2 25.888 <.001 .564
Set size 2 vs. 3 30.580 <.001 .605
Set size 3 vs. 4 114357 <.001 .851
Set size 4 vs. 5 29.644 <.001 .597
Set size 5 vs. 6 61.833 <.001 .756
Set size 6 vs. 7 32750 <.001 .621
Set size 7 vs. 8 31.928 <.001 .615
Set size 1 vs. 2 x delay 39.693 <.001 .665
Set size 2 vs. 3 x delay 11.190 .003 359
Set size 3 vs. 4 x delay 4514 .046 .184
Set size 4 vs. 5 x delay 0.005 946 .000
Set size 5 vs. 6 x delay 0.976 360 .042
Set size 6 vs. 7 x delay 3913 062 .164
Set size 7 vs. 8 x delay 0.014 906 .001
Standard deviation Set size 1 vs. 2 18.126 <.001 475
Set size 2 vs. 3 5.805 026 .22
Set size 3 vs. 4 5904  .025 228
Set size 4 vs. 5 8.015 .010 .286
Set size 5 vs. 6 0.945 343 .045
Set size 6 vs. 7 0.106 748 .005
Set size 7 vs. 8 0.429 520 .021
Guessing Set size 1 vs. 2 2.349 141 .105
Set size 2 vs. 3 19.600 <.001 .495
Set size 3 vs. 4 5273 .033 209
Set size 4 vs. 5 0.401 534 .020
Set size 5 vs. 6 2.692 116 .119
Set size 6 vs. 7 0376  .546 .018
Set size 7 vs. 8 0.431 519 .021
Transpositions Set size 2 vs. 3 15413 .001 435
Set size 3 vs. 4 24513 <.001 .551
Set size 4 vs. 5 1429 246 .067
Set size 5 vs. 6 5.491 .030 215
Set size 6 vs. 7 1.526  .231 .071
Set size 7 vs. 8 1.130  .301 .053
K Set size 1 vs. 2 2,973.629 <.001 .993
Set size 2 vs. 3 365.537 <.001 .948
Set size 3 vs. 4 41.705 <.001 .676
Set size 4 vs. 5 44.584 <.001 .690
Set size 5 vs. 6 0.308 585 .015
Set size 6 vs. 7 0.143 709 .007
Set size 7 vs. 8 0227  .639 .011

Note. K = capacity, computed as the probability of recalling the target
multiplied by set size

this calculation are presented in Fig. 2f, and the ANOVA
results are presented in Table 2. When considering all condi-
tions, the ANOVA yielded significant effects of set size and
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delay condition and a significant interaction between these
variables. This result is not surprising given that K increased
from set sizes 1-5 (see repeated contrast tests in Table 3),
consistent with the fact that for set sizes below capacity, the
formula underestimates the true capacity of the person. For
larger set sizes, the estimated K plateaued at a constant value,
as would be expected from a discrete-capacity theory. We
reran the ANOVA entering only set sizes 6—8, values for
which the K estimate was approximately flat. This analysis
yielded only a main effect of delay condition (see Table 2),
showing that increasing the time to use the recall cue increased
K by roughly 1 unit (no-delay, K = 3.06; delay, K = 3.94).

Discussion of experiments 1 and 2

In Experiments 1 and 2, we assessed the benefits of focusing
attention on one of the objects currently held in WM. Our
main empirical goal was to examine whether attention im-
proves performance in tasks assessing both the quantity and
quality of WM representations. We manipulated focused at-
tention in a cued recall task by delaying the opportunity to
recall the cued object’s feature: During the delay, participants
could focus attention exclusively on the target color but not
compare or select it from the color wheel. The recall error in
this delay condition was smaller than in a no-delay condition.
In addition to the delay, we also manipulated set size in
Experiment 2. Increasing set size impaired performance: The
deviation in reporting the color of the target was a function of
the number of objects in the memory set. Focusing attention
during the delay, however, reduced the error in reporting the
target as soon as more than one representation was being held
in WM (i.e., from set size 2 on).

These results show that focused attention does improve
performance in cued-recall tasks. But which memory param-
eter is improved by attention? To answer this question, we
submitted our data to mixture modeling to estimate target
precision, guessing rate, and transposition errors. This model-
ing showed that the probability of recalling the target object
increased in the delay condition, as compared with the no-
delay condition, at the expense of random guessing (Experi-
ments 1 and 2) and, to a lesser extent, of transposition errors
(Experiment 2). The precision in reporting the target's color,
however, was unaffected by our delay manipulation. These
findings converge with the results of Murray et al. (2013) and
with other experiments conducted in our own lab (Rerko,
Souza, & Oberauer, 2014b) but are in contrast with the results
of Williams et al. (2013). As was mentioned in the introduc-
tion, there are several methodological differences between the
present study and the one by Williams et al. that could possi-
bly explain this discrepant result. At present, it is unclear
which of these methodological differences could explain the
discrepant results between our study (and the one by Murray
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Fig. 2 a Deviation in reporting the color of the target object. b Predicted
deviation by the three-parameter mixture model. The deviation from the
data is presented in gray for comparison. Panels ¢ to e show the estimated
parameters from the mixture model, ¢ Standard deviation (SD): the larger
the SD, the less precise the representation of the reported object. d

et al., 2013) and the study of Williams et al. However, so far,
there are more studies pointing to selective effects on guessing
rate than studies showing an effect of focused attention on
precision.

One concern that might arise with our task relates to
differences in the presentation of the color wheel across con-
ditions: in the no-delay condition, the color wheel was
displayed at the very beginning of the trial (together with the
fixation cross), whereas in the delay condition, the color wheel
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Probability of guessing a random color. e Probability of a transposition
error—that is, reporting one of the nontarget colors from the memory
array. f Capacity, K. Error bars represent within-subjects 95 % confidence
intervals (Cousineau, 2005)

was shown at the very end. This means that the color wheel
was on-screen when the memory objects were displayed on
no-delay trials, but not on delay trials. Could the presence of
the color wheel during encoding and maintenance explain the
difference in performance between the no-delay 