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Abstract Triggered by the discrepancy between electron–proton scattering and muonic hydrogen results we
scrutinize the determination of the charge rms-radius from (e, e) data. We find that the standard procedure
of fitting parameterizations for the Sachs form factors G(q) to the data is more uncertain than traditionally
assumed. This is related to the (implicit) extrapolation from the q-range sensitive to finite size to momentum
transfer q = 0 where the rms-radius is extracted. A reliable determination of the rms-radius requires a con-
straint on the large-r tail of the density, which can be imposed starting from our physics understanding of
proton structure.

1 Introduction

The root-mean-square (rms) radii R (charge and magnetic) of the proton are important quantities to characterize
the overall size of the proton. They have traditionally been determined via elastic electron–proton scattering at
low momentum transfer q . These radii are needed to extract information from the highly precise measurement
of the frequencies of transitions in atomic hydrogen. Recently, a measurement of the radius via the Lamb-shift
in muonic hydrogen has also become available.

The comparison of the radii from the different probes reveals a major problem: while the charge-radius
from electron scattering [7] of 0.886±0.008 fm and the one from electronic hydrogen [4] of Parthey et al.
are compatible within experimental errors, the radius from muonic hydrogen measured by Pohl et al. [5] of
0.8418±0.0007 fm differs by many standard deviations. Many ideas to explain this discrepancy have been
discussed in the literature, but no convincing solution has been found.

In this contribution, we take a closer look at the way how the radii are extracted from electron–proton
scattering. We identify a shortcoming of the methods used in the past, and provide a better approach.

2 Radii from Electron Scattering

The rms-radii correspond to the slope of the Sachs form factors Ge(q2) and Gm(q2) at q = 0; with this defi-
nition the radii are the same as the ones employed in atomic hydrogen. This definition immediately highlights
two problems:

1. The q2=0 slope cannot be measured directly, as experiments cannot be performed at q = 0. In practice,
the data between momentum transfers of 0.6–1.2 fm−1 are the ones that are sensitive to R [6], and the
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Fig. 1 Radii and χ2 of the inverse polynomial fits of Bernauer et al. as a function of the order of the polynomial

slope of G(q) at q = 0 is obtained from an (implicit) extrapolation, i.e. the value of the model-G(q) fitted
to the data.

2. Even if one could measure down to q = 0, experimental uncertainties would forbid extraction of an
accurate radius; at low q, G(q) is given by 1 − q2 R2/6 + q4〈r4〉/120 + · · · , so at very low q and in the
presence of finite experimental errors one only measures the “1”.

This extrapolation to q = 0 is particularly difficult for the proton, which has a form factor roughly described
by the dipole parameterization G(q) = 1/(1 + q2c2)2. The corresponding density (which, for the qualitative
discussion that follows, is taken as the Fourier transform of G(q)) then is an exponential proportional to e−r/c.
Exponential densities have very long tails toward large radii r , and these tails affect the form factor at extremely
low q , below the range where the data are sensitive to R. The density at r > 3 fm, for instance, still contributes
2 % to R. As the density at these large values of r is poorly known, the extrapolation via the model-G(q)
introduces a significant model dependence.

A reliable extrapolation to q = 0 is also hindered by the fact that some of the data, as for instance the
recent very extensive set of ref. [2], have a floating normalization of the cross sections; this leads to much more
freedom in the extrapolation of G(q < qmin).

3 Ambiguities of Past Determinations of R

We here illustrate the difficulties in determining R by discussing three recent analyses of e–p data.
Bernauer et al. [1,2] have analyzed their new set of e–p scattering data (qmax ∼ 5 fm−1) using various

parameterizations, and the quoted results for the radii are quite similar. Among these parametrizations was the
inverse polynomial form, G(q) = 1/(1 + a1q2 + a2q4 + · · · ). As function of the order N of the polynomial
used, Bernauer finds a curious behavior, see Fig. 1. While the χ2 and the charge radius display the expected
N -dependence, the magnetic radius jumps between N = 7 and N = 10 from 0.77 to 0.96 fm. Bernauer et al.
chose N = 7 as the χ2 was stabilized, but N = 10 actually produces the lowest χ2.

An obvious question then is: how can the q20-term that appears for N = 10 affect the rms-radius? Closer
scrutiny reveals that the N = 10 form factor has a pole at q > qmax. This corresponds in r -space to a density
that extends to extremely large r (i.e. r = ∞), see Fig. 2, left. And this large-r density affects the curvature and
slope of G(q) at momentum transfers below qmin (see Fig. 2, right). While the N = 7 fit looks more sensible,
it also has a pole, and cannot be relied upon either.

Lorenz et al. [3] also employ the Bernauer data, but use a continued fraction parameterization of G(q). The
corresponding fits show systematic deviations from the data and, more importantly, have unphysical behavior
(e.g. a peak) at q > qmax. The corresponding density again falls extremely slowly at large r , with undesirable
effects upon R.

A 3-parameter Pade fit we have made ourselves to the Bernauer data (limited to the region q ≤ qmax =
2 fm−1 which contains all data sensitive to R) demonstrates in the most extreme fashion the problem: although
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Fig. 2 Density corresponding to the 10P inverse polynomial fit (left) and form factors G(q) at low q (right). Note that the data
of [2] (not shown) have a floating normalization, so both fits give excellent χ2

the χ2 = 1.06 per degree of freedom is excellent (as low as a spline fit) and G(q) has no poles, the rms-radius
R is found to be 1.49 fm! Again the problem results from an uncontrolled behavior of G(q) at q > qmax which
in the density happens to imply a tail to extremely large r and a resulting falsification of the rms-radius.

4 Origin of Problem

In order to better understand the problems discussed above, it is useful to confront the approaches used for a
determination of R for nuclei A ≤ 2 and A > 2. For A ≤ 2 the form factor is parameterized, the parameters
are fitted to the data, and the q = 0 slope is used to determine R. For A > 2 the density is parameterized, the
corresponding cross sections are fitted to the data, and R is obtained from the integral over the density or the
q = 0 slope of the corresponding form factor.

These two approaches are not equivalent. When using parameterizations such as Woods-Saxon, Fourier-
Bessel or Sum Of Gaussians (SOG) the density is automatically confined to a given range in r . This reflects the
basic property that the density at large r must fall as a Whittaker function depending on the separation energy
of the least-bound charged constituent and is, for practical purposes, zero outside some radius. This physical
condition is absent when parameterizing G(q); depending on the parameterization chosen, the density corre-
sponding to G(q) can have an unphysical tail to large r , which in turn affects the rms-radius and the behavior
of G(q) at extremely low q . This generic problem must be avoided.

This problem unfortunately concerns many of the fits made to e–p scattering data. Least affected are
parameterizations that have been used to fit the data up to the maximal momentum transfer qmax where data are
available (q ∼ 12 fm−1 for the charge form factor). In this case the data fix the shape of the density, and with it
the large-r behavior, pretty well; in addition, G(q > qmax) is constrained by the small values of G(q ∼ qmax)
if the parameterization insures that G(q) falls faster than q−4 as required to get a regular ρ(0).

5 Solution

One could imagine to always check, during a fit of G(q) to the e–p data, that the corresponding density falls
in a sensible way at large r . This is difficult as the above examples show, and does not work at all for parame-
terizations that do not have a Fourier transform (such as the popular expansion of G(q) in terms of powers of
q2).

One also could imagine to parameterize ρ(r) with expressions that have an a-priori sensible large-r fall
off, and fit the parameters after Fourier transform to the data. This complicates life, but not too much. The
tricky point is the definition of “sensible”.

The only effective solution we have found involves:

– Parameterization of ρ(r) in a basis with analytic Fourier transform such as SOG, Hermite or Laguerre
polynomials, such that quantities in q- and r -space can be fitted simultaneously.
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– Adding in the fit of the (e, e) data information on the large-r behavior of ρ(r) obtained from a physical
model of the proton. While at small radii the proton has a complicated quark/gluon structure, at large radii
where the density has fallen to, say, ρ(r) < 0.01ρ(0), the density is given by the Fock component with the
smallest separation energy; in the case of the proton this is the π+ + n configuration. Hereby one explicitly
adds physics knowledge to constrain a low-q property that is not adequately fixed by the data. While the
shape of the tail can be reliably calculated, the overall normalization of the tail density is hard to predict
and therefore treated as a free parameter.

– Fitting the data up to the largest q where experimental information is available. This approach is feasible
with the above parameterizations and helps to constrain the large-r tail of the density by also using the full
information content of the electron scattering data.

When studying quantitatively the properties of the proton charge density in the tail [7] one needs to account
for relativistic effects, two-photon exchange etc. Excellent agreement has been found between the shape of
the density as computed from the n + π+ and Δ + π+ components and the result of an analysis of the world
data up to the largest q ′s available using a [3,5] Pade parameterization.

6 Conclusions

We have found that many of the parameterizations of G(q) fitted to e–p scattering data have problems. These
can only be avoided if the large-r behavior of the corresponding density is studied and is verified to correspond
to the behavior we expect from our physics understanding of the proton. This, unfortunately, is almost never
done.

Fits respecting the solution presented in the previous section have been performed in [7]. These fits give
stable radii free of the problems discussed above. When analyzing the world data on e–p scattering that include
or exclude the recent Mainz data, with both fixed or floating normalizations of the world cross sections, one
finds a charge-rms radius of the proton of 0.886±0.008 fm.

This, unfortunately, does not help in solving the discrepancy with the radius from muonic hydrogen dis-
cussed in the introduction.
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