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Abstract—Using Biot’s poroelasticity theory, we derive

expressions for the reflection and transmission coefficients for a

plane shear wave incident on an interface separating two different

poroelastic solids. The coefficients are formulated as a function of

the wave incidence angle, frequency and rock properties. Specific

cases calculated include the boundary between water-saturated

sand and water-saturated sandstone and the gas–water interface in

sand. The results show a very different interface response to that of

an incident P wave. Plane SV wave incidence does not significantly

excite the Biot slow P wave if the frequency of the wave is below

the transition frequency. Above this frequency, an incident plane

SV wave can generate a mode-converted slow Biot P wave which

is actually a normal propagating wave and not highly attenuating as

in the usual (diffusive) case. For an incident SV wave onto a gas–

water interface, even at very high frequency, there is no significant

Biot second P wave produced. For small incident angles, the gas–

water interface is essentially transparent. With increasing angles,

there can arise an unusual ‘‘definitive angle’’ in the reflection/

transmission coefficient curves which is related to the change of

fluid viscosity on both sides of the interface and provides a possible

new means for underground fluid assessment.

Key words: Poroelastic media, reflection and transmission

coefficients.

1. Introduction

The reflection and transmission coefficients for

plane elastic waves incident on a plane boundary

separating purely elastic media are well understood

(AKI and RICHARDS 1980). However, the case of two

dissimilar porous media separated by a plane inter-

face has been less well researched. The dynamic

theory of wave propagation in a fluid-saturated

porous solid was originally developed by BIOT

(1956a, b), extending the earlier static treatment of

GASSMANN (1951). In Biot theory, the porous rock

comprises two interacting phases: the porous rock

matrix and the fluid filling the interconnecting pores.

The viscous fluid is allowed to flow relative to the

rock skeleton, causing frictional losses or wave

attenuation. Both the attenuation and the wave

velocity are frequency dependent. According to the

theory, two compressional waves and one rotational

(shear) wave exist in such a medium. One of the

compressional waves is the classic fast wave which is

usually observed, whereas the other is a slow dis-

turbance and is difficult to observe. Whilst all waves

are dispersive and attenuated, the fast Biot wave

exhibits very little dispersion and attenuation over

several decades of frequency. By contrast, the second

(slow) compressional wave propagates in the manner

of a ‘‘diffusion’’ wave. It is highly dispersive and

attenuated at low frequencies, with its phase velocity

approaching zero at the zero frequency limit.
As a relatively simple and important case of

reflection and transmission behaviour in porous

media, GEERSTMA and SMIT (1961) studied wave par-

titioning at the interface between two fluid-filled

porous rocks under the special condition of normal

incidence. They showed that the presence of the Biot

slow P wave which is generated at the interface had an

effect upon the reflection and absorption. GUREVICH

et al. (2004) derived closed-form expressions for

normal-incidence reflection and transmission coeffi-

cients for an interface between fluid-saturated porous

materials and showed a square root dependence on

frequency. At very low frequency, it was found that

the poroelastic reflection coefficient reverts to the

elastic value. DUTTA and ODÉ (1983) dealt with an

obliquely incident classical P wave at a gas–water
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interface in the low frequency range. The treatment

was extended into the high frequency range by SANTOS

et al. (1992), who stressed the importance of the fre-

quency correction. The case of oblique reflection and

transmission at a fluid/porous medium interface under

the rigid grain approximation and with no reflected S

wave was investigated by DENNEMAN et al. (2002).

They considered four different types of porous med-

ium: liquid as well as air-filled clay/silt and sand.

They found that in all cases over the frequency range

5–20 kHz, the fast P wave and S wave velocities in the

transmitted (porous) medium were indistinguishable

from the frequency-independent ones calculated using

the Gassmann relations. Furthermore, they observed a

striking difference in the reflection/transmission

coefficients for the interface between water and an air-

filled porous medium when using an open-pore or

closed-pore boundary condition.

WU et al. (1990) and YANG (1999) studied the

effect of the flow condition (interface permeability)

on the reflection and transmission at an interface

between two porous media. SHARMA and SAINI (1992)

also considered the effect on wave reflection and

transmission of pore alignment at the interface

between two saturated poroelastic media. Issues

related to the interface condition (hydraulic contact

between the two media) were studied extensively by

GUREVICH and SCHOENBERG (1999). For perfect

hydraulic contact (open pores) the pressure is con-

tinuous across the interface whereas the opposite

extreme of closed pores implies no motion of the

fluid relative to the solid. GUREVICH and SCHOENBERG

(1999) replaced the discontinuity surface by a thin

transition layer in which the properties of the medium

change rapidly yet continuously, and then took the

limit as the thickness of the transition layer approa-

ches zero. They found that the ‘‘open-pore’’ condition

is the only one fully consistent with the validity of

Biot’s equations throughout the poroelastic contin-

uum (including surfaces across which the medium

properties are discontinuous), but their approach was

also capable of handling partially blocked or com-

pletely impermeable interfaces.

Some researchers have investigated the interface

behaviour for incident shear waves. The paper by WU

et al. (1990) considered an incident shear wave in a

fluid-saturated porous solid impinging on a fluid

medium, whereas SHARMA et al. (1990) investigated P

and SV waves at an interface between a linear vis-

coelastic solid and a liquid-saturated porous solid.

However, to the best of our knowledge, no one apart

from SHARMA (2008) has specifically dealt with the

general problem of an incident shear wave (at arbi-

trary incidence angle) onto an interface between two

different porous solids. SHARMA (2008) also consid-

ered the partial connection of surface pores at the

porous–porous interface. Such imperfection in wel-

ded bonding is represented by tangential slipping and

results in dissipation of part of the strain energy. The

SHARMA (2008) study, whilst novel and insightful,

considers only relatively low contrast interfaces for

liquid saturated media (sandstone/limestone) and

does not reveal some rather interesting peculiarities

in the reflection/transmission response for other types

of porous interface reported in this contribution.

The situation we numerically investigate here of

unconsolidated/consolidated sediments, and changing

pore fluid in a rock is of practical interest as well as

being theoretically intriguing. The interface could be

the boundary between two different porous rocks

having the same fluid filling the pores, or it could be a

gas–water interface in a porous rock. The reasons for

studying the problem are varied: (1) interface

responses to an incident shear wave are different to

those for an incident P wave. Such knowledge could

provide additional information about AVO response

in seismic exploration, which until now is almost

exclusively based on P waves. (2) Significant exci-

tation of the Biot slow P wave and diffusive energy

losses are known to occur at the interface between

different porous rocks or at a gas–water interface for

an incident P wave. However, the difference in

response between the two types of interface for an

incident SV wave is not well understood. It is also

important to know whether the incident SV wave

produces significant slow P wave excitation by mode

conversion and consequent diffusive energy loss. So,

a systematic investigation is needed. (3) The site

responses to shear waves produced by earthquakes or

other vibratory sources play a very important role in

architectural design and building safety. Often, such

structures are built on porous soils and rocks.

In this paper we will provide a detailed analysis of

the reflection and transmission behaviour of S waves
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at the interface between two different porous media.

The procedure is similar to that adopted by DUTTA

and ODÉ (1983) for the acoustic case.

2. Wave Equations From Biot’s Theory

DUTTA and ODÉ (1979a, b; 1983) decoupled Biot’s

two wave equations in the low frequency range into

three vector Helmholtz equations for the fluid dis-

placement as follows:

ðr2 þ k2
s Þws ¼ 0 ð1aÞ

ðr2 þ k2
dÞwd ¼ 0 ð1bÞ

ðr2 þ k2
cÞwc ¼ 0; ð1cÞ

where wk(k = s, d, c) is the displacement of the fluid

with respect to the solid matrix (i.e., the relative fluid

displacement) or the filtration velocity which is

defined as w ¼ nðU � uÞ. Here U is the displacement

of the fluid, u the displacement of the solid and n the

porosity. The subscripts s, d, c denote the shear wave,

diffusive (slow Biot) P wave and the classic (fast) P

wave; kk(k = s, d, c) is the wavenumber that is

expressed as a function of frequency x and the rock

properties (see Appendix A for details).

For a Biot porous medium, the dispersion rela-

tions for the different wave velocities and

attenuations are determined from the complex fre-

quency-dependent wavenumbers kk(l = s, d, c, see

Eqs. 47–49). The complex velocities Vk(x) are given

by:

VkðxÞ ¼
x

kkðxÞ
ðk ¼ s; d; cÞ ð2Þ

Then the phase velocities ck(x) and specific

quality factors QtðxÞ (attenuation = 1/Q) for the

three waves are given by:

ckðxÞ ¼ Re
1

Vk

� �� ��1

;

QkðxÞ ¼
Re 1

�
V2

k

� �
Im 1

�
V2

k

� � ðk ¼ s; d; cÞ;
ð3Þ

The linear relationships between the displace-

ments of the solid frame uk and those of the fluid wk

relative to the solid frame are:

uk ¼ Ckwk ðk ¼ s; d; cÞ ð4Þ

Cs ¼ �
qðxÞ
qf

Cd ¼ dc and Cc ¼ dd ð5Þ

Here, qf is the density of the fluid. Expressions for

q(x), dc and dd are given in Appendix A.

It should be pointed out that the C coefficients can

have slightly different expressions, dependent on the

form of the harmonic time dependence assumed. In

this paper, we choose the time dependence as exp(-

ixt), whereas DUTTA and ODÉ (1983) applied a posi-

tive exponential time dependence exp(ixt). In

addition, the rock properties can take different nota-

tions, so we need to specify them.

The three vector Helmholtz wave equations,

Eq. 1a–c, and the linear relationships, Eq. 4 provide

the basis for the solution of homogeneous plane body

wave propagation in porous media. By homogeneous

we imply rectilinear polarization of the body waves

and dissipation in the direction of propagation. By

contrast, inhomogeneous waves are attenuated in a

direction different to the direction of propagation and

exhibit elliptical polarization. The homogeneous

solution needs to satisfy an additional set of equations

describing the continuity of certain physical quanti-

ties across the interface separating the two porous

media. Such equations are called boundary condi-

tions. For some simple geometric models, the wave

equations can be solved analytically subject to the

boundary conditions.

3. Boundary Conditions for Porous Media

Consider a surface X as the plane interface

between the two porous media (denoted by subscripts

1 and 2), and let the unit normal vector of X be n̂,

whose direction is assumed to be from medium 1 to

medium 2. On the interface X, the continuity of the

requisite field quantities can be written as (DERES-

IEWICZ and SKALAK 1963):

u1i ¼ u2i ðthe frame displacement of i th component;

normal and tangentialÞ ð6Þ

s1ijn̂j ¼ s2ijn̂j the total tractionð Þ ð7Þ
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n̂jw1j ¼ n̂jw2j

the filtration velocity in the normal directionð Þ
ð8Þ

n̂j

o

ot
w2j ¼ �j12ðp1f � p2f Þ

the interface Darcy’s lawð Þ ð9aÞ

where j12 is called the interface permeability and is a

function of the porosities and pore fluid mobilities of

the media. There is no theoretical or experimental

work to be found in the literature describing the

general interface permeability (QUIROGA-GOODE and

CARCIONE 1997). But, for a sealed (closed) interface,

j12 = 0, which leads to:

n̂jw2j ¼ 0 ð9bÞ

and, for an open interface, ks ¼ 1, which leads to:

p1f ¼ p2f on X ð9cÞ

For purposes of illustration, the interface will be

assumed to be an open-pore boundary condition in

this paper. According to the findings of GUREVICH and

SCHOENBERG (1999), as summarized in the Introduc-

tion, this is the only condition fully consistent with

the Biot equations and probably more realistic than

the closed-pore condition.

4. The Reflection and Transmission Coefficients

for Shear Waves at the Interface Between Two

Porous Media

Reflection and transmission coefficients can be

defined in several ways (DUTTA and ODÉ 1983). For

example, they can be defined as the ratio of the solid

frame displacement amplitude for each Biot wave rel-

ative to the incident wave amplitude (S wave in this

paper), or the ratio of energy fluxes. Both definitions

have their own advantages and disadvantages. The

definition involving displacement amplitude has a

simple and explicit physical significance and is easy to

measure. However, as DUTTA and ODÉ (1983) pointed

out, the shape of the amplitude curves can be very

different from that of the energy curves if there is a

phase difference between the conjugate field quantities

(stress and displacement, or pore pressure and filtration

velocity). In other words, the correctness of the coeffi-

cients using the displacement amplitude ratio is difficult

to check through energy conservation. Therefore, we

calculate both types of coefficients in this paper.

The incident shear wave could be either an SH

wave or an SV wave. Since SH waves are indepen-

dent of the P-SV waves for isotropic media and

incident SH waves do not mode-convert to P or SV

waves (assuming no dip perpendicular to the plane of

incidence), the reflection/transmission behaviour for

an incident SH wave is relatively simple to treat. For

reasons of completeness the solution for this case is

given in Appendix B.

The geometry for the problem under consideration

is shown in Fig. 1. An incident SV wave making an

arbitrary angle of incidence with the normal to the

interface impinges from medium 1 onto medium 2.

There are six outgoing waves: three reflections and

three transmitted or refracted waves: the SV wave,

the slow P wave and the classical (fast) P wave in

each medium.

All waves in porous media can be represented by

the relative fluid displacement. The vector potential

of the relative fluid displacement of the incident SV

wave /sv can be written as:

/sv ¼ /svẑ

/sv ¼ Asv expðil1syÞ expðim1sx� ix tÞ

)
ð10Þ

Reflected classic P wave (B1c) 

Reflected shear wave (B1s) 

Reflected slow P wave (B1d) 

Refracted classic P wave (B2c) 

Refracted slow P wave (B2d) 

Refracted shear wave (B2s) 

Incident shear wave (As) 

Medium 2 

Medium 1 

Y 

X 

Figure 1
Reflection and refraction of an incident plane shear wave at an

interface between two fluid-filled porous media. The symbols s, c

and d denote, respectively, shear, classic (fast) compressional and

diffusive (slow) compressional Biot waves
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where ẑ is a unit vector perpendicular to the plane of

incidence. Thus, the relative fluid displacement vec-

tor wsv is:

wsv ¼ x̂
o

oy
/sv � ŷ

o

ox
/sv ¼ ðil1sx̂� im1sŷÞ/sv ð11Þ

The displacement potentials of the reflected

waves in medium 1 include the scalar potentials /rc

for the fast P wave and /rd for the slow P wave, and

the vector potential /rs for the shear wave, given by:

/1c ¼ B1c expð�il1cyÞ expðim1cx� ix tÞ ð12Þ

/1d ¼ B1d expð�il1dyÞ expðim1dx� ix tÞ ð13Þ

/1s ¼ /1sẑ

/1s ¼ B1s expð�il1syÞ expðim1sx� ix tÞ

)
ð14Þ

where ljk and mjk, (k = c, d, sand j = 1, 2) denote,

respectively, the x- and y-components of the complex

wave vector kjk of medium j. We also have the

relationship linking the components of the wave

vector to the total wave vector:

l2
jk þ m2

jk ¼ k2
jk ð15Þ

The potentials of the transmitted waves in med-

ium 2 include /2c for the fast P wave, /2d for the

slow P wave, and /2c for the shear wave can be

written as:

/2c ¼ B2c expðil2cyÞ expðim2cx� ix tÞ ð16Þ

/2d ¼ B2d expðil2dyÞ expðim2dx� ix tÞ ð17Þ

/2s ¼ /2sẑ

/2s ¼ B2s expðil2syÞ expðim2sx� ix tÞ

)
ð18Þ

From the continuity condition of the solid frame

displacement, Eq. 6, and the linear relationship,

Eq. 4, which are valid for all x and t on the interface

y = 0, we have from Snell’s Law:

m1k ¼ m2k ðk ¼ c; d; sÞ or ð19Þ

k1s sin hi ¼ k1k sin h1k ¼ k2k sin h2k ðk ¼ c; d; sÞ
ð20Þ

For simplicity, we set m1 or 2k ¼ m:

The relative fluid displacement vectors of the

reflected waves are:

w1c ¼ x̂
o

ox
/1c þ ŷ

o

oy
/1c ¼ ðimx̂� il1cŷÞ/1c ð21Þ

w1d ¼ x̂
o

ox
/1d þ ŷ

o

oy
/1d ¼ ðimx̂� il1dŷÞ/1d ð22Þ

w1s ¼ x̂
o

oy
/1s � ŷ

o

ox
/1s ¼ ð�il1sx̂� imŷÞ/1s ð23Þ

The relative fluid displacement vectors of the

transmitted waves are:

w2c ¼ x̂
o

ox
/2c þ ŷ

o

oy
/2c ¼ ðimx̂þ il2cŷÞ/2c ð24Þ

w2d ¼ x̂
o

ox
/2d þ ŷ

o

oy
/2d ¼ ðimx̂þ il2dŷÞ/2d ð25Þ

w2s ¼ x̂
o

oy
/2s � ŷ

o

ox
/2s ¼ ðil2sx̂� imŷÞ/2s ð26Þ

In medium 1, the relative fluid displacement

vector w1, and the displacement vector of the solid

frame u1 can be written as:

w1 ¼ wsv þ w1s þ w1c þ w1d ð27Þ

u1 ¼ C1sðwsv þ w1sÞ þ C1cw1c þ C1dw1d ð28Þ

In medium 2, the displacement vector of the rel-

ative fluid motion w2, and that of the solid frame u2

can be written as:

w2 ¼ w2s þ w2c þ w2d ð29Þ

u2 ¼ C2sw2s þ C2cw2c þ C2dw2d ð30Þ

The coefficient Asv in Eq. 10 is assumed to be

known, and the six coefficients Bjk (j = 1, 2; k = s,

c, d) in Eqs. 12–14 and 16–18 are unknown and must

be determined from the six boundary conditions.

By the boundary conditions and Biot’s stress–

strain relations (Eqs. 59 and 60), on the interface

y = 0, we obtain the matrix equation:

AB ¼ C ð31Þ

The elements of A are aij(i, j = 1, 2,…6) which

are written out explicitly in Appendix C; the vectors

C and B are given by:

C ¼ 1 1 1 1 1 0½ �T ð32Þ

B ¼ B1s B1c B1d B2s B2c B2d½ �T
.

Asv ð33Þ
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The first three elements of B are the reflections

and the last three elements are transmissions of the

relative fluid displacement potentials.

The reflection Rk(k = s, c, d) and transmission

Tk(k = s, c, d) coefficients are referred to as

amplitude ratios and are defined as the complex

ratios of the solid frame displacement amplitude

of the appropriate Biot wave to that of the inci-

dent wave amplitude (here taken to be an SV

wave). By this definition (DUTTA and ODÉ 1983),

we get similar coefficient equations including the

absolute values of the complex ratios and their

arguments for SV-incidence. However, we judge

that the phase differences between the scattered

waves and the incident wave are more instructive

than the arguments. This makes our equations

slightly different from those of DUTTA and ODÉ

(1983), despite the different type of incident wave

as well.

To illustrate this, the solid frame displacements

can be expressed in the following way:

The solid frame displacement of the incident SV

wave is:

usv ¼ C1sðil1sx̂� imŷÞAsv expðil1syÞ expðimx� ixtÞ
ð34Þ

The solid frame displacements of the reflected

waves are:

u1s ¼ C1sð�il1sx̂� imŷÞB1s expð�il1syÞ expðimx� ixtÞ
u1c ¼ C1cðimx̂� il1cŷÞB1c expð�il1cyÞ expðimx� ixtÞ
u1d ¼ C1dðimx̂� il1dŷÞB1d expð�il1dyÞ expðimx� ixtÞ

9>=
>;
ð35Þ

The solid frame displacements of the transmitted

(refracted) waves are:

u2s ¼C2sðil2sx̂� imŷÞB2s expðil2syÞexpðimx� ixtÞ
u2c ¼C2cðimx̂� il2cŷÞB2c expðil2cyÞexpðimx� ixtÞ
u2d ¼C2dðimx̂� il2dŷÞB2d expðil2dyÞexpðimx� ixtÞ

9>=
>;

ð36Þ

It is easy to see that the negative signs in the three

reflected waves imply a 180� phase difference with

respect to the incident wave (which is travelling in

the opposite y direction), even at the coordinate ori-

gin. They should be compensated. Therefore, we

have:

Rs expði[hs þ 180��Þ ¼ B1s

Asv

; Rc expði[hc þ 180��Þ ¼ B1cC1ck1c

AsvC1sk1s

;

Rd expði[hd þ 180��Þ ¼ B1dC1dk1d

AsvC1sk1s

; Ts expðiusÞ ¼
B2sC2sk2s

AsvC1sk1s

;

Tc expðiucÞ ¼
B2cC2ck2c

AsvC1sk1s

; Td expðiudÞ ¼
B2dC2dk2d

AsvC1sk1s

9>>>>>>=
>>>>>>;

ð37Þ

Here, hk and uk (k = s, c, d) represent the phase

differences between the reflected and transmitted

waves, relative to the incident wave. They are slightly

different from the arguments of the amplitude

reflection and transmission coefficients applied in

other papers (for example, DUTTA and ODÉ 1983;

SHARMA et al. 1990).

Although our time dependence and the rock

properties are different from those of DUTTA and ODÉ

(1983), the derivation about energy flux in what fol-

lows is very similar. Energy flux in their paper can be

defined as the rate at which work is done by the

appropriate wave per unit area across the interface

(take y = 0) and it can be written as:

Fi �k ¼
x
2p

Z2p=x

0

ðsyyÞið _uyÞkþðsxyÞið _uxÞk�ðpÞið _wyÞk
� �

dt

ð38Þ

Here, s and p are the total stress tensor and the

pore pressure (Eqs. 59 and 60) in medium i; the

subscript k carries the notation of the appropriate

wave. Because there are several types of waves in

each medium on either side of the interface, the total

energy flux is composed of the orthodox fluxes and

the interference fluxes. The orthodox fluxes comprise

the stresses and incremental displacements pertaining

to the same Biot wave type, whereas the interference

fluxes comprise the stresses and incremental dis-

placements pertaining to different Biot waves (mixed

terms). The interference fluxes arise as a result of the

inhomogeneous nature of the wave (i.e., absorbing

Biot media), but vanish in the classical perfectly

elastic medium case (homogeneous waves). The

interference fluxes also go to zero at normal inci-

dence. They are generally small at seismic

frequencies but become important at ultrasonic fre-

quencies encountered in sonic logging (see DUTTA

and ODÉ 1983). The conservation of the total energy

across the interface can be written as:
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FI¼�F1s:1s�F1c:1c�F1d:1dþF2s:2sþF2c:2cþF2d:2d

�F1s:1c�F1c:1d�F1d:1sþF2s:2cþF2c:2dþF2d:2s

)

ð39Þ

where FI is incident energy flux and is given by:

FI ¼ Fi : i þ Fi:1s þ Fi:1c þ Fi:1d ð40Þ

In the above equations, both parts of the sub-

script which are separated by the symbol ‘.’ denote

the notation of the waves. The orthodox fluxes

refer to the items with repeated subscripts and the

interference fluxes refer to the other terms in

which the two subscripts are dissimilar. Complet-

ing the integral leads to equations for the energy

fluxes. For example, for the orthodox flux F1s.1s,

we have:

F1s:1s ¼ xp
2

ReðsyyÞ1sImðuyÞ1s� ImðsyyÞ1sReðuyÞ1s

� �
þxp

2
ReðsxyÞ1sImðuxÞ1s� ImðsxyÞ1sReðuxÞ1s

� �
�xp

2
ReðpÞ1sImðwyÞ1s� ImðpÞ1sReðwyÞ1s

� �

9>>>=
>>>;

ð41Þ

and for the interference flux F1s.1c, we have:

F1s:1c¼ xp
2

ReðsyyÞ1sImðuyÞ1c� ImðsyyÞ1sReðuyÞ1c

� �
þxp

2
ReðsyyÞ1cImðuyÞ1s� ImðsyyÞ1cReðuyÞ1s

� �
þxp

2
ReðsxyÞ1sImðuxÞ1c� ImðsxyÞ1sReðuxÞ1c

� �
þxp

2
ReðsxyÞ1cImðuxÞ1s� ImðsxyÞ1cReðuxÞ1s

� �
�xp

2
ReðpÞ1sImðwyÞ1c� ImðpÞ1sReðwyÞ1c

� �
�xp

2
ReðpÞ1cImðwyÞ1s� ImðpÞ1cReðwyÞ1s

� �

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð42Þ

Then, the energy reflection coefficients REk

(k = s, c, d) and the energy transmission coefficients

TEk(k = s, c, d) are called energy ratios and are

defined by the ratio of the orthodox flux and FI as

follows:

REs ¼
F1s:1s

FI

; REc ¼
F1c:1c

FI

; REd ¼
F1d:1d

FI

TEs ¼
F2s:2s

FI

; TEc ¼
F2c:2c

FI

; TEd ¼
F2d:2d

FI

9>>=
>>;
ð43Þ

The interference energy fluxes are not explicitly

included in the coefficients, although they appear

indirectly through the denominator term. These

interference fluxes are also very important for

checking energy conservation. Unless proper care is

taken of the interference fluxes, the energy fluxes

(i.e., orthodox only) across the interface cannot be

balanced. Dividing both sides of Eq. 39 by FI leads

to:

1 ¼ OERþ IER ð44Þ

Here

OER ¼ ð�F1s:1s � F1c:1c � F1d:1d þ F2s:2s þ F2c:2c

þF2d:2dÞ=FI ð45Þ

IER ¼ ð �F1s:1c � F1c:1d � F1d:1s þ F2s:2c þ F2c:2d

þF2d:2sÞ=FI ð46Þ

OER is called the orthodox energy ratio and IER

is the interference energy ratio. We will show in the

following numerical examples that IER can have a

significant influence in the case of an incident SV

wave. This is quite different from other published

results. The loss of seismic energy from the incident

wave is mainly due to the mode-converted slow Biot

wave at the interface, which propagates away from

the boundary in the manner of a diffusive process. At

low frequency, it has largely died out within a dis-

tance of a few wavelengths.

To acquire physical insight on the wave parti-

tioning at the poroelastic boundary it would be

necessary to derive closed form expressions for the

reflection and transmission coefficients. Unfortu-

nately, the expressions are extremely complicated

even for the normal-incidence case and so this is not

entirely possible. All that one can do is present

numerical solutions and offer some commentary on

the salient features.

5. Numerical Examples of SV Wave Incidence

In this section, the formulas derived in the pre-

vious section will be applied to calculate the

reflection and transmission coefficients for a variety

of wave incidence angles and frequencies. The two

porous media chosen are fluid-saturated sand and

fluid-saturated sandstone. The two fluids are water

(with subscript w) and air or gas (with subscript g).

Vol. 171, (2014) Reflection and Transmission Coefficients for an Incident Plane Shear Wave 2117



The material properties (taken from DUTTA and ODÉ

1983) are given in Table 1. The physical meaning of

the various parameters appearing in Table 1 is

explained in Appendix A.

From Eq. 58, the transition frequencies ft of the

water-saturated sandstone, water-saturated sand and

gas-saturated sand are 640 kHz, 143 Hz and

21.5 Hz, respectively. By Eq. 3, we get the disper-

sive phase velocities c and attenuation values

1/Q for the above sample rocks at frequencies of

10 Hz and 100 kHz respectively which are chosen

for the numerical calculation. They are listed in

Table 2.

5.1. SV Wave Incident from Sandstone onto Sand

Here we consider the situation of an incident SV

wave in water-saturated sandstone impinging on an

interface separating such a medium from water-satu-

rated sand. Since sand normally overlies sandstone, this

would normally correspond in geology to a wave

incident from below on its passage to the surface of the

earth. Note that since the S wave velocity in the incident

medium is greater than the P wave velocity in the

transmitted medium no critical refraction is possible.

We first set the incident wave frequency to 10 Hz,

which is much below the transition frequency of either

medium. Figure 2 shows the amplitude ratio plotted as a

function of the incidence angle. The corresponding

phase difference curve is shown in Fig. 3. Note that an

increase in the amplitude ratio for reflected waves is not

necessarily accompanied by a decrease in the corre-

sponding amplitude ratio for the transmitted wave

because of the dissipative nature of poroelastic media.

The bulk and relative fluid displacements are out of

phase with the bulk stress and the fluid pressure. A rise

in the reflection or transmission coefficient does not

necessarily mean an accompanying rise in the corre-

sponding energy ratio.

As expected, the Biot diffusive wave (slow P)

almost does not exist (is very small) on both sides of

Table 1

Material properties of the sample rocks and fluids

Parameter Sandstone Sand Parameter Water Gas

Ks (N m-2) 3.9e?10 3.9e?10 Kf (N m-2) 2.3e?9 2.2e?7

qs (kg m-3) 2,650 2,650 qf (kg m-3) 1,000 100

Km (N m-2) 2.23e?10 6.85e?8 gf (kg m-1 s-1) 0.001 1.5e-5

l (N m-2) 2.20e?10 4.11e?8 Dynamic permeability relationship

j0 (m2) 1.0e-14 1.0e-10 T ¼ n�1 Tortuosity

n 0.2 0.3 K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8K0T=n

p
Pore volume-to-surface ratio

Table 2

Dispersion values for the sample rocks and fluids

Rocks ft
(Hz)

f

(Hz)

cs

(m/s)

cc

(m/s)

cd

(m/s)

1/Q

Water-filled

sandstone

6.4e?5 10 3,079 4,807 3.6 51,183

1.0e?5 3,080 4,808 328 5.1

Water-filled

sand

143 10 437 1,897 111 12

1.0e?5 446 1,927 309 0.02

Gas-filled

sand

21.5 10 467 832 183 1.7

1.0e?5 468 832 249 0.01
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Figure 2
Incidence angle dependence of the reflected and transmitted

amplitude ratios for an incident SV wave of 10 Hz frequency in

water-saturated sandstone impinging on an interface with water-

saturated sand. In this and subsequent amplitude ratio figures, the

symbols denoting the different curves are defined as follows. Rs

reflected shear wave, Rc reflected fast compressional wave, Rd

reflected slow compressional wave, Ts transmitted shear wave, Tc

transmitted fast Biot wave, Td transmitted slow Biot wave
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the interface. It is very hard to even see it on plots of

Fig. 2 because of the scale used to display the other

waves. The amplitude ratios for the reflected S wave

(Rs) and the reflected fast compressional wave (Rc)

achieve maximal values at an incidence angle of

*40� which is close to the Snell critical angle

(sin-1(3,079/4,807) = 39.8�) for the mode-converted

P wave reflected at an angle of 90� (i.e., parallel to

the interface). The amplitude ratio curve for the

reflected P wave also exhibits local maxima at angles

of *28� and *60�. With increasing incidence angle

the amplitude ratio of the reflected SV wave, Rs,

gradually approaches 1. The reflected waves Rs and

Rc have a similar pattern of amplitude ratio and phase

difference to those for an SV wave in pure elastic

media and reflected at a free surface (see AKI and

RICHARDS 1980). Note that a phase difference of

-180� is the same as that of 180�, since the entire

period is 360�. The result can be appreciated by

realizing that our sample sand is much softer than the

sandstone (see Table 2) from which the SV wave is

incident.

The energy ratios are shown in Fig. 4. They

display very different patterns to the amplitude ratios

given in Fig. 2. It is very interesting to observe that

the energy ratio REc of the reflected fast P wave

achieves its maximum value at an incidence angle of

*28� whereas the reflected SV wave has its maxi-

mum at *40�. At angles larger than these, the energy

ratios REc and REs tend to zero. The Biot slow wave

coefficients REd and TEd achieve their maximum

values of 0.1 and 0.05 %, respectively, at the critical

angle. As shown in Fig. 4, the energy ratios can be

larger than 1. This does not mean our results violate

energy conservation (Eq. 44), which is well satisfied

and shown in Fig. 5. It is only the sum of the

orthodox energy flux ratio and the interference energy

flux ratio for all waves which must total unity. At

normal incidence there is no interference energy flux

and so the energy ratios in Fig. 4 do indeed sum to 1.

We now change the wave frequency to 100 kHz,

which is much higher than the transition frequency of

sand, but lower than that of sandstone (see Table 2).

At this frequency, the Biot slow P wave in sand

changes from being diffusive to a propagating wave

with a low attenuation factor (1/Q) of 0.02 and a

phase velocity of 309 m/s. But the Biot slow P wave

in sandstone is still diffusive and highly attenuating.

The amplitude ratios and the energy ratios are shown

in Figs. 6 and 7, respectively. They have a similar

pattern to those for the 10 Hz case, plotted in Figs. 2

and 4. Figure 6 shows small but still significant

values for the transmitted slow P wave amplitude

ratio (c.f. Fig. 2 where it is extremely small), while

Fig. 7 shows its distinct negative energy ratio. The

latter means that the energy flux vector is in the

reverse direction to the incident energy flux vector.
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Figure 3
Incidence angle dependence of the phase differences for the

reflected and transmitted waves for an SV wave of 10 Hz

frequency in water-saturated sandstone impinging onto water-

saturated sand
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Figure 4
Energy ratios for reflected and transmitted waves for an incident

plane SV wave of 10 Hz frequency in water-saturated sandstone

impinging on an interface with water-saturated sand. The symbols

identifying each curve for the various waves are as defined in

Fig. 2, but the additional ‘‘E’’ now stands for energy ratio
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The phase difference and energy conservation have

been calculated (not shown) and exhibit similar

trends to the 10 Hz incidence wave case. Note once

again that at 0� (normal incidence) the energy ratios

plotted in Fig. 7 sum to unity.

5.2. SV Wave from Sand onto Sandstone

Next we consider the reverse situation of an

incident SV wave in the water-saturated sand

impinging on an interface separating it from water-

saturated sandstone. This would correspond to the

more usual case under consideration of a wave

incident from above. The S wave velocity in the

transmitted medium is now greater than that in the

incident medium so critical refraction can occur for

both the transmitted SV wave and the transmitted fast

P wave. The incident wave frequency is 10 Hz. The

variation of reflection and transmission coefficients is

mainly over the incidence angle range from 0 to 20�.

The amplitude ratio dependence on the incident angle

is shown in Fig. 8 over the range 0–30�. The Biot

slow P wave is again very small on both sides of the

interface. The peak in Rc (and the corresponding

trough in Rs) at around 5� corresponds to the critical

angle [sin-1(437/4,807) = 5.2�] for the transmitted P

wave at which Ts and Tc achieve their maxima. The

minimum in amplitude for the reflected S wave (Rs)

at an incidence angle of around 13� corresponds to

the critical angle [sin-1(437/1,897) = 13.3�] at

which the reflected P emerges at 90� (parallel to the

boundary). At this incidence angle the reflected P

wave achieves its maximum amplitude. Beyond this

angle the reflected P as well as the transmitted SV

and P waves become inhomogeneous (evanescent)

waves with amplitudes tending towards zero, whereas

the amplitude ratio of the reflected SV wave (Rs)

plateaus at 1.

The energy ratios are shown in Fig. 9. They

display a different pattern to the amplitude ratios in
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Figure 5
Orthodox energy flux and interference energy flux versus incidence

angle for a plane SV wave of 10 Hz frequency in water-saturated

sandstone impinging onto water-saturated sand. Note that either

quantity alone can exceed 1, but their sum cannot (energy

conservation)
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Figure 6
Incidence angle dependence of the amplitude ratios for an SV wave

of frequency 100 kHz in water-saturated sandstone impinging on

an interface with water-saturated sand
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Figure 7
Energy ratios for reflected and transmitted waves for an incident

plane SV wave of frequency 100 kHz in water-saturated sandstone

impinging on an interface with water-saturated sand
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Fig. 8. The Biot slow wave energy ratios REd and

TEd achieve their maxima of about 1 %, although

they are not clearly visible in Fig. 9. It is very

interesting to observe that the energy ratio REs of the

reflected SV wave shows a negative value near its

critical incidence angle. Energy conservation has

been checked and is shown in Fig. 10 over the

incidence angle range from 0 to 90�.

5.3. SV Wave from Gas-Saturated Sand onto Water-

Saturated Sand

Here we consider the case of an incident SV wave

in gas-filled sand impinging on a water-filled sand

layer. There is no critical refraction of the SV wave

because the S wave velocity in the transmitted

medium is slightly less than that in the incident

medium. However, there is a substantial velocity

increase for the transmitted P wave, and so critical

refraction of this mode converted wave is possible.

The wave frequency is 10 Hz, which is below the

transition frequencies for both the gas sand and the

water-saturated sands. Figures 11 and 12 show the

amplitude and energy ratios, respectively, plotted as a

function of incidence angle. The Biot slow P wave is

very small on both sides of the interface, and its

energy ratios REd and TEd are both \0.2 %. From

Table 2, we see that the Snell critical angle for the

transmitted P wave is 14.2� (sin-1[467/1,897]). At

this angle the amplitude ratios of the transmitted P

and transmitted SV waves reach their maximum

values.

The Snell critical angle of incidence for the

reflected P wave (reflection angle 90�) is sin-1(467/

832) or 34�, beyond which the transmitted S wave

amplitude ratio abruptly decreases. At an incidence

angle of 44�, the two reflected waves, fast P and S,

achieve their maximum values, while the transmitted

S wave reaches its minimum; it seems to be a type of

critical angle in that it represents a sudden change in
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Figure 8
Incidence angle dependence of the reflected and transmitted

amplitude ratios for an incident SV wave of frequency 10 Hz in

water-saturated sand impinging on an interface with water-

saturated sandstone. This is the reverse of the situation depicted

in Fig. 2
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Figure 9
Incidence angle dependence of the energy ratios for a plane SV

wave of frequency 10 Hz in water-saturated sand impinging onto

an interface with water-saturated sandstone
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Figure 10
Orthodox energy flux and interference energy flux versus incidence

angle for a plane SV wave of frequency 10 Hz in water-saturated

sand impinging on an interface with water-saturated sandstone
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the plot. However we don’t expect a critical angle (in

the usual sense of the word) at this value according to

Snell’s law. So, we call it an unusual definitive

(diagnostic) angle. This phenomenon also occurs in

the energy ratio curves (see Fig. 12). From Fig. 12, it

is clear that if the incidence angle is below the critical

angle of the reflected P wave, the energy ratio and the

amplitude ratio of the transmitted SV wave are

almost 1, which implies the gas–water interface is

transparent for small incidence angles. This is even

further accentuated for a wave frequency of 100 kHz,

which is well beyond the transition frequencies for

media on both sides of the interface (see Figs. 13 and

14). The energy conservation law is clearly validated

in Fig. 15. Here we observe that the interference

energy fluxes are negligible at near-normal incidence

and become negative with increasing angle, before

rising sharply to equal the orthodox fluxes of ?0.5 at

an incidence angle of 90�.

The corresponding case of an incident fast P

wave at a gas–water interface has been studied by

DUTTA and ODÉ (1983). Their Fig. 9 shows the

angle-dependent reflection and transmission coeffi-

cients for the compressional wave at frequencies of

100 Hz and 10 kHz. In common with the incident S

wave case investigated here, a peak is found in both

curves at an angle of around 43� in the 100 Hz case;

the transmitted wave is substantially larger than the

reflected wave. At higher frequency (10 kHz), the

peak changes to a sudden upward flexure in both

coefficient curves, which are somewhat smaller

(\10 %) than in the 100 Hz case. They attribute

the higher frequency behavior to the fluid flow

effect, which reduces the acoustic impedance con-

trast between the two media substantially, thus

decreasing Rc and Tc. DUTTA and ODÉ (1983)

observed an energy loss due to the slow Biot wave

generated at the boundary of approximately 1.7 % at

100 Hz for P waves at normal-incidence, rising to a

maximum of 5.5 % at the critical angle (43�). The
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Figure 11
Incidence angle dependence of the amplitude ratios for an SV wave

of frequency 10 Hz in gas-saturated sand impinging on an interface

with water-saturated sand
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Figure 12
Incidence angle dependence of the energy ratios for a plane SV

wave of frequency 10 Hz in gas-saturated sand impinging on an

interface with water-saturated sand
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Figure 13
Incidence angle dependence of the amplitude ratios for an SV wave

of frequency 100 kHz in gas-saturated sand impinging on an

interface with water-saturated sand. Symbols Rs
* and Ts

* denote the

amplitude ratios for the gas having the same viscosity as the water

and an incident wave frequency of 10 Hz
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loss was observed to increase with increasing

frequency as
p

f : The shapes of the reflection/

transmission coefficient curves we find for incident

SV at seismic frequencies (10–100 Hz) are much

more complex than those of DUTTA and ODÉ (1983)

for incident P, which only exhibit single inflection

points. A physical explanation of the observed

numerical behavior is not obvious but is most likely

related to the different coupling mechanisms

between incident S and incident P. Very little mode

conversion to the slow P wave occurs for an

incident S wave.

The amplitude ratio curves (Fig. 13) and the

energy ratio curves (Fig. 14) for the much higher

(ultrasonic) frequency (100 kHz) case of an incident

S wave show the almost non-existence of the Biot

slow wave. Furthermore, the gas–water interface is

non-reflective for incidence angles below 60�. The

unusual definitive angle which occurs for the 10 Hz

frequency disappears in Figs. 13 and 14. This gives a

hint that this unusual definitive angle of 44� is related

to fluid viscosity.

To verify such a supposition, we calculated the

coefficients for the same interface at a frequency of

10 Hz, but changed the viscosity of the gas and water

separately. Firstly, we changed the viscosity of the

gas to be the same as that of the water

(0.001 kg m-1 s-1). In this case, the gas-filled sand

has a transition frequency of 1,434 Hz. The incident

wave frequency is then below the transition frequen-

cies on both sides of the boundary. The amplitude

ratios and energy ratios of the reflected and trans-

mitted SV wave are denoted as Rs*, Ts*, REs* and

TEs* respectively and are shown in Figs. 13 and 14.

It is evident that they are very similar to the original

Rs, Ts, REs and TEs curves. The interference energy

fluxes are negligible at near-normal incidence and

become negative with increasing angle, before rising

sharply to equal the orthodox fluxes of ?0.5 at an

incidence angle of 90� (see Fig. 15).

Next, the viscosity of the water was set to be the

same as that of the gas (1.0e-5 kg m-1 s-1) and the

transition frequency of the water-filled sand is

changed to 2.2 Hz. In this case, the wave frequency

(10 Hz) is greater than the transition frequency of the

water-filled sand, but less than that of the gas-filled

sand (21.5 Hz). Although the results are not shown

here, we obtained similar curves to the original case

of a 10 Hz wave as depicted in Figs. 11 and 12, and

the unusual definitive angle appears again.

It is clear that the conditions for the unusual

(diagnostic) angle to appear are that the incident wave

frequency is below the transition frequency of the

medium on at least one side of the boundary, so that the

viscosity dominates the fluid property; the viscosities of

the fluids on both sides of the boundary can be either the

same or different. However, for the same viscosities,
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Figure 14
Incidence angle dependence of the energy ratios for an SV wave of

frequency 100 kHz in gas-saturated sand impinging on an interface

with water-saturated sand. Symbols Rs
* and Ts

* denote the amplitude

ratios for the gas having the same viscosity as the water and an

incident wave frequency of 10 Hz
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Figure 15
Orthodox energy flux and interference energy flux as a function of

incidence angle for a plane SV wave of frequency 100 kHz in gas-

saturated sand impinging on an interface with water-saturated sand.

Note that the total energy flux (orthodox plus interference) is equal

to 1
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the unusual angle appears when the transition fre-

quency of one side is greater than the incident wave

frequency. Therefore, the unusual angle at which the

abrupt change in the curves occurs is caused by the

change in viscosity of the pore fluid and provides a

possible new means for recovering fluid properties from

SV wave incidence in seismic surveying.

6. Conclusions

By applying Biot’s poroelasticity theory, we have

theoretically formulated the reflection and transmission

coefficients for SV wave incidence at an interface

between two different poroelastic solids. The coeffi-

cients are given in the forms of P and S wave

amplitude ratios and energy ratios. They have been

numerically calculated as a function of incidence angle

and frequency for an interface between two different

porous rocks and a gas–water interface in sand.

Plane SV wave incidence does not significantly

excite the slow Biot P if the incident wave frequency

is below the transition frequency. Above this fre-

quency, plane SV waves can cause mode-converted

Biot second (slow) P waves, which are actually nor-

mally propagative and not diffusive.

For an incident SV wave on a gas–water interface,

there is a very different response than in the case of P

wave incidence. For P wave incidence, the gas–water

interface, like the interface separating two different

porous rocks, will cause significant energy loss by mode

conversion to the Biot slow P wave, especially as the

frequency increases. But for SV wave incidence, there is

no significant conversion to the Biot slow wave, even at

very high incident wave frequency. For small incidence

angles, the gas–water interface is almost transparent.

However, with increasing angle of incidence, there is an

unusual ‘‘definitive angle’’ in the reflection coefficient

response which is related to the difference of fluid vis-

cosity across the interface and it is a possible new means

for underground fluid discrimination.
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Appendix A: Biot’s Complex Wavenumbers, Dynamic

Permeability and Constitutive Equations

The complex wavenumber for the Biot shear wave

is given by:

k2
s ¼

x2

l
q� q2

f

qðxÞ

� �
ð47Þ

where x is frequency; qf and q is the density of the

fluid and the average density of the composite; l is

the shear modulus of the solid frame; qðxÞ ¼
ig=xjðxÞ and g is dynamic viscosity (or viscosity)

and j(x) is the dynamic permeability (see later in this

section).

The Biot slow P wave and the classic P wave have

wavenumbers:

k2
d ¼ x2 c1d22 � c3d12

c1c4 � c2c3

ð48Þ

k2
c ¼ x2 c2d21 � c4d12

c3c2 � c1c4

ð49Þ

where

d11 ¼ qdd þ qf c1 ¼ ðkc þ 2lÞdd þ aM

d12 ¼ qdc þ qf c2 ¼ ðkc þ 2lÞdc þ aM

d21 ¼ qfdd þ qðxÞ c3 ¼ aMdd þM

d22 ¼ qfdc þ qðxÞ c4 ¼ aMdc þM

9>>>=
>>>;
ð50Þ

dc ¼
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A
and

dd ¼
�Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A
ð51Þ

A ¼ qaM � qfðkc þ 2lÞ
B ¼ qM � qðxÞðkc þ 2lÞ

C ¼ �qðxÞaM þMqf

9>=
>; ð52Þ
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kc ¼ Km � 2l=3þ a2M ð54Þ

a ¼ 1� Km

Ks

ð55Þ

1

M
¼ a

Ks

þ n
1

Kf

� 1

Ks

� �
ð56Þ

Here, Ks, Kf and Km are the bulk modulus of the

solid grain, the pore fluid and the solid frame,

respectively.

The dynamic permeability can be viewed as static

permeability j0 multiplied by a frequency correction

factor (JOHNSON et al. 1978),

jðxÞ ¼ j0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i

4x
nJxt

r
� i

x
xt

� ��1

ð57Þ

xt ¼ g=ðqfFj0Þ ð58Þ

Here, j0 is permeability; xt is called the transition

frequency or relaxation frequency (PRIDE et al. 2004)

which separates the viscous force-dominated flow

from the inertial force-dominated flow. The quantity

nJ ¼ K2
�
j0F, where K represents the pore volume-

to-surface ratio and has the dimensions of length. F is

the electric formation factor and it can also be related

to the tortuosity T and porosity n through the relation:

F ¼ Tn�1.

Biot’s constitutive equations can be written as

sij ¼ 2leij þ dijðkce� aMfÞ ð59Þ

pf ¼ �aMeþMf ð60Þ

Here, sij = total stress in the medium (including

the porous solid frame and the fluid filling the pores);

pf = fluid pressure in the pores; e = div u; f = -div

w;

eij ¼
1

2

oui

oxj

þ ouj

oxi

� �
; ð61Þ

and

dij is the Kronecker delta symbol.

Appendix B: The Reflection and Transmission

Coefficients for an Incident SH Wave

Because SH waves are decoupled from P-SV

waves in isotropic media, and incident SH waves do

not mode-convert to P or to SV waves, the boundary

conditions, Eqs. 8 and 9a, which are just related to

the compressional properties, are not required. So

there will only be three waves to consider: incident

SH, reflected SH and transmitted SH.

The relative fluid displacement for the incident

SH shear wave wsh, is written as:

wsh ¼ Ash expðil1syÞ expðim1sx� ix tÞẑ ð61Þ

Let w1s be the reflected wave in medium 1, given

by:

w1s ¼ B1s expð�il1syÞ expðim1sx� ix tÞẑ ð62Þ

Let w2s be the transmitted waves in medium 2,

given by:

w2s ¼ A2s expðil2syÞ expðim2sx� ix tÞẑ ð63Þ

where ljs and mjs, (j = 1, 2) denote, respectively, the

x- and y-components of the complex wave vector kjs

of medium j (The waves propagate in the x–y plane).

The total wavenumber is given by:

ðljsÞ2 þ ðmjsÞ2 ¼ ðkjsÞ2 ð64Þ

From the continuity condition of the solid frame

displacement, Eq. (6) and the linear relationship,

Eq. (4), which are valid for all x and t, we have:

m1s ¼ m1s ð65Þ

C1sðAsh þ B1sÞ ¼ C2sðA2sÞ ð66Þ

By the continuity condition of the total traction,

Eq. 7, we have:

l1l1sC1sðAsh � B1sÞ ¼ l2l2sC2sA2s ð67Þ

By Eqs. 66 and 67, we get the transmission ratio

of the relative fluid displacement A2s/Ash,

A2

Ash

¼ 2l1l1sC1s

l1l1s þ l2l2sð ÞC2s

ð68Þ

and the reflection ratio of the relative fluid displace-

ment B1s/Ash,

B1s

Ash

¼ l1l1s � l2l2sð Þ
l1l1s þ l2l2sð Þ ð69Þ

According to Eq. 69, if the physical parameters of

the two media are the same, the reflection goes to

zero. Then, by Eq. 4, the transmission coefficient of

the solid frame displacement is:
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Tsh ¼
A2sC2s

AshC1s

ð70Þ

The reflection coefficient of the solid frame dis-

placement is:

Rsh ¼
B1s

Ash

ð71Þ

Appendix C: The Coefficients of the Boundary

Conditions

The elements aij of matrix A appearing in Eq. 31

are obtained as follows:

(i) Setting u1x = u2x

a11 ¼ 1; a12 ¼ �
C1cm

C1sl1s

; a13 ¼ �
C1dm

C1sl1s

;

a14 ¼
C2sl2s

C1sl1s

; a15 ¼
C2cm

C1sl1s

; a16 ¼
C2dm

C1sl1s

(ii) Setting u1y = u2y

a21 ¼ �1; a22 ¼ �
C1cl1c

C1sm
; a23 ¼ �

C1dl1d

C1sm
;

a24 ¼
C2s

C1s

; a25 ¼ �
C2cl2c

C1sm
; a26 ¼ �

C2dl2d

C1sm

(iii) Setting s1yy = s2yy

a31 ¼ 1; a34 ¼
l2C2sl2s

l1C1sl1s

;

a32 ¼
C1cðk1c þ 2l1Þ þ a1M1½ �ðk1cÞ2 � C1c2l1m2

C1s2l1ml1s

;

a33 ¼
C1dðk1c þ 2l1Þ þ a1M1½ �ðk1dÞ2 � C1d2l1m2

C1s2l1ml1s

;

a35 ¼
C2c2l2m2 � C2cðk2c þ 2l2Þ þ a2M2½ �ðk2cÞ2

C1s2l1ml1s

;

a36 ¼
C2d2l2m2 � C2dðk2c þ 2l2Þ þ a2M2½ �ðk2dÞ2

C1s2l1ml1s

(iv) Setting s1xy = s2xy

a41 ¼�1; a42 ¼
C1c2ml1c

C1sðl21s�m2Þ ; a43 ¼
C1d2ml1d

C1sðl21s�m2Þ ;

a44 ¼
C2sl2ðl2

2s�m2Þ
C1sl1ðl2

1s�m2Þ ; a45 ¼
C2c2l2ml2c

C1sl1ðl2
1s�m2Þ ;

a46 ¼
C2d2l2ml2d

C1sl1ðl2
1s�m2Þ

(v) Setting w1y = w2y

a51 ¼ �1; a52 ¼ �
l1c

m
; a53 ¼ �

l1d

m
;

a54 ¼ 1; a55 ¼ �
l2c

m
; a56 ¼ �

l2d

m
;

(vi) Setting o
ot

w2y ¼ j12ðp1f � p2f Þ

a61 ¼ 0; a62 ¼ j12ða1C1c þ 1ÞM1ðk1cÞ2

a63 ¼ j12ða1C1d þ 1ÞM1ðk1dÞ2; a64 ¼ xm

a65 ¼ �ðxl2c þ j12ða2C2c þ 1ÞM2k2
2cÞ

a66 ¼ �ðxl2d þ j12ða2C2d þ 1ÞM2k2
2dÞ

For the sealed-pore boundary condition, j12 ¼ 0,

then

a61 ¼ a62 ¼ a63 ¼ 0; a64 ¼ xm;

a65 ¼ �xl2c; a66 ¼ �xl2d

For the open-pore boundary condition, j12 ¼ 1,

then

a61 ¼ a64¼ 0;

a62 ¼ ða1C1cþ1ÞM1k2
1c; a63 ¼ ða1C1dþ1ÞM1k2

1d;

a65 ¼�ða2C2cþ1ÞM2k2
2c; a66 ¼�ða2C2dþ 1ÞM2k2

2d

REFERENCES

AKI, K. and RICHARDS, P.G. (1980). Quantitative Seismol-

ogy: Theory and Methods-Vols. I–II, W.H. Freeman, San

Francisco.

BIOT, M.A. (1956a). Theory of propagation of elastic waves in a

fluid-saturated porous solid: I- low frequency range. Journal of

the Acoustical Society of America, 28(2):168–178.

BIOT, M.A. (1956b). Theory of propagation of elastic waves in a

fluid-saturated porous solid: II-higher frequency range. Journal

of the Acoustical Society of America, 28(2):179–191.

DENNEMAN, A.I.M., DRIJKONINGEN, G.G., SMEULDERS, D.M. and

WAPENAAR, K. (2002). Reflection and transmission of waves at a

fluid/porous-medium interface. Geophysics 67:282–291.

DERESIEWICZ, H. and SKALAK, R. (1963). On uniqueness in dynamic

poroelasticity. Bulletin of Seismological Society of America,

53:783–788.
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