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Abstract We present a generalization of the convolution-
based variational image registration approach, in which dif-
ferent regularizers can be implemented by conveniently
exchanging the convolution kernel, even if it is nonsepa-
rable or nonstationary. Nonseparable kernels pose a chal-
lenge because they cannot be efficiently implemented by sep-
arate 1D convolutions. We propose to use a low-rank tensor
decomposition to efficiently approximate nonseparable con-
volution. Nonstationary kernels pose an even greater chal-
lenge because the convolution kernel depends on, and needs
to be evaluated for, every point in the image. We propose to
pre-compute the local kernels and efficiently store them in
memory using the Tucker tensor decomposition model. In
our experiments we use the nonseparable exponential kernel
and a nonstationary landmark kernel. The exponential kernel
replicates desirable properties of elastic image registration,
while the landmark kernel incorporates local prior knowl-
edge about corresponding points in the images. We examine
the trade-off between the computational resources needed
and the approximation accuracy of the tensor decomposition
methods. Furthermore, we obtain very smooth displacement
fields even in the presence of large landmark displacements.
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1 Introduction

Image registration is a common problem that arises in many
applications of medical image analysis. The problem is to
find a non-rigid transformation which aligns two images. In
this paper, we focus on the variational principle to formulate
this problem, which has found broad acceptance in the liter-
ature [4,5,33]. The sought transformation corresponds to the
minimum of a functional, which finds a compromise between
the image similarity of the transformed target and the refer-
ence image IT , IR : � → IR, defined on some domain �,
and the smoothness of the image transformation ϕ : � → �.
Formally, the problem can be written as

J [ϕ] := D[IR, IT ,ϕ] + S[ϕ], (1)

where D is an image distance measure and S a regularizer.
Using calculus of variation, the optimum of (1) can be found
by solving a system of partial differential equations.

An elegant framework to minimize Eq. (1) was proposed
by Beutien et al. [4], where a minimum is reached using a
convolution-based approach. Different regularization prop-
erties can be achieved by choosing different convolution ker-
nels. However, their approach only addresses stationary ker-
nels and only works efficiently if the kernel is separable.

In this paper, we present a generalization of this frame-
work, where the regularization kernel are even nonseparable
or nonstationary. By employing low-rank tensor decomposi-
tion [18], we approximate nonseparable convolution kernels
by separable 1D kernels in order to perform the convolu-
tion separately in each space dimension by successive 1D
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Fig. 1 The first two figures from the left show the reference and target
femur surfaces. The landmark points are depicted in color, red and green
respectively. The patellar surface is marked in dark gray. In the right
two figures the reference is transformed to the target with two differ-
ent methods. First, using standard diffeomorphic Demons [39], which

does not incorporate the landmarks. The patellar surface is clearly mis-
aligned. In the last figure, the registration was performed with our hybrid
approach, which considers the landmarks. This results in an accurate
patellar surface alignment (Color figure online)

convolutions. Compared to nonseparable convolution, this
dramatically reduces the computational complexity and,
additionally, it accurately retains the regularization prop-
erties. For instance, in 3D the separable Gaussian kernel
requires three 1D convolutions, while a rank-4 nonsepara-
ble kernel needs 4 × 3 = 12 separable 1D convolutions.

Furthermore, we extend the framework to nonstationary
regularizers, i.e. regularizers which depend on the spatial
location. The corresponding spatially varying local filter ker-
nels require an efficient handling, which we approach by
a powerful caching scheme. In addition, we use an exten-
sion of the framework in order to ensure that the result-
ing transformations are diffeomorphic. As in [28,37,38],
in each iteration, we compute an efficient approximation
of the exponential mapping that keeps the transformations
diffeomorphic.

While this generalization is useful in a wide variety of
registration tasks, our original motivation was to integrate
landmarks into the regularization. In Fig. 1, we illustrate the
practical importance of hybrid landmark and image registra-
tion. In this example, the landmarks help to greatly improve
the registration accuracy of the patellar surface of a human
femur. Using our nonstationary filtering approach, we can
efficiently compute a solution to the hybrid registration prob-
lem as formulated by Lüthi et al. [21], which is conceptually
appealing, but has so far been computationally infeasible.
The idea is to integrate landmarks directly into the regular-
ization, which in our terms means to minimize a slightly
different functional

Ĵ [ϕ] := D[IR, IT ,ϕ] + Ŝ[ϕ, X ], (2)

where X is a list of landmark displacements. Since the regu-
larizer Ŝ considers the given displacements at the landmark
positions, the resulting kernel is nonstationary. Therefore,

simple convolution approaches are not applicable, since the
filter kernel varies for each image location. However, in our
framework, we are able to efficiently handle the regularizer’s
local dependency. Hence, performing hybrid image registra-
tion in terms of Eq. (2) becomes computationally feasible
even for 3D images.

Non-rigid image registration has been extensively studied
in literature and several attempts have been made to reach a
general framework for different regularizers [5,33]. For an
overview of image registration methods, we refer to the sur-
vey paper of Sotiras et al. [30], and more specifically to the
book of Modersitzki [23] for a deeper discussion about vari-
ational methods for image registration. For the diffeomor-
phic regularization we refer to [1–3,28,37,38]. Nonstation-
ary filtering methods have been used e.g. in [6,31], where the
regularization is locally adjusted depending on local image
features as e.g. curvature or local transformation properties
like stiffness. Different hybrid methods, which combine land-
marks and image features have been proposed in literature.
For example in [14,16,26], the landmarks are treated as addi-
tional constraints. The methods require a perfect interpola-
tion of the landmarks resulting in numerical problems dur-
ing optimization. Other methods do not enforce the land-
mark constraints strictly, but add the landmark differences as
another cost term to the functional in Eq. (1) [2,17,20,25,29].
In our work, we were inspired by the Bayesian approach of
Lüthi et al. [21], where these two kinds of methods are com-
bined by integrating the landmarks into the regularization.
This makes the uncertainty on the landmarks independent
from the data term and reduces the search space to trans-
formations, agreeing with the landmark displacements. Con-
trary to the approach of Lüthi et. al. [21] however, our nonsta-
tionary filtering technique is able to efficiently handle large
3D images.
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Our paper is structured as follows: in the background sec-
tion we briefly introduce the variational image registration
framework and present ideas about the hybrid image regis-
tration framework of Lüthi et al. [21] adapted to our method.
In the subsequent method section we present our separate
and nonstationary filter approach. In our experiments, we
show registration results using different positive definite ker-
nel functions such as Gaussian and exponential kernels. By
using low-rank approximations of nonseparable kernels, we
show an accuracy gain as well as an improved convergence
property during the registration process. Applying a non-
stationary kernel, we show the memory savings we reach
with our caching scheme using tensor decomposition. Fur-
thermore, we discuss in more detail the introductory patellar
surface example, where the incorporation of the landmarks
leads to better registration performance. Finally, we discuss
the advantages and challenges related to the landmark based
transformation.

2 Background

2.1 Variational Image Registration Framework

Considering dense image features, for instance gray scale
values of a CT image, formulating the registration problem
as a variational optimization problem turned out to be very
useful in literature [4,5,28,33,37,38]. A mapping that reg-
isters the two images IR and IT is sought as the minimum
of the joint functional (1). Using methods from the calculus
of variations, the functional is differentiated with respect to
the mapping ϕ. If we denote the space of all admissible map-
pings as �, the functional derivatives of the two terms are
dD =: f : � → IRd and dS =: A : � → �.A is typically
a differential operator and a minimum of the functional has
to satisfy the system of partial differential equations

A[ϕ] = f(ϕ). (3)

Many different strategies to solve this PDE and the associ-
ated minimization problem have been put forward, including
finite difference methods, finite element methods, B-spline
based methods etc.

The fastest method to solve (3), on which our work is
based, is a convolution approach [28,33]. This approach is
possible if the fundamental solution or “Green’s function”
for the operator A is known. The Green’s function is then a
positive definite kernel function k : � × � → IR, and the
PDE can be minimized by the iteration scheme

ϕi+1 = k ∗ (ϕi ◦ f(ϕi )), (4)

where ∗ denotes the convolution operation.
The classical example is the Demons algorithm where

A = −� and k is the Gaussian kernel. In principle it is also

possible to choose the kernel directly, without actually spec-
ifying the corresponding operator. Long et al. [19] proposed

to use the exponential kernel k(x, y) = 1
Cd

· e− ‖x−y‖
α , where

Cd is a normalization constant for the number of dimensions
d.C1 = 2α, C2 = 2πα2, C3 = 8πα3. They showed that
compared to the Gaussian kernel, this kernel better approxi-
mates the linear elasticity regularization, which leads to bet-
ter transformation properties (see also Steinke and Schölkopf
[32]). Since the kernel is not separable, standard computa-
tional requirements are exceeded if it is directly applied in
this framework. In our experiments later in this paper, we
also show registration results using this regularizer.

2.2 Neighborhood Preservation

Common simple regularizers, as the ones discussed in the
previous section, penalize unsmooth transformations. They
cannot avoid foldings, nor do they lead to invertible transfor-
mations. But in medical applications invertible transforma-
tions are preferred. Various authors [1,8,28,35,37,38] have
therefore proposed an additional restriction of the mappings
ϕi by modeling ϕ using geodesic flows of diffeomorphisms
[3]. Following the diffeomorphic Demons [37] approach,
the restriction of an optimal displacement field to be dif-
feomorphic ϕ ∈ Diff (�) can be achieved by mapping the
current transformation ϕi back onto the Lie group of diffeo-
morphisms [1,28,37,38]. This ensures the transformation to
be invertible and neighborhood preserving. A possible way
to do that, which only marginally changes the optimization
scheme in Eq. (4), is by calculating the group exponential
map exp of the Lie group of diffeomorphisms of ϕi after
evaluating the field update

ϕi+1 = k ∗ (ϕi ◦ exp(f(ϕi ))). (5)

The exponential mapping can be efficiently approximated by
a scaling and squaring algorithm [1,37].

2.3 Hybrid Image Registration

In hybrid image registration, both dense image features and
landmarks are available. In addition to the images IR and
IT , we are given lists X R = {x R

i }n
i=1 and XT = {xT

i }n
i=1 of

n corresponding landmark points for each image. The dis-
placements induced by these landmarks are given by

X = {(x R
1 , xT

1 − x R
1 ), . . . , (x R

n , xT
n − x R

n )}
= : {(x1, y1), . . . , (xn, yn)}.

Further, let u : � → IRd be an unknown displacement field,
such that the warp ϕ(x) = x + u(x), x ∈ � and the target
image is warped by IT (x + u(x)). In [21], Lüthi et al. mod-
eled the prior knowledge about u using a Gaussian process
GP(μ, k), which is defined by a mean function μ : � → IRd
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and a covariance function k : �×� → IR. In our terms, this
means to minimize

JG P [ϕ] := DG P [IR, IT , μ, u] + SG P [k, u],
where the target image is warped by IT (x + μ(x) + u(x)).
Assuming a zero mean, this functional is equivalent to the
functional (1) introduced at the beginning of this paper. How-
ever, the strength of this interpretation is that we can now for-
mulate the hybrid registration problem by conditioning the
Gaussian process on the n given landmark displacements.
The resulting posterior process GP X (μX , kX ) is given in
closed form by

μX (x) = μ(x) + K X (x)T (K + σ 2 I d)−1Y (6)

kX (x, y) = k(x, y) − K X (x)T (K + σ 2 I d)−1 K X (y)T ,

where K X (x) = (k(x, xi ))
n
i=1 ∈ IRn, K ∈ IRn×n is the

kernel matrix with entries Ki, j = k(xi , x j ), Y = (y1 −
μ(x1), . . . , yn − μ(xn))T ∈ IRn are the mean free landmark
displacements and σ 2 models the uncertainty about match-
ing accuracy of the landmarks (see also e.g. Rasmussen in
[27, Chap. 2.2]). Hence, our functional which we minimize
becomes

JG PX [ϕ] := DG PX [IR, IT , μX , u] + SG PX [kX , u], (7)

using μX as landmark based mean transformation and the
kernel function kX for regularization.

Since kX depends on the landmark displacements, it is not
stationary and cannot directly be handled by the optimization
scheme (4) introduced above. In the following, we present
the necessary adjustments to still benefit from the advantages
of the framework.

3 Methods

In this paper, we generalize the variational image registration
framework to kernel functions, which possibly are nonsep-
arable and nonstationary. While the optimization scheme in
(4) is conceptually not restricted to separable convolution
kernels, nonseparable filtering exceeds standard computa-
tional requirements. In Sect. 3.1, we present a separable 1D
filter approximation for nonseparable filters, based on low-
rank tensor approximation, which enables us to perform the
convolution efficiently.

For the generalization to nonstationary kernels, which
vary depending the spatial location, the Eq. (4) has to be
rewritten. We explicitly write the convolution integral but
with a kernel which is not stationary (cf. the work of McOwen
in [22, Chap. 2.3] and Evans [11, Chap. 2.3]). This becomes
the following integral equation

ϕi+1 =
∫

�

kX (·, s)(ϕi ◦ f(ϕi ))ds. (8)

Similar, with ϕ restricted to be diffeomorphic, Eq. (5)
becomes

ϕi+1 =
∫

�

kX (·, s)(ϕi ◦ exp(f(ϕi )))ds. (9)

In Sect. 3.2, we further introduce a nonstationary filter
approach, which makes the approximation of the integral (8)
and (9) computationally feasible.

3.1 Separable Filter Decomposition

Applying the proposed optimization scheme to image reg-
istration requires the discretization of the formulation in
Eq. (9). To make it more clear, we start by writing the spatially
discretized version of Eq. (5), where the kernel k becomes a
3D tensor H0:

ϕi+1(x) = H0 ∗ (ϕi ◦ exp(f(ϕi )))x . (10)

H0 is the discrete unit impulse response of k with elements
H0i jq = k(0, (i, j, q)T ) and i, j, q cover the neighborhood
around 0, while the subscript x of the second term indicates
the equally large discrete neighborhood around the point x .

If the kernel is separable the iteration scheme of Eq. (10)
can be accelerated greatly by performing the convolution
separately in each space dimension by successive 1D convo-
lutions. The Gaussian kernel has this nice property of separa-
bility. Therefore without any further effort, the convolution
with this kernel can be performed separately. To still benefit
from this performance gain for nonseparable kernels, like the
exponential kernel [19], their separability has to be approxi-
mated. In 2D, this can be achieved by standard singular value
decomposition. However in 3D, this leads to mathematical
challenges that go beyond standard linear algebra, since a
filter kernel in 3D is a third order tensor. In contrast to 2D
matrices, it is an NP-hard problem to determine the rank of
a specific given higher order tensor (see Kolda and Bader in
[18]). Hence, the rank R becomes a parameter which has to be
estimated. Nevertheless, we are able to compute the approxi-
mation using a CANDECOMP/PARAFAC (CP) decomposi-
tion model [18]. This gives us separable 1D approximations
of the discrete unit impulse response H0. In Fig. 2 the decom-
position model is visually illustrated. Such a decomposition
can be formulated as a minimization problem

min
H̃0

‖H0 − H̃0‖ with H̃0 =
R∑

r=1

ar ⊗ br ⊗ cr , (11)

where the operation ⊗ denotes the three-way outer product
H̃0i jk = ∑R

r air b jr ckr . Standard algorithms to optimize (11)
are based on the alternating least squares (ALS) method [15],
which is explained in more detail in the following section.
The parameter R is estimated by testing the approximation
performance for different ranks (see Sect. 4.1).
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Fig. 2 CP tensor decomposition model of the third-order tensor H .

Once the decomposition is performed, the distributivity
(12) and the associativity (13) of the convolution operation
can be exploited to perform the convolution separately in
each dimension with ar , br and cr

H0 ∗ f ≈ H̃0 ∗ f =
[

R∑
r

ar ⊗ br ⊗ cr

]
∗ f

=
R∑
r

[ar ⊗ br ⊗ cr ∗ f] (12)

=
R∑
r

ar ∗ (br ∗ (cr ∗ f)) . (13)

For cubic filter kernels, having a filter width m, the compu-
tational cost for each output pixel reduces significantly from
m3 to 3Rm.

3.1.1 Alternating Least Squares Method

The low-rank approximation of H0 is calculated by mini-
mizing the optimization problem (11). The minimizers ar , br

and cr are obtained using the alternating least squares (ALS)
method [15]. To this purpose, we introduce a notation to rep-
resent a tensor in a matrix form.

Let H ∈ IRP×Q×R be a third-order tensor. By fixing
one index the tensor is sliced into two-dimensional sec-
tions which have horizontal (mode-1), lateral (mode-2) and
frontal (mode-3) orientation for the indices {1, 2, 3} respec-
tively. The mode-n unfolding denoted as H(n) concatenates
the mode-n slices horizontally to a matrix.

Following Kolda and Bader [18], the CANDECOMP/-
PARAFAC model can be expressed as

H = [[A, B, C]] ≡
R∑

r=1

ar ⊗ br ⊗ cr ,

while H(1) = A(C 
 B)T , with A = (a1, a2, . . . , aR) and
likewise B and C.
 is the Khatri-Rao product (see A.1.1).

The matrices A, B and C , which minimize (11) can be
calculated by alternately fixing all but one matrix e.g. A.
This is followed by minimizing

min
A

‖H(1) − A(C 
 B)T ‖F ,

which has the optimum at

A = H(1)[(C 
 B)T ]†.

Using the special property that

(A 
 B)† = (AT A � BT B)†(A 
 B)T ,

where � is the Hadamard product (see A.1.2) and A† the
Moore-Penrose pseudo-inverse, the equations can be itera-
tively solved for A, B and C

A = H(1)(C 
 B)(BT B � CT C)†

B = H(1)(C 
 A)(AT A � CT C)†

C = H(1)(B 
 A)(AT A � BT B)†

until the values of A, B and C converge. The convergence
speed depends on the initialization of the fixed matrices.
A common choice for the initialization is to use the Higher-
order SVD [10] discussed in Sect. 3.2.2.

Since H0 is now decomposed, the convolution in (10) can
be performed separately.

3.2 Efficient Nonstationary Filtering

While stationary kernels k(x − y) only depend on the differ-
ence of x and y, nonstationary kernels k(x, y) are dependent
on both arguments. Therefore, for such kernels, separable fil-
tering is not possible since the associativity no longer holds.
If we spatially discretize the integral Eq. in (9)

ϕi+1(x) = Hx ∗ (ϕi ◦ exp(f(ϕi )))x , (14)

where Hx is the discrete impulse response of k at location
x , i.e. Hxi jq = k(x, (i, j, q)T ), we see that H now depends
on x , which makes the problem nonstationary. In general,
the calculation of all the local impulse responses makes the
problem computationally unscalable. However, in the partic-
ular case where we minimize the hybrid functional (7) we
can exploit the following properties of the landmark kernel
kX to reach an algorithm which is computationally feasible.

3.2.1 Landmark Kernel Properties

The landmark kernel kX consists out of the kernel k sub-
tracted by a landmark dependent term. The difference
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Fig. 3 Tucker tensor decomposition model

between k and the full landmark kernel kX becomes neg-
ligible if

∀xi ∈ X k(x, xi ) < ξ (15)

i.e. if x is not in the neighborhood of any landmark. This
property is exploited to approximate the integral of Eq. (9)
by only considering k, the first part of the landmark kernel
kX , if the value of its second part goes to zero. We perform
the approximation in two steps:

1 At first, the whole image is filtered separately using the
stationary part k.

2 Subsequently, the nonseparable and nonstationary filter-
ing with the full kernel kX is performed, but only for pixels
where (15) is not fulfilled.

The second part is the most expensive step, because for each
point in the vicinity of the landmarks its discrete local impulse
response Hx has to be calculated. This means a cubically
increasing amount of kernel evaluations, which covers the
neighborhood of all points having landmark support, and
this in each iteration of Eq. (9). To reduce the computational
demands we propose the following caching scheme.

3.2.2 Local Filter Caching

Since the landmark kernel is nonstationary, but still time-
invariant, it is reasonable to keep the computed filter ker-
nels in memory to save computational time for the follow-
ing iterations. Jumping out of the frying pan into the fire,
the amount of memory to cache all the filter kernels grows
rapidly depending on the filter width and the number of land-
marks. Therefore, we compress these local filter kernels by
again taking advantage of tensor decomposition, before we
cache them in the memory.

As we saw in Sect. 3.1.1, the CP decomposition is obtained
by the ALS method, which is quite costly due to its iterative
nature. Because H0 has to be decomposed only once, it is
still well suited to approximate the separability of the sta-

tionary filter. However, it is too slow to decompose all the
local impulse responses Hx .

Compared to the CP decomposition the Tucker decompo-
sition [34] (see Fig. 3) is significantly faster. It is an alterna-
tive model to decompose a tensor. Similar to the CP model
the tensor is decomposed into triplets of vectors, but they are
weighted by a full so called “core” tensor.

H̃x = [[G; A, B, C]] ≡
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr ap ⊗ bq ⊗ cr ,

(16)

where gpqr are the elements of the core tensor G and P, Q, R
are the ranks for each space dimension. In this model the
unfolded tensor H is represented as

H(1) = AG(1)(C • B)T ,

where • is the Kronecker product (see A.1.3). Using the
Higher-order SVD algorithm of De Lathauwer et al. [10]

min ‖H(1) − AG(1)(C • B)T ‖
can be very efficiently minimized by setting A, B and C to
the leading left singular vectors of the corresponding mode-n
unfolding H(n)

A = U (1)
P , B = U (2)

Q , C = U (3)
R ,

where U (n)
l is the matrix consisting out of the leading l sin-

gular vectors of H(n) and G(1) = AH(1)(C • B)T .
Compared to the CP model the Tucker decomposition is a

less restricted model where the core G can be dense while in
the CP model the core is a super diagonal tensor1 with ones
on the diagonal. Although it cannot be used for separable
filter approximation due to the weighting with the dense G,
the memory savings are similar to the CP model. Setting
P = Q = R and having a filter length m, the memory
consumption reduces from m3 to R3 + 3Rm per voxel in the
support of the landmarks. In this paper we chose P, Q and
R by testing the resulting approximation performance.

3.3 Multi-Resolution Versus Multi-Scale

We presented a method to minimize the registration func-
tional (7). It is mainly based on the local iterative minimiza-
tion scheme (4). As such, it relies on a reasonable initializa-
tion and is prone to get “stuck” in local minima. In order to
deal with that, we adopt a multiresolution strategy [40]. The
support in voxels of the kernel function k implicitly increases

1 A super diagonal tensor is the generalization of a diagonal matrix to
higher order tensors, where the entries outside the main diagonal are
zero.
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Listing 1 Variational Image Registration Algorithm

1 Input: IR, IT , X, k, σ, n, L
2 Output: ϕn

3 Build image pyramid -> I 0
R, ..., I L

R , I 0
T , ..., I L

T
4 Initialize ϕ0 = I d
5

6 foreach: resolution level l
7 perform mean transformation of I l

R, I l
T using μX

8 compute and decompose H0 → A0, B0, C0 (Equation 11)
9 for i = 0...n:

10 compute force field: f l (ϕi )

11 perform separable filtering: ϕi+1 = H0 ∗ (ϕi ◦ exp(f l (ϕi ))) (Equation 10)
12 for x near a landmark in X:
13 if i==0:
14 decompose and cache Hx → gx , Ax , Bx , Cx (Equation 16)
15 else:

16 reconstruct H̃x using gx , Ax , Bx , Cx
17 perform nonstationary filtering for neighborhood of x (Equation 14)
18 set ϕ0 = upsample(ϕn) for the next resolution level

towards the lower resolution levels. Therefore, in combina-
tion with the posterior mean function μX , we use a multi-
scale kernel k̃ (cf. Opfer in [24]), which combines kernels
with different support, to compute the landmark based mean
transformation μX (6):

k̃(x, y) =
L∑

l=0

λl k
l(x, y),

where λl are positive weights and kl correspond to k with
adjusted kernel parameters per scale level l and L is the num-
ber of scale levels. The parameter e.g. for the Gaussian kernel
becomes σ l

g = σg · 2L−l . We have set the weights λl to 10−l .

3.4 The Algorithm

By joining all the previously described building blocks, we
have obtained a non-rigid image registration framework, in
which different regularizers can be implemented by conve-
niently exchanging the regularization kernel, even if it is non-
separable or nonstationary. Specifically, the landmark kernel
is supported by our framework. The diffeomorphic regular-
ization is also approximated, as shown in Eq. (14). Moreover,
we showed a multiscale approach that brings the landmark
mean together with the image-based optimization on differ-
ent resolution levels. The full algorithm which maximizes
Eq. (7) by joining all the presented concepts is provided in
Listing 1.

In the following, the performance of our filter approxima-
tion techniques is evaluated in detail, while we also provide
a qualitative hybrid registration example.

4 Results

We presented a method which enables an efficient approx-
imation of the optimization scheme in Eq. (9). In this sec-
tion, we perform registration experiments for validating our
method. First, we provide a detailed study about the separa-
ble filter approximation and discuss its approximation per-
formance in terms of accuracy and computational aspects.
Second, we analyze the local filter compression with respect
to memory consumption, computational demands as well
as approximation accuracy. We compare our method with
Elastix [17], where the landmarks are incorporated as an
additional cost term to the functional (1). This is followed
by a qualitative result of the introductory patellar surface
example. Likewise, we compare these results with Elastix.
In an additional section we discuss the landmark based mean
transformation μX in more detail.

As quality measurement, we use the target registration
error (TRE), the dice coefficient (DICE) and we count sin-
gularities of the displacement fields, which is the number of
voxels where the determinant of the Jacobian is smaller than
zero. To compare two displacement fields A and B for each
vector pair, we consider the magnitude differences and the
vectors directional discrepancy. Following that, we define the
accuracy loss:

τ(A, B) =
∫

�

(‖A(x)‖ − ‖B(x)‖)2 (17)

+
∥∥∥∥ A(x)

‖A(x)‖ × B(x)

‖B(x)‖
∥∥∥∥

2

dx,

where τ(A, A) = 0 and greater than zero for dissimilar dis-
placement fields.
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Fig. 4 This figure shows the image error averaged over all nine experi-
ments for approximation rank one to four as well as for the exact method.
For each experiment the mean error is plotted as well as ± one standard

deviation in a solid style and the max/min as a dashed curve. In the last
subfigure the averages for all variants are again shown in one plot

Since we only compare different regularizers and their
approximations, we use for all experiments, the sum of
squared differences similarity measure

D[IR, IT ,ϕ] :=
∫

�

(IT ◦ ϕ(x) − IR(x))2 dx .

Following Thirion [33], we perform second order gradient
descent on D and obtain the forces

f(ϕ(x)) = − (IT ◦ ϕ(x) − IR(x))∇ IT ◦ ϕ(x)

κ2 (IT ◦ ϕ(x) − IR(x))2 + ‖∇ IT ◦ ϕ(x)‖2
,

with κ2 the reciprocal of the mean squared image spacing.
Generally, we set the prior mean function μ always to a

rigid pre-alignment of the images.
We implemented our algorithm by extending the finite

difference solver framework of the Insight Toolkit [39] and
performed the experiments on an Intel Xeon CPU @ 3 GHz
on 12 cores.

Elastix Configuration For the registration with Elastix [17]
we used the B-spline transformation model combined with
the mean squares metric and an LBFGS optimizer. For the
landmark examples we combined the mean squares metric
with the “Corresponding Points Euclidean Distance Metric”
which is equivalent to the target registration error.

4.1 POPI Breathing Thorax Model

In this first experiment, we show quantitative results by dif-
ferent approximation ranks of the nonseparable exponential
kernel (α = 1) without considering landmarks. The filter
H0 has been discretized in a 233 voxel neighborhood. We
compare the results to the exact method, which is obtained
with the same kernel, but without separable filtering. We
used the POPI dataset provided by the Léon Bérard Can-
cer Center & CREATIS lab, Lyon, France [36], which con-
tains 10 CT images of a breathing lung. The images have
a resolution of 482 × 360 × 141 voxels and a spacing of
0.98 × 0.98 × 2 mm3. For our experiment, the images have
been resampled to 235 × 175 × 141 voxels and scaled to
isotropic spacing at 2 mm3. In the experiment, we have cho-
sen the image number 0 to be the reference image, while we
calculated the experiments on a single scale. We repeated the
experiment by increasing the rank R of the separable filter
approximation from one to four. R = 1 corresponds to the
rank-one approximation used in Beuthien et al. [4] which
serves us as baseline. The exact method corresponds to the
algorithm of Long et al. [19] extended to 3D.

In Fig. 4, we illustrate the image error averaged over the
nine registrations changing during the optimization for each
experiment. In the first three experiments the convergence
rate decreases with increasing rank R, while the resulting
image error is getting smaller. One can also observe that for

123



254 J Math Imaging Vis (2014) 50:246–260

Table 1 This table provides information about convergence properties
with different approximation ranks

Approximation rank R = 1 R = 2 R = 3 R = 4 None

Iterations to
converge

20 44 68 68 63

Final average
image error

3588 2524 1808 1799 1737

Accuracy loss 1.0033 0.6407 0.2299 0.2250 0.0000

Relative CPU time 0.08 0.17 0.25 0.33 1.00

The iterations to convergence in the first row were computed as the
number of iterations until the average image error change deceed the
value 3. The accuracy loss is calculated by using τ(A, B) in Eq. (17)
between A the resulting and B the exact method transformation

R ≥ 3 the image error stays nearly the same and is close to
the exact method. Moreover, the variance of the image error
is getting more narrow with higher R. It can be assumed
that for R > 4 no significantly improved approximation can
be achieved. For a better comparison, all mean curves are
again shown together in the last plot. Furthermore, in Table 1,
the results of the experiments are summarized in numerical
terms. Evaluating the accuracy loss (17) between the approx-
imations and the exact method, higher rank approximations
reach greater accuracy. The CPU time is considerable high
for the exact method. With a third of the effort, we achieve
a good approximation, accepting only a very small loss of
accuracy. For a more detailed comparison, we repeated the
whole experiment again on different scale levels. The results
are listed in Table 2 and the upper part of Table 3. Note that
all quantities are averaged over the nine experiments.

The results show that for nonseparable kernels, a one-
rank approximation is not accurate enough to approximate
the filter’s regularization property. With increasing rank, the
calculation time gets larger. The increase is linear in R. Since
the resulting image error as well as the convergence proper-
ties using R = 4 do not significantly differ from the exact
method, we think that 4 ranks are sufficient to approximate
the exponential kernel separably.

For a meaningful comparison to Elastix, we performed
three experiments. First, the smoothness parameter σB−spline

of the B-spline transform has been tuned to a small TRE
(σB−spline = 4). Second, σB−spline was tuned in order that
no singularities are present in the result, but simultaneously

for a TRE which is as small as possible (σB−spline = 16).
Finally, the parameter was chosen for a resulting transforma-
tion, which are approximately as smooth as the ones obtained
by our method (σB−spline = 64). To quantify the smoothness
of a displacement field A we integrate over the local displace-
ment changes:

υ(A) =
∫

�

∫

Bx

‖A(s) − A(x)‖dsdx,

where Bx is the neighborhood around x with radius 1. The
results in Table 3 show, that you can’t have your cake and
eat it too. In Elastix there is a trade-off between the TRE
and the smoothness of the transformation. σB−spline can be
tuned for a small TRE accepting a less smooth transforma-
tion or it is chosen such, that the resulting transformation is
smooth, but with a higher TRE. However, our method reaches
significantly smoother transformations compared to Elastix
with a similar TRE. Since we regularize for diffeomorphic
transformations it was expected, that compared to Elastix
using a small smoothness parameter, no singularities will be
present in the results. As soon as we increase σB−spline such
that the transformations are as smooth as in our method,
the TRE and DICE performance drops dramatically for
Elastix.

To quantify the efficiency of our filter caching approach,
we performed the experiments once more, but included 21
landmarks provided in the POPI dataset. The landmark uncer-
tainty was set toσ = 0.02. For comparison, the exact method,
which combines the separable filtering and the landmarks,
does no compression. In Table 4, the average resources
needed for each experiment are listed. As expected, for the
Tucker decomposition, slightly more CPU time is needed.
However, it is negligible compared to the memory savings
reached with this compression. Furthermore, the approxima-
tion of the local filter kernels is nearly perfect resulting in a
very small loss of accuracy. The most CPU intensive part in
each experiment is the 1st iteration, because initially, all local
filter responses have to be calculated. Without the caching
scheme therefore, the overall CPU time would explode to
CPU weeks.

To compare our hybrid results with Elastix, we performed
the hybrid B-spline registration twice, using a small resp. a

Table 2 This table provides information about the computational time needed for the different experiments

R = 1 R = 2 R = 3 R = 4 Exact method Voxels

CPU time for level 0 (h) 0.21 0.41 0.61 0.83 3.69 87290

CPU time for level 1 (h) 1.81 3.54 5.18 7.01 25.71 712530

CPU time for level 2 (h) 13.88 27.28 40.23 53.19 159.13 ≈ 1 week 5798625

To show the time complexity depending on the number of voxels in the image, we calculated the experiments on three different scale levels and
performed 100 iterations per level. The timing is given in average CPU hours needed to perform one registration
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Table 3 In this table we show
the performance evaluation of
the POPI experiment with and
without landmarks

In our method we used the
exponential kernel as
regularizer. For comparison, in
Elastix we used the B-spline
transformation model

Method Landmarks TRE Singularities υ(A) DICE CPU
time (h)

Rigid alignment n/a 1.673 ± 1.062 0 n/a 0.959 n/a
Exponential kernel (R = 1) Excl. 1.419 ± 1.059 0 0.094 0.966 15.51

Exponential kernel (R = 2) Excl. 1.027 ± 0.801 0 0.117 0.974 30.24

Exponential kernel (R = 3) Excl. 0.588 ± 0.158 0 0.146 0.981 45.99

Exponential kernel (R = 4) Excl. 0.584 ± 0.149 0 0.148 0.981 59.49

Exponential kernel (exact) Excl. 0.579 ± 0.103 0 0.198 0.981 188.47

Elastix (σB−spline = 4) Excl. 0.540 ± 0.104 6143.8 0.861 0.987 2.24

Elastix (σB−spline = 16) Excl. 0.601 ± 0.150 0 0.398 0.981 2.25

Elastix (σB−spline = 64) Excl. 0.819 ± 0.308 0 0.154 0.974 2.23

Exponential kernel (Tucker) Incl. 0.484 ± 0.127 0.4 0.144 0.981 80.1

Elastix (σB−spline = 4, w = 1) Incl. 0.411 ± 0.086 6255.8 0.859 0.987 2.42

Elastix (σB−spline = 4, w = 64) Incl. 0.024 ± 0.001 2565.9 0.624 0.987 2.41

Elastix (σB−spline = 16, w = 1) Incl. 0.535 ± 0.089 869.8 0.544 0.984 2.95

Elastix (σB−spline = 16, w = 64) Incl. 0.159 ± 0.042 948.0 0.534 0.984 2.96

Elastix (σB−spline = 64, w = 1) Incl. 0.814 ± 0.303 0 0.156 0.974 2.35

Elastix (σB−spline = 64, w = 64) Incl. 0.796 ± 0.300 0 0.154 0.974 2.34

Table 4 The table provides information about resources needed to perform the experiments

� Scale level Overall CPU
time (h)

CPU time
1st iteration (h)

Memory (GB) Masked
voxels

Accuracy
loss

Without 0 4.05 2.32 10.17 29249 0

1 9.85 2.63 18.58 54933 0

2 58.89 5.60 28.61 84424 0

Tucker 0 5.12 2.51 1.11 29249 6.46 × 10−5

1 12.48 3.22 1.44 54933 2.32 × 10−5

2 66.84 6.48 2.55 84424 9.69 × 10−6

For the upper part of the table, no Tucker decomposition of the local filter kernels was performed. In the lower part, the local filters were decomposed
using the Tucker decomposition to save memory during caching. Hx was discretized on a 233 neighborhood. The approximation ranks were set to
P = Q = R = 5. The masked voxels are the ones, which are in the support of the landmarks. The support limit ξ was set to 10−6.

large weight w for the landmark cost term (see Table 3).
A large weight results in a smaller TRE while the over-
all smoothness decreases. Several singularities are present
in the Elastix results, while the singularities in our method
are negligible. The major advantage of our method becomes
apparent with the overall smoothness. Despite the land-
mark consideration it is much higher than in the Elastix
experiment.

The TRE could be decreased, but regarding the small
uncertainty on the landmarks we would have expected a
smaller landmark error. This discrepancy originates from the
discretization of the mean transformation μX , which in this
experiment leads to a TRE drift of 0.264 ± 0.121.

TREdrift = TRE(μXdiscretized) − TRE(μXexact)

Compared to the experiment in Sect. 4.2 where the resolution
is about twice as high the discretization error results in a TRE

drift of 0.056 ± 0.002, which is negligible. Therefore, the
mean transformation should be discretized on a finer grid.

A note on the parallelization Since our method is based
on image filtering, it is well suited to perform the filter-
ing for each voxel in parallel. Hence, the standard paral-
lelization framework of ITK could directly be used to speed
up the calculations. We performed the experiments with
24 processes and reached an average speedup between 15
and 18 as listed in Table 5. Because the landmarks are not
evenly distributed over the image domain, the work load is
also not evenly distributed to the processes. Therefore, we
reached a lower speedup in the hybrid registration experi-
ment. The actual time needed to perform the experiments is
the CPU time listed in Tables 1 and 2 divided by the speedups
listed in Table 5. For example, calculating the 9 registrations
on level 2, the exact method took us 2.5 days instead of
8.5 weeks.
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Table 5 The speedups were calculated by Time (1 process) − Time (24 processes)

Time (24 processes)

Level Speedup (landmarks excl.) Speedup (landmarks incl.)

0 13.8 11.3

1 17.7 12.4

2 17.9 14.9

Therefore, an optimal full parallelizable algorithm would have a
speedup of 23, using 24 processes

4.2 Patellar Surface Registration

We further performed a 3D experiment registering two femur
shapes. The challenge with this kind of data is that the border
of the patellar surface is potentially hard to recognize and its
variation can be quite large, such that an accurate registration
of the patellar surfaces using fully automatic algorithms is
difficult. We obtained the patellar surfaces of the target and
reference bone from an expert. By incorporating well-chosen
landmarks, we can force our algorithm to register even the
patellar surface correctly. The shapes were represented as

signed distance images of 353 × 327 × 491 voxels (isotropic
spacing 0.57 mm3) and registered on 5 scale levels. For k
we used the Gaussian kernel with σg = 1 and a landmark
uncertainty of σ = 0.3 × 10−3. We approximated the land-
mark kernel kX with P = Q = R = 5. For illustration, we
performed the experiment once without landmarks and once
including the landmarks.

In Fig. 5, the warp fields are shown resampled on the bone
surface depicted as arrows. Especially at the upper border of
the patellar surface, one can see the strong impact of the
landmarks. In Fig. 6, we plotted the warped reference shape
including the dark gray marked part. Without considering the
landmarks, the border of the patellar surface is clearly mis-
aligned, while it is correctly registered when the landmarks
are incorporated.

We performed the same experiment with Elastix and sum-
marized the results in Table 6. The parameters of the hybrid
B-spline registration were tuned concerning the TRE and
DICE performance measures. While Elastix brings the TRE
down to nearly zero a very large amount of singularities are
present in the resulting transformation and the Dice coeffi-
cient is rather low. Our method reaches a small TRE as well.

Fig. 5 The figures show the warp field resampled on the reference’s surface, depicted as arrows. First row registration was performed without
landmarks. Second row registration was performed including the landmarks (Color figure online)
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Fig. 6 The figures show the warped reference shape including the col-
ored patellar surface. First row registration was performed without land-
marks. Second row registration was performed including the landmarks.
Third row ground truth target shape

Table 6 Quantitative measures of the femur example

Method TRE Singularities υ(A) DICE

Rigid aligned 12.268 ± 13.627 0 0 0.797

Diffeomorphic
demons

13.722 ± 31.546 0 0.250 0.989

Elastix (σ = 1,
w = 1)

0.005 ± 1.199 20703 0.314 0.973

Our approach 1.225 ± 1.328 48 0.251 0.990

Bold values indicate the best result for the measurement

Furthermore, the singularity count is very low, the DICE quite
high and the displacement field smooth.

4.3 Smooth Mean Displacement

Since we can force multiple reference landmarks to match
one single target landmark by setting σ equal to zero, μX is
not guaranteed to be invertible. In Fig. 7, an artificial example
is shown where a grid is transformed by the mean displace-
ment using different σ . Setting σ equal to zero, or too small,
results in unfavorable folds and barely make sense in real
world medical problems. Therefore, in our patellar surface

experiment, we have chosen the parameters such that folds
in μX hardly ever occur. The mean transformed reference
shape is shown in Fig. 8, where no holes can be identified on
the surface.

Nevertheless, an inverse transformation can be obtained
using the fixed-point approach of Chen et al. [7], where
the inverse is iteratively approximated. An entirely different
approach could be to perform diffeomorphic point matching
[2,9,12,13] for obtaining a invertible mean displacement.
This will be addressed in future work.

5 Conclusion

In this paper, we implemented an efficient variational image
registration framework, where a large variety of positive def-
inite kernels can be used for regularization. Compared to
standard approaches, we are able to accurately approximate
separable filters for nonseparable regularizers in order to
relax the computational demands. With less than a third of
the computational effort, we approximate the true regular-
ization with a very small loss of accuracy, while the rank-1
approximation is three times faster but results in a accuracy
loss which is one order of magnitude larger. Furthermore,
using an efficient nonstationary filtering scheme, we allow
for location-dependent regularization. This enables us to per-
form hybrid landmark and image registration by utilizing the
landmark kernel which incorporates landmark displacements
as prior knowledge. For this purpose, accepting little more
computational time, we can reduce the memory usage by
at least one order of magnitude. Additionally, we added the
diffeomorphic constraint on the resulting transformation. Its
approximation does not significantly change the optimization
scheme. The comparison with the hybrid B-spline registra-
tion shows, that our method results in smoother displacement
fields even if landmark displacements are incorporated. We
also discussed challenges associated with the invertibility
of the landmark based transformation. An additional prior
on this transformation, which ensures invertibility, similar to
[2,12], would further improve the registration. This will be
addressed in future work.

Appendix

Matrix Products

Khatri-Rao Product

Given a matrix A ∈ IRm×q and a matrix B ∈ IRn×q , the
Khatri-Rao product of A and B is the matching column-wise
Kronecker product

A 
 B = (a1 • b1, a2 • b2, · · · aq • bq) ∈ IRmn×q .
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Fig. 7 Transformed grid (200 px2 and isotropic spacing of 0.1 mm2)
with mean displacement using the Gaussian kernel (σg = 6). There
are three landmarks defined as reference and target points (red refer-
ence, green target, the yellow ones are equal for both). The uncertainty

on the landmarks is increased for the experiments from left to right
(σ = 0, 0.5×10−3, 0.75×10−3, 0.1×10−2, 0.25×10−2). The arrows
illustrate to which location a point is transformed by the displacement
field (Color figure online)

Fig. 8 The figures show the warped reference shape by the mean trans-
formation using the multiscale kernel k̃ with five scale levels. Overall
the shape looks the same as the reference except in the regions of the
landmarks. There we have a smooth transformation to the target

Hadamard Product

Given a matrix A ∈ IRm×n and a matrix B ∈ IRm×n , the
Hadamard product of A and B is the point-wise matrix prod-
uct

A � B =

⎛
⎜⎜⎜⎝

a11b11 a12b12 · · · a1nb1n

a21b21 a22b22 · · · a2nb2n
...

...
. . .

...

am1bm1 am2bm2 · · · amnbmn

⎞
⎟⎟⎟⎠ ∈ IRm×n .

Kronecker Product

Given a matrix A ∈ IRm × IRn and a matrix B ∈ IRq × IRr ,
the Kronecker product of A and B is given as

A • B =

⎛
⎜⎜⎜⎝

a11 B a12 B · · · a1n B
a21 B a22 B · · · a2n B
...

...
. . .

...

am1 B am2 B · · · amn B

⎞
⎟⎟⎟⎠ ∈ IRmq×nr .
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