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Abstract: In this work an overview of the local mo-
tion planning and dynamic perception framework within
the V-Charge project is presented. This framework en-
ables the V-Charge car to autonomously navigate in dy-
namic mixed-traffic scenarios. Other traffic participants
are detected, classified and tracked from a combination
of stereo and wide-angle monocular cameras. Predictions
of their future movements are generated utilizing infras-
tructure information. Safe motion plans are acquired with
a system-compliant sampling-based local motion planner.
We show the navigation performance of this vision-only
autonomous vehicle in both simulation and real-world ex-
periments.

Keywords: Automotive, autonomous navigation, motion
planning, environment perception.
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Computing methodologies — Artificial intelligence —
Computer vision — Computer vision tasks — Vision for
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1 Introduction

Autonomous navigation in mixed-traffic scenarios re-
quires a broad spectrum of robotic disciplines like localiza-
tion, perception, classification, motion planning and con-
trol to perform at their peak. The vehicle needs to precisely
perceive its local surrounding and compute safe motion
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plans at a high rate in order to react quickly to unfore-
seen events. Those components experienced significant
advances within the last decade - especially since the im-
petus of the DARPA Urban Challenge in 2007 [1-4]. Since
then, effort from various groups was spent to bring au-
tonomous driving capabilities to public streets. With their
BRAIVE platform [5], the Artificial Vision and Intelligent
Systems Laboratory (VisLab) successfully demonstrated
autonomous navigation in rural roads, highways and ur-
ban environments during the PROUD run [6]. BRAIiVE’s
sensor setup consisted of in total ten cameras, five laser
scanners and a GPS+IMU solution. Carnegie Mellon’s
Cadillac SRX completed a 53 km long route on public roads
without human intervention [7]. Similar to VisLab’s au-
tonomous vehicle, Carnegie Mellon’s self driving car uti-
lized a mixture of laser scanners, lidars and cameras.
Daimler’s “Intelligent Drive” system autonomously drove
103 km on rural roads, small villages and major cities us-
ing a combination of vision- and radar sensors [8] and
Google’s self driving cars spent remarkable 1 126 500 km
on public US streets in autonomous mode up to now [9].
For environment perception, all the above mentioned
platforms complemented vision sensors with other po-
tentially costly sensors such as laser scanners, lidars or

Figure 1: The V-Charge autonomous vehicle platform.
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radars. Within the European project V-Charge (Automated
Valet Parking and Charging for e-Mobility) the applica-
tion of low-speed autonomous driving in restricted park-
ing areas with low-cost vision sensors only is targeted.
Low-cost sensors already available in series cars will lower
the consumer price for the additional autonomous navi-
gation functionality and in the end lead to a higher cus-
tomer acceptance of those systems. As legal issues might
prevent the acceptance of autonomous vehicles in pub-
lic traffic for a foreseeable time, the project aims at the
application of autonomous functionality in restricted ar-
eas such as parking lots. Here, automated vehicles consti-
tute a convenient solution for approaching vacant parking
spots and charging stations (electric vehicles) and provide
a valuable drop-off/pick-up service at the entrance of the
parking lot.

The V-Charge vehicle features static obstacle avoid-
ance as well as the handling of mixed-traffic scenarios
where automated and human-operated cars share a com-
mon workspace and have to interact with each other. Nav-
igation has to be accomplished in tight spaces with pedes-
trians and other vehicles in close proximity to the ego ve-
hicle. These tasks are accomplished with a sensor suite
solely comprised of two stereo cameras, four monocular
wide angle fisheye cameras, twelve stock ultrasonic sen-
sors and incremental encoders at the vehicle’s wheels.
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2 System overview

A high-level overview of the V-Charge system is depicted in
Figure 2. From left to right the processing chain is visual-
ized starting with the sensor data and eventually resulting
in system inputs to the vehicle. The key sensors to perceive
the environment are the front stereo camera as well as the
front and side monocular cameras. Specifications and cov-
erage information are illustrated in Figure 3. The rear fish-
eye stereo sensor as well as the ultrasonic sensors are used
for close-range obstacle detection during parking maneu-
vers. The ultrasonic sensors additionally serve as the in-
put to an emergency brake module. The 2.5D stixel output
of the front stereo sensor is on the one hand used to cre-
ate a two-dimensional (2D) occupancy grid of the environ-
ment, containing static information only. Stixels assigned
to dynamic objects are removed from the grid. On the other
hand, together with the images from the front monocular
camera, it forms the input of the “Stereo Classification”
module, which groups stixels to objects and assigns class
labels to them from a database of known object classes.
This module is described in detail in Section 3. The clas-
sified objects are tracked with an extended Kalman filter,
applying suitable motion models for propagation based
on the classification result. Once classified and tracked,
predictions of the future movement of objects are gener-
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Figure 2: Overview of software modules involved in on-lane navigation. The processing chain reaches from raw sensor data (left) to the

system inputs sent to the platform (right).
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monocular cameras
resolution:
fov:
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185°

front mid-range

max. range: 45
used range: 25
fov: 45°

4m
120°

range:
fov:

ated, taking into account the object’s dynamic model and
further infrastructure information such as the road net-
work stored in a semantic map database. The “Local Mo-
tion Planning” module described in Section 4 computes
a safe motion plan based on the latest perceptual informa-
tion and forwards the plan in form of a time-stamped se-
quence of reference states plus feed-forward system inputs
to an underlying “Control” module. The “Control” mod-
ule takes care of correcting modeling errors from the “Lo-
cal Motion Planning” module. The system inputs from the
control module are fed back to the local motion planner to
correctly propagate the system states during the expected
cycle time of the planner and to model system dead times.

3 Stereo object classification

To better understand the surrounding environment and
predict its evolution over time, it is important to distin-
guish between static obstacles and dynamic objects, as
well as between different object types. Our approach is
similar to the one presented in [10]. A classifier is used to
detect pedestrians and vehicles, and stereo stixel informa-
tion is used to increase both accuracy and computational
speed. In contrast to [10], we utilize stixel information from
the stereo sensor to obtain object hypotheses via an initial
clustering step. A class label from a database of dynamic
objects is then assigned to each object hypothesis using
a classifier operating on monocular fisheye images trained
on publicly available datasets. Though the current object
database only contains pedestrians and vehicles, adding
more classes is a straightforward process.
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Figure 3: Schematic sensor coverage
of the V-Charge setup suite.

3.1 Unwarping of fisheye images

As the front stereo system has a limited field of view,
nearby objects are potentially only partially visible with
the stereo sensor, whereas they still appear in the field of
view of the front fisheye camera. This can happen for in-
stance if a pedestrian is walking close to the front of the ve-
hicle. The stereo system will still detect the pedestrian, but
its upper part is outside the stereo system’s field of view. By
projecting stixels from stereo hypothesis in the wide-angle
images obtained by the front fisheye camera, the stereo ob-
ject classification is able to utilize the full information of
the wide-angle monocular view.

Fisheye lenses provide very large wide-angle views —
theoretically the entire front hemispheric view of 180" —
but the images suffer from severe distortion since the hemi-
spherical scene gets projected onto a flat surface. To cor-
rect the fisheye lens distortion, the image is reprojected
onto a virtual plane in order to obtain a pinhole image, as
shown in Figure 4.

3.2 Classification

Each object class stores suitable ranges for the object’s size
and aspect ratio. Those restrictions are used in a pre-filter
step to eliminate hypothesis not coherent with the specific
class characteristics. Each object passing the pre-filter step
is projected onto the pinhole image and, for each candi-
date object class, a region of interest (ROI) is computed.
This process takes into account several factors: the object’s
distance and its dimension in the image domain, the class

Brought to you by | Universitaetsbibliothek Basel
Authenticated
Download Date | 4/29/19 4:18 PM



234 =— U.Schwesinger et al., Vision-only fully automated driving

1

Figure 4: Example of a front fisheye camera image (on the left) and
the related un-warped image used in the “Stereo Object
Classification” stage (on the right). The left figure depicts the virtual
plane used to obtain the pinhole image. For classification, object
hypothesis are projected onto the pinhole image in order to define a
ROI for the classifier. The ROI for the vehicle class is depicted in red,
whereas the ROI for the pedestrian class is marked in green.

aspect ratio and the extrinsic calibration of the camera. An
example of the output of this step is shown in the right part
of Figure 4.

Every ROI is classified by a Soft-Cascade + ICF classi-
fier to assign a label to the related hypothesis. The classi-
fier is based on the improved version of the Integral Chan-
nel Feature (ICF), where a soft-cascade technique is used
to speed up the algorithm and reduce CPU load [10]. The
classifier differs from [10] since no LUV color channels are
available. ICF are more discriminative than e. g. Haar fea-
tures [11], providing a faster rejection of false positives and
resulting in a higher detection rate and faster computation
times. In our approach, a shared pre-processing phase be-
tween pedestrian and vehicle detection is used to further
speedup the detector.

One classifier with a dimension of 38x38 pixels is used
for vehicles, whereas a 32 x 64 pixels and a 48 x 96 pixels
classifier are used for pedestrians. For each classifier four
scales are computed in total. We decided to use two clas-
sifiers with different dimensions for pedestrians in order
to be able to classify small objects and to be accurate in
close proximity to the car at the same time. Figures 14 and
13 visualize the result of this module during online naviga-
tion, where each classified object is marked with a colored
bounding box according to the assigned object class (red:
vehicle, green: pedestrian). Classify only these ROI signifi-
cantly reduces both false positives and computation time,
as it is shown in [10].
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4 System-compliant motion
planning among other traffic
participants

The information from static environment perception, ob-
ject prediction and a high-level plan from a topological
planner operating on the roadgraph data structure are pro-
cessed in a fast on-lane local motion planner, first pre-
sented in [12]. The local motion planner handles both static
and dynamic mixed-traffic scenarios such as pedestrian
avoidance, oncoming traffic and platooning.

4.1 On-lane motion planning

The local motion planner operates in a sampling-based
manner, generating numerous system-compliant candi-
date motions along a reference path in a tree-like fash-
ion. This trajectory roll-out scheme is widely used for
automotive applications [2, 13, 14], however differs from
these related works in the way candidate motion primi-
tives are constructed. Instead of using geometric primi-
tives or parametrized functions that might not conform
with the non-holonomic system model of a car and have to
be pruned from the candidate motion set at a later stage,
the candidate motions in this approach are constructed
via a forward simulation of a detailed Ackermann vehicle
model. In conjunction with a simulated controller, regulat-
ing the system towards samples of a manifold aligned with
the reference path, these candidate motions are drivable
by construction and the approach is able to model chal-
lenging system characteristics such as dead times and ac-
tuator limits easily. The computation time of the forward
simulation is compared to the computational burden of
collision detection still low.

During tree generation, samples m = (d ef, Ureps Ky rer)
are iteratively drawn from a set M of a discretized state
manifold and used as target states for closed-loop sys-
tem control, where (def, Ues, K, ef) Stand for a desired lat-
eral offset, a desired speed and a proportional gain for
a simulated velocity controller respectively. The state man-
ifold consists of all states that are heading- and curvature-
aligned with the global reference path. A candidate mo-
tion is then constructed using a user-supplied vehicle
controller g, that generates a sequence of system inputs
u(t) = g(x(t), m) to regulate the forward-simulated sys-
tem model f, with

x(t+A) = f([x@®),x@),...]1,u®),t,A) 1)
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Figure 5: Navigation in the presence of localization errors in lateral
direction (top, 1 m) and orientation (bottom, 7°).

towards the sample m over a fixed time period, Tg.
Through the forward simulation of the vehicle model, the
approach is able to handle discontinuities in the reference
path. If localization errors occur in lateral direction, local
obstacle information is usually sufficient to keep the vehi-
cle operable as lateral adaptations are inherently encoded
in the candidate motion set, provided that lane width in-
formation does not prevent the vehicle from performing
the required lateral adjustment. Localization errors in ori-
entation have more severe effects as depicted in Figure 5.
However, localization errors in the V-Charge system are
small (lateral < 2 cm, orientation < 1.5°) thanks to the ma-
ture visual localization framework [15, 16].

The computational complexity of the approach in-
creases exponentially with the depth of the tree. In the V-
Charge project a tree with depth one is used, which proved
to be sufficient for good navigation performance. An exem-
plary candidate motion set is depicted in Figure 9.

4.2 Collision detection with static and
dynamic scene elements

Fast collision detection is the bottleneck for many motion
planning algorithms.

In order to test candidate motions for collision with
static objects a 2D occupancy grid is used. The rectangu-
lar shape of the ego vehicle is approximated by a collec-
tion of N disc shapes [17]. The quality of the approxima-
tion of the rectangular shape improves with the number
of discs used. This allows for fast collision tests of ego
poses via N comparisons on a distance transform of the
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gridmap. Candidate motions in collision with a static ob-
stacle at any point within the planning horizon are pruned.
For collision-free trajectories, a soft cost term based on the
minimum distance of the candidate motion to any static
obstacle over time is computed. In our implementation the
cost term decreases linearly up to a specified threshold dis-
tance.

The collision detection technique based on a 2D map
inflation is applicable only for static objects where the time
parameter is negligible. However moving objects may oc-
cupy the same space at a different point in time. While
the majority of previously presented planning frameworks
operating in dynamic environments use a naive multiple
interference test for collision detection with moving ob-
jects where every robot pose is tested against every ob-
stacle and single disk approximations are used for all ob-
jects, we found this method to be inappropriate for navi-
gation in fairly densely occupied spaces. The disc approxi-
mation is often too coarse and causes an unacceptable loss
of space for navigation. Furthermore multiple interference
tests with exact collision shapes (e. g. oriented boxes for
vehicles) are already too slow for online operation with
a fairly small amount of dynamic objects in the scene.
In [18] we presented a fast and exact collision detection
technique for moving objects based on a bounding volume
hierarchy (BVH) data structure in workspace-time space.
In our approach we utilize an axis-aligned bounding box
tree to efficiently prune the majority of oriented bound-
ing box collision tests. This technique allows us to run the
sampling-based motion planner at a frequency of 5 Hz. An
exemplary tree is depicted in Figure 6.

In contrast to static obstacles, candidate motions in
collision with dynamic objects are not pruned from the set.

t LI"’_/
y X

Figure 6: Axis aligned bounding box tree in workspace-time space
for fast dynamic collision detection. Three obstacle trajectories are
generated by a random walk (blue shades). The ego trajectory
(green/red) can be efficiently tested for collision with the tree
structure (wireframes).
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Table 1: Cost terms used in the local planning framework.

DE GRUYTER OLDENBOURG

Cost term Effect

Formula

Terminal path and speed offset
ment at the end of the solution

Integrated path offset
sharp turns

Integrated speed offset
profile

Static obstacle distance
perception noise

Deviation to last solution

lane and target speed keeping, enforces align- It =

lane keeping, the integral avoids short-cutting in

target speed keeping along the reference speed

Yields safety distance and resilience to

Regularization term resolves nearby minima of
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)/

T
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the cost function, leads to smooth behaviour

over consecutive planning cycles

Integrated control effort
behaviour

Dynamic collision

Lower energy consumption and smoother

Collision avoidance for dynamic objects, based on
time to collision T,. Customizable cutoff 8.

Ts;

sim

juT(t)w u(t) d
0

0, otherwise
with T, =

c,min

,Bexp( Y( cmln_s))’ ":Tcmlnz‘S
]do

min _(T;)

ie[LNdynohs]

Instead, an additional “soft” cost term based on the es-
timated time to collision is introduced. This accounts for
the fact that motion predictions of other traffic participants
are inherently subject to uncertainty. Predictions become
more uncertain the farther they are in the future. Therefore
a cost term with exponential decay over time, J,,, is used
(see Table 1).

4.3 Objective function design

For each candidate motion a scalar cost value is computed
which is comprised of different terms. In the V-Charge
project significant effort was spent to design an objective
function that performs well in both static and dynamic en-
vironments. Each candidate motion is scored with respect
to its alignment with the reference path and the lane’s ref-
erence speed. Furthermore cost terms are introduced for
soft penalization of close distances to static obstacles, in-
tegrated steering speed and collisions with dynamic ob-
jects. The cost terms and their motivations are summarized
in Table 1, where w;, w, and w, are user-supplied weight
vectors, c(t) denotes the curvilinear abscissa along the ref-
erence path associated with the vehicle pose at time ¢ and
m,_, is the optimal sample in the previous planning cycle.
For a more intuitive tuning of the weights, the individual

cost terms are normalized to lie within the range [0, 1] (this
requires the cost of all candidate motions’ cost terms to be
available). The final cost of a candidate motion for sample
m,, is computed via a weighted sum of the cost terms via

norm (Jy (m,))
norm (Jiq (m,))
norm (J, (m,))
J(my) =w," | norm (J, (m,) = J50) | @
norm (]reg’n
norm (J,,,)

L Gd (]do,n) .

In the following we will discuss certain aspects of a subset
of these cost terms in more detail.

Static obstacle distance cost term

In Equation (2), Jg, 4 = {Jso(my,) | m € M,my = m,, 4} is
the minimal static obstacle cost of all samples with the
same lateral offset d,; as sample m,,. This yields a static
obstacle cost term of zero for the sample with the largest
minimum distance to any obstacle. Without this modifi-
cation, narrow passages appear as high cost regions. De-
pending on the ratio between the static obstacle weight
and the weights influencing the longitudinal speed terms,
the cost function might score candidate motions coming to
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Figure 7: Influence of static obstacle distance cost term. The red
track depicts the navigation behaviour without the cost term.
Obstacles are passed without safety distance. The blue track shows
navigation with active static obstacle distance penalization,
resulting in a safe and comfortable avoidance of the object.

Figure 8: Influence of the post-processing step J, (m,) - J3, 4
applied to the static obstacle cost term to improve navigation
performance in narrow passages. Without the modification, the
vehicle denies to pass the narrow passage (red track).

a full standstill in front of the narrow passage better than
motions passing the high cost region induced by the static
obstacle cost term. The modification encodes the intention
to keep a safety distance to static obstacles if possible, but
does not penalize close distances if the navigation space
gets tight. This behaviour is depicted in Figures 7 and 8.

Dynamic collision cost term

The dynamic collision detection framework returns binary
answers to collision queries between candidate motions
and predicted trajectories of other traffic participants. This
results in an ego motion passing objects with the minimal
realizable distance, rendering the planning stage vulnera-
ble to measurement noise and resulting in maneuvers be-
ing perceived as risky. While the BVH-based collision de-
tection framework provides the possibility for accelerated
distance queries between objects’ trajectories, this comes
with a significant computational overhead compared to bi-
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nary collision tests. Inspired by [19], we instead use a Gaus-
sian smoothing filter G; over the dynamic object cost term
in the lateral offset dimension d. The filter blends costs
from collisions into neighboring candidate motions, yield-
ing the desired side clearance without the necessity to per-
form expensive distance queries. The dynamic object cost
term is excluded from the normalization procedure due
to its safety-critical nature. The resulting navigation be-
haviour is illustrated in Figure 9 in a simulated run. In the
beginning (upper figure), the candidate motions to the left
of the blue ego vehicle already collide, however the impor-
tance of the collision is low due to the exponential cost de-
cay. The closer the oncoming car approaches (middle fig-
ure), the higher the cost of the colliding candidate motions
becomes and the ego vehicle initiates the avoidance ma-
neuver. After passing the oncoming vehicle (lower figure),
the ego vehicle maneuvers around two static vehicles that
entered the field of view of the front stereo camera.

Reference speed

The lane’s reference speed vy, (c) at a given curvilin-
ear abscissa c is read from an attribute of the road network
description in the semantic map database. Lane width in-
formation from the database is used to adapt the lateral

offset range of the samples m on-the-fly.

Figure 9: Simulated avoidance maneuver with an oncoming vehicle.
Color scheme for candidate motions: green = low cost, black = high
cost, red = in collision with static obstacle.
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4.4 Situation-specific adaptations

The local motion planner operates almost completely
without inputs from higher-level situational awareness
modules. The primary goal is to encode suitable be-
haviours in the objective function of the local motion plan-
ner and only to fall back on higher-level behaviour mod-
ifications if necessary. For smooth platooning behaviour,
the reference speed v, is modified to yield a specified
time-gap and/or distance between the ego vehicle and the
car in front. This solely shifts the minimum of the objective
function, leaving the rest of the planning framework un-
changed. To determine the relevant object in front, a scor-
ing metric in the lane’s Frenet-Serret frame is used based
on the objects’ longitudinal and lateral distances to the ego
vehicle along the lane.

5 Movement predictions for traffic
participants

Reasoning about future movements of other traffic partic-
ipants is important for well-behaved navigation in mixed-
traffic scenarios. Our motion prediction scheme is based
on a forward simulation of different agent motion mod-
els. A suitable motion model is chosen online based on
the associated object class label determined by the classi-
fication module. Our classification module and hence the
motion prediction module distinguishes between pedes-
trians and vehicles. As pedestrians often move in uncon-
ventional ways and do not respect their dedicated walk-
ways rigorously (especially in parking lots the V-Charge
project is dedicated to), a constant velocity model is ap-
plied for pedestrians. This model is clearly limited in its
predictive capabilities. In our real-world experiments out-
lined in Section 6 the lack of interaction-awareness, taking
into account the reaction of pedestrians to the ego vehi-
cle, was noticeable. Well-established approaches like the
Reciprocal Velocity Obstacles [20], or more recent ones
such as Interacting Gaussian Processes [21] and Maximum
Entropy Models [22] are promising, yet the adaptation to
the semantic-rich automated driving domain and the chal-
lenging system dynamics involved was not yet tackled.

In contrast to pedestrians, movements of vehicles are
bound much tighter to the infrastructure. Therefore we
exploit the lane information of the roadgraph to improve
upon the motion predictions of vehicles. Our approach re-
sembles the one presented in [23], extending it to account
for common vehicle kinodynamics. In a first step, a kd-tree
containing all three-dimensional (3D) poses (2D position
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Figure 10: Movement predictions for two different agent types over
a time horizon of 10 seconds. Green boxes represent the detected
bounding boxes of the objects. Yellow wireframe objects depict the
predictions.

x, y and yaw angle 0) of the roadgraph is built. This allows
for fast nearest neighbor queries for any vehicle pose in the
2D workspace in order to find the closest pose on the road-
graph. The heading dimension is included in order to dis-
tinguish between nearby lanes with opposite directions.
We use a custom distance metric between two poses ¢, and
¢, in SE(2)

2
d*(cr ;) = (6o, — Clx)2 + (COy - Cly) +

“(Coa - 019)2 €)

with « being a scaling factor for the angular heading di-
mension. During forward simulation with a discrete in-
tegration scheme three operations are performed in each
timestep t,: First, the closest pose of the simulated vehi-
cle position at ¢, to the roadgraph is retrieved from the
kd-tree. Second, the lateral offset to the closest roadgraph
pose is computed and a reference pose is created by later-
ally shifting the closest pose by this offset. In the third step,
a control law is used to compute a desired steering angle
for the simulated Ackermann model. This steering angle
regulates the simulated model towards the computed ref-
erence state. The speed of the vehicle is kept constant at its
measured speed during the simulation time horizon. The
result of this motion prediction scheme is illustrated in Fig-
ure 10.

6 Experimental results

In this section we provide general navigation statistics as
well as real-world data for two scenarios, that frequently
appear during autonomous operation on a parking lot.
Within the project, the maximum speed of the vehicle is
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limited to 2.78 ms ™" while the desired speed was usually
setto 1.6ms . The local planning framework was operat-
ing with a time-horizon of 10s.

6.1 Motion planning statistics

Statistics were automatically generated from 471 GB of log
files over the course of 6:47 hours of automated operation
in which 24.63 km were covered. The results are illustrated
in Figure 11. In only 0.22% of the time no valid solution tra-
jectory could be computed.

These events stem firstly from pedestrians moving in
very close proximity to the vehicle such as the scene dis-
played in Figure 12. In these situations, the purely reac-
tive planning approach is over-conservative. A coopera-
tive prediction scheme will remedy this shortcoming and is
among our current research goals. Secondly, these events
sporadically occur when passing through narrow gates on
the parking lot with only a few tens of centimeters margin

Success

06:44:45 (99.32 %)
Standstill (normal op.)
00:01:52 (0.46 %)

No solution found
B 00:00:53 (0.22 %)

Normal
BN 05:42:46 (84.11 %)

Platooning
B )1:04:45 (15.89 %)

Figure 11: Local motion planning operation mode (left) and failure
statistics (right) generated from 24 test days over the course of two
month.

U. Schwesinger et al., Vision-only fully automated driving = 239

on each side of the vehicle — a highly challenging scenario
for both vision-based perception and motion planning. In
0.46% of the time, the planner was keeping the car stopped
in a controlled way during normal operation. While these
events may occur in regular situations, they could also
stem from a potential deadlock in which a global guidance
would be necessary to recover the vehicle.

6.2 Platooning

Platooning is a situation appearing frequently in traffic.
Figure 13 visualizes the navigation performance during
such, involving multiple stop-and-go phases. In this run,
the car in front is reliably tracked throughout the complete
four minutes of the run. The speed profile of the ego vehi-
cle and the target car match with a slight delay induced
by delays in the processing chain but mainly due to the
low-pass characteristics of the drive-train. The left figure
depicts the first approach to the car in front. The middle
figure illustrates the local planner’s ability to concurrently
adapt its plan (orange trajectory) based on static obstacle
information. The static obstacle distance cost term moves
the ego vehicle slightly towards the left to keep a safety dis-
tance to the pillar on the right. In the rightmost figure the
roadgraph-based object prediction utilizing the lane cen-
ter information (blue path) is visible.

6.3 Pedestrian avoidance

Figure 14 depicts the navigation behaviour in the presence
of a pedestrian crossing the street. The constant velocity
prediction allows the vehicle to infer the future positions
of the classified pedestrian agent. A lateral avoidance ma-
neuver is not considered necessary, leading to a short re-
duction of the ego vehicle’s speed in order to give way to

Figure 12: If no valid solution trajectory could be
computed by the local motion planner, moving
pedestrians in close vicinity to the ego vehicle
(left) and small perception noise when passing
narrow gates (right) were often the cause.
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Figure 13: Real-world platooning performance in stop-and-go traffic. In this mode, the reference speed of the local motion planning
framework is adjusted based on distance and relative speed to the object in front, while obstacle avoidance is simultaneously active.

ing. The V-Charge vehicle is to our knowledge the first plat-
form that does not complement the vision sensor suite
with laser or lidar scanners. In this paper we reported
on the on-lane planning framework and the processing
chain necessary to implement smooth interaction with
other traffic participants like vehicles and pedestrians. Our
future research aims at extending the object detection to
all available monocular cameras as well as incorporat-
ing interaction-awareness in the object prediction stage by

T 201 S f machine learning techniques to properly copy with pedes-
g 10 / ; - o trians in close vicinity to the vehicle.
00 ? 5 '

10 30 5.0 7.0

Funding: This project has received funding from the Eu-
ropean Union’s Seventh Framework Programme for re-
Figure 14: Real-world avoidance of crossing pedestrian. The search, technological development and demonstration

pede:c,t.rlan is sensed by the stereo ca.nTera'(red stixels) and under grant agreement no 269916, V-Charge.
classified as such by the stereo classification module based on the

monocular camera images (top right figure). The vehicle slows down
to give way to the pedestrian.

time [s]
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