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Abstract. The Poisson sigma model is a widely studied two-dimensional topological field
theory. This note shows that boundary conditions for the Poisson sigma model are related
to coisotropic submanifolds (a result announced in [math.QA/0309180]) and that the corre-
sponding reduced phase space is a (possibly singular) dual pair between the reduced spaces
of the given two coisotropic submanifolds. In addition the generalization to a more general
tensor field is considered and it is shown that the theory produces Lagrangian evolution
relations if and only if the tensor field is Poisson.
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1. Introduction

Let M be a finite-dimensional manifold and I the unit interval [0,1]. We denote by
P M :=C1(I,M) the space of differentiable paths on M and by T ∗P M the space of
bundle maps T I→T ∗M with continuously differentiable base map and continuous
fiber map. We consider P M as a Banach manifold and T ∗P M as a Banach, weak
symplectic manifold (a weak symplectic form is a closed 2-form that induces an
injective map from the tangent to the cotangent bundle). The canonical symplectic
form � is the differential of the canonical 1-form �. If we denote an element of
T ∗P M by (X, η) where X is the differentiable base map and the fiber map η is
regarded as a continuous section of T ∗ I ⊗ X∗T ∗M , we have

�(X, η)(̂ξ)=
∫

I

〈η , ξ 〉 ,

where ̂ξ is a tangent vector at (X, η), ξ is its projection to TX P M = �(X∗T M),
and 〈 , 〉 is the canonical pairing between the cotangent and the tangent bundles
to M .
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Let now π be a section of T M⊗T M . We denote by π� the induced bundle map
T ∗M→T M satisfying

〈

π�(x)σ , τ
〉=π(x)(σ, τ ), ∀x ∈M, ∀σ, τ ∈T ∗x M.

Given two submanifolds C0 and C1 of M , we denote by Cπ (M;C0,C1) the space
of “π -compatible paths” from C0 to C1; i.e.,

Cπ (M;C0,C1) := {(X, η)∈T ∗P M :dX +π�(X)η=0, X (0)∈C0, X (1)∈C1},
where the differential dX of the base map is regarded as a section of T ∗ I ⊗ X∗T M .
By using the implicit function theorem, one can easily prove [6] that Cπ (M;M,M)
is a Banach submanifold of T ∗P M .

In general, for other submanifolds C0 and C1, Cπ (M;C0,C1) is not a Banach
submanifold.1

Anyway, even if Cπ (M;C0,C1) is not a submanifold, we may define its Zarisky
tangent space at each point. Namely, we first define the submanifold T ∗P M(C0,C1)

of T ∗P M consisting of bundle maps whose base maps connect C0 to C1. Then
the tangent space at (X, η)∈ Cπ (M;C0,C1) is defined as the subspace of vectors
in T(X,η)T ∗P M(C0,C1) satisfying the linearized equation.

In general, we will call subvariety (of a smooth manifold) the common zero set
of a family of smooth functions and, by abuse of notation, we will call tangent
bundle the union of the Zarisky tangent spaces to a subvariety. Given a symplectic
manifold (M,ω) and a subvariety C, we define, again by abuse of notation, the
symplectic orthogonal bundle T⊥C to C as the union T⊥x C, x ∈C, with

T⊥x C := {v∈TxM :ωx (v,w)=0 ∀w∈TxC}.
The subvariety C is said to be coisotropic if T⊥C⊂T C.

1.1. THE MAIN RESULTS

In Section 2 we study the tangent bundle and the symplectic orthogonal bundle to
Cπ (M;C0,C1). Relying on the results of Section 2, we prove in Section 3.1 (viz.,
Propositions 3.1 and 3.2) the following

THEOREM 1.1. Cπ (M;M,M) is coisotropic in T ∗P M iff π is a Poisson bivector
field.

Recall that a Poisson bivector field π is a skew-symmetric 2-tensor field satis-
fying [π , π ]=0, where [ , ] is the Schouten–Nijenhuis bracket. A proof of the

1The simplest example is when π is identically zero. In this case Cπ (M;C0,C1) is a fibration
over B :=C0∩C1 with fiber at x given by �1(I, T ∗x M). If the basis B is not a manifold, so neither
is Cπ (M;C0,C1).
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if-part of the Theorem is contained in [6], but the result was already known [11,13]
in the case when one considers loops instead of paths.

If C is a coisotropic submanifold of a weak symplectic Banach manifold, T⊥C is
an integrable distribution and the leaf space C, also called the reduced phase space,
inherits a weak symplectic structure if it is a smooth manifold. The reduced phase
space Cπ (M;M,M) has been shown in [6] to also have the structure of a topolog-
ical groupoid; if it is smooth, it is a symplectic groupoid integrating the Poisson
manifold M .

Now notice that not all possible boundary conditions allow solutions to the con-
straint equation. In other words, the maps

pi : Cπ (M;C0,C1)→Ci , i =0,1, (1.1)

associating X (i) to a solution (X, η) may not be surjective. With this notation we
may give the precise formulation, and a proof (see Section 3.2, in particular Propo-
sitions 3.5 and 3.6), of a result announced in [7] as Theorem 3.1 (implicitly assum-
ing there that the Ci s were chosen so that the pi s were surjective):

THEOREM 1.2. If π is a Poisson bivector field, then Cπ (M;C0,C1) is coisotropic
in T ∗P M iff Im p0 and Im p1 are coisotropic in M relative to C0 and C1 respectively.

Recall that a submanifold C of a finite-dimensional manifold M endowed with
a 2-tensor field π is called coisotropic if π�(N∗C)⊂ T C , where N∗C denotes the
conormal bundle to C :

N∗x C := {α∈T ∗x M : 〈α , v 〉=0 ∀v∈Tx C}, ∀x ∈C.

If S is a subset of a submanifold C of a Poisson manifold M , we say that S is
coisotropic in M relative to C if π�(N∗x C)⊂ Tx C for all x ∈ S. We consider the
empty set as a coisotropic submanifold of any symplectic or Poisson manifold.

Observe that having Cπ (M;C0,C1) coisotropic may not be enough to conclude
that π is Poisson as it is possible that the base paths contained in Cπ (M;C0,C1)

do not explore the whole of M .2

By definition we may also reformulate the if-part of Theorem 1.2 in the follow-
ing (slightly weaker) form:

COROLLARY 1.3. If π is Poisson and C0 and C1 are coisotropic, then
Cπ (M;C0,C1) is coisotropic.

In this case, as recalled above, T⊥Cπ (M;C0,C1) is an integrable distribution on
Cπ (M;C0,C1), which we describe in details in Section 3.2.1.

2For example, assume that π has a zero at a point x . Then Cπ (M; {x},M) consists of pairs
(X, η) where X is the constant path at x and there are no conditions on η. It is then clear that
Cπ (M; {x},M) is coisotropic (actually Lagrangian) whatever the tensor π is.
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In Section 4 we concentrate on the case when C0 and C1 are coisotropic sub-
manifolds of a Poisson manifold M and discuss how the reduction of Cπ (M;C0,C1)

may be understood as a (singular) dual pair.
Finally in Section 5 we show that this reduction may also be recovered by Pois-

son reduction of the coisotropic submanifold of the symplectic groupoid of M
determined by the intersection of the preimages of C0 and C1 under the source
and target maps, respectively.

Remark 1.4. One may consider the weaker condition that Cπ (M;C0,C1) be presym-
plectic (i.e., that the kernel of the restriction of the symplectic form is a subbundle
of the tangent bundle of Cπ (M;C0,C1)). As shown in [1], a sufficient condition for
this to happen is that C0 and C1 are pre-Poisson submanifolds of M (according to
the definition in [8]). We will not elaborate on this in this paper.

1.2. THE CASE OF THE CIRCLE

In this paper we mainly work on the path space P M as it is interesting to have
boundary components (to be associated to the submanifolds C0 and C1). A very
similar, actually a bit easier, story works in the case of the loop space L M :=
C1(S1,M). In this case, we can analogously define the weak symplectic Banach
manifold T ∗L M as the space of bundle maps T S1→T ∗M with continuously differ-
entiable base map and continuous fiber map. The weak symplectic form � is again
the differential of the canonical 1-form �:

�(X, η)(̂ξ)=
∫

S1

〈η , ξ 〉 ,

where we use the same notations as above. To the tensor π we now associate the
Banach submanifold

Cπ (M) := {(X, η)∈T ∗L M :dX +π�(X)η=0}.
A very similar proof to Theorem 1.1, see Section 3.3, yields the following

THEOREM 1.5. Cπ (M) is coisotropic in T ∗L M iff π is a Poisson bivector field.

In this case, as recalled above, T⊥Cπ (M) is an integrable distribution on Cπ (M),
which we describe in details in Section 3.3.1.

1.3. LAGRANGIAN FIELD THEORIES WITH BOUNDARY

In [4] and [5] the general notion of Lagrangian field theories on manifolds with
boundary is studied. The symplectic manifolds T ∗P M and T ∗L M described above
arise as spaces of boundary fields of a two-dimensional Lagrangian field theory
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with Cπ (M;C0,C1) and Cπ (M) as its “spaces of Cauchy data.” The requirement
of π being Poisson turns out to be equivalent to the requirement that the the-
ory is “good” in the sense that the the evolution relations determined by solutions
to the Euler–Lagrange equations are (immersed) Lagrangian submanifolds. We dis-
cuss this in more details in Section 6.

2. Tangent and Orthogonal Bundles

By choosing a linear connection on M , which for simplicity we assume to be
torsion free, we may identify the tangent bundle to T ∗M with the vector bun-
dle E := T ∗M ⊕ T M ⊕ T ∗M . Explicitly this is done as follows. First observe that
both T T ∗M and E can be regarded as vector bundles over T ∗M with fiber at
point (x, p) given by the vector space Tx M ⊕ T ∗x M ; the transition functions in
the two vector bundles are however different. Choosing on M local coordinates
{xi }i=1,...,m, m=dim M , and the corresponding dual coordinates {pi } on T ∗x M , we
consider the fiber isomorphism

(x,p) : T(x,p)T ∗M = Tx M⊕T ∗x M→ E(x,p)=Tx M⊕T ∗x M
(ẋ i , ṗi ) → (ẋ i , ṗi −�r

si (x) pr ẋs)

where the �s are the Christoffel symbols of the given connection, and we use Ein-
stein’s convention that a sum over upper and lower repeated indices is understood.
Then  : T T ∗M→ E is a vector bundle isomorphism.

By this we may also identify T T ∗P M with T ∗P M⊕T P M⊕T ∗P M , regarded as
vector bundles over T ∗P M . Recall that TX P M=�(X∗T M) and T ∗X P M :=�(T ∗ I ⊗
X∗T ∗M).3 To describe this isomorphism explicitly, we observe that, given a con-
tinuous path X , we may subdivide the interval I into finitely many subintervals Iα
such that X (Iα) is contained in a coordinate patch ∀α. For a given Iα, we denote
by Xi and ηi , i = 1, . . . ,m := dim M , the components in local coordinates of the
restrictions to Iα of X and η. The restriction to Iα of a tangent vector ̂ξ can then
be split correspondingly into its components ξ i in the Xi -direction and ζi in the
ηi -direction. We then define

ei = ζi −�r
si (X) ηr ξ

s . (2.1)

The map (Xi , ηi , ξ
i , ζi ) → (Xi , ηi , ξ

i , ei ) is well-defined globally and yields the
required vector bundle isomorphism T T ∗P M→ T ∗P M ⊕ T P M ⊕ T ∗P M . If we
now impose boundary conditions, by the same map we may finally identify the
fiber at (X, η)∈T ∗P M(C0,C1) with

{ξ ⊕ e∈�(X∗T M)⊕�(T ∗ I ⊗ X∗T ∗M) : ξ(0)∈T0, ξ(1)∈T1},

3To avoid cumbersome notations, from now on we will avoid indicating which maps or forms
are continuous or differentiable.
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with

T0 :=TX (0)C0 and T1 :=TX (1)C1.

The linear connection on M also induces a connection on the vector bundle
X∗T M . We denote by ∂ : �(X∗T M)→�(T ∗ I ⊗ X∗T M) the corresponding covari-
ant exterior derivative. In local coordinates, its action on a section σ of X∗T M is
given by

(∂σ)i =dσ i +�i
rs dXr σ s . (2.2)

It is convenient to modify this connection by using

A :=∇π�(X)η∈�(T ∗ I ⊗ X∗End(T M)), (2.3)

where ∇ denotes the covariant derivative. In local coordinates we have

(∇π)i j
k =∂kπ

i j +�i
krπ

r j +� j
krπ

ir (2.4)

and

Ai
k =η j (∇π) j i

k (X). (2.5)

We will denote by D the covariant exterior derivative ∂+ A.

2.1. THE TANGENT SPACES TO COMPATIBLE PATHS

Let (X, η) be a point in Cπ (M;C0,C1).

PROPOSITION 2.1. After choosing a connection on M and using the above nota-
tions, we have

T(X,η)Cπ (M;C0,C1)={ξ ∈�(X∗T M), e∈�(T ∗ I ⊗ X∗T ∗M) :
(Dξ)+π�(X)e=0, ξ(0)∈T0, ξ(1)∈T1}.

Proof. Let us restrict our attention to a subinterval Iα such that X (Iα) is con-
tained in a coordinate patch. The restriction to Iα of the equation satisfied by X
and η then reads

dXi +η j π
j i (X)=0 (2.6)

in local coordinates. Let ξ i and ζi denote the local-coordinate expression of a tan-
gent vector. They then satisfy the equation

dξ i +η j ∂lπ
j i (X) ξ l + ζ j π

j i (X)=0,
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or equivalently by (2.4)

(dξ i − ξ l �i
lr (X) η j π

jr )+η j (∇π) j i
l (X) ξ

l + (ζ j −�s
l j (X) ηs ξ

l)π j i (X)=0.

Since the connection is torsion free, by (2.6), (2.1), (2.2), (2.3) and (2.5) we con-
clude the proof.

We then consider the parallel transport U ∈�(Iso(X∗T M,TX (0)M)) of the con-
nection D, viz., the solution to the Cauchy problem

{

d ◦U =U ◦D,

U (0)= Id .
(2.7)

In local coordinates, we may also write
{

dUi
j =Ui

l (A
l
j +�l

s j dXs),

U (0)ij = δi
j .

(2.8)

We may then simplify the equation satisfied by the tangent vector (ξ, e) into

dλ+ P�φ=0, (2.9)

with

λ :=Uξ ∈�0(I,TX (0)M), (2.10a)

φ := (U t )−1e∈�1(I,T ∗X (0)M), (2.10b)

P� :=Uπ�U t ∈�0(I,Hom(T ∗X (0)M,TX (0)M)). (2.10c)

So we get

T(X,η)Cπ (M;C0,C1)∼=T(X,η)Cπ (M;C0,C1)
twisted

:= {λ∈�0(I,TX (0)M), φ ∈�1(I,T ∗X (0)M) :dλ+ P�φ=0,

λ(0)∈T0, U (1)−1λ(1)∈T1}. (2.11)

Equation (2.9) may be easily solved for any φ just assigning the initial condition
λ(0)=λ0:

λ(u)=λ0−
u

∫

0

P�φ. (2.12)

Se we get the alternative description

T(X,η)Cπ (M;C0,C1)∼=T(X,η)Cπ (M;C0,C1)0

:=
⎧

⎨

⎩

λ0∈T0, φ ∈�1(I,T ∗X (0)M) :U (1)−1

⎛

⎝λ0−
∫

I

P�φ

⎞

⎠∈T1

⎫

⎬

⎭

.
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2.1.1. Properties of P

The tensor π has been replaced by P in (2.10c). Just by differentiating, it is not
difficult to see that P� is the solution to the Cauchy problem

{

dP�=U T �U t ,

P�(0)=π�0 ,

with π0 :=π(X (0)) and T � :=Dπ�. Using (2.6), (2.5) and (2.8), we obtain in local
coordinates

T ls =ηk (π
rs(X) (∇π)kl

r (X)−πkr (X) (∇π)lsr (X)+π lr (X) (∇π)ks
r (X)).

Recall that, in local coordinates, the vanishing of the Schouten–Nijenhuis bracket
of a bivector field π may also be written, by using any connection, as

π sr (∇π)lkr +πkr (∇π)sl
r +π lr (∇π)ks

r =0.

This immediately implies the following

LEMMA 2.2. If π is a Poisson bivector field, then P=π0.

Observe that P depends on the chosen (X, η). We also have the following

LEMMA 2.3. If P is skew-symmetric and constant for all (X, η) ∈ Cπ (M;M,M),
then π is a Poisson bivector field.

Proof. If P is skew symmetric, then so is π0, that is, π at any possible start-
ing point of a path X . Thus, π is a bivector field. Moreover, for any x ∈M , we
can choose a solution to (2.6) with X passing through x for some u0∈ I and, in a
neighborhood of u0, η j =e j du, with e j a basis element of (Rm)∗. This implies that
T vanishes at u0 and hence that

πrs(x) (∇π)kl
r (x)−πkr (x) (∇π)lsr (x)+π lr (x) (∇π)ks

r (x)=0.

Since this holds for all x ∈M , it follows that π is Poisson.

2.2. THE SYMPLECTIC ORTHOGONAL SPACES TO COMPATIBLE PATHS

Assuming that the chosen connection is torsion-free, the symplectic form � evalu-
ated at tangent vectors (ξ, ζ ) and (˜ξ,˜ζ ) to T ∗P M at a point (X, η) reads

�(X,η)((ξ, ζ ), (˜ξ,˜ζ ))=
∫

I

〈

e ,˜ξ
〉−〈 ẽ , ξ 〉 ,
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where (ξ ⊕ e) and (˜ξ ⊕ ẽ) are the corresponding elements of TX P M ⊕ T ∗X P M .
By the transformation (2.10a) and (2.10b), and the analogous ones ˜λ=U˜ξ, ˜φ =
(U t )−1ẽ, we get

�(X,η)((ξ, ζ ), (˜ξ,˜ζ ))=
∫

I

〈

φ ,˜λ
〉− 〈

˜φ , λ
〉

. (2.13)

Assume now that (ξ, e) is tangent to Cπ (M;C0,C1). Then, by (2.12),

∫

I

〈

˜φ , λ
〉=

〈

∫

I

˜φ , λ0

〉

−
∫

I

〈

˜φ ,

•
∫

0

P�φ

〉

=
〈

∫

I

˜φ , λ0

〉

−
∫

I

〈

φ , (P�)t
1

∫

•
˜φ

〉

.

We thus obtain

T⊥(X,η)Cπ (M;C0,C1)∼=T⊥(X,η)Cπ (M;C0,C1)
implicit

:=
{

˜λ∈�0(I,TX (0)M), ˜φ ∈�1(I,T ∗X (0)M) :
∫

I

〈

φ ,˜λ+ (P�)t
1

∫

•
˜φ

〉

−
〈

∫

I

˜φ , λ0

〉

=0, ∀(λ0, φ)∈T(X,η)Cπ (M;C0,C1)0

}

.

3. Proofs to the Main Theorems

Using the results and notations of Section 2, we are now going to prove the main
Theorems 1.1 and 1.2 and to draw further consequences.

3.1. PROOF OF THEOREM 1.1

In the case C0=C1=M , we have

T(X,η)Cπ (M;M,M)0 := {λ0 ∈TX (0)M, φ ∈�1(I,T ∗X (0)M)}.

Thus, (˜λ,˜φ) belongs to T⊥(X,η)Cπ (M;M,M)implicit iff

∫

I

〈

φ ,˜λ+ (P�)t
1

∫

•
˜φ

〉

−
〈

∫

I

˜φ , λ0

〉

=0

for all λ0 ∈ TX (0)M and φ ∈ �1(I,T ∗X (0)M). This implies that (˜λ,˜φ) belongs to
T⊥(X,η)Cπ (M;M,M)implicit iff
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˜λ(u)+ (P�)t
1

∫

u

˜φ=0 (3.1)

and
∫

I

˜φ=0. (3.2)

Now we have

PROPOSITION 3.1. If π is a Poisson bivector field, then Cπ (M;M,M) is
coisotropic.

Proof. By Lemma 2.2 we have P = π0. So (3.1) implies that (˜λ,˜φ) belongs to
T(X,η)Cπ (M;M,M)twisted. Thus, Cπ (M;M,M) is coisotropic.

PROPOSITION 3.2. If Cπ (M;M,M) is coisotropic, then π is a Poisson bivector
field.

Proof. Since T⊥(X,η)Cπ (M;M,M)⊂ T(X,η)Cπ (M;M,M), any pair (˜λ,˜φ) satisfying
(3.1) and (3.2) also belongs to T(X,η)Cπ (M;M,M)twisted; i.e., it satisfies

d˜λ+ P�˜φ=0.

On the other hand, differentiating (3.1) yields

d˜λ+d(P�)t
1

∫

•
˜φ− (P�)t˜φ=0.

So we get,

d(P�)t
1

∫

•
˜φ j − ((P�)t + P�)˜φ=0 (3.3)

for any ˜φ satisfying (3.2). Now let u0<u1 be points on I . Let U0 and U1 be dis-
joint neighborhoods of u0 and u1 with U0<U1. We then choose ˜φ to vanish out-
side U0∪U1. For U0<u<U1, (3.3) yields

d(P�)t (u)σ =0

with σ :=∫ 1
u

˜φ. Since this holds for all σ ∈T ∗X (0)M , we see that P must be constant.
So now (3.3) reads

((P�)t + P�)˜φ=0.
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Again this must hold for all ˜φ satisfying (3.2). From this we conclude that P must
be skew-symmetric. Since these conclusions must hold for any solution (X, η),
Lemma 2.3 completes the proof.

This concludes the proof of Theorem 1.1.

3.2. PROOF OF THEOREM 1.2

Assuming that π is a Poisson bivector field, we know by Lemma 2.2 that P is con-
stant and equal to π0=π(X (0)). So (˜λ,˜φ) belongs to T⊥(X,η)Cπ (M;C0,C1)

implicit iff

∫

I

〈

φ ,˜λ−π�0
1

∫

•
˜φ

〉

−
〈

∫

I

˜φ , λ0

〉

=0 (3.4)

for all λ0∈T0 and φ ∈�1(I,T ∗X (0)M) such that

U (1)−1

⎛

⎝λ0−π�0
∫

I

φ

⎞

⎠∈T1. (3.5)

PROPOSITION 3.3. Let N∗i = N∗X (i)Ci , i =1,2. If π is Poisson, then

T⊥(X,η)Cπ (M;C0,C1)
implicit=T⊥(X,η)Cπ (M;C0,C1)

explicit

:= {˜λ∈�0(I,TX (0)M), ˜φ ∈�1(I,T ∗X (0)M) :d˜λ+π�0˜φ=0,

˜λ(0)∈π�0(N∗0 ), U (1)−1̃λ(1)∈π�1(N∗1 )}.

Proof. We may first consider λ0= 0 and φ such that
∫

I φ= 0. Since (3.4) must
hold in particular for all (λ0, φ) of this kind, we obtain that there must be a con-
stant ˜λ1∈TX (0)M such that

˜λ(u)−π�0
1

∫

u

˜φ=˜λ1, ∀u ∈ I. (3.6)

So (3.4) simplifies to

〈

∫

I

φ ,˜λ1

〉

−
〈

∫

I

˜φ , λ0

〉

=0. (3.7)

Observe now that
〈 ∫

I φ ,
˜λ1

〉= 〈

U (1)t
∫

I φ , U (1)−1̃λ1
〉

. Set π1=π(X (1)). Since

U (1)π�1U (1)t = P(1)�=π�0 , (3.8)
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we have that U (1)−1π
�

0

∫

I φ = π�1U (1)t
∫

I φ. By choosing again λ0 = 0, we get the
condition

〈

U (1)t
∫

I

φ , U (1)−1̃λ1

〉

=0,

∀φ ∈�1(I,T ∗X (0)M) such that π�1U (1)t
∫

I

φ∈T1.

Thus,
〈

α , U (1)−1̃λ1

〉

=0, ∀α∈T ∗X (1)M such that π�1α∈T1. (3.9)

We use now the following simple fact from linear algebra:

LEMMA 3.4. Let V and W be vector spaces. Let F be a linear map V→W and
T a linear subspace of W . Then

Ann(F−1(T ))= Ft (Ann(T )),

where Ann denotes the annihilator of a subspace (e.g., Ann(T )= {τ ∈W ∗ : τ(t)=
0 ∀t ∈T }).

Proof. It is obvious that Ft (Ann(T ))⊂Ann(F−1(T )). We now prove the other
inclusion. Let V ′ be a complement of F−1(T ) in V and W ′ a complement of
T ⊕ F(V ′) in W . Since the restriction F |V ′ of F to V ′ establishes an isomorphism
between V ′ and F(V ′), for any ψ ∈Ann(F−1(T ))⊂V ∗ there is a unique φ∈ F(V ′)∗
with ψ = F |tV ′(φ). Now let ϕ ∈W ∗ be equal to φ when evaluated on elements of
F(V ′) and zero when evaluated on elements of T or W ′. So ϕ ∈Ann(T ). Since
ψ= Ft (ϕ), this concludes the proof.

We apply the Lemma to (3.9) with V =T ∗X (1)M, W =TX (1)M, T =T1 and F=π�1 .

Since π1 is skew-symmetric, Ft =−π�1 . So we get that necessarily

U (1)−1̃λ1∈π�1 N∗1 ,

where N∗1 = N∗X (1)C is the annihilator of T1. So there exists θ ∈ N∗1 such that ˜λ1=
U (1)π�1θ , and we may rewrite (3.7) as

〈

∫

I

φ , U (1)π�1θ

〉

−
〈

∫

I

˜φ , λ0

〉

=0,

or equivalently, using again (3.8) and the skew-symmetry of π ,
〈

θ , U (1)−1π
�

0

∫

I

φ

〉

+
〈

∫

I

˜φ , λ0

〉

=0.
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This equation has to be satisfied for all λ0 ∈ T0 and φ ∈�1(I,T ∗X (0)M) satisfying
(3.5). This is equivalent to imposing

〈

(U (1)t )−1θ +
∫

I

˜φ , λ0

〉

=0 (3.10)

for all λ0∈T0. That is,

(U (1)t )−1θ +
∫

I

˜φ ∈ N∗0 , (3.11)

where N∗0 = N∗X (0)C0 is the annihilator of T0. Recalling (3.6),

˜λ(u)−π�0
1

∫

u

˜φ=˜λ1=U (1)π�1θ =π�0(U t )−1θ, ∀u ∈ I, (3.12)

we see that a pair (˜λ,˜φ) belongs to T⊥(X,η)Cπ (M;C0,C1)
implicit iff there exists θ ∈N∗1

such that (3.11) and

˜λ(u)=π�0

⎛

⎝(U t )−1θ +
1

∫

u

˜φ

⎞

⎠ , ∀u ∈ I, (3.13)

are satisfied. By differentiating, in order to get rid of θ , we finally obtain

T⊥(X,η)Cπ (M;C0,C1)
implicit⊂T⊥(X,η)Cπ (M;C0,C1)

explicit.

To prove the other inclusion, consider a pair (˜λ,˜φ) ∈ T⊥(X,η)Cπ (M;C0,C1)
explicit.

Since U (1)−1̃λ(1)∈π�1(N∗1 ), there exists θ ∈ N∗1 such that ˜λ1=U (1)π�1θ . Then the
solution to the equation has the form in (3.13) and satisfies (3.11).

PROPOSITION 3.5. Assume π to be Poisson. If C0 and C1 are coisotropic, then so
is Cπ (M;C0,C1).

Proof. In this case, by (2.11), we immediately have

T⊥(X,η)Cπ (M;C0,C1)
explicit⊂T(X,η)Cπ (M;C0,C1)

twisted

={λ∈�0(I,TX (0)M), φ ∈�1(I,T ∗X (0)M) :dλ+π�0φ=0,

λ(0)∈T0, U (1)−1λ(1)∈T1},
for all (X, η)∈Cπ (M;C0,C1). So Cπ (M;C0,C1) is coisotropic.

PROPOSITION 3.6. Assume π to be Poisson. If Cπ (M;C0,C1) is coisotropic, the
so are Im p0 and Im p1.
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Proof. If Cπ (M;C0,C1) is coisotropic, then any pair (˜λ,˜φ) that belongs to T⊥(X,η)
Cπ (M;C0,C1)

explicit must also belong to T(X,η)Cπ (M;C0,C1)
twisted ∀(X, η) ∈ Cπ

(M;C0,C1). Thus, in particular, we must have ˜λ(0)∈T0 and U (1)−1̃λ(1)∈T1.
We may arbitrarily choose the end condition ˜λ(1) such that U (1)−1̃λ(1)∈π�1(N∗1 )

since condition (3.11) will always be satisfied by an appropriate choice of ˜φ (e.g.,
such that

∫

I
˜φ=−(U (1)t )−1θ ). So we see that π�1(N

∗
1 )⊂ T1. Since this must hold

for all (X, η)∈Cπ (M;C0,C1), we obtain that N∗x C1⊂Tx C1 ∀x ∈ Im p1.
Similarly, we may arbitrarily choose ˜λ(0)∈π�0(N∗0 ) since the condition U (1)−1̃λ(1)
∈ π�1(N∗1 ) will always be satisfied by an appropriate choice of ˜φ (e.g., such that
∫

I
˜φ=τ if ˜λ(0)=π�0τ ). Then we see that π�0(N

∗
0 )⊂T0 and, since this must hold for

all (X, η)∈Cπ (M;C0,C1), we obtain that N∗x C0⊂Tx C0 ∀x ∈ Im p0.

This concludes the proof of Theorem 1.2.

3.2.1. Symmetries

From now on we assume that π is Poisson and that C0 and C1 are coisotropic. By
defining

b := (U (1)t )−1θ +
1

∫

•
˜φ ∈�0(I,T ∗X (0)M),

we finally obtain

T⊥(X,η)Cπ (M;C0,C1)=T⊥(X,η)Cπ (M;C0,C1)
explicit

:= {˜λ∈�0(I, TX (0)M), ˜φ ∈�1(I,T ∗X (0)M) :
∃b∈�0(I,T ∗X (0)M), b(0)∈ N∗0 , U (1)t b(1)∈ N∗1 , ˜λ=π�0b, ˜φ=−db}.

Observe that from this description of T⊥(X,η)Cπ (M;C0,C1) it follows immediately
that

T⊥⊥(X,η)Cπ (M;C0,C1)=T(X,η)Cπ (M;C0,C1). (3.14)

If we now invert the transformations (2.10a) and (2.10b) to go back to tangent
vectors at (X, η),

˜ξ =U−1̃λ∈�(X∗T M),

ẽ=U t
˜φ ∈�(T ∗ I ⊗ X∗T ∗M),

and introduce

β=U t b∈�(X∗T ∗M),
we obtain that the characteristic distribution of the coisotropic submanifold
Cπ (M;C0,C1) is given, at the point (X, η), by the family of vectors (˜ξ, ẽ)∈ T(X,η)
Cπ (M;C0,C1) defined by
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˜ξ =π�(X)β, (3.15a)

ẽ=−Dβ, (3.15b)

for β∈�(X∗T ∗M) with β(0)∈N∗X (0)C0 and β(1)∈N∗X (1)C1. In local coordinates the
above formulae read,

˜ξ i =−π i j (X)β j ,

ẽi =−dβi +�k
ri (X)dXr βk + (∇π) jk

i (X) η j βk .

These are the symmetries of the Poisson sigma model as presented in [6,11,13].
The boundary conditions for β in case of coisotropic boundary conditions has
been introduced in [7].

3.2.2. “Equivariant Momentum Map”

Denote by ιC the inclusion map of a submanifold C into a manifold M and define

�1
C (M)={α∈�1(M) : ι∗Cα=0}.

LEMMA 3.7. If M is a Poisson manifold and C is a coisotropic submanifold, then
�1

C (M) is a Lie subalgebra of �1(M).

We leave the proof of this simple fact (which directly follows from N∗C being a
Lie subalgebroid of T ∗M) to the reader.

Now, given two coisotropic submanifolds C0 and C1, we define the Lie algebra

PC0,C1�
1(M)={B : I→�1(M) : B(i)∈�1

Ci
(M), i =0,1},

where the Lie bracket is defined pointwise. The map B is assumed to be continu-
ously differentiable. Given a path X on M and an element B of this Lie algebra,
we define BX ∈�(X∗T ∗M) by

BX (u)= B(u)(X (u)).

If X (i)∈Ci , i =0,1, then BX (i)∈ N∗X (i)M . It is not difficult to check that, replac-
ing β by BX in (3.15), one may define an infinitesimal action of PC0,C1�

1(M) on
Cπ (M;C0,C1) whose induced foliation is the canonical foliation. On T ∗P M(C0,C1)

one may also define Hamiltonian functions for this action; viz.,

μB(X, η) :=
∫

I

〈

BX , dX +π�(X)η 〉

. (3.16)

3.3. PROOF OF THEOREM 1.5

We proceed as in Section 2.1. Proposition 2.1 still holds, so we have
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T(X,η)Cπ (M)={ξ ∈�(X∗T M), e∈�(T ∗S1⊗ X∗T ∗M) : (Dξ)+π�(X)e=0}.
We now regard S1 as the interval I = [0,1] with identified end points. The fields
are then regarded as periodic sections on it. We then continue likewise up to (2.10)
getting

T(X,η)Cπ (M)∼=T(X,η)Cπ (M)twisted

:= {λ∈�0(I, TX (0)M), φ ∈�1(I,T ∗X (0)M) :dλ+ P�φ=0,

λ(1)=U (1)λ(0), φ(0)=U (1)tφ(1)}
and

T(X,η)Cπ (M)∼=T(X,η)Cπ (M)0 :=
{

λ0 ∈TX (0)M, φ ∈�1(I,T ∗X (0)M) :

U (1)λ0=λ0−
∫

I

P�φ, φ(0)=U (1)tφ(1)
}

.

We then proceed as in Section 2.2 getting

T⊥(X,η)Cπ (M)∼=T⊥(X,η)Cπ (M)implicit

:=
{

˜λ∈�0(I,TX (0)M), ˜φ ∈�1(I,T ∗X (0)M) : ˜λ(1)=U (1)˜λ(0), ˜φ(0)=U (1)t˜φ(1),

∫

I

〈

φ ,˜λ+ (P�)t
1

∫

•
˜φ

〉

−
〈

∫

I

˜φ , λ0

〉

=0, ∀(λ0, φ)∈T(X,η)Cπ (M)0
}

.

PROPOSITION 3.8. If π is a Poisson bivector field, then Cπ (M) is coisotropic.

Proof. By Lemma 2.2 we have P=π0, so the condition on λ0 becomes U (1)λ0=
λ0−π�0

∫

I φ, which is in particular satisfied by λ0=0 assuming
∫

I φ=0. In partic-
ular, we get

∫

I

〈

φ ,˜λ−π�0
1

∫

•
˜φ

〉

=0,

for all φ ∈ �1(I,T ∗X (0)M) satisfying φ(0) = U (1)tφ(1) and
∫

I φ = 0. This implies

d(˜λ−π�0
∫ 1
• ˜φ)=0, so (˜λ,˜φ)∈T(X,η)Cπ (M)0.

PROPOSITION 3.9. If Cπ (M) is coisotropic, then π is a Poisson bivector field.

Proof. Notice that any (˜λ,˜φ) with ˜φ(0)=U (1)t˜φ(1) satisfying (3.1) and (3.2)
belongs to T⊥(X,η)Cπ (M)implicit and hence, since Cπ (M) is coisotropic, to T(X,η)
Cπ (M)twisted. The proof then proceeds exactly as in the proof to Proposition 3.2.

This concludes the proof of Theorem 1.5.
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3.3.1. Symmetries

Assume π is Poisson. In the proof to Proposition 3.8 we have only considered λ0=
0 and

∫

I φ=0, which yields only some necessary condition to be satisfied by (˜λ,˜φ).
We now want to characterize T⊥Cπ (M) completely.

PROPOSITION 3.10. The characteristic distribution of Cπ (M) at (X, η) is given by
the family of vectors (˜ξ, ẽ)∈T(X,η)Cπ (M) defined by

˜ξ =π�(X)β, (3.17a)

ẽ=−Dβ, (3.17b)

with β ∈�(X∗T ∗M).
Proof. We have already obtained that if (˜λ,˜φ) belongs to T⊥Cπ (M)implicit then,

in addition to ˜λ(1)=U (1)˜λ(0) and ˜φ(0)=U (1)t˜φ(1), it satisfies d(˜λ−π�0
∫ 1
• ˜φ)=0.

This implies that (˜λ,˜φ) belongs to T⊥Cπ (M)implicit iff in addition
〈

∫

I

φ ,˜λ(1)

〉

−
〈

∫

I

˜φ , λ0

〉

=0 (3.18)

for all (λ0, φ)∈T(X,η)Cπ (M)0.
First consider λ0=0 and

∫

I φ ∈kerπ�0 . This yields, by Lemma 3.4, that there is
a θ ∈T ∗X (0)M with ˜λ(1)=π�0(θ); hence

˜λ(u)=π�0

⎛

⎝θ +
1

∫

u

˜φ

⎞

⎠ . (3.19)

As a consequence
〈 ∫

I φ ,
˜λ(1)

〉=0, so we are left with the condition
〈 ∫

I
˜φ , λ0

〉=0
for all λ0 such that there is a φ with (λ0, φ)∈T(X,η)Cπ (M)0. In particular, we may
take φ such that

∫

I φ is in the kernel of π�0 ; since π�0
∫

I φ=λ0−U (1)λ0, this yields
that λ0 must now lie in the kernel of the operator G :=U (1)− id. Since

〈 ∫

I
˜φ , λ0

〉

must vanish for all λ0 satisfying this condition, we get that
∫

I
˜φ must be in the

image of Gt . Hence there is a γ ∈T ∗X (0)M with
∫

I

˜φ=U (1)tγ −γ. (3.20)

Using again π�0
∫

I φ=λ0−U (1)λ0, we now get
〈 ∫

I
˜φ , λ0

〉=
〈

∫

I φ , π
�

0γ
〉

; so con-

dition (3.18) finally reads
〈

∫

I φ ,
˜λ(1)−π�0γ

〉

= 0 for all φ such that there is a λ0

with (λ0, φ)∈T(X,η)Cπ (M)0. Using (3.19), the condition becomes
〈

θ −γ , π�0
∫

I φ
〉

=
0 or, using π�0

∫

I φ=−Gλ0, 〈 θ −γ , Gλ0 〉= 0. Hence we have that θ − γ must be
in the annihilator of imπ

�

0 ∩ im G which is kerπ�0 + ker Gt . We hence have μ,ν ∈
T ∗X (0)M with π

�

0μ=0 and U (1)tν=ν such that θ −γ =μ+ν. Finally, define
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b(u) := θ −μ+
1

∫

u

˜φ=ν+γ +
1

∫

u

˜φ.

Since U (1)tν=ν, we have thanks to (3.20) that b(0)=U (1)t b(1). This shows that

β :=U t b

is a periodic section of X∗T ∗M . Since π�0μ=0, we have from (3.19) that ˜λ=π�0b.
Moreover, since θ and μ are constant, we have ˜φ=−db.

If we now invert the transformations (2.10a) and (2.10b) to go back to tangent
vectors at (X, η),

˜ξ =U−1̃λ∈�(X∗T M),

ẽ=U t
˜φ ∈�(T ∗S1⊗ X∗T ∗M),

we obtain that a pair (˜ξ, ẽ) belongs to T⊥Cπ (M) iff equations (3.17a) and (3.17b)
are satisfied.

Remark 3.11. One may define functions μB on T ∗L M as in (3.16) with B now a
map from S1 to �1(M). Notice that the functions μB generate the vanishing ideal
of Cπ (M) and that their Hamiltonian vector fields generate the distribution defined
by (3.17a) and (3.17b). This remark however does not replace the proof above as
in the infinite dimensional case it is not automatic that the Hamiltonian vector
fields of functions in the vanishing ideal span the whole characteristic distribution.

4. Dual Pairs

In this section we assume that C0 and C1 are coisotropic submanifolds of a Pois-
son manifold M . In this case Cπ (M;C0,C1) is a coisotropic submanifold of T ∗P M
and its leaf space Cπ (M;C0,C1) is endowed with a symplectic structure. On the
other hand, the leaf spaces C0 and C1 are endowed with a Poisson structure. By
(3.15a) and the conditions on β, the maps pi of (1.1) descend to the quotients

p
i
: Cπ (M;C0,C1)→Ci , i =0,1.

Proceeding as in the proof of Theorem 4.6 in [6], one may prove that p
0

and p
1

are a Poisson and an anti-Poisson map respectively. We will prove the following

LEMMA 4.1. ker d p
0

and ker d p
1

are symplectically orthogonal at any point of
Cπ (M;C0,C1), i.e.,

(ker d p
0
(x))⊥=ker d p

1
(x), ∀x ∈Cπ (M;C0,C1).

In other words,C0
p

0←− Cπ (M;C0,C1)
p

1−→ C1 is a Lie–Weinstein dual pair [14].
Observe that the maps p

i
may fail to be surjective submersions, so this dual pair

is in general not full.
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Remark 4.2. Since the quotient Cπ (M;C0,C1) is finite dimensional, the above con-
dition is equivalent to

(ker d p
1
(x))⊥=ker d p

0
(x), ∀x ∈Cπ (M;C0,C1).

Notice that the maps p
i
s are defined, as continuous maps, even if the leaf

spaces are not smooth. Lemma 4.1 makes sense also in the nonsmooth case if we
define T[x]Cπ (M;C0,C1) as TxCπ (M;C0,C1), x ∈[x]∈Cπ (M;C0,C1), and T[x]Ci as
Tx Ci , x ∈[x]∈Ci . The linear maps ker d p

0
and ker d p

1
are also well defined. Thus,

we may think of C0
p

0←−Cπ (M;C0,C1)
p

1−→C1

as of a singular Lie–Weinstein dual pair.

Proof of Lemma 4.1. Let (X, η) be a representative of x ∈ Cπ (M;C0,C1). We
introduce the following notations:

V :=T(X,η)Cπ (M;C0,C1),

Zi :=TX (i)Ci ,

Z⊥i :=π�(X (i))(N∗X (i)Ci ),

�i :=d pi (X, η),

for i =0,1. So we have the following commutative diagram of vector spaces:

V
�i−−−−→ Zi

⏐

⏐

�

⏐

⏐

�

V/V⊥ −−−−→
d p

i
(x)

Zi/Z⊥i

We then have

ker d p
i
(x)=�−1

i (Z⊥i )/V⊥,
(ker d p

i
(x))⊥= (�−1

i (Z⊥i ))⊥/V⊥,

and

�−1
0 (Z⊥0 )={λ∈�0(I,TX (0)M), φ ∈�1(I,T ∗X (0)M) :dλ+π�0φ=0,

λ(0)∈π�0(N∗0 ), U (1)−1λ(1)∈T1},
�−1

1 (Z⊥1 )={λ∈�0(I,TX (0)M), φ ∈�1(I,T ∗X (0)M) :dλ+π�0φ=0,

λ(0)∈T0, U (1)−1λ(1)∈π�1(N∗1 )}.
Step 1: (ker d p

1
(x))⊂ker d p

0
(x)⊥.

It is enough to show that

�(X,η)((ξ, ζ ), (˜ξ,˜ζ ))=0, ∀(ξ, ζ )∈�−1
0 (Z⊥0 ), (˜ξ,˜ζ )∈�−1

1 (Z⊥1 ),
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since this implies �−1
1 (Z⊥1 )

⊥⊂�−1
0 (Z⊥0 )

⊥ which in turn implies the desired result
on the quotient. Using (2.13) with

λ=λ0−π�0
•

∫

0

φ,

˜λ=˜λ1+π�0
1

∫

•
˜φ,

we get

�(X,η)((ξ, ζ ), (˜ξ,˜ζ ))=
〈

∫

I

φ ,˜λ1

〉

−
〈

∫

I

˜φ , λ0

〉

.

If we now write

λ0=π�0α,
˜λ1=U (1)π�1β=π�0(U t )−1β,

with α∈ N∗0 and β ∈ N∗1 , we get
〈

∫

I

φ ,˜λ1

〉

=
〈

∫

I

˜φ , λ0

〉

=−
〈

U (1)−1π
�

0α , β
〉

,

which completes Step 1.

Step 2: (ker d p
0
(x))⊥⊂ker d p

1
(x).

Let (˜λ,˜φ) be an element of (�−1
0 (Z⊥0 ))

⊥. Then proceeding exactly as in the
proof of Proposition 3.3, we see that this element must satisfy (3.6) with ˜λ1 =
U (1)π�1θ for some θ ∈ N∗1 . We still have condition (3.10) but now for all λ0 ∈
π
�

0(N
∗
0 ). This implies that

(U t )−1θ +
∫

I

˜φ ∈Ann(π�0 N∗0 ).

In finite dimensions, Lemma 3.4 on page 12 implies F−1(T )=Ann(Ft (Ann(T ))).
Taking T =T0 and F=π�0 , we then get

Ann(π�0 N∗0 )=Ann(π�0 Ann(T0))= (π�0)−1(T0).

Thus, (3.13) implies

˜λ(0)=π�0

⎛

⎝(U t )−1θ +
∫

I

˜φ

⎞

⎠∈T0.

Hence (˜λ,˜φ) is an element of �−1
1 (Z⊥1 ), and its class modulo V⊥ is an element of

ker d p
1
(x).
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4.1. COMPOSITION

Under certain technical conditions (see [12] and references therein), dual pairs can
be composed by symplectic reduction. Namely, let P0, P1 and P2 be Poisson mani-
folds, S0 and S1 symplectic manifolds, together with Poisson maps I0, J0, and anti-
Poisson maps I1 and J1 as in the following diagram:

P0
I0←−−−− S0

I1−−−−→ P1
J0←−−−− S1

J1−−−−→ P2,

then S0×P1 S1 is a coisotropic submanifold of S0× S1 (S1 denotes S1 with opposite
symplectic structure), and the maps I0, J1 descend to the symplectic quotients, so that

P0
I0←−−−− S0×P1 S1

J1−−−−→ P2

is a new dual pair which we will denote by

S0 � S1.

Of course, without the appropriate assumptions, this might be quite singular; even
if we started with smooth manifolds, already the fibered product S0×P1 S1 might
not be a manifold, unless I1 and J0 are surjective submersions. For the reduced
space to be smooth as well, one need some more assumptions, see [12].

In our case, we allow all sorts of singularity. Given coisotropic submanifolds
C0, C1 and C2, we can construct singular dual pairs by Cπ (M;C0,C1) and
Cπ (M;C1,C2). A natural question is whether Cπ (M;C0,C2) = Cπ (M;C0,C1) �

Cπ (M;C1,C2). Roughly speaking the composition of these dual pairs arises by
joining paths at a fiber of C1→C1. So we may expect the above identity to hold
only if every path from C0 to C2 is equivalent to a path that passes through C1.
Otherwise in the composition we will select only paths with this property, so we
may expect that, in general, only the following inclusion relation holds:

Cπ (M;C0,C2)⊃Cπ (M;C0,C1) �Cπ (M;C1,C2).

In the next section, through another description of our singular dual pairs, this
will be more clear. Another way out is the extension to this case of the construc-
tion in [3,9], where we might speak of relational dual pairs.

5. Reduced Spaces

Let (M, π) be a Poisson manifold, then G(M)=Cπ (M;M,M) is the (possibly sin-
gular) source-simply-connected symplectic groupoid of M [6]. In this case we will
denote by s and t (instead of p

0
and p

1
) the Poisson and anti-Poisson maps to

M . Given two submanifolds C0 and C1 of M , we define

CM;C0,C1
π = s−1(C0)∩ t−1(C1).

If C0 and C1 are coisotropic, then so are s−1(C0), t−1(C1) and (because of the
symplectic orthogonality of the s- and t-fibers) also CM;C0,C1

π . We may then con-
sider its reduction CM;C0,C1

π . We have the following
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THEOREM 5.1. CM;C0,C1
π =Cπ (M;C0,C1).

This Theorem is a consequence of the following

LEMMA 5.2 (Reduction in stages). Let S be a (possibly infinite-dimensional, weak)
symplectic space. Let V be a subspace of S and W a subspace of V . If W is
coisotropic in S, then:

(1) V⊥⊂W⊥⊂W ⊂V , and in particular V is also coisotropic.
(2) W/V⊥ is coisotropic in V/V⊥.
(3) W/W⊥= (W/V⊥)/(W/V⊥)⊥.

The proof is a simple exercise in linear algebra.

Proof of Theorem 5.1. Let x be a point in CM;C0,C1
π ⊂G(M) and (X, η) a rep-

resentative of x in Cπ (M;C0,C1)⊂Cπ (M;M,M). Then we apply the reduction in
stages to the following spaces

S :=T(X,η)T
∗P M,

V :=T(X,η)Cπ (M;M,M),

W :=T(X,η)Cπ (M;C0,C1),

observing that

W/V⊥=TxCM;C0,C1
π .

Thanks to Theorem 5.1 we may now easily discuss a few examples.

EXAMPLE 5.3 (Trivial Poisson structure). For π = 0 we have G(M)= T ∗M with
canonical symplectic structure and with s= t=projection T ∗M→M . Any subman-
ifold of M is automatically coisotropic with trivial foliation. Then we have

C0(M;C0,C1)=T ∗C0∩C1
M

and

C0(M;C0,C1)=T ∗(C0∩C1)

which is a manifold iff C0∩C1 is so. Moreover, a simple computation shows that

C0(M;C0,C1) �C0(M;C1,C2)=T ∗(C0∩C1∩C2)⊂C0(M;C0,C2).
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EXAMPLE 5.4 (Symplectic case). Let M be a symplectic manifold, and π the
corresponding Poisson structure. For simplicity we assume M to be simply con-
nected. Then G(M)=M×M , where M denotes M with opposite symplectic struc-
ture. The maps s and t are the projections to the factors. Thus,

Cπ (M;C0,C1)=C0×C1,

and, in case C0 and C1 are coisotropic,

Cπ (M;C0,C1)=C0×C1.

In this case,

Cπ (M;C0,C2)=Cπ (M;C0,C1) �Cπ (M;C1,C2),

for any three coisotropic submanifolds C0, C1 and C2.

Observe that the map to M from CM;C0,M
π (resp., CM;M,C1

π ) is a surjective sub-
mersion if C0 (resp., C1) has a clean intersection with every symplectic leaf of
M . Under this condition, the dual pairs behave well and the composition is well
defined (in the world of differentiable stacks). Thus, if we define a coisotropic sub-
manifold to be nice when it has a clean intersection with every symplectic leaf, we
have the following

THEOREM 5.5. To every Poisson manifold (M, π), we may associate a category
C(M) where the objects are Poisson reductions (as differentiable stacks) of nice
coisotropic submanifolds of M and the morphisms from the object C0 to the object

C1 are elements of the form CM;C0,C1
π (as a differentiable stack) where C0 and C1 are

nice coisotropic submanifolds of M which reduce to C0 and C1.

5.1. GROUPOID QUOTIENTS

As shown in [2], there is a one-to-one correspondence between coisotropic sub-
manifolds of a given Poisson manifold M and (possibly singular) Lagrangian sub-
groupoids of the (possibly singular) source-simply-connected symplectic groupoid
G(M) of M . It turns out that CM;C0,C1

π may be understood as a quotient of groupo-
ids. Namely, given a groupoid G ⇒ M and a subgroupoid L ⇒ C ⊂ M , we have
a left action of L on s−1(C) and a right action on t−1(C). We will write L \G
(resp., G/L) as a shorthand notation for L \s−1(C) (resp., t−1(C)/L). If L(C) is
the Lagrangian subgroupoid of G(M) corresponding to the coisotropic submani-
fold C , we have

Cπ (M;C,M)=L(C)\G(M),
Cπ (M;M,C)=G(M)/L(C).
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For two given coisotropic submanifolds C0 and C1, we have instead

Cπ (M;C0,C1)=L(C0)\G(M)/L(C1)

=L(C0)\(s−1(C0)∩ t−1(C1))/L(C1).

This can be verified by recalling the construction of [2] and comparing it with the
one in this paper. Namely, the results of Section 3.2.1, may be rephrased as fol-
lows:

Cπ (M;C0,C1)={Lie algebroid morphisms T I→T ∗M
with base maps connecting C0 to C1}.

Two elements γ0 and γ1 of Cπ (M;C0,C1) are defined to be equivalent if there
exists a Lie algebroid morphism � : T (I × J )→ T ∗M , with J an interval, such
that

(1) the restriction of � to the boundaries of J are the two given morphisms γ0

and γ1, and
(2) the restriction of � to the boundaries {0} and {1} of I are Lie algebroid mor-

phism T J→ N∗Ci , i =0,1.

Then Cπ (M;C0,C1) may be regarded as the quotient of Cπ (M;C0,C1) by this
equivalence relation.

On the other hand, the Lagrangian subgroupoid corresponding to a coisotropic
submanifold C is shown in [2] to be the source-simply-connected groupoid whose
Lie algebroid is N∗C , and this is exactly [10] the quotient of the space of Lie
algebroid morphisms T J→ N∗C by Lie algebroid morphisms T (J × K )→ N∗C
(where K is another interval) which are trivial on the boundary of J . Finally
observe that equivalent Lie algebroid morphisms T J→N∗Ci act the same way on
Cπ (M;C0,C1).

Remark 5.6. This construction may be generalized to any Lie groupoid.

6. Lagrangian Field Theories with Boundary

As mentioned in Section 1.3, the constructions in this paper are related to the gen-
eral ones for Lagrangian field theories on manifolds with boundary as in [4] and
[5].

We start recalling a few facts. In general to a compact oriented manifold N (pos-
sibly with boundary), of fixed dimension d, the theory associates a space of fields
FN and a function SN on FN called the action functional. The case of this paper,
fixing a manifold M and a tensor π on it, corresponds to d=2, FN the space of
bundle maps T N→T ∗M and

SN (X, η)=
∫

N

〈η , dX 〉+ 1
2

〈

η , π�η
〉



COISOTROPIC SUBMANIFOLDS AND DUAL PAIRS 267

where X is a map N→M, η a section of T ∗N ⊗ X∗T ∗M and again 〈 , 〉 is the
canonical pairing between the cotangent and the tangent bundles to M . Notice
that the action functional does not see the symmetric part of π , so it may be con-
venient to assume that π is a bivector field. When π is Poisson, this theory is
called the Poisson sigma model [11,13]. We will call the general case the bivector
sigma model (BSM).

Under certain assumptions (in particular locality), to a compact oriented (d −
1)-manifold � the theory also associates an exact weak symplectic manifold
(F∂

�,�� = d��) such that whenever �= ∂M for a compact d-manifold M there
is a surjective submersion πM : FM→F∂

∂M . Denoting by E L M the zero set4 of the
1-form ELM := dSM − π∗M�∂M , one obtains that the “evolution relation” L M :=
πM (E L M ) is isotropic in F∂

∂M . In “good” theories the L M s should be Lagrangian.
Observe that L M is here defined just as a subset; a good additional condition
is that it should be a (possibly immersed) submanifold. One also has F∂

���′ =
F∂
�×F∂

�′ as a product of exact weak symplectic manifolds and F∂
�op =F∂

� , where
�op denotes � with opposite orientation and bar denotes the same manifold with
opposite one-form. Finally one defines the “space of Cauchy data” C� as the space
of points in F∂

� that can be completed to a pair of points in L�×[0,ε] ⊂F∂
� ×F∂

�

for some ε > 0. Under some mild assumptions, one can show that, if L�×[0,ε] is
Lagrangian for all ε, then C� is coisotropic.5 In the BSM, we get (F∂

S1,�S1)=
(T ∗L M,�) and CS1 = Cπ (M) with the notations of Section 1.2. We have the fol-
lowing

THEOREM 6.1. L S1×[0,ε] is an immersed Lagrangian submanifold ∀ε > 0 iff π is
Poisson.

Proof. If L S1×[0,ε] is Lagrangian ∀ε > 0, then CS1 =Cπ (M) is coisotropic by the
general theory. By Theorem 1.5, π is then Poisson.

4This is the set of solutions to Euler–Lagrange equations where one “ignores” the boundary.
5The first assumption is that the theory behaves well under diffeomorphisms: viz., a diffeomor-

phism of the bulk manifolds induces a diffeomorphism of the corresponding E L spaces. This implies
that each L�×[0,ε] is symmetric: (x, y) ∈ L�×[0,ε] iff (y, x) ∈ L�×[0,ε]. The second assumption is
locality which in particular implies that we can restrict solutions; so, if we know that x lies in C�
because there is a y with (x, y)∈ L�×[0,ε], then we also know that for all ε′<ε there is a y′ with
(x, y′)∈ L�×[0,ε′]. (In the case of topological field theories, like the BSM, this part of the argument
is much easier since L�×[0,ε] = L�×[0,ε′] for all ε, ε′.)

Suppose now that x lies in C� . Pick a compact neighborhood Ux of x in C� . For each z in Ux
there is then an εz >0 and a y such that (z, y)∈ L�×[0,εz ]. Let ε be the maximum εz for z in Ux .
Thanks to the locality assumption, we then have the simplified statement that for all z∈Ux there is a
yz such (z, yz)∈ L�×[0,ε]. This in particular shows that Tx C� consists of all v∈Tx F∂

� such that there
is a w∈TyF∂

� , with y := yx , such that (v,w)∈T(x,y)L�×[0,ε]. Thanks to the symmetry property, we
also see that T(x,y)L�×[0,ε] is contained in Tx C� ⊕ TyC� . The orthogonal space of the latter, in

Tx F∂
� ⊕TyF∂

� , is readily seen to be (Tx C�)⊥⊕ (TyC�)⊥. Since L�×[0,ε] is Lagrangian by assump-
tion, we conclude that (Tx C�)⊥ ⊕ (TyC�)⊥ is contained in Tx C� ⊕ TyC� , so Tx C� is coisotropic
(and so is TyC� ). Since this can be shown for all x ∈C� , we have that C� is coisotropic.
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On the other hand, if π is Poisson, then CS1 = Cπ (M) is coisotropic by Theo-
rem 1.5. In addition, ∀ε >0, L S1×[0,ε] consists of all pairs (x, x ′)∈Cπ (M)×Cπ (M)
such that x and x ′ are on the same characteristic leaf.6 This implies that L S1×[0,ε]
is an immersed Lagrangian submanifold.7

This story extends to the case when � is only part of ∂M . If ∂M=���′, then
πM is the product of two surjective submersions πM,� and πM,�′ to F∂

� and F∂
�′ ,

respectively. Upon picking a Lagrangian submanifold L ′ of F∂
�′ on which ��′ van-

ishes, one sets F L ′
M :=π−1

M,�′(L
′). Denoting by SL ′

M , ELL ′
M and π L ′

M,� the restrictions

of SM , ELM and πM,� to F L ′
M , one then has ELL ′

M =dSL ′
M − (π L ′

M,�)
∗�� and there-

fore L L ′
M :=π L ′

M,�(E L L ′
M ) is isotropic, where E L L ′

M denotes the zero set of ELL ′
M .

A further extension occurs when M is a compact manifold with corners and the
codimension-one boundary stratum of M , which we denote by ∂M , is the union of
compact manifolds with boundary � and �′ joined along their common boundary,
the codimension-two boundary stratum of M (we assume that there are no further
lower dimensional boundary strata). The story described in the previous paragraph
extends verbatim to this case.

6The critical points of SN are solutions to

dX =−π�(X)η,
dηi = 1

2
∂iπ

jk (X)η jηk .

For simplicity of notations we work in local coordinates (the rest of the computation may be
done in covariant form since, using the first equation, the second can be written as ∂ηi =
1
2 (∇π)

jk
i (X)η jηk ). We write η= η‖ −βdt , where η‖ is a 1-form in the S1 direction, β a function

and t the coordinate on [0, ε]. Writing d=d‖ +dtδ, with d‖ the differential in the S1 direction and
δ the partial derivative with respect to t , we may rewrite the equations as

d‖X =−π�(X)η‖,
δX =π�(X)β,
δη‖i =−d‖βi +∂iπ

jk (X)β jη‖k .

The first equation says that the restriction of (X, η) to S1 × {t} for each t yields an element of
Cπ (M). The two other equations say that (X, η) evolves in the t direction along the characteristic
distribution of Cπ (M), cf. (3.17).

7We follow the analogue proof in [9, Section 3.5.2]). Since L S1×[0,ε] consists of pair of points
on the same leaf of the characteristic distribution of Cπ (M), it follows that it is an immersed
submanifold. We now prove that it is Lagrangian. Let (x, y) be in L S1×[0,ε]. Then, in addi-
tion to knowing that T(x,y)L S1×[0,ε] is a subspace of Tx Cπ (M)⊕ TyCπ (M), which in turn is a

coisotropic subspace of Tx (T ∗L M)⊕Ty(T ∗L M), we now also know that it contains (Tx Cπ (M))⊥⊕
(TyCπ (M))⊥ = (Tx Cπ (M)⊕ TyCπ (M))⊥. Moreover, T[x]Cπ (M) := Tx Cπ (M)/(Tx Cπ (M))⊥ gets canoni-

cally identified with TyCπ (M)/(TyCπ (M))⊥. Finally, T(x,y)L S1×[0,ε]/(Tx Cπ (M)⊕ TyCπ (M))⊥ is the

diagonal in T[x]Cπ (M)⊕ T[x]Cπ (M), which is Lagrangian. This proves that T(x,y)L S1×[0,ε] itself is
Lagrangian, see [4, Proposition A.1(3)].
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Finally, one can define the “space of Cauchy data” CL ′
� as the space of points

in F∂
� that can be completed to a pair of points in L L ′

�×[0,ε] ⊂F∂
� ×F∂

� for some
ε >0, where L ′ is a fixed Lagrangian submanifold of F∂�×[0,ε].8 Again, one shows
that, if L L ′

�×[0,ε] is Lagrangian for all ε, then CL ′
� is coisotropic.

In the BSM, we get (F∂
I ,�I ) = (T ∗P M,�) with the notations of the Intro-

duction. Moreover, for a submanifold C of M , the space LC of bundle maps
T [0, ε]→ N∗C is a Lagrangian submanifold of F∂

[0,ε]. Finally, one has CLC0×LC1
I =

Cπ (M;C0,C1) and

THEOREM 6.2. L L M×L M
I×[0,ε] is an immersed Lagrangian submanifold ∀ε > 0 iff π is

Poisson. If π is Poisson and C0 and C1 are coisotropic, then L
LC0×LC1
I×[0,ε] is Lagrangian

∀ε >0.

The proof is similar to the case of S1 but now uses Theorem 1.1, Corollary 1.3
and the results of Section 3.2.1.
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