
Int J Mater Form (2014) 7:447–457
DOI 10.1007/s12289-013-1140-0

ORIGINAL RESEARCH

A strain rate dependent anisotropic hardening model
and its validation through deep drawing experiments

Philip Peters · Niko Manopulo · Christian Lange ·
Pavel Hora

Received: 17 April 2013 / Accepted: 18 July 2013 / Published online: 30 August 2013
© Springer-Verlag France 2013

Abstract In the present work, a modified version of the
widely used Yld2000-2d yield function and its implemen-
tation into the commercial FE-code LS-Dyna is presented.
The difference to the standard formulation lies in the depen-
dency of the function parameters on the equivalent plastic
strain. Furthermore, strain rate dependency is incorporated.
After a detailed description of the model and the identi-
fication of the parameters, the numerical implementation
i.e., the stress-update algorithm used for the implementation
is explained. In order to validate the model, two different
materials, namely Formalex™5x, a 5182-based aluminum
alloy and a DC05 mild steel were characterized. The results
of the tensile and hydraulic bulge tests are presented and
used for the parameter identification. The experimental
curves are reproduced by means of one element tests using
the standard and modified model to demonstrate the bene-
fit of the modifications. For validation purposes, cross die
geometries were drawn with both materials. The outer sur-
face strains were measured with an optical measurement
system. The measured major and minor strains were com-
pared to the results of simulations using the standard and the
modified Yld2000-2d model. A significant improvement in
prediction accuracy has been demonstrated.
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Introduction

One of the keys for a high prediction accuracy and time
effectivity of simulations of deep drawing processes is an
accurate mathematical description of the mechanical mate-
rial behavior [1]. Therefore much effort was put into the
development of constitutive models to better describe the
mechanical behavior of sheet metal material and thus to
increase the accuracy in the prediction of the geometri-
cal and mechanical properties of formed sheet metal parts.
Since Hill developed the Hill48 yield criterion [2], nume-
rous other yield criteria to describe plastic anisotropy have
been proposed e.g., by Hill [3, 4], Barlat and his co-authors
[5–8], Banabic and his co-workers [9, 10] and many others.
Also, models that are able to describe tension compres-
sion asymmetry (e.g., [11]) as well as models that account
for the Bauschinger effect by means of kinematic harden-
ing (e.g., [12, 13]) or distortional hardening (e.g., [14, 15])
have been published. Many of the models above have suc-
cessfully been implemented into commercial finite element
codes which today are a crucial instrument for the devel-
opment of sheet metal parts, tool layouts and the process
designs. Most of the above yield functions have in com-
mon, that the model parameters are determined based on
standardized mechanical tests like tensile tests. For finding
the parameters of more complex models, the experimental
effort usually is significantly higher. However, because of
the high complexity and the computational cost involved,
mainly isotropic hardening models are used in industrial
applications. The scalar parameters of these models are
assumed to be constant and not to change once they are
determined. This causes a homogeneously expanding elastic
domain, meaning the yield stress ratios for different stress
states stay constant for every level of plastic strain. Typi-
cally, the hardening curve in rolling direction (RD) is used
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as a reference in constitutive models for sheet metal. If an
isotropic hardening model is used, the hardening under a
stress state different from uniaxial tension in RD cannot be
represented correctly as long as the hardening under this
stress state is not proportional to the one in RD. Experiments
for different materials have shown, that this proportionality
is not given in most of the cases. The assumption of isotropic
strain hardening breaks down even for monotonic uniax-
ial loading. This has also been reported e.g., in [16, 17]. A
plausible explanation for this phenomenon is a differently
changing microstructure under different loading directions
[17]. To also account for such effects in a phenomenologi-
cal model, a simple approach is to introduce a dependency
of the model parameters on the equivalent plastic strain. In
this way, the hardening in the directions that are used to
fit the model parameters can be independently described.
In the present work Barlat’s Yld2000-2d [8] model, which
involves eight material parameters forms the basis. Based
on tensile and hydraulic bulge test results, the parameters
are varied with increasing equivalent plastic strain in order
to predict the RD, transversal direction (TD) and 45◦ as well
as the equibiaxial hardening curve correctly. Similar ideas
were proposed by [18, 19].

Material model

Original Yld2000-2d

In 2003 Barlat et al. published the so-called Yld2000-2d
yield criterion [8]. It was mainly developed to overcome
some problems of the Yld96 [7] yield criteria, namely the
lack of a proof of convexity as well as the the difficulty
to obtain the analytical derivatives. The Yld2000-2d crite-
rion is an extension of the criterion of Hershey [20] and
Hosford [21] to orthotropic anisotropy based on two linear
transformations of the deviatoric stress tensor. It has eight
parameters that are determined based on eight mechanical
properties. These are the uniaxial yield stress in RD, TD and
diagonal direction (σ0, σ45, σ90) and the yield stress under
equibiaxial condition σb as well as the Lankford parameters
in the three directions (r0, r45, r90) and the biaxial r-value
rb . The yield criterion is given as

φ = φ′ + φ′′ = 2σ̄ a (1)

where the exponent a is a material coefficient and
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In the equations above, σ is the Cauchy stress and α1−
α8 are the eight anisotropy coefficients. To determine the
coefficients, Barlat et al. propose the minimization of eight
functions representing the difference between measured and
predicted yield stresses or Lankford parameters respec-
tively. The exponent m is assumed to be a real number
between 2 and ∞. By setting all α parameters equal to 1,
and the exponent a equal to 2, the yield criterion is reduced
to the von Mises criterion while an exponent a of ∞ leads
to the Tresca criterion. By comparing the phenomenological
model with yield loci calculated with a polycrystal model,
[22] stated, that an exponent of a = 6 is best suited for a
body centered cubic (BCC) material, while for a face cen-
tered cubic (FCC) material, an exponent a = 8 should be
chosen. Kuwabara and his co-workers [23] recommend to
determine the exponent a based on yield stresses under biax-
ial loading with different ratios σ1/σ2. For this purpose they
designed a testing apparatus for the biaxial testing of cru-
ciform specimen [24]. Because such a testing machine was
not available, the exponent a is set to 6 for the steel and to 8
for the aluminum material.

Modifications on Yld2000-2d

As mentioned in the Section “Introduction”, constant
parameters α1 to α8 lead to constant ratios σxx/σyy for
every level of plastic strain, when σxx and σyy are the yield
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Fig. 1 Hardening curves for Formalex™5X for different angles to RD

stresses in RD and TD under two arbitrary stress states. To
overcome this limitation, the parameters are expressed as a
function of the equivalent plastic strain (which is propor-
tional to the equivalent plastic work). In order to obtain the
parameters, the yield stress in RD (σ0) at different levels of
equivalent plastic strain ε̄

p

i is taken. In a second step, the
corresponding plastic work Wpl is computed according to
Eq. 7.

Wpl =
∫ ε̄

p
i

0
σy(ε̄p)dε̄p (7)

The remaining yield stresses (σ45,σ90 and σb) are taken at
the same amount of plastic work. The Lankford parameters
were almost constant for both of the materials investigated
in this study thus their variation is not taken into account.
The four yield stresses in combination with the four r-values
build the input for the parameter fitting of the Yld2000-
2d function. Now the fitting can be done at different levels
of equivalent plastic strain leading to the eight parameters
being a function of the equivalent plastic strain. [19] uses a
sixth order polynomial function to fit the parameters. In the
present study, for both of the materials a suitable description
was sought-after. While the parameters for the aluminum

Fig. 2 Hardening curves for DC05 for different angles to RD
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Fig. 3 DC05 Hardening curves for different strain rates: measured
curves and predicted curves (dots)

material are described with a constant - linear - constant
function, the ones for the steel material are fitted with
a Hockett-Sherby type function (cf. Section “Laboratory
tests”).

In order to account for the strain rate dependency of
the DC05 material, a rate dependent hardening model was
used. The hardening curve of the material is given as the
quasi-static part of the curve multiplied with a scale fac-
tor which depends on the rate of the equivalent plastic
strain

σy(ε̄p, ˙̄εp) = σy0(ε̄
p) · c( ˙̄εp) (8)

Numerical implementation

The numerical implementation of the model described in
Section “Modifications on Yld2000-2d” is mainly accord-
ing to the one given in [25]. However, due to the dependency
of the model parameters on the equivalent plastic strain and
the incorporation of the strain rate dependency, some conse-
quences for the implementation arise. The hardening curve
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Fig. 4 Measured and corrected equibiaxial hardening curve for DC05
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Fig. 5 Measured equibiaxial hardening cure for Formalex™5x

of the material is given by Eq. 8. Assuming associated flow
rule, for a given total strain increment �ε, the plastic strain
increment can be computed as

�εp = �ε̄p ∂σ̄

∂σ
= γ

∂σ̄

∂σ
(9)

where γ is called the plastic multiplier. The yield function
is written as

f (σ, ε̄p, ˙̄εp) = σ̄ (σ, ε̄p) − σy(ε̄p, ˙̄εp)

=
(

φ

2

) 1
a − σy0(ε̄

p) · c( ˙̄εp)
(10)

The consistency condition then is

f (σ + �σ, ε̄p + �ε̄p) = 0 (11)

The strain rate is assumed to stay constant during each incre-
mental step. It is also known that the stress increment �σ

for a total strain increment �ε is given as the product of
the elastic stiffness tensor C and the difference of the total
strain increment and the plastic strain increment �εp

�σ = C(�ε − �εp) (12)

Fig. 6 compressed stack of nine 10 mm DC05 plates
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Fig. 7 Determined α parameters as a function of equivalent plastic
work ε̄p for Formalex™5x

by using Eqs. 8 and 12, the consistency condition (11) can
be rewritten as

σ̄

(
σT − γ C

∂σ̄

∂σ

)
− σy(ε + �ε) · ( ˙̄εp) = 0 (13)

where σT = C�ε is the so-called trial stress. A Newton-
Raphson based predictor corrector scheme is used to find
the solution for Eq. 13. To overcome the difficulty of find-
ing a solution for large strains, a return mapping algorithm
as used in [26] is applied. In this algorithm, Eq. 13 is not
directly solved for a residuum of zero, but for a prescribed
residuum which is lowered step by step. This leads to

f (γk) =σ̄

(
σT − γkC

∂σ̄

∂σ
, γk

)

− σy(ε̄p + γk) · ( ˙̄εp) − Fk = 0

(14)

where Fk is a prescribed value which is lowered con-
tinuously until Fk becomes 0 for the last step under the
condition that �F = (Fk−1 − Fk) < σy . Equation 14 for
the k-th substep in the step n + 1 is then written as:

f (γk) = σ̄ (σk, γk) − σy0(ε̄
p + γk) · c( ˙̄εp) − Fk = 0 (15)
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Fig. 8 Smoothed α parameters as a function of equivalent plastic work
ε̄p for Formalex™5x
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Fig. 9 Determined α parameters as a function of equivalent plastic
work ε̄p for DC05

where

σk = σT − γkC
∂σ̄

∂σk

(16)

and

σyk = σy(ε̄p + γk) = σyn + γkσ
′
yk (17)

where σ ′
yk is the slope of the hardening curve and

c( ˙̄εp) = c
( γk
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where �t is the current time step size. In order to apply the
Newton-Raphson based corrector predictor scheme, Eq. 15
has to be linearized around the state variable �γ . The
linearization leads to
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with

�σk = [E�γk + F] · G−1 (20)
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Fig. 10 Smoothed α parameters as a function of equivalent plastic
work ε̄p for DC05

Table 1 Hockett-Sherby parameters for smoothing variable α for
DC05

αi C1 C2 C3 C4

α1 0.9693 1.0960 11.623 0.748

α2 1.1342 0.9828 9.506 0.660

α3 0.7134 0.9139 62.246 1.3165

α4 0.8694 0.8960 164.86 1.7171

α5 0.8971 0.9217 253.05 1.8420

α6 0.6763 0.9352 49.415 1.2308

α7 0.9760 0.9834 10.000 0.5000

α8 1.1116 0.9364 29.250 1.1841

where

E = C−1
(
σk − σT

)
+ γk

∂σ̄

∂σk

(21)

F = ∂σ̄

∂σk

+ γk
∂2σ̄

∂σk∂ε̄p
(22)

G = C−1 + γk

∂2σ̄

∂σ 2
k

(23)

�σyk = σyn − σyk + σ ′
yk · (γk + �γk) (24)

�ck can be expressed as

�ck = 1

�t
c′�γk (25)
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Fig. 11 DC05 yield loci for ε̄p = 0, 0.1 and 0.2
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Fig. 12 Formalex™5x yield loci for ε̄p = 0, 0.1 and 0.2

since the time step �t , for which the strain increment is
given is known from the beginning. The derivatives with
respect to ε̄p in Eqs. 19 and 22 are due to the dependency
of the parameters on the plastic strain. The terms containing
c and c′ in Eqs. 19 and 20 are present due to the strain rate
dependency. By substituting �σk , �σyk and �ck in Eq. 19
with Eqs. 20, 24 and 25, and solving for �γk , the following
expression is found:

�γk = f (γk) − ∂σ̄
∂σk

G−1E + c · (σyk − σyn − σ ′
yn · γk)

∂σ̄
∂σk

G−1F − ∂αi

∂ε̄k + σ ′
yk · c + σyk

c′
�t

(26)
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Fig. 13 Uniaxial and equibiaxial stress strain curves: measure-
ment (solid) and prediction using standard Yld2000-2d (symbols) for
Formalex™5x
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Fig. 14 Uniaxial and equibiaxial stress strain curves: measurement
(solid) and prediction using modified Yld2000-2d (symbols) for For-
malex5x

where the definitions (21), (22) and (23) have been used
again. The state variables γk , σk and σy are updated after
every iteration with

γ new
k = γ old

k + �γk

σnew
k = σold

k + �σk

σnew
yk = σold

yk + �σyk

(27)

The rate scale factor c is given as a function of the strain rate
˙̄εp and can be evaluated at the actual rate which is given by
γ
�t

. The iteration continues until the consistency condition
(19) is fulfilled with a prescribed relative tolerance, which
was chosen as 10−5 for this study. After the stress integra-
tion is finished (i.e., the procedure has been carried out for
all substeps), the thickness strain is updated with

εzz = − ν

E

(
σ (n+1)

xx + σ (n+1)
yy

)
−

(
ε
p(n+1)
xx + ε

p(n+1)

yy(n+1)

)
(28)
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Fig. 15 Uniaxial and equibiaxial stress strain curves: measurement
(solid) and prediction using standard Yld2000-2d (symbols) for DC05
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Fig. 16 Uniaxial and equibiaxial stress strain curves: measurement
(solid) and prediction using modified Yld2000-2d (symbols) for DC05

The model described in the previous chapter was imple-
mented as a user material model in the explicit finite ele-
ment code LS-Dyna using the stress integration algorithm
given above.

Laboratory tests

In order to characterize the deformation characteristics for
the two materials investigated, different material tests were
carried out. First, tensile tests in 7 directions were conduc-
ted. Every single test was done five times at a strain rate
dε/dt = 0.002 before the resulting curves were averaged
in order to ensure the measuring accuracy. Since only the
stress strain curves in 0◦, 45◦ and 90◦ to RD have been used
in the remainder of this work, these curves are shown in
Fig. 1 for Formalex™5x and Fig. 2 for DC05. As is clearly
seen on Fig. 2, the 45◦ and the 90◦ curve for DC05 cross
each other which confirms the statement given in Section
“Introduction” about the non-proportional hardening, even
for monotonic strain paths. This is less the case for the the
aluminum. Furthermore, note that the hardening curves in
Fig. 1 show a serrated shape. This is due to the Portevin-Le

Chatelier effect [27]. However, this effect was not investi-
gated in this work. For the description of the RD hardening
curve, the measured curve were smoothed to avoid numer-
ical instabilities, but no mathematical approximation was
used.

The DC05 material exhibits a strain rate dependency of
the yield stress, which is typical for mild steel. In order to
find an accurate description for this dependency, tensile tests
with different velocities were carried out. The results are
shown in Fig. 3. Note that the strain rates are only conducted
in the range between ≈ 10−5 and ≈ 10−2, since the testing
facility did not allow to test at higher rates. A good agree-
ment with the experimental results could be found using
the modified Cowper-Symonds [28] approach whose math-
ematical description is given in Eq. 29. The parameters were
determined as ˙̄εp

0 = 1.48e − 4 and m = 54.99.

σy(ε̄p, ˙̄εp) = σy0(ε̄
p) · c( ˙̄εp) = σy0(ε̄

p) ·
(

1 +
( ˙̄εp

˙̄εp

0

)) 1
m

(29)

The measured curves as well as the curves predicted by the
model are presented in Fig. 3.

The strain rate dependency was also investigated for For-
malex™5x. Since a tensile test carried out at a five time
higher strain rate did not show significant differences, it was
assumed to be rate-insensitive.

In order to analyze the equibiaxial behavior of the mate-
rials, hydraulic bulge tests have been conducted. The tests
were evaluated according to [29] to determine the stress-
strain relation under equibiaxial loading. Since during a
hydraulic bulge test, the material undergoes a wide range
of strain rates, strain rate effects have to be compensated.
For the DC05 material the equibiaxial hardening curve
was corrected based on the strain rate model given in
(29) to find a curve that is comparable with the hardening
curves given in Fig. 2. The resulting curves, that eventu-
ally have been used to find the equibiaxial yield stress σb

Fig. 17 Difference between
measured and simulated major
strain for DC05 computed with
standard (left) and modified
(right) version of Yld2000-2d
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Fig. 18 Difference between
measured and simulated minor
strain for DC05 computed with
standard (left) and modified
(right) version of Yld2000-2d

as well as to extrapolate the uniaxial hardening curve in
RD (reference curve) for strains beyond uniform elonga-
tion, are presented in Fig. 4 for DC05 and in Fig. 5 for
Formalex™5x.

Finally, stack compression tests were carried out to find
the biaxial r-value rb . Stacks of nine plates with an initial
diameter of 10 mm were compressed to strains between 0.2
and 0.3. Deep drawing foil and lubricant was used to reduce
the friction to a minimum. Afterwards, the strains in RD
and TD of the central plates were measured and averaged
for 5 different tests. By computing the ratio εT D/εRD an rb
value of 0.89 for DC05 and 1.14 for the Formalex™5x was
found. Figure 6 shows a compressed stack of DC05 plates.
The picture shows that the stack barely buckled, which is a
good indicator for low friction.

Using the uniaxial and equibiaxial hardening curves,
the Yld2000-2d parameters were determined according
to the procedure explained in Section “Modifications
on Yld2000-2d”. The parameters determined for For-
malex™5x are shown in Fig. 7. Since the parameters seem
to be unstable before an equivalent strain of approximately
0.04, they have been held constant up to this value. After-
wards, they show an almost linear run, thus a linear slope
was used to smooth them between strains of 0.04 and
0.2 (which is the uniform elongation for this material).
Beyond uniform elongation, again constant parameters were
assumed because there is no data to fit them anymore
(Fig. 8).

For DC05, the determined parameters are presented in
Fig. 9. The parameters show a rather steep slope in the
beginning, but seem to run to a saturated value after a strain
of approximately 0.15. To fit this characteristic, a Hockett-
Sherby [30] type of function as given in Eq. 9 was used. The
smoothed curves are shown in Fig. 10 while the parameters
C1−4 used to fit α1 to α8 are given in Table 1. No fur-
ther measures have to be taken for strains beyond uniform
elongation.

Figures 11 and 12 show the influence of the varying
parameters on the shape of the yield locus for both mate-
rials. For the DC05, the influence is stronger than for
Formalex™5x. Mainly the equibiaxial yield stress is influ-
enced. However, also the yield stresses in the remaining
directions (σ45 and σ90) slightly change.

Validation

Verification

To check whether the model is working properly, the curves
shown in the Figs. 1, 2, 3, 4, and 5 have been reproduced
using the standard and the modified version of Yld2000-2d.
The results are presented in Figs. 13, 14, 15, and 16. It is
obvious that the modified version predicts the uniaxial and
the equibiaxial stress responses better than the standard ver-
sion. This was expected because of the way the parameters

Fig. 19 Difference between
measured and simulated major
strain for Formalex™5x
computed with standard (left)
and modified (right) version of
Yld2000-2d
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Fig. 20 Difference between
measured and simulated minor
strain for Formalex™5x
computed with standard (left)
and modified (right) version of
Yld2000-2d

were determined. For the equibiaxial strain there is a slight
difference between the x- and y-stress (stress in RD and
TD). The reason is the rb-value that is different from one.
Furthermore, also the modified model is not able to exactly
predict the curves for DC05 (cf. Fig. 16). These small devi-
ations are due to the used strain rate model, which tends to
underestimate stresses at low strains and overestimate them
at higher strains (cf. Fig. 3). Nevertheless, good agreement
was observed.

Cross die tests and simulations

For validating the model, the so-called cross-die geometry
was used. The cross die shape is a widely used geometry
when it comes to validation of material models (e.g., [31,
32]). There are different varieties of cross die shapes, basi-
cally with equal side lengths and two different side lengths
respectively. In the present study, the latter was used. A test
piece with a drawing depth of 75 mm for DC05 and 55 mm
for Formalex™5x was drawn. Before drawing, a pattern was
applied on the outer surface of both blanks. This pattern
is needed to subsequently be able to optically measure the
major and minor surface strains with the optical measure-
ment system ARGUS from GOM, which uses digital image
correlation techniques to measure displacements of material
points between two different stages. After having measured
the displacements with ARGUS, the software computes the
measured surface points as well as the surface strains. Note
that for the steel material, only one half of the real part was
measured assuming that the part is drawn symmetrically.

The simulations of the cross die tests have been carried
out using the commercial finite element software LS-Dyna
in combination with the implemented model described in
Section “Material model”. First, the model was used assum-
ing constant α parameters in order to find the correct
friction coefficient. For this purpose, the draw-in of the
real part and the simulation were compared and the devi-
ation was minimized. In this way, friction coefficients of
0.08 and 0.07 for steel and aluminum respectively were
found. Using these friction coefficients, the simulation was

carried out again with the varying parameters presented in
Section “Laboratory tests”.

After the simulations were finished using both, constant
and variable parameters, GOM’s software SView was used
to compare the measured strains with those obtained from
the simulations.

Figures 17, 18, 19, and 20 show the differences between
the measured and simulated major and minor surface strains
for both materials. Since the modifications affect mainly the
equibiaxial region of the yield locus, the biggest influence
can be seen at the long side edges of the cross die, where
the material is biaxially stretched. Note that the strain in the
front flange area of the DC05 part (Figs. 17 and 18) shows
worse results with the modified model than with the stan-
dard one. This is because the friction was determined based
on simulations with the standard formulation. After chang-
ing to the modified model, the blank drew in a little further
in this region which leads to higher strains. For the alu-
minum material, the draw in was even slightly better after
switching to the variable formulation.

To also give a quantitative comparison Figs. 21 and 22
are provided. These Figures show the major and minor
strain along a section through the bottom radius of the part

Fig. 21 Major and minor strains along section for Formalex™5x
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Fig. 22 Major and minor strains along section for DC05

(sketched in Figures). The Figures clearly show an improve-
ment in the strain prediction, especially in the edges of the
cross die, where the material is biaxially stretched.

Conclusion

A modified version of Barlats Yld2000-2d model was pre-
sented. The modifications lie in a dependency of the model
parameters on the equivalent plastic strain as well as in
the strain rate dependency of the yield stress was incorpo-
rated. The model was implemented in LS-Dyna as a user
defined material. Laboratory tests to characterize two dif-
ferent materials, a DC05 and Formalex™5x (a 5082 based
aluminum alloy) were conducted. The results have been
used to fit the model parameters. In a first step, the model
was validated by recomputing the uniaxial and equibiaxial
stress strain curves. It could be shown, that the quality of the
responses could be increased significantly. In a second step,
cross die simulations have been carried out. Even though the
cross die part turned out not to be the most suitable part to
show the advantages of the model, an increase of the strain
prediction accuracy could also been confirmed for both
materials. An investigation of more complex geometries is
part of ongoing work.
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