
ORIGINAL ARTICLE

Classifying watermelon ripeness by analysing acoustic signals
using mobile devices

Wei Zeng • Xianfeng Huang • Stefan Müller Arisona •

Ian Vince McLoughlin

Received: 28 August 2012 / Accepted: 6 July 2013 / Published online: 6 August 2013

� Springer-Verlag London 2013

Abstract This work addresses the problem of distin-

guishing between ripe and unripe watermelons using

mobile devices. Through analysing ripeness-related fea-

tures extracted by thumping watermelons, collecting

acoustic signals by microphones on mobile devices, our

method can automatically identify the ripeness of water-

melons. This is possible in real time, making use of

machine learning techniques to provide good accuracy. We

firstly collect a training dataset comprising acoustic signals

generated by thumping both ripe and unripe watermelons.

Audio signal analysis on this helps identify features related

to watermelon ripeness. These features are then used to

construct a classification model for future signals. Based on

this, we developed a crowdsourcing application for

Android which allows users to identify watermelon ripe-

ness in real time while submitting their results to us

allowing continuous improvement of the classification

model. Experimental results show that our method is cur-

rently able to correctly classify ripe and unripe watermel-

ons with an overall accuracy exceeding 89 %.

Keywords Mobile and physical computing �
Real-time signal analysis � Machine learning �
Crowdsourcing

1 Introduction

The rich set of sensors such as microphone, camera, GPS

and accelerometer on mobile devices enables them to

interact with their environment in many ways. Applica-

tions making use of sensors on mobile devices have

introduced a new area of research called mobile sensing.

The potential of mobile sensing has been discussed for a

long period in both industrial and research communities.

For instance, Nokia has developed the Nokia Remote

Sensing platform (NORS) which aggregates mobile phone

data and notifies changed sensor data for a variety of

application scenarios such as health care and environ-

mental monitoring [4]. Such efforts have led mobile

devices to play an increasingly important role in the daily

lives of the public, relating to communication, social

activities, healthcare and so on.

Among mobile device sensors, the microphone is of

course the most ubiquitous but perhaps least exploited for

non-vocal applications. Sounds collected by a mobile

device’s microphone can be analysed to make accurate

inference regarding the carrier, the environment and even

the current social setting [10]. Apart from just recording

sounds, the microphone included in every mobile device

can be used for a variety of purposes [14]. The develop-

ment of SDKs and libraries supporting acoustic signal

analysis techniques on recent mobile operating systems

(such as iOS, Android and Windows Phone) brings more

possibilities for applications making use of microphones on

mobile devices.

For acoustical signal analysis, the key problem is nor-

mally to find features that can be used for recognition and

classification. Past researchers have extracted many fea-

tures from acoustic signals that are reviewed in [15]. The

features are summarised and classified into seven domains:

W. Zeng (&) � X. Huang � S. Müller Arisona

Future Cities Laboratory, Department of Architecture,

ETH Zurich, 8093 Zurich, Switzerland

e-mail: zeng@arch.ethz.ch

I. V. McLoughlin

University of Science and Technology of China, Hefei, China

123

Pers Ubiquit Comput (2014) 18:1753–1762

DOI 10.1007/s00779-013-0706-7



temporal, physical frequency, perceptual frequency, ceps-

tral, modulation, eigendomain and phase space, with each

domain consisting of several specific features. Once fea-

tures are extracted, some form of recognition or classifi-

cation method is usually required for the application of

interest. Automatic acoustic content recognition and clas-

sification methods are summarised in [16]. Typical meth-

ods include Bayesian classification, nearest neighbour

classification, hierarchical clustering, hidden Markov

model (HMM) and support vector machine (SVM).

Considering the particular application domain of this

paper, experienced farmers and buyers normally thump

watermelons to judge their ripeness before picking or

buying them. When thumping, they listen to the sound

produced and claim the ability to distinguish between ripe

and unripe fruits. This suggests that there exist acoustic

features related to the ripeness of watermelons, and that we

may be able to use those features to automatically judge

whether watermelons are ripe or not.

In this paper, we discuss the implementation of a crowd-

sourced application that allows us to collect watermelon

acoustic data while simultaneously providing a tool to

farmers and buyers that will assist them in the automatic

detection of ripe fruit. The benefit of making it crowd-

sourcing is that we can collect watermelon acoustic data

from different mobile devices, users and watermelons from

many countries allowing continuous improvement of our

classification model.

In our work, we firstly collect a training dataset con-

taining acoustic signals generated by thumping both ripe

and unripe watermelons. Experiments are done to retrieve

features related to the ripeness. A real-time crowdsourcing

mobile application able to judge watermelon ripeness

automatically using mobile devices is implemented, and its

performance is evaluated.

Contributions of our work are:

• We find a series of key acoustic features related to

ripeness of watermelon, using relatively low-complex-

ity measures including zero crossing rate, short-time

energy and other.

• We show how mobile devices can easily implement the

analysis in real time, and how this can be made

accessible to users and to implementers through

crowdsourcing for improving the classification method.

• Our experiments show that our proposed method is able

to correctly classify ripe and unripe watermelons with

an overall accuracy of 89.9 %.

The remainder of this paper is organised as follows. We

show related work in Sect. 2. System, mathematical model

and user interaction of our method are discussed in Sect. 3.

Section 4 explains details of our methods followed by

implementation of a mobile application in Sect. 5.

Experiments results are listed and evaluated in Sect. 6.

Finally, we conclude and discuss future work in Sect. 7.

2 Related work

The watermelon is an important and common fruit, espe-

cially during summer and in tropical areas. Purchasers are

concerned most with their quality and ripeness, and thus,

experienced buyers will often thump several watermelons

to judge their ripeness according to some kind of heard or

felt acoustic response. However, experience is needed for

this, and it is difficult for people with less-gifted ears or in

noisy market environments. Thus, there is a need for an

easy implementable, low cost and portable method that can

automatically judge ripeness. In fact, some related research

has been published previously regarding the quality and

ripeness of watermelons.

2.1 Watermelon quality

Several internal defects can cause bad watermelon quality,

including (a) creases or large voids, (b) over-ripeness and

(c) bruises, usually due to impacts [7]. Based on the

hypothesis that acoustic impact response of bad quality

watermelons differs to those good quality, Diezma-Iglesias

et al. [7] constructed an apparatus consisting of a micro-

phone, structural elements and a mechanical impact gen-

erator to non-destructively detect defects in watermelons

based on acoustic impulse response. In this work, spectral

parameters are obtained by summing the magnitude of the

spectrum between two frequencies in a specified band

width. This is repeated for good and defective seedless

watermelons, and the acoustic parameters are then used for

classification purposes.

2.2 Watermelon ripeness

Watermelons do not continue to ripen after harvest, and

hence, it is critically important to judge whether they are

ripe or not prior to picking. Although 90 % of the water-

melon is water, sugar is an important indicator in the

process of ripening. Sugar content will increase when

watermelons become ripe, and this will lead to sound fre-

quencies that differ in acoustic response from unripe

watermelons [6].

Therefore, various studies have been undertaken on

acoustic impulse response relationship to watermelons

ripeness [2, 3, 18]. In fact, Baki et al. [3] analysed Mel-

frequency cepstrum coefficients (MFCC) derived from

acoustic signals collected from ripe and unripe watermel-

ons. The coefficients are used to train a multi-layer per-

ceptron (MLP), and a best MLP classifier is constructed

1754 Pers Ubiquit Comput (2014) 18:1753–1762

123



from MLP structures and parameters to classify water-

melon ripeness. Baki et al. [3] reported that their method is

able to discriminate between ripe and unripe watermelon

with an accuracy of 77.25 %.

However, much of this research requires expensive and

complicated mechanical devices and experimental appa-

ratus, which tends to make their methods less useful for

normal users, such as those shopping in a supermarket.

Also, the accuracy of their results is not particularly high.

In contrast to this prior work, we analyse the acoustic

signals in more detail and define more ripeness-related

features. It should also be noted that although there are

some applications, such as iWaterMelon, MelonMeter,

WaterMelon Prober, which claim to help users classify

watermelons ripeness with mobile devices, we found these

to be unreliable as well as unpublished. These applications

are neither sensitive to the acoustic response of thumping

watermelons nor accurate enough.

Hence, we develop a technique which makes use of current

widely available mobile devices to record acoustic signals

generated by thumping watermelons and classify their ripeness

in real time. Our focus is on distinguishing ripe watermelons

from unripe ones as depicted in Fig. 1. And we are mostly

concerned with choosing and purchasing watermelons. Other

factors relating to watermelon quality are not covered in our

study. Currently, we only implement our method for Android,

but it is easy scalable to all mobile platforms.

3 Overview

3.1 System overview

We use machine learning techniques to classify water-

melon ripeness automatically. Our method contains two

phases—a training and a classification phase—as illus-

trated in Fig. 2. In both phases, recorded acoustic signals

are firstly processed to separate background noise and

segment thumping frames. Then, ripeness-related features

are extracted from each thumping frame. For training data,

the features are labelled according to the subsequently

known ripeness of the watermelons in the training phase.

These are used to train a classification model which is

applied during the classification phase to identify ripeness

of other watermelon signals.

Users can contribute to the implementation by sending

us the feedback of classification result. Combined with raw

audio data, our system is able to automatically update the

training model. With the crowdsourcing capability, our

implementation overcomes the limitation of relatively

small amount of experiment data and limited range of

watermelon types.

3.2 Mathematical model

Factors of watermelon quality other than ripeness, like

creases and voids, can also affect the thumping acoustic

Fig. 1 Internal view comparison between ripe (left) and unripe

(right) watermelons

Fig. 2 System overview of our

method

Pers Ubiquit Comput (2014) 18:1753–1762 1755

123



signals. The acoustic signals Wmelon collected can be for-

mulated as follows

Wmelon ¼ f ðWstate;Dacc; ForceÞ þ Noise ð1Þ

where Wstate is the state of watermelon, including size, shapes,

quality and others. Dacc is the gain and frequency response of the

microphone on the mobile devices, which varies with different

mobile devices models and usage periods. Force represents the

force users applied to thump the watermelons (by hand), and

noise represents the environmental and system noise.

In general, ripe watermelons usually sound dull when

thumped while unripe ones have a tighter, metallic sound. This

is regardless ofother factors, such ashow much thumping force

is used. We know that the microphones on mobile devices offer

signal capture of considerable quality [14] and therefore expect

that they are sufficiently accurate to distinguish between the

two types of signal. Based on the hypothesis that acoustic

response signals of thumping watermelons are mainly affected

by ripeness, we built a classification model based on water-

melon ripeness-related features.

3.3 User Interaction

After generating the classification model, we implemented a

mobile application that is able to classify watermelon ripeness

in real time. Figure 3 illustrates how users utilise our appli-

cation on mobile devices. Users should hold their mobile

devices running our application near to the watermelon surface

in one hand while thumping it with another hand. The acoustic

signal generated by thumping will be reflected internally and

collected by the microphone. Following detection of a single

thumping event, our application will analyse the signals and

indicate watermelon ripeness in real time.

4 Methods

Our method is basically a machine learning technique and

consists of three parts: preprocessing, feature extraction

and classification. Preprocessing is designed to separate the

thumping response from background noise and segment

thumping event frames. Watermelon ripeness-related fea-

tures are extracted in the feature extraction step, and

finally, these features are classified.

4.1 Preprocessing

Collected acoustic signals are preprocessed to separate

noises and segment thumping event frames. Each frame

indicates one individual watermelon thumping event and

contains acoustic watermelon ripeness-related features.

Basic hypothesis is that signal-to-noise ratio (SNR) is high

enough to distinguish thumping signals from noise. In

practice, this is not difficult to achieve. Figure 4 illustrates

steps of preprocessing raw acoustic response signals.

4.1.1 Calculate root mean square (RMS)

RMS is an effective method to separate noise from event

signal, especially when SNR is high. RMS is calculated by

taking frame of the acoustic signal and computing the

square root of the sum of the squares of the windowed

sample values. It can be formulated as

rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i

s2
i

s

ð2Þ

where n is window size and s(i) is the input acoustic

signals.

Window size is one of the key factors affecting the

signal-noise separation result. It needs to be short enough

to accurately locate the start and end points of the event

signal yet long enough to contain a recognisable event

signal. Overlapping frames are proposed in [12] to more

precisely capture subtle changes in the acoustic signals (as

is common in speech processing); however, this will also

increase the computing overhead. In order to accelerate

computing speed and reduce power consumption for

Fig. 3 Thump a watermelon and record acoustic signals using the

microphone on the mobile device Fig. 4 Work flow of preprocessing of acoustic signal

1756 Pers Ubiquit Comput (2014) 18:1753–1762

123



mobile devices use, we adopt a fixed frame size of 1 ms

(44 samples). We observed that each watermelon thumping

signal lasts about 40 ms.

4.1.2 Detect start/end points

Frames are characterised into 0 or 1 based on their RMS

energy. Frames with RMS values below threshold are

labelled 0, and those above are labelled 1. Transitions from

0 to 1 are considered start points, and transitions from 1 to

0 are considered end points.

It is difficult to determine a fixed threshold value since

noise levels vary in different situations and with different

microphones. Hence, we use a dynamic threshold: RMS

values in a short period (2 s) before the users thump the

watermelon are determined, and five times this value is

used as threshold.

4.1.3 Extract thumping event

Signals between consecutive start and end points are

considered to contain a potential thumping response.

We observed that all watermelon thumping signal

lengths are about 1,800 samples (41 ms). Hence, we

only take into consideration frames with size between

1,500 and 2,500 samples (34–57 ms). For short but

close frames (each frame size less than 1,000 and dis-

tance less than 500), we merge them together and

consider them as originating from the same event. After

filtering, all frames satisfying requirements are consid-

ered thumping events.

4.1.4 Discard noise

All other signals are considered noise and discarded.

4.1.5 Apply Butterworth filter

In order to further reduce unwanted noise effects, we

applied a second order low pass Butterworth filter on

extracted signals to reject unwanted frequencies [5]. We

found that environmental noise mostly lay in the higher

part of frequency domain, and hence, we define a cut-off

frequency at half of the Nyquist frequency.

After all these steps, acoustic signals containing water-

melon thumping events have been separated from much of

the noises and segmented into frames. Figure 5 shows the

preprocessing results of an acoustic response signal gen-

erated by thumping on a ripe watermelon.

4.2 Feature extraction

After noise reduction and segmentation, a classification

model is constructed based on watermelon ripeness-related

features. Feature selection is critical to this step, and thus,

we analysed the following features as suggested in [13] in

order to find watermelon ripeness-related features.

4.2.1 Zero crossing rate (ZCR)

ZCR is defined in [17] as the number of time-domain zero-

crossings within a frame. It is commonly used in audio

signal processing, especially for classifying percussive

sounds [8]. ZCR can be calculated as

0 0.5 1 1.5 2

x 10
4

0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

A
m

pl
itu

de

Time
0 0.5 1 1.5 2

x 10
4

0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

Time

A
m

pl
itu

de

0 500 1000 1500 2000
0.2

0.1

0

0.1

0.2

Time

A
m

pl
itu

de

0 20 40 60 80 100
0

10

20

30

40

50

60

Frequency

A
m

pl
itu

de

Fig. 5 Preprocessing of raw

acoustic impulse response from

thumping a ripe watermelon:

raw acoustic signal (top left);

noise removed acoustic signal

(top right); frame of patting

event extracted (bottom left);

fast Fourier transform of the

frame (bottom right)

Pers Ubiquit Comput (2014) 18:1753–1762 1757

123



zcr ¼ 1

2N

X

N

i¼1

jsignðsiÞ � signðsi�1Þj ð3Þ

where N indicates frame length, sign() function is 1 for

positive inputs and -1 for negative inputs, si represents

input signals.

4.2.2 Short-time energy (STE)

STE measures the sum of the square of signals in time

domain that can be formulated as:

ste ¼
X

N

i¼1

s2
i ð4Þ

where N indicates frame length and si represents input

signals. Similar to ZCR, STE is simple to compute, but it is

an important feature in audio signals.

4.2.3 Sub-band short-time energy ratio

Sub-band STE ratio measures the ratio between the sub-

band energy within intervals and the total energy in a

frame. It is formulated as:

sub ste ratio ¼ 1

ste

X

H

i¼L

s2
i ð5Þ

where L and H are the lower and upper sub-band bound-

aries, si is the input signal. Sub-bands are normally

designed according to real situations. In our case, we divide

frames into sub-bands of 0; T
8

� �

; T
8
; T

4

� �

; T
4
; T

2

� �

and T
2
; T

� �

.

We observed that unripe watermelon STE mostly falls in

the first sub-band. Also that the sub-band STE ratios drop

fast while for ripe watermelons, the sub-band STE ratios

are much flatter as depicted in Fig. 6.

4.2.4 Mel-frequency cepstral coefficients (MFCC)

MFCC are commonly used features in audio signal pro-

cessing, especially for speaker recognition. For selected

frames, MFC coefficients constitute good representations

of dominant features. They are normally calculated as

following:

• Select a frame of samples from the original signal.

• Apply Fourier transform to the obtained signal frame.

• Apply Mel-frequency filtering to the transformed

signal.

• Take logarithm of the powers at each Mel frequency.

• Take discrete cosine transform (DCT) of the list of Mel

log powers.

This can be formulated as:

cðnÞ ¼ DCTðlogðjFFTðsiÞjÞ ð6Þ

where c(n) is the MFC coefficients and si is the input sig-

nal. FFT and DCT indicate fast Fourier transform and

discrete cosine transform respectively.

4.2.5 Brightness

Brightness is defined as the centroid of the frequency

spectrum in a frame which can be computed as:

wc ¼
PB

w¼0 wjFðwÞj2
PB

w¼0 jFðwÞj
2

ð7Þ

where B is the Nyquist frequency, F(w) is the value of FFT

at frequency component w.

4.2.6 Spectrogram

A spectrogram reveals how spectral density varies with

time. The spectrogram of a signal is normally estimated by

computing a sequence of short-time Fourier transforms

(STFT) of the signal, with squared magnitude. This can be

formulated as:

Spectrogramðt;wÞ ¼ jSTFTðt;wÞj2 ð8Þ

where STFT indicates short-time Fourier transform at time

t and frequency w.

Figure 7 shows a comparison of the time-frequency

representation of ripe and unripe watermelon thumping

response signals. Note that only part of the frequency

domain is shown as values in the remaining portion are

very low. However, the figure shows clearly that density is

higher in both the low part of time and frequency domain

of unripe watermelon thumping response signals, which

indicates that their brightness is lower and their sub-band

STE ratio drops faster.

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sub band

R
at

io

Ripe
Unripe

Fig. 6 Sub-band STE ratio of typical ripe and unripe watermelons

acoustic signals

1758 Pers Ubiquit Comput (2014) 18:1753–1762

123



4.3 Classification method

Many methods have been proposed to classify audio

streams, including K-nearest neighbour (KNN), Gaussian

mixture model (GMM) and support vector machine

(SVM). We explored the performance of these methods in

audio segmentation and classification and chose SVM. It is

claimed in [11] that SVM-based methods can outperform

both KNN and GMM for similar tasks.

Given a training dataset that is marked as positive or

negative, the SVM training algorithm learns an optimal

separating hyper plane, which assigns a new example as

positive or negative [1]. The optimal separating hyper

plane is achieved by making the largest distance to the

nearest training data points of both classes.

SVM can be either linear or nonlinear (kernel based),

where the difference is that nonlinear SVM needs to map

the data into a high dimensional feature space to make the

data linearly separable. Normally, nonlinear SVM has a

better performance than linear SVM, but it also requires

more computing power. Taking into consideration, the

limitations of mobile devices and to balance between the

performance and computing time, we constructed a linear

SVM in our implementation.

Training data are represented as (xi, yi) where xi 2 Rn is

a feature vector consisting of n watermelon ripeness-rela-

ted features and yi 2 f�1;þ1g is a class label. Each fea-

ture vector is labelled either -1 or ?1, representing unripe

and ripe, respectively. Therefore, we constructed a classi-

fication model with a hyper plane separating ripe from

unripe feature vectors as much as possible. This classifi-

cation model is further tested by classifying testing the

dataset with result presented in Sect. 6.

5 Implementation

5.1 Implementation on Android devices

We implemented our method on Android due to its very

wide spread adoption and operation on multiple platforms.

However, Android is Java based and not particularly well

suited to real-time or low-latency applications, especially

for audio processing. In order to achieve real-time and low-

latency processing, we followed the framework proposed

in [9]. Juillerat et al. [9] stated that the following things

should be taken into account for Java audio processing: the

audio pipeline, audio API, HotSpot compiler, garbage

collection and priority inversion. Hence, such techniques

are used in our implementation:

• We create one thread for audio recording by which

audio is recorded in a mono channel, with 16 bits per

sample at 44.1 kHz sampling frequency. A ring buffer

is allocated for temporally storing audio signals with

minimum buffer size (8,192 bytes for our test phones)

calculated by the Android system.

• We create one thread for processing the recorded audio

signal. Our application first collects a period (2 s) of

environmental sounds to calculate an RMS threshold

for separating noise from thumping event. Signals are

considered as environmental noise and discarded if

their RMS is below the RMS threshold. A Butterworth

filter is applied to signals with RMS above the

threshold since they are considered to contain thumping

events. Feature vectors are extracted from these signals

and labelled as ripe or unripe using the classification

model we constructed. A final classifying decision is

made by a majority vote from these labels.

With such steps, we achieved a mobile application able

to judge watermelon ripeness in real time with relatively

low latency. However, the actual performance also depends

upon environmental noise, microphones quality, mobile

device computing speed, memory and background tasks.

We also created one additional thread for users to submit

their collected signals if they find the result is wrong and

wish to provide this information. This will cause an email

to be sent to us containing collected audio signals and

correct result. This crowdsourcing ability helps us collect

more data points and improve our classification model

continuously.

Fig. 7 Comparison of time frequency representation of ripe (top) and

unripe (bottom) watermelons acoustic response signals

Pers Ubiquit Comput (2014) 18:1753–1762 1759

123



5.2 User interface

We developed a user interface that is simple and easy to

use as shown Fig. 8. A dialogue (top left) asking users to

wait for two seconds in order to measure environment

noise will be shown to users when the application starts.

Then, users start collecting thumping signals by pressing

the Start button, and signals will be presented to the users

(bottom left) in near real time. The background thread will

start recording and analysing at the same time. Users press

the Stop button after they have thumped their watermelons.

If our application cannot detect any thumping signals, a

warning will be shown (top right). Otherwise the classifi-

cation result (bottom right) will pop up. A thumbs up figure

indicates the watermelon is ripe while thumbs down means

the watermelon is unripe. Users may give us feedback to

improve the classification model at this point, or they can

simply Exit the application.

6 Experiments

The training dataset is generated by patting on 10 ripe and

unripe watermelons, respectively. Thumping acoustic

response signals are all recorded as discussed in Sect. 4 and

used to construct a classification model making use of

SVM algorithms with a hyper plane separating the two

classes most widely. We then test the classification model

on a testing dataset with 40 watermelons, of which 15 are

ripe and 25 are unripe. Tests used several models of mobile

phone running Android version 2.1 and above, and were in

two locations: a farming field and a quieter laboratory

environment.

6.1 Thumping detection

Table 1 provides the number of ripe and unripe water-

melons used in training and testing dataset, respectively,

with the total number of thumping events detected (i.e.

multiple thumps per watermelon) and ratio of correct

detections in the brackets. We can see from the figure that

our technique is able to detect most thumping acoustic

response signals from noise. We can also see that the

performance is better for ripe watermelons because we

bought them and collected the acoustic signals in a quite

laboratory environment. By contrast, we did not purchase

the unripe watermelons, and thus, all thumping tests were

recorded in the field with higher environment noise. Nev-

ertheless, the detection performances are acceptable in both

cases.

6.2 Features analysis

Both time and frequency domain features are extracted

from frames containing thumping events. However, taking

into consideration of limited computing power of mobile

devices in relation to the complexities of MFCC and

spectrogram, these two features were not adopted for the

final feature vector. However, there is research [3] showing

that MFCC can generate results with an accuracy of around

77 %.

Table 2 shows the mean values of features we adopt in

the model of both ripe or unripe watermelons from the

training and testing datasets. From these values, some

conclusions can be drawn:

1. Ripe watermelons have lower values of ZCR than

those of unripe watermelons.

2. Ripe watermelons have lower values of Short-Time

Energy than those of unripe watermelons.

Fig. 8 User interface of our application. Top left dialogue asking

users to wait 2 s for measuring environment noise; bottom left screen

showing the acoustic signal collected after the user press Start button;

top right alert informing users no thumping signals are detected;

bottom right result screen showing that the tested watermelon is ripe

and asking users permission to send us the result for improving our

classification model

Table 1 Training and testing datasets: number of watermelons,

number of thumping events detected and correct detections ratio

Training set Testing set

Ripe 10 / 56 / 98.2 % 15 / 114 / 97.4 %

Unripe 10 / 42 / 93.3 % 25 / 160 / 91.4 %

1760 Pers Ubiquit Comput (2014) 18:1753–1762

123



3. Sub-band Short-Time Energy Ratio values of unripe

watermelons drop much faster than those of ripe

watermelons. This indicates that first sub-band acous-

tic signals from unripe watermelons contribute most to

the STE, while for ripe watermelons each sub-band

contributes similarly.

4. In the training dataset, the brightness of ripe water-

melons is lower than that of unripe watermelons.

However, this situation changed totally in the testing

set, which indicates that brightness should not be adopt

in the final feature vector.

6.3 Feature effectiveness

We measured accuracy, recall and precision of models

constructed with each feature before combining all the

features together. Let tp be the number of ripe watermelons

that are classified as ripe, tn be the number of unripe

watermelons that are classified as unripe, fp be the number

of ripe watermelons that are classified as unripe and fn be

the number of unripe watermelons that are classified as

ripe. Then,

Accuracy ¼ tpþ tn

tpþ tnþ fpþ fn
ð9Þ

Recall ¼ tp

tpþ fn
ð10Þ

Precision ¼ tp

tpþ fp
ð11Þ

Table 3 shows the accuracy of models constructed with

each feature for ripe, unripe and overall. From the table, it

can be seen that first sub-band STE ratio classifies ripe

watermelons most accurately while the fourth sub-band

STE ratio has the best performance for classifying unripe

watermelons. The overall most accurate classifier is the

fourth sub-band STE ratio. From the table, we can also see

that classification result of brightness is irrelevant to

watermelon ripeness.

Figure 9 shows the precision and recall of each feature.

Among the features, the first and fourth sub-band STE ratio

stand out, while brightness performs worst.

6.4 Composite classifier

Normally, a combination of related features can increase

the accuracy of a classification model. In our final classi-

fication model, we adopt features that are able to classify

watermelon ripeness most accurately into a feature vector.

Brightness is discarded in the final feature vector since its

accuracy was found in the previous analysis to be low. Sub-

band STE Ratio2 is also discarded as its precision and

recall are not satisfying. Hence, the final feature vector

contains ZCR, STE, Sub - band STE Ratioi, where i

2 f1; 3; 4g. Final classification results show that the com-

posite feature vector correctly classifies 89.3 % ripe,

90.4 % unripe and 89.9 % overall watermelons, with

84.2 % recall and 79.1 % precision.

Table 2 Labelled features comparisons of ripe and unripe

watermelons

Mean Training set Testing set

Ripe Unripe Ripe Unripe

Features

ZCR 0.0138 0.0202 0.0158 0.0175

STE 5.6 8.2 7.4 7.8

Sub-band STE ratio 1 31.7 % 66.9 % 31.2 % 57.4 %

2 29.0 % 21.0 % 27.6 % 22.7 %

3 24.0 % 5.95 % 23.5 % 13.7 %

4 15.6 % 6.32 % 19.0 % 6.41 %

Brightness 12.8 17.5 23.8 13.4

Table 3 Ripe, unripe and overall accuracy of each feature

Accuracy Ripe (%) Unripe (%) Overall (%)

Classifier

ZCR 63.2 57.1 59.6

STE 57.9 69.4 64.6

Sub-band STE ratio 1 84.2 81.6 82.7

2 42.1 69.0 57.8

3 84.2 55.1 67.2

4 68.4 95.9 84.5

Brightness 36.8 55.1 47.5

ZCR STE SSTE1 SSTE2 SSTE3 SSTE4 Brightness
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Feature

V
al

ue

Recall
Precision

Fig. 9 Precision and recall of each labelled feature

Pers Ubiquit Comput (2014) 18:1753–1762 1761

123



7 Conclusions and future work

In this paper, we presented a method that uses mobile

devices to record and analyse acoustic signals generated

from thumping watermelons to classify their ripeness. We

found watermelon ripeness-related acoustic features and

combined these into a feature vector used to construct a

classification model. The classification model was tested

and found to be able to correctly classify watermelon

ripeness. A real-time crowdsourcing application was

implemented for Android and released on Google Play.

Currently, users can only give us feedback through

emailing. This is not particularly convenient for us to

collect and analyse data. Thus, in the future, we will aim to

use a server that automatically analyses feedback sent by

users to improve the classification model. Meanwhile, we

will also study how other aspects of watermelons, such as

shape and size affect the acoustic signals, and consider

crowd-sourced use with other fruit.

Mobile devices detecting and analysing acoustic signals

can also be applied to other domain, such as medicine. For

example, by analysing the heartbeat of healthy people and

heart disease patients, we may be able to develop a mobile

application which helps heart disease patients monitor their

condition. Mobile devices can help improve people’s daily

lives with more such applications. It is likely that many

more such applications will be developed in future,

accompanied by more research into improving the usability

and performance of the foundational machine learning and

crowdsourcing techniques.

Acknowledgments This work was established at the Singapore-

ETH Centre for Global Environmental Sustainability (SEC), co-fun-

ded by the Singapore National Research Foundation (NRF) and ETH

Zurich. We would also like to thank developers of open libraries like

SVM and FFT used in our implementation. Without their work, we

would spend much more time on implementing these algorithms.

References

1. Aizerman A, Braverman E, Rozoner L (1964) Theoretical foun-

dations of the potential function method in pattern recognition

learning. Autom Remote Control 25:821–837

2. Ay C (1996) Acoustic evaluation of watermelon internal quality-

maturity, cavity existence and orientation. J Agric Mech

5(4):57–71

3. Baki S, Annuar Mohd ZM, Yassin IM, Hasliza AH, Zabidi A

(2010) Non-destructive classification of watermelon ripeness

using Mel-frequency cepstrum coefficients and Multilayer Per-

ceptrons. In: Proceedings of international joint conference on

neural networks (IJCNN), IEEE, pp 1–6

4. Balandina E, Trossen D (2006) Nokia remote sensing platform

middleware and demo application server: features and user

interface. Nokia Research Center, Helsinki

5. Butterworth S (1930) On the theory of filter amplifiers. Wirel

Engineer 7:536–541

6. Cantwell M (1996) Case study: quality assurance for melons.

Perishables Handling Newsl Iss (85):10–12

7. Diezma-Iglesias B, Ruiz-Altisent M, Barreiro P (2004) Detection

of internal quality in seedless watermelon by acoustic impulse

response. Biosyst Eng 88(2):221–230

8. Gouyon F, Pachet F, Delerue O (2000) On the use of zero-

crossing rate for an application of classification of percussive

sounds. In: Proceedings of the COST G-6 conference on Digital

Audio Effects (DAFX-00), Verona, Italy. Helsiniki University of

Technology, Helsiniki

9. Juillerat N, Müller Arisona S, Schubiger-Banz S (2007) Real-

time, low latency audio processing in java. In: Proceedings of the

international computer music conference, Copenhagen, Denmark

10. Lu H, Pan W, Lane ND, Choudhury T, Campbell AT (2009)

Soundsense: scalable sound sensing for people-centric applica-

tions on mobile phones. In: Proceedings of the 7th international

conference on mobile systems, applications, and services. ACM,

Cumberland, pp 165–178

11. Lu L, Zhang HJ, Li SZ (2003) Content-based audio classification

and segmentation by using support vector machines. Multimed

Syst 8(6):482–492

12. McKinney MF, Breebaart J (2003) Features for audio and music

classification. In: Proceedings of the third international sympo-

sium on music information retrieval (ISMIR), vol 3, pp 151–158

13. McLoughlin IV (2009) Applied speech and audio processing:

with Matlab examples. Cambridge University Press, Cambridge

14. Misra A, Essl G, Rohs M (2008) Microphone as sensor in mobile

phone performance. In: Proceedings of the international confer-

ence for new interfaces for musical expression (NIME-08), Ge-

nova, Italy

15. Mitrović D, Zeppelzauer M, Breiteneder C (2010) Features for

content-based audio retrieval. Adv Comput 78:71–150

16. Pohjalainen J (2007) Methods of automatic audio content clas-

sification. Ph.D. thesis, Helsiniki University of Technology

17. Saunders J (1996) Real-time discrimination of broadcast speech/

music. In: Proceedings of international conference on acoustics,

speech, and signal processing (ICASSP), vol 2, IEEE,

pp 993–996

18. Yamamoto H, Iwamoto M, Haginuma S (1980) Acoustic impulse

response method for measuring natural frequency of intact fruits

and preliminary applications to internal quality evaluation of

apples and watermelons. J Texture Studies 11(2):117–136

1762 Pers Ubiquit Comput (2014) 18:1753–1762

123


	Classifying watermelon ripeness by analysing acoustic signals using mobile devices
	Abstract
	Introduction
	Related work
	 Watermelon quality
	Watermelon ripeness

	Overview
	System overview
	Mathematical model
	User Interaction

	Methods
	Preprocessing
	 Calculate root mean square (RMS)
	Detect start/end points
	Extract thumping event
	Discard noise
	Apply Butterworth filter

	Feature extraction
	Zero crossing rate (ZCR)
	Short-time energy (STE)
	Sub-band short-time energy ratio
	Mel-frequency cepstral coefficients (MFCC)
	Brightness
	Spectrogram

	Classification method

	Implementation
	Implementation on Android devices
	User interface

	Experiments
	Thumping detection
	Features analysis
	Feature effectiveness
	Composite classifier

	Conclusions and future work
	Acknowledgments
	References


