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Spans of special cycles
of codimension less than 5

By Martin Raum at Zürich

Abstract. We show that the span of special cycles in the r-th Chow group of a Shimura
variety of orthogonal type is finite dimensional, if r < 5. As our main tool, we develop the
theory of Jacobi forms with rational index M 2 MatN .Q/.

1. Introduction

In 1956, Chow introduced cohomology groups attached to any varietyX (see [6]), which,
by now, are called Chow groups and are denoted by CHr.X/. They are constructed as formal
sums up to rational equivalence of subvarieties of constant codimension r . The first Chow
group is isomorphic to the Picard group, which classifies holomorphic line bundles up to iso-
morphisms. While Picard groups are difficult to study, our knowledge about Chow groups is
even more restricted. Even their rank stays mysterious in most cases.

Special cycles generalize CM points and Hirzebruch–Zagier cycles, which historically,
were the first instances whose class in cohomology were studied [9, 10]. In the 1980s, Kudla
and Milson published a series of papers, in which they studied intersection numbers of special
cycles, that is cohomology classes of special cycles. They found that the generating functions
of intersection numbers of special cycles of codimension r are Siegel modular forms of genus r .
Kudla [11] conjectured that these modularity results follow from a much strong modular
property of special cycles considered as elements of the Chow group.

Conjecture 1.1. Given a Shimura variety X� of orthogonal type, the generating
function of codimension r cycles on X� is a Siegel modular form of degree r taking values in
the r-th Chow group CHr.X�/C of X� .

In particular, the span of special cycles in CHr.X�/C has finite dimension.

In parallel, to Kudla’s work, Borcherds finished his studies of product expansions of
automorphic forms [2]. As a result, he was able to resolve completely Kulda’s conjecture in the
case of r D 1.
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40 Raum, Spans of special cycles of codimension less than 5

Theorem 1.2 (Borcherds [3, 4]). For r D 1, Kudla’s conjecture is true.

Zhang dedicated his thesis to the above conjecture, and he was able to obtain partial
results.

Theorem 1.3 (Zhang [21]). If r D 2, the span of special cycles in CHr.X�/ has finite
dimension.

In this paper, we extend the range for which this statement holds.

Theorem 1.4. If r < 5, the span of special cycles in CHr.X�/ has finite dimension.

A more detailed statement can be found in Theorem 4.1.
Zhang used an ad hoc method to prove his result, and he stated that it “does not gener-

alize to higher codimension cycles” ([21, p. 35]). We show that similar ideas allow to cover all
cases r < 5. Zhang employed induction and standard vanishing results for elliptic modular
forms of higher level. In his proof, these elliptic modular forms arose form Jacobi forms, which
he did not consider directly. The key to our result is not to pass to elliptic modular forms, but
to study Jacobi forms directly. This leads us to develop a theory of vector valued Jacobi forms
whose indices are matrices with rational entries.

Jacobi forms show up in many important places, including the proof of Saito–Kurokawa’s
conjecture [1, 12–14, 20] and modern string theory [5, 7, 8]. They were originally defined as
functions on H �C with an index m 2 Z attached to them. Later, this notion was extended to
functions on H �CN with matrix indexM 2 MatN .Z/ (see [19,22]). A further generalization
shows up naturally while studying theta lifts or special cycles. We extend the theory of Jacobi
forms to indices M 2 MatN .Q/. We show that there is an analog of the theta decomposition,
which links Jacobi forms to vector valued elliptic modular forms. Theta decompositions
of usual Jacobi forms in the most general case is due to Shimura and Ziegler [18, 22]. We will
write Jk;M .�/ for the space of Jacobi form of weight k 2 1

2
Z, indexM 2 MatN .Q/ and type �,

whereM is positive definite and symmetric, and � is a finite-dimensional unitary representation
of the metaplectic Jacobi group (see Definition 3.1).

Theorem 1.5. For given M and � there are functions �M;�I� such that for every k
and � 2 Jk;M .�/, we have

�.�; z/ D
X
�

h�.�/�M;�I�.�; z/:

The components h� form a vector valued elliptic modular form of weight k � N
2

.

A more detailed statement and exact expressions for �M;�I� are provided in Theorem 3.17
below. The vanishing statement that is crucial to our argument, is given in Section 3.5.

The study of Jacobi forms requires classification of those representations of the full
Jacobi group that occur for non-trivial Jacobi forms. We build standard representations of the
metaplectic Jacobi group, that, as we show, occur as tensor factors of every irreducible rep-
resentation. As a next step, we construct theta functions attached to each of these standard
representations. This finally allows us to decompose any Jacobi forms.
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A brief word on notation. This paper addresses people working on Shimura varieties of
orthogonal type and working on Jacobi forms. Notation in these areas varies slightly, and we
have decided to accommodate both as much as possible. In Section 3, which is dedicated to
Jacobi forms, we use notation common in this area. In Section 4, we adopt the notation used
by Zhang [21].

Section 2 contains preliminaries on modular forms and a vanishing result. In Section 3,
we build up the theory of Jacobi forms. This includes theta decomposition, a vanishing theorem,
and a proposition on the geometry of lattices. In Section 4, we combine these results in order
to prove the main theorem.

Acknowledgement. The author thanks the referee for helpful comments.

2. Vector valued modular forms

We start by defining vector valued elliptic modular forms, that we will later relate to
Jacobi forms. The Poincaré upper half plane is H D ¹� D uC iv W v > 0º � C. We write q
for exp.2�i � �/ D e.�/. The metaplectic cover Mp2.Z/ of SL2.Z/ is the preimage of SL2.Z/
in Mp2.R/, the connected double cover of SL2.R/. Write 
 D

�
a b
c d

�
for a typical element

of SL2.R/. Note that the elements of Mp2.R/ can be written as .
; � 7!
p
c� C d/, where the

first component is an element of SL2.R/ and the second is a holomorphic root on H, that we
usually write as ! W H! C. Since there are two branches of the square root, this yields indeed
a double cover of SL2.R/. The product in Mp2.Z/ is defined as

.
1; !1/.
2; !2/ D .
1
2; !1 ı 
2 � !2/:

The elements
T ´

��
1 1
0 1

�
; � 7! 1

�
and S ´

��
0 �1
1 0

�
; � 7!

p
�
�

generate Mp2.Z/. The root in the definition of the element S is the principal branch, which
maps i to exp.1

4
�i/.

An action of SL2.R/ (and thus of Mp2.Z/� SL2.Z/) on H is given by


� D
a� C b

c� C d
:

Given a representation � of Mp2.Z/ with representation space V.�/, k 2 1
2
Z, and

a map f W H! V.�/, we define

.f jk;�.
; !//.�/´ !.�/�2k�..
; !//�1f .
�/

for all .
; !/ 2 Mp2.R/. In this paper, our interest lies in Weil representations, and restrictions
of them. Their crucial property is that their kernel has finite index.

Definition 2.1. Let .�; V .�// be a representation of Mp2.Z/ with finite index ker-
nel. A vector valued modular form of weight k 2 1

2
Z and type � is a holomorphic function

f W H! V.�/ such that the following conditions are satisfied:

(i) For all 
 2 Mp2.Z/ we have f jk;�
 D f .

(ii) We have kf .�/k D O.1/ as y !1, where k � k is some norm on V.�/.

We write Mk.�/ for the space of modular forms of weight k and type �.
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42 Raum, Spans of special cycles of codimension less than 5

Representations � with finite index kernel are automatically unitary with respect to
a suitable scalar product, �.T / is diagonalizable, and f 2 Mk.�/ has Fourier expansion

f .�/ D
X

0�m2Q

c.�Im/qm

with c.�Im/ 2 V.�/.
Our chief interest in vector valued modular forms originates in the following vanishing

result.

Proposition 2.2. Suppose that � 2Mk.�/ and c.�Im/ D 0 for all m < k
12
C 1. Then

we have � D 0.

Proof. Let l D b k
12
cC1 > k

12
. Given � as in the statement, we have��l� 2Mk�12l.�/,

where � is the unique cusp form of weight 12 and trivial type. If � ¤ 0, then we obtain a non-
zero modular form of negative weight, which cannot be.

3. Jacobi forms

We now prepare for defining vector valued Jacobi forms. Given 0 < N 2 Z, let

HJ.N/
´ H �CN

be the Jacobi upper half space. The metaplectic cover of the centrally extended Jacobi group is��J.N/
´ Mp2.Z/ ËMatN;2.Z/e�MattN .Z/;

wheree� denotes the central extension as specified by the equation below. We denote the group
of symmetric matrices by MattN . � /, and accordingly we write t. � / for the transpose of a vector
or matrix.

Typical elements of the second component are written .�; �/, �;� 2 ZN . The product
in ��J.N/ is given by

..
1; !1/; .�1; �1/; �1/..
2; !2/; .�2; �2/; �2/

D ..
1; !1/.
2; !2/; .�1; �1/
2 C .�2; �2/; �1 C �2 C �1
t�2 � �1

t�2/:

In particular, the semidirect product is defined via the natural right action of SL2.Z/
on MatN;2.Z/. As before, we usually write 
 D

�
a b
c d

�
for elements of SL2.Z/. We frequently

use the notation
Œ�; �; ��J D ..I2; � 7! 1/; .�; �/; �/

for elements of the Heisenberg-like group

H.��J.N//´ MatN;2.Z/e�MatN .Z/ � ��J.N/:

In most cases, elements 
 J 2 ��J.N/ are given as tuples ..
; !/; .�; �/; �/. In order to lighten
notation, we occasionally switch the position of !, writing

.
 J; !/ D ..
; .�; �/; �/; !/

for ..
; !/; .�; �/; �/ 2 ��J.N/.
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There is an action ��J.N/ �HJ.N/ ! HJ.N/ given by

(3.1) .
 J; !/.�; z/ D

�
a� C b

c� C d
;
z C �� C �

c� C d

�
:

We next give a family of actions on functions on HJ.N/. Let tr. � / denote the trace of
a matrix. For convenience, we set

˛M
�
.
; .�; �/; �/I �; z

�
D e

�
�cMŒz C �� C ��

c� C d
�MŒ��� � 2 t�Mz � 1

2
tr.M�/

�
for any M 2 MattN .Q/. Let � be a finite-dimensional representation of ��J.N/ with representa-
tion space V.�/. Fix a weight k 2 1

2
Z and a (Jacobi) index M 2 MattN .Z/ which is positive

definite and has even diagonal entries. Note that in the case N D 1, it is more common to
use indices m 2 Q. These notions are related by M D .2m/. We abbreviate tzMz (z 2 CN )
by MŒz�. Recall that e.x/ D exp.2�i � x/. Given � W HJ.N/ ! V.�/, we define

.�jk;M;�.

J; !//.�; z/ D !.c� C d/�2k˛M .


J
I �; z/�1�..
 J; !//�1�.
 J.�; z//:

The next definition generalizes a definition made in [22] to vector valued Jacobi forms
which have non-integral indices.

Definition 3.1. Suppose that k 2 1
2
Z,M 2 MattN .Q/, and .�; V .�// is a representation

of ��J.N/ whose kernel has finite index. A holomorphic function � W HJ.N/ ! V.�/ is called
a Jacobi form of weight k, index M , and type � if

(i) we have �jk;M;�.
 J; !/ D � for all .
 J; !/ 2 ��J.N/,

(ii) we have k�.�; ˛� C ˇ/k D O.1/ for all ˛; ˇ 2 QN and some norm k � k on V.�/.

We denote the space of Jacobi forms of weight k, index M , and type � by Jk;M .�/.

Throughout this section, we assume that k, M , and � satisfy the assumptions in the
previous definition.

We write �r for e. trz/. If � is unitary, the second condition in Definition 3.1 is equivalent
to

�.�; z/ D
X

m2Q; r2QN

c.�Im; r/qm�r ;

for Fourier coefficients c.�Im; r/ that vanish if 2 det.M/n �M #Œr� < 0 or m < 0. The ad-
junct of M is denoted by M #. Because Jacobi forms are invariant under the action of Œ�; �; 0�J

(�;� 2 ZN ), the Fourier coefficients c.�Im; r/ satisfy the following relations, which are
connected to the statement of Theorem 3.17:

c.�Im; r/ D c.�ImC 1
2
MŒ��C tr�; r CM�/;(3.2)

c.�Im;�r/ D !.�1/2k�..�I2; !// c.�Im; r/:(3.3)

Note that we have Jk;M .�1 ˚ �2/ D Jk;M .�1/˚ Jk;M .�2/. This allows us to reduce
most considerations to the case of irreducible �.

Among experts it is well known that on can restrict to positive definite M . The next
proposition, however, is not in the literature. We do not need it, but it seems appropriate to
justify our future assumption M > 0.
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44 Raum, Spans of special cycles of codimension less than 5

Proposition 3.2. Suppose that M is not positive semidefinite. Then

Jk;M .�/ D ¹0º:

If M is positive semidefinite, but not positive definite, then there is an s 2 MattN;N�1.Z/ such
that

Jk;M .�/ Š Jk;MŒs�.�/ via �.�; z/ 7! �.�; sz0/;

where z0 2 CN�1.

Proof. Assume that Jk;M .�/ ¤ ¹0º. We first show that M is positive semidefinite.
Suppose there was � 2 ZN such that MŒ�� < 0. Fix some 0 ¤ � 2 Jk;M .�/. By (3.2), for
any m 2 Q, r 2 QN , and l 2 Z, we have

c.�Im; r/ D c.�ImC l2

2
MŒ��C l tr�; r C lM�/:

By choosing l large enough we can force the second argument on the right hand side to be
negative, which shows that c.�Im; r/ D 0. Sincem and r were arbitrary, this shows that � D 0,
contradicting our choice.

We are reduced to the case of positive semidefiniteM . IfM is not positive definite, there
is a primitive vector � 2 ZN with MŒ�� D 0. Fix g 2 GLN .Z/ with last column �. Then

Jk;M Š Jk;MŒg� via �.�; z/ 7! �.�; gz/:

Writing Mi;j for the .i; j /-th entry of M , it thus suffices to treat the case of MN;N D 0.
Since M is positive semidefinite, we have MN;i D 0 for all 1 � i � N .

Fix � and z1; : : : ; zN�1, and let zN vary. Applying the transformation law for Jacobi
forms, we see that

�.�; .z1; : : : ; zN�1; zN C �� C �// D �.�; .z1; : : : ; zN //

for all �;� 2 Z. That is
zN 7! �.�; .z1; : : : ; zN //

is holomorphic and bounded. Hence it is constant. This shows that we can choose

s D .ıi;j /1�i�N;1�j�N�1;

where ı is the Kronecker delta.

3.1. Representations of the Heisenberg-like part of �J.N/. Representations of the
Heisenberg-like group H.��J.N// � ��J.N/ that occur for non-zero Jacobi forms can be clas-
sified with little effort. Here and throughout Section 3.1, we assume that � is an irreducible
representation of H.��J.N// with finite index kernel.

Since MatN .Z/ it central in H.��.J.N//, there isM� 2 MatN .Q/ such that �.Œ0; 0;���J/
acts as e.tr.�M�//. Note thatM� is only well-defined up to elements in MatN .Z/. Throughout
the paper we assume that M� is symmetric. We justify this assumption in Proposition 3.16.
SinceM� can be freely modified by elements in MatN .Z/, we can replaceM� byM� C l idN
for sufficiently large l 2 Z, and thus focus on positive definite M� . We say that � has central
character e.tr.M� � //.
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Given a matrix 0 < M 2 MattN .Q/, fix a Smith normal formM D UDV . DecomposeD
as DZD

Z, where DZ is the diagonal matrix whose entries are the numerators of the entries
of D. Set

(3.4) MZ D UDZV and MZ
D UDZV:

We can view MZ and MZ as the integral and fractional part of M , respectively.

Lemma 3.3. We have

MZZN DMZN \ ZN ; M�1Z ZN DM�1ZN C ZN ;

MZZN DMZN C ZN ; .MZ/�1ZN DM�1ZN \ ZN :

Proof. Given the Smith normal form of M D UDV , write MZ D UDZV as in (3.4).
We have

MZZN D UDZZN D U.DZN \ ZN / DMZN \ ZN

and
M�1Z ZN D V �1D�1Z ZN D V �1.D�1ZN C ZN / DM�1ZN C ZN :

This proves the first and second equality. The remaining assertions can be proved in the
same way.

Lemma 3.4. For � 2M�1ZN \ ZN , we have MŒ�� 2 Z.

Proof. We have � 2 .MZ/�1ZN , and hence the claim follows from

MŒ.MZ/�1� D .UDV /ŒV �1.DZ/�1U�1� D tU�1.DZ/�1 tV �1U.D.DZ/�1/U�1;

where U and V were used to define MZ in (3.4). The fact D.DZ/�1 2 MatN .Z/ shows that

MŒ.MZ/�1ZN � DMŒ.MZ/�1�ŒZN � � Z:

For ˛; ˇ 2 QN , define representations �M;˛;ˇ of H.��.J.N// as follows. The central
character of �M;˛;ˇ is e.1

2
tr.M � //. Its representation space is

(3.5) VM;˛;ˇ D CŒ.MZN C ZN / =ZN � D span.er W r 2 .MZN C ZN / =ZN /:

The action on er is given by

�.Œ�; 0; 0�J/er D e.
t˛�/erCMZ�;

�.Œ0; �; 0�J/er D e.
t.ˇ C r/�/er :

Remark 3.5. The referee pointed out that Propositions 3.6 and 3.7 can be considered
as a special case of the Stone–von-Neumann Theorem, and that the representations that we
study are expressible in terms of Schrödinger representations. Indeed, since we are interested
in representations whose kernel has finite index, both propositions are covered by Mumford’s
generalization of the Stone–von-Neumann Theorem to group schemes ([15, Proposition 3.7],
see [17] for a complete proof).
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46 Raum, Spans of special cycles of codimension less than 5

Proposition 3.6. For 0 < M 2 MattN .Q/ and ˛; ˇ 2 QN , �M;˛;ˇ is an irreducible
representation of H.��J.N//. Two representations �M1;˛1;ˇ1

and �M2;˛2;ˇ2
are isomorphic if

and only if
M1 �M2 2 MattN .Z/; ˛1 � ˛2; ˇ1 � ˇ2 2MZN C ZN :

Proof. Clearly, the action of both Œ�; 0; 0�J and Œ0; �; 0�J on er only depends on r
modulo ZN . We have to check that

�.Œ�; 0; 0�J/�.Œ0; �; 0; 0�J/�.Œ0; 0; 2� t��J/er D e.
t�M�/e. t˛�/e. t.ˇ C r/�/erCMZ�

equals
�.Œ0; �; 0�J/�.Œ�; 0; 0�J/er D e.

t˛�/e. t.ˇ C r CM�/�/erCMZ�;

which is obvious. This show that �M;˛;ˇ is a representation.
Observe that the set ¹Œ0; �; 0�J W � 2 ZN º forms a commutative subgroup of H.��J.N//.

The system of eigenvalues of er under the action of Œ0; �; 0�J is different for distinct elements
r 2 .MZN C ZN / =ZN . Further, the corresponding eigenspaces are permuted transitively by
the action of Œ�; 0; 0�J (� 2 ZN ). Thus we see that �M;˛;ˇ is irreducible.

In the remainder of this proof, we use Lemma 3.3 without further reference. Let �M1;˛1;ˇ1

and �M2;˛2;ˇ2
by isomorphic representations. By checking central characters, we find that

M1 �M2 2 MattN .Z/. The subgroup of all Œ0; �; 0�J (� 2M�1ZN \ ZN ) acts by e. tˇ1�/

and e. tˇ2�/ on VM1;˛1;ˇ2
and VM2;˛2;ˇ2

, respectively. Consequently, we have

t�.ˇ1 � ˇ2/ 2 Z for all � 2M�1ZN \ ZN .

We conclude that ˇ1�ˇ2 2MZNCZN . Finally, Œ�; 0; 0�J (� 2M�1ZN\ZN ) acts by scalars
and the attached eigenvalues are e. t˛1�/ and e. t˛2�/. In analogy to the previous considera-
tions, we find that t�.˛1�˛2/ 2 Z for all � 2M�1ZN \ZN . Hence ˛1�˛2 2MZN CZN .

Conversely, suppose that

M1 �M2 2 MattN .Z/; ˛1 � ˛2; ˇ1 � ˇ2 2MZN C ZN :

We have to show that �M1;˛1;ˇ1
Š �M2;˛2;ˇ2

. First of all, the central characters coincide.
Denote the previously chosen basis elements of VM1;˛1;ˇ1

and VM2;˛2;ˇ2
by er;1 and er;2.

Let ˛ D .MZ/�1.˛2 � ˛1/ 2 ZN and ˇ D ˇ1 � ˇ2 2MZN C ZN . We claim that the map

� W er;1 7! e. t˛r/erCˇ;2

intertwines �M1;˛1;ˇ1
and �M2;˛2;ˇ2

. We have

�.�M1;˛1;ˇ1
.Œ0; �; 0�J/er;1/ D e.

t˛r/e. t.ˇ1 C r/�/erCˇ;2

D e..ˇ2 C r C ˇ/
t�/e. t˛r/erCˇ;2

D �M2;˛2;ˇ2
.Œ0; �; 0�J/�.er;1/

and

�.�M1;˛1;ˇ1
.Œ�; 0; 0�J/er;1/ D e.

t˛1�/e.
t˛.r CMZ�//erCMZ�Cˇ;2

D e. t˛2�/e.
t˛r/erCMZ�Cˇ;2

D �M2;˛2;ˇ2
.Œ�; 0; 0�J/�.er;1/:

This completes the proof of Proposition 3.6.
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Raum, Spans of special cycles of codimension less than 5 47

Proposition 3.7. Fix 0 < M 2 MattN .Q/. Any irreducible, finite-dimensional, unitary
representation of H.��J.N// with central character e.1

2
tr.M � // is isomorphic to �M;˛;ˇ for

some ˛; ˇ 2 QN .

Proof. Fix a representation � as in the assumption. Since the set ¹Œ0; �; 0�J W � 2 ZN º
is a commutative subgroup of H.��J.N//, we can find a basis of eigenvectors vi , 1 � i � dim � .
Denote the eigenvalue of an eigenvector v under Œ0; �; 0�J by e. tˇ.v/�/. A calculation that is
analogous to the computations in the proof of Proposition 3.6 shows that �.Œ�; 0; 0�J/ v is an
eigenvector under the action of Œ0; �; 0�J if so is v. We have ˇ.�.Œ�; 0; 0�J/ v/ D ˇ.v/CMZ�.

Fix any eigenvector v. Since the representation � is unitary and finite dimensional, the
orbit �.v/ D ¹Œ�; 0; 0�J � span C.v/ W � 2 ZN º is finite. By inspection of ˇ.�.Œ�; 0; 0�J/ v; �/,
we find that the cardinality #�.v/ is a multiple of #.MZNCZN / =ZN . If it is equal, let e. t˛�/

be the eigenvalue of v under Œ�; 0; 0�J (� 2M�1ZN \ ZN ). It is straightforward to verify
that � is isomorphic to �M;˛;ˇ.v/ via the map

Œ�; 0; 0�Jv 7! e. t˛�/ eMZ�:

To complete the proof, we show that � is reducible if #�.v/ ¤ #.MZN C ZN / =ZN .
Define

B D ZN=¹� 2 ZN W Œ�; 0; 0�J span C.v/ D span C.v/º:

Set Qv D
P
�2B Œ�; 0; 0�

J v, where we fix one choice of representatives of B . By the construc-
tion of B , we see that Qv is an eigenvector under all Œ0; �; 0�J (� 2 ZN ). Straightforward
computation of the corresponding orbit yields #�. Qv/ D #.MZN C ZN / =ZN , and so Qv
generates a subrepresentation of � . This finishes the proof.

3.2. Representations of �J.N/. We have classified representations of H.��J.N//, and
the next step is to study in which manner they occur as building blocks of representations
of ��J.N/. We henceforth assume that � is an irreducible representation of ��J.N/ with finite
index kernel and central character e.1

2
tr.M � //. The restriction of � to H.��J.N// is denoted

by �jH.��J.N //
.

Lemma 3.8. Suppose that � is a subrepresentation of �jH.��J.N //
. If � is isomorphic

to �M;˛;ˇ , then for 
 2 Mp2.Z/, 
� is also a subrepresentation of �jH.��J.N //
. It is isomorphic

to �M;˛0;ˇ 0 , where .˛0; ˇ0/ D .˛; ˇ/ t
 and 
 acts via the projection Mp2.Z/� SL2.Z/.
Furthermore, the image of er given in (3.5) under 
 is uniquely determined by relations

in ��J.N/.

Corollary 3.9. Let Q�M;˛;ˇ denote the isotypical components of �jH.��J.N //
. Then we

have

 Q�M;˛;ˇ D Q�M;˛0;ˇ 0 ;

where .˛0; ˇ0/ D .˛; ˇ/
 .

Proof of Lemma 3.8. Any irreducible representation of the group H.��J.N// with cen-
tral character e.1

2
tr.M � // has dimension .MZN C ZN / =ZN . By the commutation rules

in ��J.N/, 
 Q�M;˛;ˇ is hence irreducible. Proposition 3.7 shows that it is isomorphic to �M;˛0;ˇ 0
for some ˛0; ˇ0 2 QN . In order to compute the vectors ˛0 and ˇ0, it suffices to consider the
action of Œ�; 0; 0�J (� 2M�1ZN \ ZN ) and Œ0; �; 0�J (� 2M�1ZN \ ZN ) on e0 2 VM;˛;ˇ .
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48 Raum, Spans of special cycles of codimension less than 5

We find that

Œ�; 0; 0�J
e0 D 
Œa�; b�; 0�
Je0 D e.�abMŒ��/e. tˇb�/e. t˛a�/e0;

Œ0; �; 0�J
e0 D 
Œc�; d�; 0�
Je0 D e.�cdMŒ��/e. tˇd�/e. t˛c�/e0:

Since, by Lemma 3.4, MŒ�� and MŒ�� are integral, the proof of the first half of Lemma 3.8 is
complete.

Since � is unitary, the second half of Lemma 3.8 is a consequence of the simple
observation that the system eigenvalues under Œ0; �; 0�J (� 2 Z) of eigenvectors in VM;˛0;ˇ 0
are pairwise different.

The preceding lemma enables us to define minimal representations �M;˛;ˇ of ��J.N/.
As a representation of H.��J.N//, let

�M;˛;ˇ jH.��J.N //
D

M
.˛0;ˇ 0/2.˛;ˇ/SL2.Z/ =�

�M;˛0;ˇ 0 ;

where
.˛01; ˇ

0
1/ � .˛

0
2; ˇ
0
2/ ” .˛01 � ˛

0
2; ˇ
0
1 � ˇ

0
2/ 2 .M

ZZN /2:

Note that each H.��J.N//-isomorphism class occurs at most once. In accordance with Lem-
ma 3.8, we let 
 2 Mp2.Z/ permute components �M;˛0;ˇ 0 by the right action of t
 on .˛0; ˇ0/.
By the same lemma, we can define the image of v 2 VM;˛;ˇ under 
 by the commutation
relations in ��J.N/:

Œ�; �; 0�J
v D 
Œa�C c�; b�C d�; 0�Jv:

Proposition 3.10. Let � be an irreducible representation of��J.N/. Suppose that �M;˛;ˇ
occurs in �jH.��J.N //

. Then � Š �0 ˝ �M;˛;ˇ for a unitary representation �0 of Mp2.Z/.

Proof. First consider the H.��J.N//-isotypical decomposition of �:

�jH.��J.N //
Š

X
.˛0;ˇ 0/

Q�M;˛0;ˇ 0 :

Because � is irreducible and �M;˛;ˇ occurs in �jH.��J.N //
, Lemma 3.8 implies that .˛0; ˇ0/

runs through .˛; ˇ/SL2.Z/ =�. Since, for the same reason, SL2.Z/ permutes the isotypical
components transitively, we find that

�jH.��J.N //
Š �1 ˝ �M;˛;ˇ ;

where �1 a multiple of the trivial representation of H.��J.N//. By the construction of �M;˛;ˇ ,
we have

�.
/.�1 ˝ �
�1
M;˛;ˇ .
//�.Œ�; �; ��

J/ D �.Œ�; �; ��J/�.
/.�1 ˝ �
�1
M;˛;ˇ .
//

for all �;� 2 ZN , and � 2 MatN .Z/. Consequently, � Š �0 ˝ �M;˛;ˇ is a tensor product.

3.3. Theta functions. In this subsection, we set up the basic tool, the theta functions, to
deduce the theta decomposition for Jacobi forms of arbitrary index. Theta functions for indices
in MattN .Q/ come with non-trivial representations of H.��J.N// attached to them.
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Raum, Spans of special cycles of codimension less than 5 49

We denote Fourier transforms by F T . Recall that the Fourier transform of a function
f W RN ! C, by definition, is

F T .f /.�/ D

Z 1
�1

f .� 0/ exp.2�i � t�� 0/ d� 0:

Lemma 3.11. Let K be a symmetric, positive definite matrix. The Fourier transforms
with respect to � 0 of exp.��KŒ� 0 C h�/ equals

.detK/�
1
2 exp.2�i � th�/ exp.��K�1Œ��/:

Proof. This is standard and a well-organized proof can be found, e.g., in [2].

Corollary 3.12. Given � 2 QN , the Fourier transform of

exp.�i�M�1ŒMZ� C ��C 2�i
tz.MZ� C �//

equals q
detM�1ŒMZ�

�1

exp.2�i � �M�1Z �/

�
i

�

�N
2

exp
�
�i �
�MŒz�

�

�
� exp

�
�i �
�1

�
M�1ŒM tM�1Z ��

�
exp

�
2�i � t.M tM�1Z �/

z

�

�
:

Proof. For � D iy and z D iv the result follows Lemma 3.11 with K D yM�1ŒMZ�

and h DM�1Z .� C 1
y
Mv/. A straightforward calculation givesq

detM�1ŒMZ�
�1

exp.2�i � �M�1Z �/

� y�
N
2 exp

�
�
MŒv�

y

�
exp.��y�1MŒ tM�1Z ��/ exp

�
2�i � t.M tM�1Z �/

v

y

�
:

Since the first and second expression in the corollary’s statement represent holomorphic
functions, this proves the corollary.

Lemma 3.13. We have

M tM�1Z ZN DMZN C ZN :

Proof. We proceed as in the proof of Lemma 3.3. Recall that we have M D UDV
and MZ D UDZV . In order to simplify computations, we use the fact that if M 0 DMŒg�

for g 2 GLN .Z/, then
M 0. tM 0Z/

�1
D

tgM tM�1Z
tg�1:

That is, we may assume that V is the identity matrix. Because M is symmetric, we have
UD D D tU . Now, the computation

M tM�1Z ZN D UD tU�1D�1Z ZN D DD�1Z ZN DMZN C ZN

proves the lemma.
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50 Raum, Spans of special cycles of codimension less than 5

We call discM D .MZN C ZN / =.MZN \ ZN / the (generalized) discriminant form
associated to M . Note that is not a discriminant form in the sense of [16], since the associated
quadratic form qM .�/ DM

�1Œ�� does not necessarily take integral values on MZN \ ZN .
Let CŒdiscM� be the group algebra of discM , which has basis e� (� 2 discM ).

For � 2 discM , define component functions

(3.6) �M;�.�; z/ D
X

��� .modMZN\ZN /

q
1
2
M�1Œ���� ;

where � runs through MZN \ ZN . We find that

�M .�; z/ D
X

�2.MZNCZN / =.MZN\ZN /

�M;�.�; z/e� ;

as a function HJ.N/ ! CŒdiscM�, transforms as a vector valued modular form under Mp2.Z/.
Let �M be the representation of ��J.N/ on GL.CŒdiscM�/, whose central character

is e.1
2

tr. �M// and which is defined as

�M .S/e� D
p

# discM
�1 X

�02discM

exp.2�i � t�M�1�0/e�0 ;

�M .T /e� D exp.�i �M�1Œ��/e� ;

�M .Œ�; 0; 0�
J/e� D e�CM�;

�M .Œ0; �; 0�
J/e� D exp.2�i � t��/e� ;

where we identify S and T with the corresponding elements in ��J.N/.

Theorem 3.14. For any positive definite matrix M 2 MattN .Q/, the theta function �M
is a vector valued Jacobi form of weight N

2
, index M , and type �M .

Proof. We have to prove that

�M jN
2
;M


J
D �M .


J/�M for all 
 J
2 ¹T; S; Œ�; 0; 0�J; Œ0; �; 0�J; Œ0; 0; ��Jº.

All cases but 
 J D S are clear. In order to check the case 
 J D S , we apply Poisson summation
and Corollary 3.12. Since we have MZZN DMZN \ ZN by Lemma 3.3, we find

�M;�.�; z/ D
X
�2ZN

exp
�
�i � �M�1ŒMZ� C ��C 2�i �

tv.MZ� C �/
�

D

q
detM�1ŒMZ�

�1 X
�02ZN

exp.2�i � � 0M�1Z �/

�
i

�

�N
2

exp
�
�i �
�MŒz�

�

�

� exp
�
�i �
�1

�
M�1ŒM tM�1Z � 0�C 2�i � t.M tM�1Z � 0/

z

�

�
:

By Lemma 3.13, M tM�1Z ZN DMZN C ZN . This allows us to split the sum over � 0 with
respect to congruence classes in .MZN C ZN / =.MZN \ ZN /. We then set � DM tM�1Z � 0,
and obtain the result.
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Raum, Spans of special cycles of codimension less than 5 51

By Proposition 3.10, we have

(3.7) �M Š �
0
M ˝ �M;0;0

for a suitable representation �0M of Mp2.Z/. We shift the elliptic variable z, to obtain represen-
tations �0M ˝ �M;˛;ˇ for all ˛; ˇ 2 QN .

Given ˛; ˇ 2 QN and � 2 .MZN C ZN / =.MZN \ ZN /, define

�
.˛;ˇ/
M;� D �M;�.�; z/jk;M ŒM

�1˛; 0; 0�JŒ0;M�1ˇ; 0�J

and

�
.˛;ˇ/
M W HJ.N/

! CŒdiscM�˝CŒ.˛; ˇ/SL2.Z/ =��;(3.8)

�
.˛;ˇ/
M .�; z/ D

X
.˛0;ˇ 0/2.˛;ˇ/SL2.Z/ =�

�2.MZNCZN / =.MZN\ZN /

�
.˛0;ˇ 0/
M;� e� ˝ e˛0;ˇ 0 ;

where the sum runs over representatives modulo .MZZN /2, and e˛0;ˇ 0 is a basis element
of CŒ.˛; ˇ/SL2.Z/ =��.

Proposition 3.15. For any vectors ˛; ˇ 2 QN , � .˛;ˇ/M is a vector valued Jacobi form of
weight N

2
, index M , and type �0M ˝ �M;˛;ˇ .

Proof. In conjunction with Proposition 3.10 and Theorem 3.14, it suffices to check the
action of Mp2.Z/ and Œ�; �; 0�J (�;� 2MZN \ ZN ) on

�M .�; z/jk;M ŒM
�1˛0; 0; 0�JŒ0;M�1ˇ0; 0�J:

A straightforward computation yields the claim.

3.4. Theta decomposition. The aim of this section to deduce theta decomposition for
all Jacobi forms of index 0 < M 2 MattN .Q/. We start by limiting the possible action of the
center MatN .Z/ of ��J.N/.

Proposition 3.16. Suppose that � is irreducible. If �.Œ0; 0; ��J/ ¤ e.1
2

tr.M�//, then

Jk;M .�/ D ¹0º:

Proof. Any Jacobi form satisfies

� D �jk;M;�Œ0; 0; ��
J
D e.1

2
tr.M�//�.Œ0; 0;���J/�:

This implies the statement straightforwardly.

Recall that any Jacobi form � has Fourier expansion

(3.9) �.�; z/ D
X

m2Q; r2QN

c.�Im; r/qm�r ; q D e.�/; �r D e. trz/:

The Fourier coefficients c.�Im; r/ vanish if 2 det.M/m �M #Œr� < 0.
We write L� for the dual of any representation �.
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52 Raum, Spans of special cycles of codimension less than 5

Theorem 3.17. Let � be a Jacobi form of irreducible type �. Then there are ˛; ˇ 2 QN

such that:

(i) There is a unitary, irreducible representation �0 of Mp2.Z/ with � Š �0 ˝ �M;˛;ˇ .

(ii) We have

�.�; z/ D
X

�2.MZNCZN / =MZN

h�.�/(3.10)

�

X
.˛0;ˇ 0/2.˛;ˇ/SL2.Z/

�02MZN =.MZN\ZN /

�
.˛0;ˇ 0/
M;�C�0.�; z/e�C�0 ˝ e˛0;ˇ 0

for some .h�/ 2 Mk�N
2
.�0 ˝ L�0M /. Conversely, given a vector valued modular form of

weight k�N
2

and type �˝ L�0M , equation (3.10) defines an element of Jk;M .�˝ �M;˛;ˇ /.

Remark 3.18. If � arises as an irreducible component of the restriction of the Weil
representation for the metaplectic cover eSpr.Z/ of Spr.Z/, as it will be the case in Section 4,
then �0 is the Weil representation of Mp2.Z/. An explicit decomposition required lengthy
arguments, and will be given at another occasion.

Proof of Theorem 3.17. Note that the sum � C �0, which occurs in the subscript, is
well-defined, since �0 runs through all representatives modulo MZN \ ZN .

By Proposition 3.10, there is a representation �0 such that � Š �0 ˝ �M;˛;ˇ for some
vectors ˛; ˇ 2 QN . Since � is irreducible, �0 must be irreducible, too. We can assume that
� D �0 ˝ �M;˛;ˇ , thus identifying representation spaces.

The Fourier expansion of � is uniquely determined by c.�In; r/, where r runs through
a system of representatives of .MZN C ZN / =MZN . Fix some lift r of � to MZN C ZN

and one pair .˛; ˇ/. It is straightforward to check corresponding Fourier coefficients c. � In; r/
of the left and right hand side. This proves the first part of the theorem.

The second part follows directly, when checking transformation properties.

We denote the induced bijection between Jk;M .�/ and Mk�N
2
. L�0M ˝ �

0/ by ‚M ,
suppressing the weight.

3.5. Vanishing of Jacobi forms. We deduce vanishing statements for Jacobi forms
based on their connection to vector valued elliptic modular forms. The theta decomposition
allows us to do this.

Let
rd.M/ D max

�2RN
min
�02ZN

MŒ˙� C � 0�:

Note that rd.M/ is related to the radius of a Voronoi cell of a lattice with Gram matrix M .

Proposition 3.19. If � 2 Jk;M .�/ and c.�Im; r/ D 0 for all 0 � m < k
12
C1C1

2
rd.M/

and all r 2MZN C ZN , then � D 0.

Proof. We can assume that � is irreducible. According to Theorem 3.17, we have

� Š �0 ˝ �M;˛;ˇ

for some ˛; ˇ 2 QN .
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Raum, Spans of special cycles of codimension less than 5 53

We apply Proposition 2.2 to‚M .�/. Given � 2 .MZNCZN / =MZN and a lift r 2 QN

of �, we have

c.‚M .�/� Im/ D
�
c.�ImC 1

2
M�1Œr C ˛�; r C ˛/

�
rI˛;ˇ

;

where the subscripts r and ˛; ˇ refer to the corresponding coordinates in CŒdiscM� and
CŒ.˛; ˇ/SL2.Z/ =��, respectively.

Combining this with relation (3.3), we see that it suffices to prove that for every
vector � 2 .MZN C ZN / =MZN , there is � 2 ˙� � QN with M�1Œ�� � rd.M/. In order
to connect � to the definition of rd.M/, we consider M�1� 2 .M�1ZN C ZN / =ZN instead
of �. We have to find M�1� 2 ˙M�1� with M�1Œ�� DMŒM�1�� � rd.M/. By the defini-
tion of rd.M/, this is possible, since M�1� is defined up to elements in ZN . This finishes
the proof.

Given 0 < M 2 MattN .Q/, define

md.M/ D min
g2GLN .Z/

max
1�i�N

.MŒg�i;i /:

This is the length of the longest vector within a basis of shortest vectors.

Proposition 3.20. Given 0 < M 2 MattN .Q/, we have rd.M/ � N.NC1/
8

md.M/.

Proof. Since the proposition holds for MŒg�, g 2 GLN .Z/ if it holds for M , we can
assume that Mi;i �MiC1;iC1 for 1 � i < N . Further, we can assume that for all 1 � i < N ,
we have

Mi;i D min¹MŒg�i;i WMŒg�j;j DMj;j for 1 � j < i; g 2 GLN .Z/º:

In particular, we have md.M/ DMN;N . Moreover, we find that jMi;j j �
1
2

min¹Mi ;Mj º.
Indeed, suppose that this was not the case for some i < j . Then we could replace the basis
vector ej by ei ˙ ej . We would then have

MŒei ˙ ej � DMi CMj ˙ 2Mi;j < Mj

for the right choice of sign. This would contradict the minimality of diagonal elements of M .
Given any � 2 RN , we can find w D ˙� C � 0 for some choice of sign and � 0 2 ZN such

that j˙�i C � 0i j �
1
2

for 1 � i � N . We then have

rd.M/ �MŒw� �
X

1�i;j�N

jMi;j jjwi jjwj j

�
1

4

X
1�i;j�N

jMi;j j

�
1

4

X
1�i�j�N

jMN;N j D
N.N C 1/

8
md.M/:

Remark 3.21. In the next section, we use rd.M/ < .2 � �/md.M/ for N < 4. In the
case N D 4, the diagonal Gram matrixM D diag.2; 2; 2; 2/ has md.M/ D 2 and rd.M/ D 1.
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54 Raum, Spans of special cycles of codimension less than 5

4. Special cycles

As announced in the introduction, we switch notation and adopt Zhang’s.
Let L be an integral, even lattice of signature .n; 2/, and write L# for its dual. The

Grassmannian of 2-dimensional negative subspaces of L˝R is denoted by Gr�.L˝R/. Fix
a subgroup � of O.L/ that acts trivially on disc L´ L# =L. The quotient

X� D �nGr�.L˝R/

is a Shimura variety of orthogonal type, on which there are rational quadratic cycles. Given
a tuple of vectors v D .v1; : : : ; vr/ 2 .L˝Q/r , let

Z.v/ D ¹W 2 Gr�.L˝R/ W span.v/ ? W º:

If span.v/ � L˝Q is positive, this cycle is non-trivial.
Kudla [11] built so-called special cycles from the Z.v/. To each v, we attach a moment

matrix qL.v/ D
1
2
.hvi ; vj iL/1�i;j�r , where hv;wiL D qL.v C w/ � qL.v/ � qL.w/. Given

a positive semidefinite matrix 0 � T 2 Mattr.Q/ and � 2 .L# =L/r , set

�.T;�/ D ¹v 2 �CLr
W T D qL.v/º:

The symmetries � act on �.T;�/, and there are finitely many orbits. Kudla defines special
cycles as

Z.T;�/ D
X

v2�n�.T;�/

Z.v/:

All cycles of this form descend to cycles on X� , which we also denote by Z.T;�/.
Writing rk.T / for the rank of T , we find that Z.T;�/ is a cycle of codimension rk.T /, whose
class in CHrk.T /.X�/C is denoted by ¹Z.T;�/º.

The aim of this section is to prove the next theorem.

Theorem 4.1. Suppose that � � O.L/ acts trivially on disc L. Then for r < 5, the
space

span.¹Z.T;�/º W 0 < T 2 Mattr.Q/; � 2 discr L/ � CHr.X�/C

is finite dimensional.

Given � 2 disc L, �0 2 discr�1L and M 2 Mattr�1.Q/, Zhang formed the partial
generating series

��;�0;M D
X

0�n2Z
p2Zr�1

¹Z.T; .�; �0//º qn�p; T D
�
n 1

2
tp

1
2
p M

�
:(4.1)

Based on results in [3, 4], Zhang proved in his thesis [21] that ��;�0;M is a vector valued
Jacobi form of weight 1C n

2
. In order to state his result, we make a connection to the notation

in Section 3. We write �L;r for the Weil representation on the metaplectic double cover eSpr.Z/
of Spr.Z/ associated to L. Precise formulas are given by Zhang [21, Section 2].
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Using notation from Section 3, we have an embedding ��J.r�1/ into eSpr.Q/ via

��
a b
c d

�
; Œ�; �; ��

�
7!

0BBBB@
a b a t� � b t�

� idr�1 � 1
2
�

c d c t� � d t�

idr�1

1CCCCA :

Beware that the notation � for a vector in Zr�1, used in the previous section, conflicts with the
use of � in the present section. We consider �L;r as a representation of ��J.r�1/ by means of
this embedding.

Proposition 4.2 ([21, Proposition 2.6 and (2.10)]). The right hand side of (4.1) is
absolutely convergent, and we haveX

�2disc L

�02discr�1 L

��;�0;M e�;�0 2 J1Cn
2
;M .�L;r/:

Proposition 4.3. Given any 0 < B 2 R, the space of cycles on X�

span
�
Z.T; .�; �0// W T D

�
m 1

2
tp

1
2
p M

�
2 Mattr.Q/; � 2 disc L; �0 2 discr�1L;

m;md.M/ < B C 1
2

rd.M/
�

is finite dimensional, if r < 5.

Proof. Because of the GLr.Z/ invariance ofZ.T; .�; �0// and because the denominator
of qL.�/, � 2 � is bounded, it is sufficient to consider cycles associated to GLr�1.Z/ Ë Zr�1

classes °�
m t. tgpC�MŒg�/

tgpC�MŒg� MŒg�

�
W g 2 GLr�1.Z/; � 2 Zr�1

±
of positive matrices with bounded denominator.

First of all there are only finitely many GLr�1.Z/ classes of matrices M with bounded
denominator that satisfy md.M/ < B C 1

2
rd.M/. This follows from Proposition 3.20, and the

fact that, for any B 0, there are only finitely many GLr�1.Z/ classes with bounded denominator
and md.M/ < B 0.

Next, we can assume that p is reduced with respect to the column space of M , so that
there are only finitely many p that can occur for any given M . Only finitely many m occur for
given M and p, since 0 < m < B C 1

2
rd.M/. This completes the proof.

Theorem 4.4. We have

span
�
¹Z.T;�/º W 0 < T 2 Mattr.Q/; � 2 discr L

�
D span

�
¹Z.T;�/º W 0 < T D

�
m 1

2
tp

tp M

�
2 Mattr.Q/; � 2 discr L;

m;md.M/ < 1C 2C2n
24
C

1
2

rd.M/
�
:
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Proof. Assume that the above is not true. Then there is a functional f on CHr.X�/C
that vanishes on the right hand side but not on the left hand side. Write

f .��;�0;M / D
X

0�m2Q
p2Qr�1

f .Z.T; .�; �0///qm�p:

By the choice of f , we have c.f .��;�0;M /Im;p/ ¤ 0 for some m;p, and M . We show that
this cannot be.

Set B D 1C 2C2m
24

. We first consider M with md.M/ � B C 1
2

rd.M/. Then

c.f .��;�0;M /Im;p/ D 0

by assumption for all m < 1C 2C2n
24
C rd.M/. By Proposition 3.19 and 4.2, we find that

f .��;�0;M / D 0:

Next, we use induction on .Mi;i /1�i�N 2 Zr�1 to show that f .��;�0;M / D 0 for allM .
We impose the componentwise comparison on Zr�1. In other words, for fixedM with the prop-
erty that md.M/ > BC 1

2
rd.M/, we suppose that f .��2;�

0
2;M2

/D 0whenever .M2/i;i �Mi;i

for all 1 � i � r � 1, and there is one 1 � i � r � 1 such that .M2/i;i < Mi;i .
We can make the same assumptions as in the proof of Proposition 3.20. That is, we can

assume that Mi;i < MiC1;iC1 for 1 � i < r � 1, and for all 1 � i � r � 1

Mi;i D min¹MŒg�i;i WMŒg�j;j DMj;j for 1 � j < i; g 2 GLr�1.Z/º:

We want to show that f .��;�0;M / vanishes using Proposition 3.19. We must argue that
c.f .��;�0;M /Im;p/ D 0 for all m < B C 1

2
rd.M/ < md.M/. For any such m we have

c.f .��;�0;M /Im;p/ D c.f .��0r�1;.�
0
1;:::;�

0
r�2;�/;M

0/IMr�1;r�1; p
0/;

where  
m 1

2
tp

1
2
p M

!
D

 
Mr�1;r�1

1
2

tp0

1
2
p0 M 0

!264
0B@0 0 1

0 idr�2 0

1 0 0

1CA
375:

We have M 0i;i DMi;i if i ¤ r � 1, and M 0r�1;r�1 D m < md.M/ DMr�1;r�1. Thus we can
employ the induction hypothesis to prove that the right hand side is zero. This way, we establish
the hypothesis of Proposition 3.19, and finish the induction.

We have shown f .��;�0;M / D 0 for allM . This contradicts the choice of f , and finishes
the proof.

Proof of Theorem 4.1. Combine Theorem 4.4 and Proposition 4.3.
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