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Abstract This article points at some critical issues which are connected with the theoretical formulation of the
thermodynamics of solid–fluid mixtures of frictional materials. It is our view that a complete thermodynamic
exploitation of the second law of thermodynamics is necessary to obtain the proper parameterizations of the
constitutive quantities in such theories. These issues are explained in detail in a recently published book by
Schneider and Hutter (Solid–Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context,
2009), which we wish to advertize with these notes. The model is a saturated mixture of an arbitrary number
of solid and fluid constituents which may be compressible or density preserving, which exhibit visco-fric-
tional (visco-hypoplastic) behavior, but are all subject to the same temperature. Mass exchange between the
constituents may account for particle size separation and phase changes due to fragmentation and abrasion.
Destabilization of a saturated soil mass from the pre- and the post-critical phases of a catastrophic motion from
initiation to deposition is modeled by symmetric tensorial variables which are related to the rate independent
parts of the constituent stress tensors.

Keywords Debris flow · Second law of thermodynamics · Mixture theory · Frictional material ·
Exterior calculus

1 Motivation

The literature on the dynamical interaction between a fluid and a solid or fluids and solids mixed to a hetero-
geneous body is immense and equally conflicting in several elements. The mechanical and thermal processes
exhibited by such complex systems arise in many fields of the engineering and natural sciences. Examples
are fluidized beds in chemical process engineering, particle laden flows in fluvial hydraulics and typhoon or
hurricane and earthquake induced landslides in catastrophic avalanche flows, to name a few, for more details
see Hutter [15]. One characterization of such flows is that they often arise as interacting species flows, in
which the different species are more or less continuously intermixed. It is then only a small step of abstraction
to postulate, that (thermo)-dynamical models for them can be deduced by postulating that the various spe-
cies continuously fill the space and form what is called a mixture. However, it is already at this level of the
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construction of a mathematical model that scientists tend to disagree in their opinion what a basic formulation
of a mathematical model might be. According to a second alternative, known as ‘multiphase systems’, under-
standing the species interaction is achieved by an averaging or homogenization operation of the effects exerted
on one species element by all the other species elements that are present in the assemblage of the species.

The terms ‘mixture’ and ‘multi-phase system’ characterize slightly different approaches to physical pro-
cesses in minglings and have led to controversial disagreements. However, there is no need for disagreement,
because at last ‘mixtures’ and ‘multi-phase systems’ are structurally the same. Why? Well, in multi-phase
systems, the essential steps, done to reach structurally the same governing equations as in mixture theories
(balances of mass, momenta, energy and entropy) from which models are deduced, are the motivation and
formulation of interaction laws between the species elements and subsequently, the performance of a so-called
phase averaging operation, by which the discrete distribution of the species elements is smeared or smoothed
over a representative volume element. The emerging equations are balance laws as in mixture formulations,
often, and inappropriately, called conservation laws for quantities typical of those arising in classical physics.
Expert presentations of the two approaches are by Truesdell [38] and Müller [30] on the mixture side, and Jack-
son [21], Anderson and Jackson [2] and Drew and Passman [10] on the multi-phase systems side. Of course, by
postulating interaction laws between the species elements and performing the phase averaging process, detailed
knowledge and information has gone into the phase averaged equations, which is useful, but these equations
still contain unspecified variables, e.g. stresses for which constitutive relations must be written down to arrive
at a complete so-called closed system of equations. An illustrative example is given by Pitman and Le [31].

The mixture and multi-phase systems approaches lead to systems of equations which have essentially the
same balance structure for continuously differentiable fields, but both have, at this level, still unspecified fields
which must be adequately parameterized to close the system of equations. Since these equations have the
same structure, and their variables are obviously continuously occupying all points of the space of the body,
it is not absolutely necessary to differentiate between ‘mixtures’ and ‘multi-phase systems’. We shall treat
these denotations as synonymous. This does not, however, remove all controversies. These start anew with the
choice or postulation of the unspecified terms mentioned above. In fact, the disagreement between scientists
seems often to be caused by performing ad hoc closure statements at this level.

In order to explain the various issues, consider a binary mixture of a particle laden fluid. Let
ρ̄f,s, c̄f,s, vf,s, p̄f,s, T̄f,s, m̄f,s and ρ̄f,sg be the partial densities, the constituent mass production rate densi-
ties, the constituent velocities, the constituent pressures, the constituent stress tensors, the specific interaction
forces and the external body forces of the fluid (f) and solid (s) constituents, respectively. Moreover, let νf,s

be the volume fractions and ρf,s the true densities1 of the fluid and the solid constituents, respectively. Then,
accept the fact (we shall explain this in detail later) that T̄f,s are symmetric tensors, the balances of mass and
linear momentum can be written down for the solid and the fluid as follows:

∂ρ̄f

∂t
+ ∇ · (ρ̄f vf) = c̄f ,

∂ρ̄s

∂t
+ ∇ · (ρ̄svs) = c̄s,

∂(ρ̄f vf)

∂t
+ ∇ · (ρ̄f vf ⊗ vf) = −∇ p̄f + ∇ · T̄f + m̄f + ρ̄f g,

∂(ρ̄svs)

∂t
+ ∇ · (ρ̄svs ⊗ vs) = −∇ p̄s + ∇ · T̄s + m̄s + ρ̄sg,

(1)

in which

c̄f = −c̄s, m̄f = −m̄s, (2)

since mass and momentum of the mixture body are conserved (see main text for justification). Moreover,
irrespective of whether the solid and the fluid constituents are compressible or not, one has

ρ̄f,s = νf,sρf,s. (3)

Assume now that we wish to derive a model for this binary mixture that is only based on the partial dif-
ferential equations (1) (i.e. not involving the variables νf,s and ρf,s). Then, Eqs. (1) and (2) comprise eight
equations for 26 unknowns, namely ρ̄f,s (2), vf,s (6), c̄f,s (1), p̄f,s (2), m̄f,s (3) [ see (2)] and T̄f,s (12). Treating

1 The ‘true’ density is the mass of a constituent per volume of that constituent.
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ρ̄f , ρ̄s, vf and vs as the basic fields, closure relations are needed for all quantities arising on the right-hand side
of (1). For the most simple case of vanishing constituent mass production c̄f = c̄s = 0, we then need closure
statements for p̄f,s, T̄f,s and m̄f . Taking a very naive view, we may set T̄f = 0 on grounds that the fluid is ideal,
and we may conjecture Newtonian viscous behaviour for the solid stress T̄s. This still leaves us with closure
relations for p̄f,s and m̄f . For the latter, we may write down a Darcy type relation: m̄s = γ (vf −vs),where γ is
a permeability, but this ignores the fact that there may be a buoyancy contribution to m̄f of the fluid exercising
a static force on the solid, see Jackson [21] or Pitman and Le [31]. Leaving this question aside for the moment,
we are still left with equations of state for p̄f,s. For a single fluid, the thermal equation of state follows from
thermodynamics via the second law, and there it is a relation involving the true density (which is the same as the
partial density for a single constituent material). Here, however, since according to (3) partial mass densities
may change by changes of the true mass densities or the volume fractions or both, we must conclude that (i)
introduction of single constituent pressures p̄f and p̄s is insufficient and (ii) a model based on Eqs. (1) and (2)
alone is equally defective. Furthermore, we suspect the existence of thermodynamic pressures pth

f,s, which must

be governed by changes of the true mass densities, and so-called configuration pressures pconf
f,s , that are then

governed by variations of the volume fractions. Obviously, this calls for a rigorous thermodynamic derivation
which delivers explicit formulae for the pressures. This requires that the partial densities ρ̄f,s are not basic
field variables, but instead ρf,s and νf,s are, and that the volume fractions are treated as internal variables for
which also evolution equations are required, because νf,s obviously describe the configuration change of the
mass distribution. We write these equations in the form

∂νf

∂t
+ ∇ · (νf vf) = nf ,

∂νs

∂t
+ ∇ · (νsvs) = ns, (4)

where nf,s are production rate densities.
There are further compelling demands for a thermodynamic foundation of the theory. To see this, assume

that the fluid and solid are both density preserving. This means that the true mass densities ρf,s are constant
and that the mass balance Eq. (1)1,2 reduce to Eq. (4)1,2 with

nf = cf

ρf
, ns = cs

ρs
(5)

for consistency. If we then, for some reason, would assume that the constitutive relations do not depend on
νf,s either, the pressure terms pth

f,s, pconf
f,s would both vanish, a strange behaviour, in particular for equilibrium

conditions. Thererfore, dropping νf,s as independent constitutive variables will in this case most likely lead to
singular behaviour.

There is still a further case which gives rise to concern. Suppose that we want to use Eq. (1) for the situation
that the mixture is saturated. This means that

νf + νs = 1 (saturation). (6)

This equation expresses that the fluid constituent fills the entire pore space. Its requirement amounts to
loosing an independent variable. Equation (6) may thus be interpreted as a constraint condition and as such
gives therefore rise to a constraint pressure, just as the pressure in incompressible fluids. This pressure is called
saturation pressure ς , so that in this case

p̄f,s = p̄th
f,s + p̄conf

f,s + p̄sat
f,s, (7)

with

p̄sat
f = λς, p̄sat

s = (1 − λ)ς, (8)

distributing this pressure via a parameter λ among the constituents. In the usual approaches, this distribution
is postulated in an ad hoc manner, just as now, since the effect of a single variable of the nature of stress must
somehow be distributed among the constituents in a reasonable manner. ‘Reasonable’ means that the sum over
the constituent pressures ought to be equal to the total saturation pressure. However, is this correct and what is
the functional form for λ? It can take any finite value, but is, in the literature, unanimously postulated to have
the form

λ = νf , (9)
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see Iverson [17], Iverson and Denlinger [20], Denlinger and Iverson [9], Pitman and Le [31], Jackson [21] and
many others. Assumption (9) or its generalization

p̄sat
α = νας (α = 1, . . . , n),

n∑

α=1

να = 1 (10)

for saturated mixtures of n constituents is called the ‘assumption of pressure equilibrium’.2 It is only correct
for special cases. Its validity or replacement must and can be proved by thermodynamic arguments.

Nothing specific has yet been said about the interaction forces m̄f,s except that their sum must vanish, an
obvious statement in view of Newton’s third law. However, experts in multi-phase systems emphasise that the
interaction forces can take different forms, see Anderson and Jackson [2] and Jackson [21]. Conceptually, this
is quite obvious if m̄f is thought to be additively decomposed as follows:

m̄f = m̄(1)
f + ∇ · T̄(1)f . (11)

For instance, from an a priori estimate,3 one might have a first guess of the contribution of m̄f and it often
happens that it arises as a divergence term. Then, the right-hand sides of (1)3,4 could be written in the form

RHS(1)3 = −∇ p̄f + ∇ · ((1)T̄New
f )+ m̄(1)

f + ρ̄f g,
RHS(1)4 = −∇ p̄s + ∇ · ((1)T̄New

s )− m̄(1)
f + ρ̄sg,

(12a)

or even as

RHS(1)3 = −∇ p̄f + ∇ · ((2)T̄New
f )+ m̄(1)

f + ρ̄f g,
RHS(1)4 = −∇ p̄s + ∇ · ((2)T̄New

f −(2) T̄New
f )− m̄(1)

f + ρ̄sg,
(12b)

with

(1)T̄New
f = T̄f + T̄(1)f , (1)T̄New

f = T̄s − T̄(1)f , (13a)

and

(2)T̄New
f = T̄f + T̄(1)f , (2)T̄New

f = T̄s + T̄f , (13b)

respectively. In these equations, T̄New
f,s and m̄(1)

f are still left arbitrary. Obviously, in a constitutive postulate
these terms must be determined in thermodynamic formulations. Needless to say, that the representations (1)3,4
and (12), (13) are equivalent to one another if indeed a decomposition of the form (11) exists.

Looking at (13), one might be tempted to conclude that (1)T̄New
f exhibits only fluid properties, whilst

(1)T̄New
f expresses both fluid and solid properties. However, such an interpretation is not compelling, for if one

writes (11) as

m̄s = m̄(1)
s + ∇ · T̄(1)s , (14)

which expresses the same as (11), since m̄s + m̄f = 0, (12a) is still obtained, but (13a) now takes the form

(1)T̄New
f = T̄f − T̄(1)s , (1)T̄New

f = T̄s + T̄(1)s , (15)

and the new interaction–force–sum relation, m̄(1)
s + m̄(1)

f = 0, is preserved. Now, the new solid stress seems
to exhibit pure solid properties, whilst the fluid stress is ‘mixed’.

In order to present an even further alternative, one may incorporate the divergence term in (11) into the
fluid stress, but refrain from doing the analogous step in the momentum equation for the solid. In this case,
the interaction forces of the new formulation do no longer sum up to zero, a requirement, which is generally
left unquestioned. However, in all cases demonstrated so far, the fluid and solid momentum equations remain
unchanged. This example suggests as if the constituent interaction forces do not need to sum up to zero, a
conjecture, once expressed to us at the Isaac Newton Institute at Cambridge University, UK. We take the
position that Truesdell’s requirement ‘the motion of the mixture as a whole is governed by the same equations

2 In the literature, ‘pressure equilibrium’ seems to be applied to the total pressures not just to the saturation pressure.
3 In multi-phase systems of Anderson and Jackson [2,21] such a priori estimates are explicitly made.
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as is a single body’ should not be abandoned. The interaction–force–sum relation is simply a hidden statement
in this case, not straightforward to be fulfilled.

Obviously, even other decompositions are thinkable, a popular one is due to the multi-phase systems
defenders, see, e.g. Jackson [21]. This author demonstrates by scrutinizing the forces that are exerted by a fluid
flow on suspended particles that

m̄f = −m̄s = −νs∇ · T̄f + m̄(2)
f . (16)

With this choice, we may write for the right-hand sides of (1)3,4

RHS(1)3 = −∇ p̄f + νf∇ · T̄f + m̄(2)
f + ρ̄f g,

RHS(1)4 = −∇ p̄s + ∇ · T̄s + νs∇ · T̄f − m̄(2)
f + ρ̄sg.

(17)

These equations have lost the divergence property for the stresses. They are yet a different version of the
constituent momentum equations, but they are obviously analogous to (1)3,4 provided that the decomposition
(16) holds.4

It is now understandable that it must be very difficult to bring such disparate formulations into coincidence,
or at least to establish a certain degree of harmony. We claim that rational thermodynamics is the vehicle to
achieve this. In so doing, one must select a formulation, either Eqs. (1)3,4, (12) or (17) for the balance laws
of constituent momenta, postulate constitutive relations for a desired material class and subsequently exploit
the entropy principle to reduce the constitutive relations to the adequate ‘minimal’ form. In principle, this
can be done for all three of the above presented systems of balance laws or any other one that is available. If
for different formulations, final results can be brought into coincidence, then the formally different theories
describe indeed the same material behaviour of the mixture in question, if not, the decompositions (11) or (16)
are doubtful. This holds for a system that can be derived from (1). We regard Eq. (1) to be the most primitive
ones, because they have the structure of balance laws, which possess clearly defined global, integrated forms
with the usual mathematical properties.

In the above, two constituent mixtures were the basis for us to explain the crucial issues that are encountered
with such continuous complex systems, but it is quite clear that nothing essential changes, if the mixture or the
multi-phase system consists of n > 2 components. In Schneider and Hutter [35], the theory is developed for
arbitrary n but we are aware that n = 2 and perhaps n = 3 or n = 4 are the most significant cases. The analysis,
not easy to grasp, demonstrates that the above mentioned uncertainties or open holes in the derivation of the
models will all be resolved. There is no reason for scientists to disagree and debate on different reasonable
ad hoc assumptions on some parts of the stresses or interaction forces in different formulations; the different
theories may well agree with one another, but agreement or disagreement of two formulations can only be
judged after both have been subjected to a complete thermodynamic analysis.

2 Mixtures and debris-flow models

Our own interest in fluid–solid mixtures is guided by their application to catastrophic movement of snow,
ice and debris avalanches, by mud flows in fluvial hydraulics, e.g. as a result of heavy rain fall when soil on
mountain sides or dams break off or when large river discharge triggers sediment erosion and generates its
transport and deposition further down in the river basin, often giving rise to devastating effects to life and
property by erosion and sedimentation. Such catastrophic events occur nowadays worldwide and can almost
daily be found in the news media. Many avalanche models have been developed for dry granular fluids (for a
collection of references, see Harbitz [13], Hutter [14], Pudasaini and Hutter [32], Ancey [1] and others). Such
models are adequate for dry dense snow avalanches, for dry debris flows and landslides that may be triggered
by an earthquake. For flow of water-soaked soil or debris, a large number of models for catastrophic motion
are based on single constituent models, in which the constitutive relation for the stress tensor is motivated by
non-Newtonian rheology. These models employ a closure relation, for which the stress is proportional to the
strain rate tensor with scalar factor—the effective viscosity—which itself depends on the second invariant of
the stress tensor, sometimes in a rather complex way, see e.g. Luca et al. [25].

4 Readers with advanced knowledge in structured mixture theory will realize that momentum equations based on (17) cannot
become equivalent to the equations with the original variables, if for the constitutive theory the principle of phase separation is
employed.
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There is an extensive literature on this subject in the rheological sciences, mostly dealing with polymeric
and other complex fluids and using stress-stretching relations of the class of visco-plastic materials. Rheologists
differentiate between fluids exhibiting a yield stress (Bingham, Herschel Bulkley, De Kee–Turcotte fluids) and
fluids without a yield stress (Newtonian, power law fluids with shear thinning and shear thickening behaviour).
Ancey [1] reviews the recent literature, emphasizing the viscous and plastic nature of such models. Because
of the singularities that arise in some of these fluid models (e.g. infinite viscosity at zero stretching for shear
thinning fluids, an essential singularity for all plastic models at yield), regularizations have been introduced
which remove these singularities. Such a regularization, making the behaviour mathematically viscous has
been suggested by Zhu et al. [39] for the De Kee–Turcotte fluid. Luca et al. [25] proposed such a regularization
for shear thinning and shear thickening fluids with Newtonian behaviour, at small stretching, and power law
behaviour, at large stretching. They derive thin layer approximations on arbitrary topography for these kinds
of fluid models and show that at least two classes of avalanche models must be differentiated, the first class
being applicable for fluids with zero or small yield stress and the second class for materials exhibiting large
yield stress.

These models are likely adequate for flows of particle laden systems up to moderately high solids concentra-
tion with negligible active solid–fluid separation. They are, however, likely inappropriate when sedimentation
occurs or for flow at high solids concentration when frictional contact between the grains is frequent. In the
debris flow community, mixture concepts have so far only been incorporated in a broad fashion. Geotechnical
engineers and engineering geologists (McDougall and Hungr [28,29], Iverson [17,18], Iverson and Denlinger
[20]) have early recognized that the role of the fluid, or more precisely the pore pressure, is decisive for the
run-out of a granular mass subjected to an interstitial fluid. In a first attempt to quantify the role played by the
fluid, Iverson assumed the saturated binary mixture to consist of a fluid and a solid constituent, but imposed
the simplifying assumption that both constituents move with the same velocity, vf = vs. This implied that
the interaction force (the Darcy term) disappeared from the formulation,5 but the total pressure needed to be
distributed between the solid and the fluid pressures according to

pf = λp, ps = (1 − λ)p. (18)

To close the system, an ad hoc closure relation is needed for the pore fluid pressure p or for λ. A similar
procedure was also taken up by Pudasaini et al. [33] in a slightly different avalanche formulation, but using the
same physics. Computations have shown that the pore (fluid) pressure exercises a significant effect on granular
mass run-out distances. The major disadvantage of this model is the ad hoc nature of the distribution of the
pore pressure among the constituents according to (18). This equation has no theoretical basis other than to
close the system of equations. Computations have also shown that results depend chiefly on the choice of the
parameterization of λ, an equation for which there is no rational background. In an attempt to introduce some
notion of rationalism in such a simplistic approach, a diffusion equation for the pore pressure was derived
from an independent principle; see [19]. However, such an approach does still not remove the fact that the pore
pressure equation is not rationally connected to the mixture equations.

Nevertheless, a rational connection of a diffusion equation for the pore pressure to the more standard
formulations is possible. The pore pressure equation may be thought of as a balance equation of the form

d p

dt
= ∇ · Fp + πp (19)

with a flux term Fp = −κp∇ p with diffusivity κp and a production term πp. If (19) is used, p takes the role of
an internal variable. A loose connection to the standard theories of solid–fluid mixtures emerges, if λ in (18)
is identified with νf as in (9). In this case, (19) is a substitute for one of the Eq. (4).6 So, Iverson’s procedure,
which is free of volume fraction variables, may also be interpreted as a partial recognition of volume fraction
balance laws. On the other hand, one may maintain λ in (18) as an independent variable and postulate (19) or

dλ

dt
= ∇ · Fλ + πλ (20)

as its balance law. Both (19) and (20), however, require additional boundary conditions, which are difficult to
motivate. These thoughts seem to be new; they establish a weak connection of the pore pressure approach to
the more standard mixture formulations with volume fraction balance laws.

5 Actually, only the dynamic part of the interaction force which is a function of vf − vs, vanishes in this case, the static
contribution is arbitrarily assumed to vanish.

6 In (4), flux terms are missing since additional boundary conditions would then be needed as is the case for (19).
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A mixture model, deserving the qualification ‘mixture’ and serving the purpose of describing water satu-
rated debris flows, was presented by Pitman and Le [31] using the mass balances (1)1,2 and the momentum
balances that are based on Eqs. (16) and (1)3,4. Density preserving and saturation assumptions were also used.
The constitutive theory uses a plastic description which is essentially a Mohr-Coulomb behaviour due to Ran-
kine [34]. In a reduced model, the fluid acceleration terms are dropped, so that the fluid equation reduces to
a classical Darcy equation. Only preliminary computations for this reduced model have been conducted, and
they demonstrate that the fluid component enhances the run-out distances. Interestingly, this theory is comple-
mentary to that of Iverson; it emphasizes the role of the dynamic interaction force, whilst Iverson ignores it,
and it ignores the pore pressure, whilst Iverson accounts for it. Both, however, predict run-out distances that
are increased by the presence of the fluid.

Other solid–fluid mixture models in which the above mentioned simplifications are not made but other
ad hoc assumptions are implemented to simplify the complexity of the formulation are Fernández-Nieto et al.
[12] and Luca et al. [26,27]. These authors treat solid–fluid mixtures divided into two layers, of which the
lower layer is a binary mixture, whilst the upper layer is a pure fluid, and fluid exchange between the layers
may or may not exist. The model of Luca et al. is based on a reduced formulation deduced from the equations
presented by Schneider and Hutter [35].

The above mixture models are the only ones we know of, which have been proposed to be applied to debris
flows, landslides, etc. in the mentioned geological applications. They are of ad hoc nature, i.e. closure relations
have been suggested by physical reasoning and plausibility arguments, without any detailed thermodynamic
analysis. It is our belief that for a constitutive class, which acceptably embraces possibly successful debris flow
models, a thorough thermodynamic analysis ought to be performed to achieve a high degree of certainty of the
model equations from which fluid–solid avalanche models in the geophysical context can be further deduced.

3 Mixtures with frictional components

Landslides and debris flows are often initiated from slopes that have been artificially consolidated and exhibit
a high degree of ‘stability’. Such flows can also develop from artificial dams. Soil slumps arise in such cases
often in inhabited areas (e.g. Hong Kong as a well known site!). In these circumstances, the geotechnical
engineer or engineering geologist wishes to have a theoretical model for the behaviour of the soil prior to any
catastrophic movement when the soil structure is still stable under quasi-static loads, which allows also (i)
the prediction of failure by identifying shear bands and other possible instability features and (ii) the deter-
mination of the catastrophic avalanching motion from this initial post-critical state through all phases of the
motion to the deposition. The model should predict the pre-critical state of stress, the onset of the localisation
or alternative instability, the initiation of the ensuing motion, the speeds and the mass distribution in motion as
well as in the final deposition. The models mentioned in the preceding section lack the potential to describe all
these phases.7 A stress ‘component’ capable of predicting the localization to identify the breaking soil mass is
missing. There are several options to incorporate this component into the theory. We have decided to do this
in a form that generalizes the well-known constitutive models of hypo-plasticity, see [23,3–8].

We wish to mention that (i) even though the hypo-plasticity models are likely in conformity with the Second
Law of Thermodynamics, this has not been demonstrated and (ii) that the hypo-plastic models have so far not
been set into a clear mixture concept with a number of fluid and solid constituents. It is not obvious how this can
be done. When interstitial water plays a role, the mixture context shows up in the classical hypo-plastic models
only indirectly via the somewhat ‘cryptic’ statement, that effective stresses are looked at. A thermodynamic

7 One of the referees of an earlier version of this article critized our statement that the model ought to be able to produce
shear banding (localizations) and states that, usually, displacement fields at failure have a chaotic nature and is not structured by
any patterning. We do agree with this statement, but challenge its mode of exclusiveness. We have just completed a paper on
laboratory experiments of dry sand base and slope failures and systematically found that base failure has two modes, (i) shear
band failure at dense initial packing and (ii) punching shear failure at loose initial packing. Slope failures have always generated
shear band failures. With water our laboratory experiments are in the planning phase. However, this is not the point. We need a
hypo-plastic constitutive component for the above case of the failure mode to model the initial conditions for the catastrophic
motion in this case. However, a plastic stress contribution is also needed for the deposition where a consolidation mode from
viscous to plastic behaviour almost certainly takes place. Moreover, at inception the fluid constituent with all its peculiarities
provides the element for exactly the chaotic failure mentioned by the referee. So, we admit that mixture failing modes may be
“chaotic” or “unstructured”. The destabilization of a slope at rest is certainly strongly governed by pore pressure variations.
However, the theory is more subtle than what has been proposed, e.g. by Iverson. Our theory has been designed for exactly such
situations.
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setting of their derivation is, however, useful per se, since it will pave the route for extending hypo-plasticity
to mixtures with several solid constituents.

In Schneider and Hutter [35], incorporation of the frictional effects into the theoretical formulation is done
in much greater generality than just for hypo-plastic materials. However, this approach allows us to prove how
and under what conditions hypo-plasticity fulfils the Second Law of Thermodynamics. We shall show this
for the situation that every constituent of the mixture entails hypo-plastic material behaviour, but allows for
the possibility that it can be dropped for particular constituents, e.g. fluid components. The demonstration of
the thermodynamic consistency has, however, not been easy, at least not in the initial stages. The reason is,
that unlike the customary hypo-plastic approach, where an evolution equation for the Cauchy stress tensor is
postulated, we introduce the hypo-plastic behaviour indirectly by adding an evolution equation for an objec-
tive symmetric second rank tensor valued internal variable, to the physical balance laws, and postulating its
production rate density in plausible form. This has first been demonstrated by Svendsen et al. [37] for single
phase dry granular materials on the basis of an idea by Svendsen and is in [35] generalized in the context of
mixture theory. This is a necessary step, because it is not at all clear how one should postulate hypo-plastic
contributions to the interaction forces or to the partial stress tensors of the solid constituents, if there are many
constituents. The method can describe frictional behaviour more generally than just by hypo-plasticity, but
our interest is primarily in the latter. We claim that this work forms the basis for a general material theory
of a mixture of solid and fluid constituents that should in principle be able to describe the thermo-dynamical
response of fully saturated soils from their quasi-static behaviour through a phase of destabilization via the
formation of localization features, to the post-critical behaviour in catastrophic avalanching motions, from
their initiation and while the material is subjected to large deformations, down to the deposition.

4 Kinematics, balance laws, saturation, constituent density constraints, constitutive relations,
entropy principle

4.1 Kinematics of multi-phase mixtures

In this section, our aim is to take a closer look at the kinematics of multi-phase mixtures. Thus, we start, as
in every continuum theory, from configurations and motions of a three-dimensional non-empty continuum B,
the so-called material body.

As we are dealing with mixtures, we must consider configurations one for each constituent and motions of
a collection of n non-empty continua Bα (for each constituent one), that constitute the body B.

An element, Xα , of continuum Bα can be understood as a name tag for one specific material particle
of constituent Kα . An open set of these elements is called Qα and its surface ∂Qα . Every Bα has a set of
configurations {καθ }θ∈I with I ⊂ R that are bijective mappings from Bα into connected and compact regions,
{Rαθ }θ∈I, in the Euclidian space, E3. In other words, one specific καθ assigns a vector Xαθ to the material
particle Xα at a fixed time θ , i.e.

καθ : Bα → E3,
Xαθ = καθ (Xα) ∈ Rαθ ,

for θ fixed, (21)

Xαθ is called the position vector of the corresponding material particle and Rαθ is the region occupied by
constituent Kα .

Now, let us choose any element from the set of configurations and call it a reference configuration, κα0.
Rαθ and Xαθ corresponding to κα0 are then Rα0 and Xα0, respectively. As already observed by Truesdell [38],
κα0 can be different for every constituent. The present configuration can be obtained by sequentially applying
the mappings κ−1

α0 and καt (see Fig. 1), where καt is the mapping from the continuum Bα to the present con-
figuration. However, all constituents are located at the same present configuration Rt , i.e. all Rαt fall together
to one Rt and thus, in the present configuration we have only one position vector x. In mathematical formulas
x can be expressed as

x =
(
καt ◦ κ−1

α0

)
(Xα0), or x = χα (Xα0, t), (22)

where καt ◦ κ−1
α0 denotes a mapping that results from sequentially applying first κ−1

α0 and then καt . The symbol
χα denotes a vector-valued function of location Xα0 and time t of which the value is x. The function χα is
called the motion of the constituent material body Bα . With these definitions in mind we can now specify the
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Fig. 1 Material body Bα of constituent Kα . An open set Qα ⊂ Bα becomes in the reference configuration the material region
�α0 ⊂ Rα0 ⊂ E3 with boundary ∂�α0, and the material particle Xα is mapped onto Xα0 ∈ Rα0. Similarly, in the present
configuration, Qα is mapped into the open set �αt := ωα ∈ Rαt ⊂ E3 with boundary ∂�αt := ∂ωα , and the material particle
Xα is mapped onto x ∈ Rαt .{Eαi } (i = 1, 2, 3) is a basis for Kα in the reference configuration, and {ei }(i = 1, 2, 3) is a basis
for Kα in the present configuration. Note that all different Xα0(α = 1, 2 , . . . , n) are mapped in the present configuration onto
the same point x. Therefore, ωα and ∂ωα are the same region ω and boundary ∂ω for all α

constituent velocity vα , the material derivative dα(·)/dt following the motion of constituent Kα , the constituent
acceleration aα , the constituent velocity gradient Lα , its symmetric, Dα , and skewsymmetric, Wα , parts, the
constituent deformation gradient Fα and the constituent left Cauchy–Green deformation tensor Bα . They are
defined as

v̂α (Xα0, t) := ∂χα (Xα0, t)

∂t
= d

dt
χα (Xα0, t)

∣∣∣∣
Xα0

= dαχα
(
χ−1
α (x, t) , t

)

dt
=: ṽα (x, t) =: x́α (x, t) , (23)

âα (Xα0, t) := ∂2χα (Xα0, t)

∂t2 = d2

dt2χα (Xα0, t)

∣∣∣∣
Xα0

= dα2χα
(
χ−1
α (x, t) , t

)

d2t
=: ãα (x, t) , (24)

Lα := ∇vα = Dα + Wα, (25)

Dα := sym (∇vα) , Wα := skw (∇vα) .

Fα := ∂χα

∂Xα0
(Xα0, t), (26)

Bα := FαFT
α, Bα = BT

α. (27)

In these formulae, ´(·)α is an abbreviation for dα(·)/dt , the material time derivative, following the motion
of constituent Kα . Moreover, |Xα0 indicates that the indexed quantity is held fixed among the variables that are
indexed; the functions v̂α and ṽα take the same values for the same Xα0, t and x evaluated from (22)2, but they
are different functions, as they depend on different position vectors. The same is true for the accelerations.

4.2 Balance equations

Let ψα be the true density of a physical quantity. It stands, in particular, for the mass density, momentum
density, energy density and entropy density per unit volume of constituent Kα at every point within a region
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Table 1 Densities for the constituent balance relations

Balance ψα π
ψ
α φ

ψ
α σ

ψ
α γ

ψ
α

Mass ρα 0 0 0 ραcα
Momentum ραvα 0 Tα bα mα

Moment of momentum x × ραvα 0 x × Tα x × bα Mα

Total energy ρα
(
εα + 1

2 vα · vα
)

0 Tαvα − qα rα + bα · vα eα
Entropy ραηα π

ρη
α φ

ρη
α σ

ρη
α γ

ρη
α

ωα . This density must be distinguished from ψ̄α , which is defined as the physical quantity per unit mixture
volume. In the sequel we shall denote densities carrying an overbar as partial densities and those without a
bar as true densities. Whilst the former are related to the mixture volume, the latter are associated with the
constituent volume. The two are related by

ψ̄α = ναψα, (28)

in which να is the volume fraction density of constituent α. The physical quantity contained in ωα is given by
additivity over the volume as

Gα(t) =
∫

ωα

ψ̄α(x, t)dv. (29)

We now postulate the balance law

dGα
dt

= Pα + Sα + Fα, (30)

where PαandSα,Fα are the production, supply and flux densities of Gα , which are given by

Pα(t) =
∫

ωα

(
π̄ψα (x, t)+ γ̄ψα (x, t)

)
dv, (31)

Sα(t) =
∫

ωα

σ̄ψα (x, t)dv, (32)

Fα(t) =
∫

∂ωα

∗
φ̄̄φ̄φ
ψ

α (x, t, n)da, (33)

in which π̄ψα , γ̄
ψ
α , σ̄

ψ
α and

∗
φ̄̄φ̄φ
ψ

α are partial densities per unit mixture volume and unit mixture area, respectively.

The partial production density has been divided into two contributions. We interprete henceforth π̄ψα as the
(self) production rate of ψ̄α by constituent Kα , whilst γ̄ψα is the production rate of ψ̄α by all constituents other
than Kα . This can be interpreted as production by interaction. For mass, linear and angular momentum, energy
and entropy these quantities are defined in columns 3 and 6 of Table 1. Analogously, σ̄ψα is the partial density
of the supply rate of ψ̄α , a source of ψ̄α outside the body volume ωα but affecting material points within ωα .

The partial density of the flux of ψ̄α through the boundary of the body is defined per unit area on the surface

∂ωα and is denoted by
∗
φ̄̄φ̄φ
ψ

α . Thus, the total flux through the boundary ∂ωα into the body volume ωα is the

surface integral (33). As opposed to ψ̄
ψ

α , π̄
ψ
α and γ̄ψα , which are only functions of x and t,

∗
φ̄̄φ̄φ
ψ

α also depends

on the unit exterior normal vector n of ∂ωα . In general,
∗
φ̄̄φ̄φ
ψ

α could also depend on other differential geometric
properties of the surface, say the mean and Gaussian curvatures, but Cauchy restricted the dependence to
merely one on n (this is called the ‘Cauchy assumption’). The flux and supply terms for mass, linear and
angular momentum, energy and entropy are listed in columns 4 and 5 of Table 1.

The bar in the representation
∗
φ̄̄φ̄φ
ψ

α (x, t,n) indicates that the flux density in (33) is referred to a unit mixture
area. To assume the relation

∗
φ̄̄φ̄φ
ψ

α = να
∗φφφψα , (34)
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we are postulating in fact that areal and volume fractions are the same. With this we have

{
ψ̄α, π̄

ψ
α ,

∗
φ̄̄φ̄φ
ψ

α , σ̄
ψ
α , γ̄

ψ
α

}
= να

{
ψα, π

ψ
α ,

∗φφφψα , σψα , γψα
}
. (35)

If we then also employ Cauchy’s lemma

∗φφφψα (x, t,n) = φψα (x, t)n, (36)

it can be shown that the local balance law for a physical quantity of constituent Kα takes the form

∂ψ̄α − ∇ ·
(
φ̄
ψ

α − ψ̄α ⊗ vα
)

− π̄ψα − σ̄ψα − γ̄ψα = 0, (37)

at all regular points of the present configuration.
The requirement that the mixture as a whole obeys local balance laws as if it were a single material implies

the local balance law

∂ψ = πψ + ∇ · (φψ − ψ ⊗ v
) + σψ, (38)

for the mixture variables which are related to the constituent quantities via

ψ :=
∑

ψ̄α,

φψ − ψ ⊗ v :=
∑[

φ̄
ψ

α − ψ̄α ⊗ vα
]
, (39)

πψ :=
∑

π̄ψα ,

σψ :=
∑

σ̄ψα ,

where

ρ :=
∑

ρ̄α, ρv :=
∑

ρ̄αvα. (40)

We employ the balance laws for the physical quantities collected in Table 1. These can be written as follows:

• mass:

Rα := ∂ρ̄α + ∇ · (ρ̄αvα)− ρ̄αcα = 0, (41)

• linear momentum:

Mα := ∂ (ρ̄αvα)− ∇ · (T̄α − ρ̄αvα ⊗ vα
) − m̄α − b̄α = 0, (42)

• energy:

E := ∂ (ρε)+ ∇ · (q + ρεv)− T · ∇v − ρr = 0, (43)

• entropy:

H := ∂ (ρη)+ ∇ · (φρη + ρηv
) − σρη = πρη (44)

in which we require Tα = TT
α , which holds true if exchange of angular momentum of constituent α is only

due to exchange of linear momentum of the same constituent. In the above

uα := vα − v,
∑

uα = 0,
∑

α

ρ̄α cα = 0,
∑

α

m̄α = 0
(45)
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as well as

T : =
∑

T̄α −
∑

ρ̄αuα ⊗ uα = TI + TD, (46)

TI : =
∑

T̄α, TD := −
∑

ρ̄αuα ⊗ uα (47)

q : =
∑

q̄α −
∑

T̄αuα +
∑

ρ̄α
{
εα + 1

2 {uα · uα}
}

uα = qI + qD, (48)

qI : =
∑

q̄α, qD := −
∑

T̄αuα +
∑

ρ̄α
{
εα + 1

2 (uα · uα)
}

uα. (49)

Moreover, we also employ the following flux free balance laws for the volume fractions, να:

Nα := ∂να + ∇ · (ναvα)− n̄α = 0, (50)

and for the frictional stress like variables, Zα ,

Zα :=
◦
Z̄α − Φ̄α = 0. (51)

Here, Zα is a symmetric second rank tensor and Z̄
◦
α is the objective time derivative

◦
Z̄α = ∂Z̄α + (∇Z̄α

)
vα − (

ΩαZ̄α − Z̄αΩα

)
, (52)

whereΩα is a spin tensor, e.g. W or Wα . The quantities n̄α and Φ̄α = Φ̄
T
α are production rate densities, which

eventually must be given by closure statements.

4.3 Saturation condition

The theory in Schneider and Hutter [35] is developed for a mixture satisfying the saturation condition
∑

α

να = 1. (53)

It states that there is no material free void space within the mixture. Thus, if we write νn = −∑n−1
α=1 να , the

volume fraction balance law for α = n is given by

Nn := −∂
⎛

⎝
n−1∑

β=1

νβ

⎞

⎠ + ∇ · vn − ∇ ·
⎛

⎝
n−1∑

β=1

νβvn

⎞

⎠ − n̄n = 0. (54)

Obviously, only να, α = 1, . . . , n − 1 are independent fields.

4.4 Constituent density constraints

Schneider and Hutter [35] present their solid–fluid mixture model for the case that some or all of the constituent
true mass densitities are constant, i.e.

ρα = const., α = m + 1, . . . , n (0 ≤ m ≤ n) (55)

If the constituent densities ρα are independent constitutive variables, the constraint conditions (55) reduce the
number of independent constitutive variables by (n − m). In particular, comparison of the constituent mass
balance laws with the volume fraction balance laws implies

c̄α = n̄α, or cα = nα, (α = m + 1, . . . , n) (56)

for all density preserving constituents.
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4.5 Constitutive relations

Schneider and Hutter [35] choose the constitutive equations to be of the form

C = Ĉ (S) , (57)

S =
{
θ, θ̇ , ∇θ, 
ρ, 
∇ρ, 
ν, 
∇ν, 
v, 
B, 
D, 
W, 
̄Z

}
,


ρ := ρ1, . . . , ρm, 
ν := ν1, . . . , νn−1,


v := v1, . . . , vn, 
B := B1, . . . ,Bn,


D := D1, . . . ,Dn, 
W := W1, . . . ,Wn,


̄Z := Z̄1, . . . , Z̄n .

C denotes any dependent constitutive variable and Ĉ (S) is the functional describing 8 it. That the independent
set S is assumed to be the same for all dependent constitutive variables is the expression of the rule of equi-
presence, which states that all constitutive quantities initially share the same dependences. Possible variable
reductions ought to be deduced by proof. In (57), we already used the assumption that each constituent behaves
as an isotropic material, i.e. an arbitrary rotation or a mirror reflection does not alter the material behaviour of
a constituent (cf. Hutter and Jöhnk [16]). Thus, the shape of the constitutive law, (57), shall not be affected by
these rotations or reflections.
By combining the material isotropy with the requirement that every constitutive law must be objective, it is
observed that all constitutive quantities must be isotropic functions of their dependent variables, i.e.

Q∗Ĉ = Ĉ
(
θ, θ̇ , Q(∇θ), 
ρ, Q( 
∇ρ), 
ν, Q( 
∇ν),Q(
v),
Q
BQT,Q
DQT,Q 
WQT,Q 
̄ZQT

)
, (58)

for all orthogonal time-dependent tensors Q (t), where Q∗ denotes the action
(

Q∗Ĉ
)

i1i2...in
= Qi1 j1 Qi2 j2 . . . Qin jn

(
Ĉ
)

j1 j2... jn
(59)

on the tensor valued quantity Ĉ.

4.6 Entropy principle

The union of the balance laws of mass, linear momentum, volume fraction and stress-like second order tensor
variables, and constitutive relations for

C = {
ε, η, cα, n̄α, m̄α,q,φρη,Tα, Φ̄α

}
(60)

form a set of non-linear partial differential equations for the variables
⎧
⎪⎨

⎪⎩
θ, ρ1, . . . , ρm,︸ ︷︷ ︸

compressible

ν1, . . . , νn−1,︸ ︷︷ ︸
saturation

v1, . . . , vn, Z̄1, . . . , Z̄n

⎫
⎪⎬

⎪⎭
. (61)

These equations are called field equations, and it is tacitly assumed that they are well posed in the sense that
mathematical solutions to meaningful initial and boundary conditions do exist. Any such solution is called a
thermodynamic process.

The balance law for the mixture entropy, H = πρη, was stated in Eq. (44). In terms of it, the second law
of thermodynamics demands that the imbalance

πρη = ∂ (ρη)− ∇ · (φρη − ρηv
) − σρη � 0. (62)

8 Ĉ involves the variable Z̄, for which an evolution equation is formulated. So, as an expression, Ĉ is a function, but since Z̄
is given by a functional relation involving the time derivative of Z̄, we may think of Ĉ to have functional structure.
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must be satisfied for all thermodynamic processes, i.e. all solutions of the field equations. According to Liu’s
assertion, [24], (which is based on Farkas’s variational inequality theorem [11]), this statement is equivalent
to the following extended inequality

∗πππρη := πρη −
∑

λραRα −
∑

λvα · Mα − λεE −
n−1∑

α=1

λναNα − λνnNn −
∑

λZ
α · Zα � 0 (63)

or

∗πππρη = ∂ (ρη)− ∇ · (φρη − ρηv
)

−
m∑

α=1

λρα {∂ρ̄α + ∇ · (ρ̄αvα)− ρ̄αcα}

−
∑

λvα · {∂ (ρ̄αvα)− ∇ · (T̄α − ρ̄αvα ⊗ vα
) − m̄α

}

−λε {∂ (ρε)+ ∇ · (q + ρεv)− T · (∇v)}

−
n−1∑

α=1

λνα {∂να + ∇ · (ναvα)− n̄α}

−λνn

⎧
⎨

⎩−∂
⎛

⎝
n−1∑

β=1

νβ

⎞

⎠ + ∇ · vn − ∇ ·
⎛

⎝
n−1∑

β=1

νβvn

⎞

⎠ − n̄n

⎫
⎬

⎭

−
∑

λZ
α ·

{ ´̄Zα − [
Ωα, Z̄α

] − Φ̄α

}

� 0 , (64)

in which it was assumed that the supply terms sum up to zero, implying that

σρη =
∑

λv
α · b̄α + λε r. (65)

Moreover, the various λs are Lagrange multipliers to be determined together with restrictions of constitu-
tive quantities as a result of the exploitation of (64). These steps of analysis are very long and are explicitly
demonstrated in Schneider and Hutter [35]. Below we report on the most significant findings.

5 General results

For the mathematical exploitation of inequality (64), it is convenient to introduce the one-forms

P =
K∑

I=1

PxI dxI := d (ρη)− λεd (ρε) , (66)

F =
K∑

I=1

F xI dxI := dφρη + λε (dq)−
∑(

dT̄α
)
λvα, (67)

in which xI (I = 1, . . . , K ) are the independent constitutive variables. Of help are also the following auxiliary
variables:

lρα := λρα + λvα · vα, (68)

lνα := ρα lρα + λνα, (69)

Γ := λερ−1T + (
η − λεε

)
I = Γ T, (70)

s := −lνn , (71)

s := svn + ρnΓ un, (72)
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as well as the so-called extra entropy flux vector

k := φρη + λεq −
∑

T̄αλvα. (73)

If in the inequality (64) all indicated differentiations are performed with due account of the chain rule of
differentiation in the constitutive quantities, then (64) can be expressed as the statement

X(Y) · Ẏ + π
ρ η
R ≥ 0, ∀Ẏ ∈ IRK (74)

where K is the dimension of the vector space, in which the vectors Ẏ live (see (66), (67)). X(Y) and πρ ηR (Y)
do not depend on Ẏ, so (74) is linear in Ẏ. Of necessity then

X(Y) · Ẏ = 0, ∀Ẏ, π
ρ η
R ≥ 0. (75)

Sometimes (75)1 is referred to as Liu identities and (75)2 is the residual entropy inequality.

5.1 Inferences implied by the Liu identities

Explicit statements of implications of the Liu identities could only be found by introducing a number of ad
hoc assumption. Apart from a few technical ones, which all are explicitly stated in Schneider and Hutter [35],
we request:

Postulate 1 The Lagrange multiplier of the energy balance law, λε, is a function of the empirical temperature
and its total time derivative

λε = λ̂ε(θ, θ̇ ). (76)

The function λ̂ε(·) is called the coldness function. �
In the course of computations, we were able to prove that λ̂ε(·) is a function of at most the independent
constitutive variables. The above reduced functional form is motivated by many earlier results by Müller [30]
and many others for which (76) has been a proven statement. Therefore, there is some confidence that (76) is
reasonable. If θ̇ is not an independent constitutive variable, then λ = λ̂ε(θ)may be identified with 1/T , where
T is the Kelvin temperature.

With the postulate of the existence of the coldness function, some of the Liu identities imply the following
statements:

−
(
ρεI − 1

λε
ρη

)
,θ = 1

λε
Pθ − 1

(λε)2
ρη λε,θ ,

−
(
ρεI − 1

λε
ρη

)
,θ̇ = − 1

(λε)2
ρη λε,θ̇ ,

−
(
ρεI − 1

λε
ρη

)
,∇θ = 1

λε
P∇θ ,

−
(
ρεI − 1

λε
ρη

)
,ρα = 1

λε
l̄ρ
αI , α = 1, . . . ,m, (77)

−
(
ρεI − 1

λε
ρη

)
,να = 1

λε

(
lν
αI ,+s

)
, α = 1, . . . , n − 1,

−
(
ρεI − 1

λε
ρη

)
,vα = 1

λε
ρ̄α(λ

v
α + λεuα), α = 1, . . . , n,

−
(
ρεI − 1

λε
ρη

)
,Bα = 1

λε
PBα , α = 1, . . . , n,

−
(
ρεI − 1

λε
ρη

)
,Z̄α = 1

λε
λZ
α , α = 1, . . . , n,
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with

ξ̄α = ρ̄α

ρ
, lρ

αI := lρα + 1
2λ
ε(uα · uα), (78)

εI =
∑

ξ̄αεα, lν
αI := lνα + 1

2λ
ερα(uα · uα)− k, (79)

εD = 1
2

∑
ξ̄αuα · uα, k := 1

2λ
ερn(un · un) (80)

From these relations, we observe that the Lagrange multipliers for the momenta λvα(α = 1, . . . , n), those for
the masses λρα(α = 1, . . . ,m) and volume fractions λνα(α = 1, . . . , n − 1), hidden in the definitions of l̄ρIα and
lνIα , see (68), (69), depend on the constitutive variables, because they are determined by the ‘inner’ part of a
Helmholtz free energy-like quantity, defined as

�G := ε − (λε)−1η = �G
I +�G

D ,

�G
I := εI − (λε)−1η, �G

D := εD.
(81)

Moreover, in view of (77)5, (78) and (69), λνα(α = 1, . . . , n − 1) also depend on the constraint variable, s,
due to saturation. It is also not correct to call �G the Helmholtz free energy because we have not made the
assumption λε = (θ)−1. This is the reason for us to use the superscript G as the identifier of this distinction.
On the other hand, we can regard �G

I as a potential because in (77), λε is at our disposal to ascertain that
d
(
ρεI − 1

λε
ρη

)
is the total derivative of a well defined function. In this way, we can regard λε as an integrating

denominator.
Relation (77)6 motivates

Postulate 2 The Lagrange multiplier of the linear momentum of constituent α is selected as

λvα = −λεuα, (82)

in which uα is the diffusion velocity. �
In simpler mixture formulations (82) could be proved or is suggested by the Liu identities, see Svendsen and
Hutter [36] and Kirchner [22].

Next, we introduce the following

Definition 1 1. The (true) partial thermodynamic pressures

p̄G
α := ρρα(�

G
I ),ρα , α = 1, . . . ,m, (83)

2. the configuration pressures

βG
α := ρ(�G

I ),να , α = 1, . . . , n − 1, (84)

3. the saturation pressure

ς := s

λε
(71)= − lνn

λε
(68)=
(69)

ρnun · vn − 1

λε
(ρnλ

ρ
n + λνn). (85)

4. the inner part of the constituent Gibbs free energies (chemical potentials, free enthalpies)

μG
Iα := �G

I + (ρα)
−1 pG

α . (86)

�
Incidentally, with the above definitions, it may be shown that the Gibbs free energies can be written as

ρ̄αμ
G
Iα =

⎧
⎪⎪⎨

⎪⎪⎩

ρα(ρ�
G
I ),ρα = να

{
(ρ�G

I ),να + ια + ς I
}
, α = 1, . . . ,m,

να
{
(ρ�G

I ),να + ια + ς I
}
, α = m + 1, . . . , n − 1,

να(ια + ς I ), α = n,

(87)
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where the abbreviations

ια := (λε)−1λνα (88)

and

ς I := ς − 1
2ρn(un · un) (89)

have been used. Whilst ια depends on the Lagrange multipliers λε and λνα, ς I also has a dependence on the
diffusive kinetic energy of constituent Kn . With the above formulae (77–89), the Postulates 1 and 2, and the
technical assumptions stated in Schneider and Hutter [35], a great number of inferences can be drawn, which
we state in the following propositions.

Proposition 1 (i) The internal energy ε, entropy η and Helmholtz-like free energy �G
I cannot depend on


∇ρ, 
∇ν, 
D and 
W and are thus only functions of SR =
{
θ, θ̇ , ∇θ, 
ρ, 
ν, 
v, 
B, 
̄Z

}
. Of these ther-

modynamic potentials, �G is particularly significant since Postulate 2, in conjunction with (77)6, also
rules out a dependence of �G

I on any vα: �G
I = �G

I (SR\{
v}).
If θ̇ /∈ S, then λε = λ̂ε(θ) = 1/T , where T is the Kelvin temperature.9 Moreover, ε = ε(SR R) and
η = η(SR R), whilst �G

I = �G
I (SR R\
v), with SR R = SR\{θ̇ ,∇θ}.

(ii) Since the constituent thermodynamic pressures, p̄G
α , constituent configuration pressures, βG

α and the
inner parts of the constituent Gibbs free energies, μG

Iα
are all density weighted derivatives of the inner

part of the Helmholtz-like free energy �G
I , see (83), (84), (86), they are, hence, equally functions of

SR\{
v}.
(iii) All Lagrange parameters except λνn can be expressed in terms of thermodynamic quantities. Specifically,

λρα = λε
(

uα · vα −�G
I − ρ−1

α pG
α + 1

2 uα · uα
)
,

(α = 1, . . . ,m) , (90)

λνα = (−ραlρα
)

H(m − α)− λε
(
ς + (ρα − ρn)�

G
I + βα

+ 1
2 (ραuα · uα − ρnun · un)

)

= λεια, (α = 1, . . . , n − 1) , (91)

where H is the Heaviside step function. It is seen (compare also (98) below) that all Lagrange multipliers,
except λνn , are determined as functions of the universal coldness function λ̂ε

(
θ, θ̇

)
, the Helmholtz-like

free energy �G
I , the densities ρα , and diffusion velocities uα .

(iv) The only undetermined field is a quantity proportional to −λνn , defined in (71) as s = −lνn , or in (85)
as ς = s/λε and referred to as saturation pressure, see e.g. (91). This scalar variable replaces as a new
free field the n-th volume fraction, that is lost as an independent field through the saturation condition.

(v) Inner parts of the constituent Gibbs-like free energies, have their analogue, ια := λνα/λ
ε(α ≤ n − 1),

and later will be shown to occur together only with the specific mass and volume fraction production rate
densities, respectively. Thus, they play only a role when chemical reactions or fragmentations or inter-
nal phase changes occur and non-trivial volume fraction production rates arise. Therefore, in processes
where these are absent, they are ‘dormant’ variables.

(vi) The entropy is given by the formula

η = − 1

(1/λε),θ

{
�G

I,θ + Pθ
ρλε

}
, (92)

which reduces to the classical relation when θ̇ is not among the independent constitutive variables,

η = −�G
I,θ if θ̇ /∈ S, (93)

since in this case Pθ = 0 and θ may be identified with the absolute temperature T . Else Pθ must be
determined.

9 We shall henceforth in these cases simply write θ for T .
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(vii) It is straightforward to derive from (77)2,3,7,8, definition (81) and (92) as well as the formulae

η = − 1

(1/λε),θ̇
�G

I,θ̇
, (94)

Pθ = −ρλε
{
(1/λε),θη +�G

I,θ

}
, (95)

P∇θ = −ρλε�G
I,∇θ , (96)

PBα =
{

−ρλε�G
I,Bα

− λε�G
I να

∂ρα
∂Bα

, if α = 1, . . . ,m,
−ρλε�G

I,Bα
, if α = m + 1, . . . , n,

(97)

PZ̄α = λZ
α = −ρλε�G

I,Z̄α
, α = 1, . . . , n, (98)

provided θ̇ is an independent constitutive variable.
�

The above formulae complete the exploitation of the integrability conditions (77). They are interesting because:
first, they show that non-equilibrium entropy and Pθ ,P∇θ ,PBα and λZ

α (α = 1, . . . , n) are all derivable from
the Helmholtz-like free energy, �G

I . Second, combining (92) with (94) yields an expression for Pθ , namely

Pθ = ρλε(1/λε),θ

{
�G

I,θ̇

(1/λε),θ̇
− �G

I,θ

(1/λε),θ

}
. (99)

Third, if �G
I does not depend on θ̇ , then Pθ = 0, and the entropy follows from (92). Moreover, in this case

the Liu identities imply F θ̇ = P∇θ = 0, and the Helmholtz-like free energy is independent of ∇θ .
All these results show a structure which a posteriori support expectations that one might have wished to

guess but which are nevertheless surprising. Totally new and surprising is perhaps only (99).
The above results pertain to the Liu identities primarily involving the scalar one-form P . Analogous state-

ments can also be derived with the use of the vectorial one-form F . We state results for these in

Proposition 2 (i) The extra entropy flux vector possesses the representation

k = − 1
2λ
ε
∑

α

Kα(S) uα, (100)

with

Kα = {
T̄α − tr

(
T̄α

)
I
} + (λε)−1 {Fvα − tr

(Fvα
)

I
}
. (101)

(ii) It follows from the definition (73) and the above results that the entropy flux vector is given by

φρη =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−λε {q + ∑{(
T̄α − 1

3 tr(T̄α)I
) + 1

3 tr(T̄α)I
}

uα
}
, if k = 0,

−λεq − λε
∑{ 3

2

{
T̄α − 1

3 tr(T̄α)I
}

uα

+ 1
2 (λ

ε)−1
{Fvα − tr(Fvα )I

}
uα

}
, if k �= 0.

(102)

(iii) For P∇θ an alternative expression to (96) is given by

P∇θ = −λε
,θ̇

q − 3

2
λε
,θ̇

∑(
T̄α − 1

3
tr(T̄α)I

)
uα

−1

2
λε

∑(
T̄α − tr(T̄α)I

)
,θ̇

uα

− 1
2

∑(Fvα − tr
(Fvα

)
I
)
,θ̇

uα, (103)

which reduces to P∇θ = 0 when θ̇ /∈ S.
�
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Therefore, k,φρη and P∇θ are given by combinations of the diffusion velocities with tensorial coefficients
which are constitutive quantities. Moreover, the entropy flux vector is not collinear to the heat flux vector, not
even when k = 0. Interestingly also, in all relations of Proposition 2 the one-form F enters only via Fvα and
its derivative Fvαθ̇ . All other derivatives of F are non-observable in this theory. In addition, P∇θ is also given
by (96) in Proposition 1, so that explicit knowledge of Fvαθ̇ is not necessary. This is a big advantage of this
mixture formulation.

5.2 Implications of the residual entropy inequality

Lengthy calculations, explicitly worked out by Schneider and Hutter [35], show that the residual entropy
inequality is given as

∗πππρη R = Pθ (θ̇ )−
{

k,θ −(λε),θ
{

q +
∑

T̄αuα
}}

· (∇θ)

+λε
m∑

α=1

{
να

(
�∗α

D + ρ−1
α pG

α I
)

uα − (λε)−1k,ρα

−να (ρλε)−1 skw (P∇θ ⊗ ∇θ)uα
} · (∇ρα)

+λε
n−1∑

α=1

{{
ρα�

∗α
D + ζαI − 1

2ρn(un · un)I
}

uα − c − (λε)−1k,να

−(λε)−1 skw (P∇θ ⊗ ∇θ) (ξαuα − ξnun)
} · (∇να)

+λε
n∑

α=1

{
ρ̄α

(
�∗α

D + uα ⊗ uα
) + (

ζ̄α − 1
2ναρn(un · un)

)
I

−2ρ sym
(
(�G

I ),Bα

)
Bα − (λε)−1k,vα +T̄α

}
· (Dα)

−λε
n∑

α=1

ρ(�G
I ),Z̄α ·Φ̄α

−λε
n∑

α=1

{
uα · m̄i

α + ρ̄α

(
μG
α I + 1

2 uα · uα
)

cα − ια n̄α
}

� 0, (104)

in which the following definitions have been used:

�∗α
D := ρ−1 {

TD − (λε)−1 sym (P∇θ ⊗ ∇θ)} −�G
D I + 1

2 (uα · uα)I, (105)

ζα :=
{
βG
α − ρn�

G
I + ς , α = 1, . . . , n − 1,

−ρn�
G
I + ς , α = n,

(106)

c := (
ρn�

∗n
D + ζnI

)
un, (107)

TD := −
∑

α

ρ̄αuα ⊗ uα. (108)

The most important consequences implied by the residual entropy inequality are the equilibrium representations
for the constitutive quantities and, in a second step, their non-equilibrium parameterizations.

Definition 2 A process is called a thermodynamic equilibrium, denoted by (·)|E, if

• the non-equilibrium variables, n, vanish, i.e.

n :=
{
θ̇ , ∇θ, 
v, 
D, 
W

}
= 0, (109)
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• the constitutive quantities of the frictional production rate densities, Φ̄α (α = 1, . . . , n), are zero in ther-
modynamic equilibrium,

lim
n→0

Φ̄α =: Φ̄α
∣∣
E = 0, α = 1, . . . , n, (110)

• the interaction rate densities for mass, cα , and volume fraction, nα(α = 1, . . . , n), also vanish in thermo-
dynamic equilibrium,

lim
n→0

cα =: cα|E = 0, lim
n→0

nα =: nα|E = 0, α = 1, . . . , n. (111)

�
The equilibrium requirements in this definition make the entropy production ∗πππρηR vanish, and because of
the non-negativity of it, a local minimum. So, we may say ∗πππρηR ≥ 0 in general, but ∗πππρηR = 0 for n = 0.
Thus, necessary conditions for ∗πππρηR having a minimum at n = 0 are

∗πππρη
R

,nI |E = 0 ∀ nI ∈ n , (112)

as well as
{

∗πππρη
R

,nI nJ |E} is non-negative definite nI ,nJ ∈ n . (113)

Evaluation of (112) by performing the indicated differentiations with respect to n = {vβ, θ̇ ,∇θ,Dβ} leads to
the results, collected in

Proposition 3 The following equilibrium properties can be derived from (112):

• If nI = vβ :

m̄β |E =
m∑

α=1

{(
δαβ − ξ̄β

)
να (ρα)

−1 pG
α |E I − (λε)−1|E k,ραvβ |E

}
∇ρα

+
n−1∑

α=1

{(
δαβ − ξ̄β

)
ζα|EI − c,vβ |E − (λε)−1|E k,ναvβ |E

}∇να

−
n∑

α=1

ρ
(
�G

I

)
,Z̄α

∣∣E
(
Φ̄α

)
,vβ

∣∣
E

−
n∑

α=1

{
ρ̄αμ

G
α I

∣∣E (cα),vβ
∣∣
E − ια

∣∣E(n̄α),vβ
∣∣
E

}
. (114)

• If nI = θ̇ :

Pθ |E = λε|E
n∑

α=1

ρ
(
�G

I

)
,Z̄α |E · (Φ̄α),θ̇ |E

+λε|E
n∑

α=1

{
ρ̄αμ

G
Iα|E (cα),θ̇ |E − ια|E(n̄α),θ̇ |E

}
. (115)

• If nI = ∇θ :

(λε),θ |E q|E = λε|E
n∑

α=1

ρ
(
�G

I

)
,Z̄α |E · (Φ̄α),∇θ |E

+λε|E
n∑

α=1

{
ρ̄α μ

G
Iα|E (cα),∇θ |E − ια|E(n̄α),∇θ |E

}
. (116)
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• If nI = Dβ :

T̄β |E = −ζ̄β |EI + 2ρ sym
(
(�G

I ),Bβ

)
|EBβ + (λε)−1|Ek,vβ |E

+
∑

ρ
(
�G

I

)
,Z̄α |E(Φ̄α),Dβ |E

+
∑{

ρ̄α μ
G
α I|E (cα),Dβ |E − ια|E(n̄α),Dβ |E

}
(117)

�
Let us discuss the results stated in this proposition in due order.

(1) First, we observe that the frictional constitutive quantities Φ̄α(α = 1, . . . , n) influence the equi-
librium quantities m̄β |E,Pθ |E,q|E and T̄β |E directly via the terms involving

(
Φ̄α

)
,nI

|E. Similarly,

m̄β |E,Pθ |E,q|E and T̄β |E may also be influenced by the mass and volume fraction production rate densi-
ties, if the respective derivatives (cα),nI and (n̄α),nI have non-zero values. We shall discuss these properties
in greater detail below. Beyond these dependences the equilibrium interaction forces exhibit also addi-
tional dependences on ∇ρα(α = 1, . . . ,m) and ∇νβ(β = 1, . . . , n − 1) with also possible dependences
on the thermodynamic, configuration and saturation pressures via pG

α (α = 1, . . . ,m), ζγ (γ = 1, . . . , n)
and the extra entropy flux vector k; the dependence on the latter arises provided k,ρα vα and k,να vα are
different from zero. If all constituents are density preserving and no volume fraction interaction rate
densities are present, consideration of ∇να(α = 1, . . . , n − 1) is essential for the description of m̄β |E.
However, if we would disregard all ∇να’s in the constitutive relations, m̄β |E would still not be zero in that
case, because the variable ζα contains the saturation pressure and the inner free energy �G

I , see (106).
(2) Relation (115) is a revealing by-product of the thermodynamic analysis, since the general formula (92)

in Proposition 1 for the entropy implies in thermostatic equilibrium

η|E = −1

(1/λε),θ |E
{
(�G

I,θ )|E + Pθ |E
ρλε|E

}

= −1

(1/λε),θ |E

{
(�G

I,θ )|E +
n∑

α=1

(
�G

I

)
,Z̄α |E · (Φ̄α),θ̇ |E

+
n∑

α=1

1

ρ

{
ρ̄αμ

G
α I|E (cα),θ̇ |E − ια|E(n̄α),θ̇ |E

}}
. (118)

Moreover, we remark that when θ̇ /∈ S, one has Pθ = 0, λε = λε(θ) = 1/θ , so that (118) implies the
classical relation η = −�G

I,θ . Alternatively, for θ̇ ∈ S the right-hand side of (118) is known when the

thermodynamic quantities �G
I , Φ̄α, μ

G
Iα

and ια are prescribed.
(3) We observe in (116) that the equilibrium heat flux may not vanish if the production rate density deriva-

tives
(
Φ̄α

)
,∇θ |E, (cα),∇θ |E and (n̄α),∇θ |E differ from zero. If these contributions do not vanish, then q|E

should be interpreted not as a heat flux but as a conductive flux of mechanical energy. Such an equilibrium
energy flux is, however, unlikely. So, to have q|E = 0, it suffices to request that Φ̄α, cα and n̄α do not
depend on ∇θ .

(4) As for the partial equilibrium stress tensor, equation (117) shows in its first line that beyond the generalized
pressure ζ̄β |E and the contribution k,vβ |E, an elastic contribution arises, which depends on the constituent
left Cauchy Green deformation tensor Bβ . For mature debris flows it is known that elastic effects are far
from being dominant, but elastic contributions are nevertheless often used to describe shear stresses in
thermodynamic equilibrium (‘heap problem’). However, these equilibrium shear stresses are less due to
elastic and more to frictional effects which are thought to be describable by means of a plasticity theory,
e.g. hypoplasticity. The fourth term of constitutive relation (117) is exclusively due to frictional effects
and has already been introduced by Svendsen et al. [37].

(5) It is worth emphasizing that the results stated in Proposition 3 are mathematical consequences of the sec-
ond law of thermodynamics. This fact should be kept in mind, in particular, for the equilibrium expressions
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(114) for m̄β |E and (117) for T̄β |E, which have purely mechanical significance. There is no freedom of
their choice.10

It is at this point worthwhile to pause and to summarize what has been attained. We have expressed the
equilibrium interaction forces (114), the equilibrium entropy (118), the equilibrium energy flux (116) and
the equilibrium partial stress tensors (117) in terms of clearly identifiable contributions, all of which were
obtained from the exploitation of the entropy principle, in particular the so-called Liu identities and the infer-
ences deduced from them. A first set of these is generally of direct thermodynamic origin and involves a
thermodynamic potential, derivatives of it with respect to the true constituent densities and the volume fraction
densities, the saturation pressure as well as certain derivatives of the extra entropy flux vector. In the expression
for the interaction forces (114) these terms also depend explicitly on ∇ρα and ∇να (first two lines in (114)).
In the expression for the entropy (118) they only involve �G

I,θ |E, in the heat flux (116) they are not present at
all, and in the expression for the equilibrium constituent stress tensors (117) they comprise the pressure like
quantity ζ̄α , the elastic contributions and the extra entropy flux, stated in the first line of (117). The remaining
contributions to the above mentioned equilibrium quantities are equally of thermodynamic origin, but they
only exist if the production rate densities of the frictional tensorial variable, Φ̄α and the constituent mass, cα
and volume fractions, nα do not vanish. They all appear as sums of products of derivatives of Φ̄α, cα and nα
with prefactors which are the same in the expressions of m̄i

β |E, η|E,q|E and T̄α|E. The prefactors are

ρ
(
�G

I

)
,Z̄α |E for the friction term¯Φα

ρ̄αμ
G
α I|E for the mass production cα

ια|E for the volume fraction production nα.
(119)

They are known once and for all when the inner Helmholtz-like free energy is known as a function of its
variables, and the constituent free energies, see (87), and the parameters ια , see (91), are known. The above
factors, in turn, are multiplied

for m̄i
β |E with

(
Φ̄α

)
,vβ |E (cα),vβ |E , (n̄α),vβ |E

for η|E with
(
Φ̄α

)
,θ̇ |E (cα),θ̇ |E , (n̄α),θ̇ |E

for q|E with
(
Φ̄α

)
,∇θ |E (cα),∇θ |E , (n̄α),∇θ |E

for T̄α|E with
(
Φ̄α

)
,Dβ |E (cα),Dβ |E , (n̄α),Dβ |E

(120)

and subsequently summed to reveal the corresponding representations arising in (114), (118), (116) and (117).
The two lists (119) and (120) disclose the thermodynamic structure of the various contributions to the equi-
librium quantities m̄i

β |E, η|E,q|E and T̄α|E particularly clear. The constituent equilibrium interaction forces

receive contributions exclusively via derivatives of Φ̄α, cα and nα with respect to the constituent velocities.
Analogously, the equilibrium entropy is directly affected only by corresponding derivatives with respect to θ̇ ,
the equilibrium heat flux vector by corresponding derivatives with respect to ∇θ and the equilibrium constit-
uent stresses by those with respect to Dβ . This demonstrates, on the one hand, that contributions to m̄i

β |E and

div
(
T̄α|E

)
are not likely interchangeable. On the other hand, the list (120) can serve as a help when explicitly

parameterising constitutive relations for Φα, cα and nα . For instance, we may have reason to assume that
thermal effects are insignificant. Then, it may be justified to postulate that

(
Φ̄α, cα, nα

)
,θ̇ = 0,

(
Φ̄α, cα, nα

)
,∇θ = 0. (121)

This would yield

η|E = −�G
I,θ and q|E = 0, (122)

agreeing with the classical relations. Moreover, we may assume Φ̄α,vβ = 0; in this case the contribution
of the frictional variable to the interaction force would vanish, whilst that to the constituent stresses would
still be present via

(
Φ̄α

)
,Dβ |E. We shall see that these terms, when properly parameterised, will give rise to

the thermodynamic justification of hypo-plasticity. In any case, keeping the full generality of the constitutive
dependences of Φ̄α, cα and nα brought, via (119) and (120), light into a deeper understanding of the structure
of the formulae of the constitutive quantities as imposed by the entropy principle. It is now much easier to
understand the role played by ad-hoc simplifications of certain constitutive relations for Φ̄α, cα and nα than it
would have been if such simplifications had been introduced at the outset.

10 We emphasize that this is a consequence of the second law of thermodynamics. Purely mechanical reasoning, that is some-
times used to ‘derive’ expressions for the interaction force, must be regarded as a priori estimates. They must be complemented
by an additional term whose structure follows from the second law of thermodynamics.
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5.3 Non-equilibrium representations for 
c, 
n and k

Let SY = Sn ⊕
(
S 
∇ρ ∪ S 
∇ν

)
be the space of the elements

Y :=
{
θ̇ ,∇θ, 
∇ρ, 
∇ν, 
v, 
D, 
W

}
. (123)

It consists of the non-equilibrium elements n and 
∇ρ and 
∇ν. The state Y = 0 is a subspace of the space
describing mixture thermodynamic equilibrium, because 
∇ρ and 
∇ν are also set to zero.

In this section, we collect some results obtained when performing an isotropic expansion of the non-
equilibrium quantities 
c, 
n and k in terms of the elements Y . Such expansions are more restrictive than an
expansion about a mixture thermodynamic equilibrium, due to the additional requirement that Y = 0 implies
also ∇ρα(α = 1, . . . ,m) and ∇νβ(β = 1, . . . , n − 1).

A linear representation of the scalars cα and nα in terms of Y would only involve θ̇ and tr(Dβ), which is
too simple and likely unrealistic. Therefore, at least a quadratic expansion is necessary. A minimal form of an
‘isotropic’ expansion of cα thus reads as follows

cα = cθ̇α(θ̇ )+
⎧
⎨

⎩

m∑

β=1

cθραβ(∇ρβ)+
n−1∑

β=1

cθναβ(∇νβ)
⎫
⎬

⎭ · (∇θ)

+
n∑

β=1

⎧
⎨

⎩

m∑

γ=1

cvρ
αβγ (∇ργ )+

n−1∑

γ=1

cvν
αβγ (∇νγ )

⎫
⎬

⎭ · (vβ)

+
n∑

β=1

{
cD
αβI + CD

αβ

}
· (Dβ

)

+
n∑

β=1

{
CW
αβ

}
· (Wβ

)

+cN
α , (124)

where the term cN
α accounts for the remaining non-linear contributions and depends on all constitutive variables.

It must vanish in thermodynamic equilibrium, i.e.

cN
α |E = 0, (125)

to be in accordance with (111)1. The tensors CD
αβ and CW

αβ are defined as

CD
αβ :=

m∑

δ=1

⎧
⎨

⎩

m∑

γ=1

cDρ
αβγ δ sym

(∇ρδ ⊗ ∇ργ
) +

n−1∑

γ=1

cDνρ
αβγ δ sym

(∇ρδ ⊗ ∇νγ
)
⎫
⎬

⎭

+
n−1∑

δ=1

⎧
⎨

⎩

n−1∑

γ=1

cDν
αβγ δ sym

(∇νδ ⊗ ∇νγ
)
⎫
⎬

⎭ , (126)

and

CW
αβ :=

m∑

δ=1

⎧
⎨

⎩

m∑

γ=1

cWρ
αβγ δ skw

(∇ρδ ⊗ ∇ργ
) +

n−1∑

γ=1

cWνρ
αβγ δ skw

(∇ρδ ⊗ ∇νγ
)
⎫
⎬

⎭

+
n−1∑

δ=1

⎧
⎨

⎩

n−1∑

γ=1

cWν
αβγ δ skw

(∇νδ ⊗ ∇νγ
)
⎫
⎬

⎭ . (127)
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Analogous representations also hold for nα:

nα = nθ̇α(θ̇ )+
⎧
⎨

⎩

m∑

β=1

nθραβ(∇ρβ)+
n−1∑

β=1

nθναβ(∇νβ)
⎫
⎬

⎭ · (∇θ)

+
n∑

β=1

⎧
⎨

⎩

m∑

γ=1

nvρ
αβγ (∇ργ )+

n−1∑

γ=1

nvν
αβγ (∇νγ )

⎫
⎬

⎭ · (vβ)

+
n∑

β=1

{
nD
αβI + ND

αβ

}
· (Dβ

)

+
n∑

β=1

{
NW
αβ

}
· (Wβ

)

+nN
α , (128)

where the term nN
α accounts for the remaining non-linear contributions and depends on all constitutive variables.

It must vanish in thermodynamic equilibrium, i.e.

nN
α |E = 0, (129)

to be in accordance with (111)2. The tensors ND
αβ and NW

αβ are defined as

ND
αβ :=

m∑

δ=1

⎧
⎨

⎩

m∑

γ=1

nDρ
αβγ δ sym

(∇ρδ ⊗ ∇ργ
) +

n−1∑

γ=1

nDνρ
αβγ δ sym

(∇ρδ ⊗ ∇νγ
)
⎫
⎬

⎭

+
n−1∑

δ=1

⎧
⎨

⎩

n−1∑

γ=1

nDν
αβγ δ sym

(∇νδ ⊗ ∇νγ
)
⎫
⎬

⎭ , (130)

and

NW
αβ :=

m∑

δ=1

⎧
⎨

⎩

m∑

γ=1

nWρ
αβγ δ skw

(∇ρδ ⊗ ∇ργ
) +

n−1∑

γ=1

nWνρ
αβγ δ skw

(∇ρδ ⊗ ∇νγ
)
⎫
⎬

⎭

+
n−1∑

δ=1

⎧
⎨

⎩

n−1∑

γ=1

nWν
αβγ δ skw

(∇νδ ⊗ ∇νγ
)
⎫
⎬

⎭ . (131)

The coefficients arising in (124)–(127) and (128)–(131) can, in general, be expressed as isotropic tensor
functions of the variables

{θ, 
ρ, 
ν, 
B, 
̄Z}, (132)

but are in practical cases best assumed to be constants. They must obey a number of constraints, which are
explicitly derived and stated by Schneider and Hutter [35].

Extra entropy flux k If we apply the same expansion to the extra entropy flux, k, we know from (100) that k
is given by a vector combination of uα (or, equivalently of vα) so that

k =
∑

(kvα)vα + kN, (133)

where the coefficients kvα are defined as

kvαI := k,vα |Y=0 = k̂vα
(
θ, 
ρ, 
ν, 
B, 
̄Z

)
I, α = 1, . . . , n (134)
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and kN, again, subsumes all other contributions of the constitutive variables and, due to the principle of
objectivity k satisfies the sum relations (see Schneider and Hutter [35])

∑
k,vβ = 0 ⇒

∑
kvβ = 0,

∑
(kN),vβ = 0. (135)

These restrict the independences of the parameters kvβ, (k
N),vβ .

5.4 Final representations for m̄i
α|E,q|E, T̄α|E and η|E

The purpose of the above ‘isotropic’ expansion is to simplify the derivatives of 
c, 
n and k arising in the consti-
tutive relations for the equilibrium quantities m̄i

α|E,q|E, T̄α|E and η|E. The expressions for the derivatives are
then substituted in (114), (116), (117) and (118). The results for the case when θ̇ is an independent constitutive
variable are presented in Schneider and Hutter [35]. Here, we limit attention to the case that θ̇ /∈ S. For this
case, we have shown that Pθ = 0,P∇θ = 0 and (�G

I ),∇θ = 0. The emerging formulae are collected in

Proposition 4 If λε = λ̂ε(θ), entropy, equilibrium energy flux, partial equilibrium stresses and interaction
forces are given by

η = −(�G
I ),θ , (136)

λ,εθ |Eq|E = −θ−1
m∑

β=1

{
n∑

α=1

ρ̄αμ
G
Iα|Ecθραβ −

n∑

α=1

ιαnθραβ

}
(∇ρβ)

−θ−1
n−1∑

β=1

{
n∑

α=1

ρ̄αμ
G
Iα|Ecθναβ −

n∑

α=1

ιαnθναβ

}
(∇νβ)

−θ−1
n∑

α=1

ρ
(
�G

I

)
,Z̄α |E

(
Φ̄α

)
,∇θ |E

+qN|E, (137)

T̄β |E = −�̄βI + 2ρ sym
(
�G

I,Bβ

)
|EBβ |E +

∑
ρ
(
�G

I,Z̄α

)
|E(Φ̄α),Dβ |E

+
n∑

α=1

ρ̄α μ
G
α I|E CD

αβ −
n∑

α=1

ῑα|E ND
αβ + T̄N

β |E, (138)

m̄i
β |E =

m∑

α=1

⎧
⎨

⎩ρ
−1
α p̄α|E

(
δαβ − ξ̄β

)
I − θ(kvβ),ρα I

−
n∑

γ=1

ρ̄γ μ
G
Iγ |E cvρ

γβα +
n∑

γ=1

ῑγ |Envρ
γβα

⎫
⎬

⎭ (∇ρα)

+
n−1∑

α=1

⎧
⎨

⎩ζα|E(δαβ − ξ̄β)I − c,vβ |E − θ(kvβ),να I

−
n∑

γ=1

ρ̄γ μ
G
Iγ |E cvν

γβα +
n∑

γ=1

ῑγ |Envν
γβα

⎫
⎬

⎭ (∇να)

+
n∑

α=1

ρ
(
�G

I

)
,Z̄α |E

(
Φ̄α

)
,vβ |E

+ m̄N
β |E, (139)
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with

�̄β := ζ̄β |E − θkvβ −
∑

α=1

ρ̄α μ
G
α I|E cD

αβ +
n∑

α=1

ῑα|E nD
αβ. (140)

�
A complete exploitation of the equilibrium conditions also requires the satisfaction of the minimum require-
ment (113). The exploitation of these is better done with specialized constitutive relations, see Part II of this
article.

6 Discussion

It is worthwhile to discuss in some detail the results that have been reached up to now. We start with the
properties of the constituent stresses and interaction forces in thermodynamic equilibrium. The main results
are collected in the formulae of Proposition 4.

The equilibrium stress tensor (138) comprises six terms, a pressure, an elastic and a frictional contribution
in the first line of (138), and two terms that trace back to non-vanishing interaction rate densities of mass and
volume fractions as well as terms that are due to higher order non-linearities, the latter three in the second line
of (138). We know of no formulation where this last term would have a non-zero value. The first term in the
first line may be interpreted as ‘pressure’, but as shown by (140), it is itself composed of a number of terms of
different origin,

• ζ̄β |E which may be called ‘true constituent pressure’,

• θkvβ of purely thermodynamic nature. Its origin is the extra entropy flux k in (73) or (100), of which the
isotropic representation is given in (133), (134). Nothing is known about this term and no obvious argu-
ments can presently be given that θkvβ should be different from zero. So, we shall later set kvβ = 0 for all
β, see Part II.

• The remaining members of (140) may only differ from zero, when mass and volume fraction interaction
rate densities are different from zero.

Looking at the ‘true constituent pressure’ ζ̄β |E, it follows from its definition, see (106), that

ζα :=
{
βG
α − ρn�

G
I + ς , α = 1, . . . , n − 1,

−ρn�
G
I + ς , α = n,

(141)

which, for the first n − 1 components, is given by the configuration pressure and for all constituents by the
inner free energy and the saturation pressure. It is evident from the definition above that ζ̄α has the form

ζ̄α = ναζn + ναβ
G
α , (α = 1, . . . , n − 1), ζn = −ρn�

G
I + ς . (142)

Only the first term on the right-hand side has the structure ‘volume fraction times an internal pressure’ where
this internal pressure is the saturation pressure plus a contribution due to the inner free energy. This part is
reminiscent of what is known as ‘pressure equilibrium’, which, in Part II, will be discussed in connection with
the assumption of pressure equilibrium that applies to all pressure terms not just to some parts of the constituent
pressure. The last two members of the pressure term (140) are the contributions due to the inter-constituent
mass and volume fraction interaction rate densities; they obviously resemble the structure of interaction terms.
Only if these productions are not present and the inner free energy does not depend on the constituent volume
fractions, and when kvβ = 0, the equilibrium pressure is given by

ζ̄α|E = ναζn (α = 1, . . . , n). (143)

Let us look next at the remaining contributions to the constituent equilibrium stress tensors (138). They
consist in the first line of elastic and frictional contributions and both will further be analysed in Part II. Here,
it may suffice to mention that the fluid and solid constituents need separate attention. Moreover, compressible
and density preserving constituents need to be treated separately. We shall not go into any depth discussing the
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contributions on the second line of (138) due to constituent mass and volume fraction interaction rate densities
except that the equilibrium stress of one constituent is affected by contributions from all other constituents
with non-vanishing mass and volume fraction interaction rate densities. The coefficients are given by the inner
parts of the constituent free enthalpies (chemical potentials, Gibbs free energies) defined in (87)–(89). Notice
also that the coefficient ια defined in (88) and given by the Lagrange multipliers λε and λνα only arises in
connection with the constituent volume fraction production rate densities.

Consider next the constituent interaction forces. Their equilibrium values are given in (139). Apart from
the very last non-linear term they consist of contributions that are proportional to the density gradients and
similar ones that are proportional to the volume fraction gradients. Contributions of the former are only present
for compressible constituents. The coefficients of the density gradient ∇ρα represent (i) a contribution due to
the thermodynamic pressure (83), (ii) due to the extra entropy flux (133), (later to be set to zero), (iii) due to the
constituent free enthalpies (87) and (iv) the Lagrange multipliers in λνα , defined in (91). Alternatively, the coef-
ficients of the volume fraction densities ∇να are (i) due to the true pressure (106), (ii) due to the extra entropy
flux (133), (134) (later to be set to zero), (iii) due to the free enthalpies (87), and (iv), due to the Lagrange
multipliers in (91). These terms are very similar to one another, and they also have their correspondences in
the equilibrium stresses.

We note that, modulo our assumptions, the formulae revealing the equilibrium properties of the constituent
Cauchy stress tensors and the constituent interaction forces are rational deductions from the Second Law of
Thermodynamics. In fact, there is no flexibility in their choice. Thermodynamic arguments have resulted in
their precise definition. We may now also give a partial answer to the question whether the formulae provide
room for a different splitting of the divergence of the constituent stress tensor and the interaction force. In
principle, the formulae (138) to (139) show how terms arising in the constituent stress tensors and interaction
forces can be moved from one to the other. They must appear in the interaction forces as the divergence of
a second order tensor or the gradient of a scalar. Or products of scalars with gradients can be complemented
to such terms. For instance a∇b is replaced by ∇(ab) − b∇a. Of course, there is a multitude of such pos-
sibilities by way of the gradient operator of any pressure term or the divergence of any stress contribution.
Such transformations may, however, destroy the property that the newly defined interaction force, summed
over all constituents, must vanish. Moreover, the thermodynamic structure explained in connection with the
properties (120) may be destroyed in this way. In addition, such transformations are always connected with
differentiations which destroy the global structure and therefore possibly weak formulation of the balance
laws. It is for these reasons that we do not recommend them unless, of course, one wishes to search for the
equivalence or non-equivalence of seemingly different formulations.

In Part II of this article, we shall apply this theory to a density preserving binary mixture, in which (i)
θ̇ is not an independent constitutive variable, (ii) the mass and volume fraction production rate densities are
ignored, (iii) the frictional production rate density, Φsolid, is postulated such that a hypo-plastic frictional
stress contribution is generated, (iv) nonlinear viscous stress contributions are suggested to arrive at a model,
which is capable to describe shear band formation under quasi-static processes and develop into slope insta-
bilities and further to catastrophic rapid shearing in avalanching flows and eventually into a set-down in the
deposition zone. We shall also scrutinize the assumption of ‘pressure equilibrium’, lay open its restriction and
replace it by a thermodynamically motivated alternative assumption, which removes these restrictions.
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