
GENERAL I ARTICLE

Efficient Coding of Information: Huffman Coding

Deepak Sridhara

In his classic paper of 1948, C laude S h a n n o n con-
s idered the p r o b l e m of ef f ic ient ly descr ib ing a
source that o u t p u t s a s e q u e n c e of symbol s , each
assoc ia ted w i t h a probabi l i ty of occurrence , and
provided t h e t h e o r e t i c a l l imits of achievable per-
formance . In 1951, D a v i d H u f f m a n presented a
t e c h n i q u e that a t ta ins this per formance . This ar-
t ic le is a br ie f overv i ew of s o m e of their results .

1. I n t r o d u c t i o n

Shannon's landmark paper 'A Mathematical Theory of
Communication' [1] laid the foundation for communica-
tion and information theory as they are perceived to-
day. In [1], Shannon considers two particular problems:
one of efficiently describing a source that outputs a se-
quence of symbols each occurring with some probabil-
ity of occurrence, and the other of adding redundancy
to a stream of equally-likely symbols so as to recover
the original stream in the event of errors. The for-
mer is known as the source-coding or data-compression
problem and the latter is known as the channel-coding
or error-control-coding problem. Shannon provided the
theoretical limits of coding achievable in both situations,
and in fact, he was also the first to quantify what is
meant by the "information" content of a source as de-
scribed here.

Deepak Sr/dhara worked

as a research associate in

the Deparment of

Mathematics at l lSc

between January and

December 2004. Since

January 2005, he has been
a post-doctoral research

associate in the Institute

for Mathematics at
Unviersity of Zurich. His

research interests include

coding theory, codes over

graphs and iterative

techniques, and informa-

tion theory.

This article presents a brief overview of the source-coding
problem and two well-known algorithms that were dis-
covered subsequently after [1] that come close to solv-
ing this problem. Of particular note is Huffman's algo-
rithm that turns out to be an optimal method to rep-
resent a source under certain conditions. To state the
problem formally: Suppose a source U outputs symbols

Keywords
Entropy, source coding, Huff-
man coding.

RESONANCE J February 2006

GENERAL J ARTICLE

1 By a D-ary sir ing w e m e a n a

sequence (YvY2 Yn) where
each yj belongs to the set
{0,1,2,...,D-1}.

Intuitively, the optimal

number of bits needed

to represent a source
symbol uj with

probability of
occurrence p; is

around log 2 llpi bits.

problem formally: Suppose a source U outputs symbols
Ul, u 2 , . . . , uK, belonging to some discrete a lphabet /~ ,
with probabilities p(ul) ,P(U2), . . . ,p(ug), respectively.
The source-coding problem is one of finding a mapping
from /4 to a sequence of D-ary strings 1, called code-
words, such tha t this mapping is invertible. For the
coding to be efficient, the aim is to find an invertible
mapping (or, a code) that has the smallest possible av-
erage codeword-length (or, code-length). By the way
this problem is stated, a source U can also be t reated
as a discrete random variable U tha t takes values from
/4 -- {ul, u 2 , . . . , uN} and that has a probability distri-
bution given by p(V), where p(U = ui) = p(ui), for
i = 1 , 2 , . . . , K .

As an example, suppose a random variable U takes on
four possible values ul, u2, u3, u4 with probability of oc-
currences R(Ul)= 1, p(u2)-- �88 P(U3)= 1, p(u4)-~ 1.
A naive solution for representing the symbols u l , . . . , u4
in terms of binary digits is to represent each symbol
using two bits: ul = 00, u2 = 01, u3 -- 10, u4 = 11.
The average code-length in this representation is two
bits. However, this representat ion turns out to be a
sub-optimal one. An efficient representation uses fewer
bits to represent symbols occurring with a higher prob-
ability and more bits to represent symbols occurring
with a lower probability. An optimal representation
for this example is ul = 0, u2 = 10, u3 = l l0 , ua =
111. The average code-length in this representation is
1- 7 + 2 . ~ + 3 . ~ + 3 . g l 1 1 = 1.75 bits. Intuitively, the optimal
number of bits needed to represent a source symbol ui
with probability of occurrence Pi is around log 2 ~ bits.
Further, since ui occurs with probabili ty pi, the effec-

i Shan- tive code-length of ui in such a code is Pi log2 p'7"
non's idea was to quantify the ' information' content of
a source or random variable U in precisely these terms.
Shannon defined the entropy of a source U to measure
its information content, or equivalently, the entropy of

52 RESONANCE J February 2006

GENERAL J ARTICLE

a random variable U to measure its 'uncertainty', as
H(U) = ~iPi log2 ~ The coding techniques discussed

Pi"
in this article are evaluated using this measure of 'infor-
mation' content.

This article is organized as follows. Section 2 introduces
some definitions and notation that will be used in this
paper. Section 3 provides the notion of typical sequences
that occur when a sequence of independent and identi-
cally distributed random variables are considered. This
section also states the properties of typical sequences
which are used to prove the achievability part of Shan-
non's source-coding theorem, in Section 4. Section 5
introduces the notion of D-ary trees to illustrate the en-
coding of a source into sequences of D-ary alphabets.
Another version of the source-coding theorem for the
special case of prefix-free codes is presented here. A
coding technique, credited to Shannon and Fano, which
is a natural outcome of the proof of the source-coding
theorem stated in Section 5, is also presented. Sec-
tion 6 presents Huffman's optimal coding algorithm that
achieves a lower average code-length than the Shannon-
Fano algorithm. The paper is concluded in Section 7.

2. P r e l i m i n a r i e s

Shannon defined the

entropy of a source U

to measure its

information content,

or equivalently, the

entropy of a random

variable U to measure

its 'uncertainty', as

H(U)=Z,p, log 2 llpr

Some basic definitions and notation that will be used in
this article are introduced here.

Let X be a discrete random variable taking values in a
finite alphabet A'. For each x E A' let p(x) denote the
probability that the random variable X takes the value
x written as Pr(X = x).

Definition 2.1. The expectation of a function f (X) de-
fined over the random variable X is defined by

E[f(X)] = ~ f(x)p(x)
xE)~

Definition 2.2. The entropy H(X) of a discrete random

RESONANCE t February 2006 53

GENERAL [ARTICLE

The entropy H(X) of a
discrete random

variable X is defined
by H(X) =

- Z p(x) log p(x).
XE,,~"

variable X is defined by

H (X) = - ~ p (x) logp(x).
xEA'

To avoid ambiguity, the term p(x) logp(x) is defined to
be 0 when p(x) = 0. By the previous definition, H(X) =
-E[logp(X)]. For most of the discussion, we will use
logarithms to the base 2, and therefore, the entropy is
measured in bits. (However, when we use logarithms to
the base D for some D > 2, the corresponding entropy
of X is denoted as HD(X) and is measured in terms of
D-ary symbols.) Note that in the above expression, the
summation is over all possible values x assumed by the
random variable X, and p(x) denotes the corresponding
probability of X = x.

We will use uppercase letters to indicate random vari-
ables, lowercase letters to indicate the actual values as-
sumed by the random variables, and script-letters (e.g.,
X) to indicate alphabet sets. The probability distribu-
tion of a random variable X will be denoted by p(X) or
simply p.

Extending the above definition to two or more random
variables, we have

Definition 2.3. The joint entropy of a vector of random
variables (X1, X2 , . . . , Xn) is defined by

H (X 1 , X 2 , . . . , X n) =

- - ~, P (X l , ' ' ' , X n) l O g p (X l , X n . . . , X n)

(zl,x2 =,-,)e,Vl xX2x...xX,-,

w h e r e p (x l , x 2 , . . . X n) = P r (X 1 = X l , X 2 : x 2 , . . . X n __~

Xn).

Definition 2.4. (a) A collection of random variables
{X1, X2, . . . X,~} with Xi taking values from an alphabet
A" is called independent if for any choice {Xl, x2, . . , xn}

RESONANCE I February 2006

GENERAL I ARTICLE

with X i = xi, i = 1, 2 , . . . n, the probability of the joint
event {X 1 = X l , . . . , X,~ = xn} equals the product

n

1-Ii=l P r (Z i = xi).

(b) A collection of random variables {X1, X2 , . . . Xn} is
said to be identically distr ibuted if 2(i = 2(: that is, all
the alphabets are the same, and the probability P r (Xi =
x) is the same for all i.

(c) A collection of random variables {X1, X2 , . . . X ,} is
said to be independent and identically distr ibuted (i.i.d.)
if it is both independent and identically distributed.

An important consequence of independence is that if
{X1, X2,. �9 �9 Xn} are independent random variables, each
taking on only finitely many values, then for any func-
tion f/(.), i = 1 , 2 , . . . n ,

n n

E[H f i (X i)] = H E[f i (X i)] .
i=1 i = l

Thus if {X1, X2,. �9 �9 Xn} are independent and take values
over finite alphabets, then the entropy

H (X] , X 2 , . . . X n) =- - E [l o g p (X 1 , X 2 , . . . X,~)] =

n n

E[logp(X,)] = ~ H(X,).
i=1 i = l

If, in addition, they are identically distributed, then

A collection of

random variables

{X,, X 2 X~} is said

to be identically

distributed if ~=.r

that is, all the

alphabets are the

same, and the

probability Pr(Xj=x) is

the same for all i.

H(XI ,X2 , . . .Xn) ---- nH(Xi) = nH(Xl) .

Note that if X1,. �9 �9 Xn are a sequence of i.i.d, random
variables as above, then their joint entropy is H (X a , X2,
. . . , X n) = n H (X) .

Def in i t ion 2.5. A sequence {]In} of random variables is
said to converge to a random variable Y in probability if
for each e > 0

Pr(IYn - YI > ~) , O, as n , ~ ,

RESONANCE J February 2006

GENERAL I ARTICLE

The assertion that
X . ~ E[X1] with
probability one is

called the strong law
of large numbers and

the assertion that
X,-~ E[X1] in

probability is called
the weak law of large

numbers.

56

and with probability one if

Pr(lim Yn = Y) = 1.
n - - - * OQ

It can be shown that if Yn converges to Y with probabil-
ity one, then Yn converges to Y in probability, but the
converse is not true in general.

The law of large numbers (LLN) of probability theory
n says that the sample mean Xn -- 1/n ~-],i=1 Xi of n

i.i.d, random variables {X1,X2, . . .Xn} gets close to
m = E[Xi] as n gets very large. More precisely, it says
that){n converges to E[Xa] with probability 1 and hence
in probability. Here we are considering only the case
when the random variables take on finitely many values.
The LLN is valid for random variables taking infinitely
many values under some appropriate hypothesis (see R L
Karandikar [4]). The assertion that){n) E[X1] with
probability one is called the strong law of large numbers
and the assertion that){,~) E[X1] in probability is
called the weak law of large numbers. See Karandikar [4]
and Feller [5] for extensive discussions (including proofs)
on both the weak law and the strong law of large num-
bers.

3. T yp i ca l S e t s a n d t h e A s y m p t o t i c E q u i p a r t i -
t ion T h e o r e m

As a consequence of the law of large numbers, we have
the following result:

Theorem 3.1. If Xa, X2, . . . are independent and identi-
cally distributed (i.i.d.) random variables with a prob-
ability distribution p(.), then

1
- - - logp(X1,X2, . . . ,Xn) ~ H(X)

n

with probability 1.

Proof. Since X 1 , . . . , X ~ are i.i.d, random variables,

RESONANCE I February 2006

GENERAL J ARTICLE

p(Xl , . . . ,X?%) = Hip(X,). Hence,

l logp(X1,X2, ... ,X?%) 1 Z l o g p (X i)
n n

i

converges to -E[logp(X)] - H(X) with probabili ty 1
as n , oo, by the s t rong law of large numbers. �9

1 This theorem says tha t the quant i ty ~ log p(x;:x2...,x,) is

close to the entropy H(X) when n is large. Therefore, it
makes sense to divide the set of sequences (Xl, x2, �9 �9 �9 x?%)
�9 9='?% into two sets: the typical set wherein each se-
quence (xl, x2, . . �9 xn) is such tha t 1 log 1 is close

to the entropy H (X) and the non-typical set containing
1 log 1 bounded away from the sequences with ~ p(~l ~,)

entropy H(X). As n increases, the probabili ty of se-
quences in the typical set becomes high.

Definition 3.1. For each e > 0, let A~ 7%) be the set of
sequences (xl, x 2 , . . . , x?%) �9 9:'?% with the following prop-
erty:

2 -n(H(X)+e) ~_ p (x l , x 2 , . . . , x?%) ~ 2 -?%(H(x)-e).

Call A~ 7%) a typical set.

Theorem 3.2. Fix e > 0. For A~ 7%)
following hold:

as defined above the

. If (Xl,X2,...,x?%) �9 A~ n), then H (X) - e < _ z
?%

logp(xl ,x2 , . . . ,x?%) <_ H(X) + e.

. If {X 1, X 2 , . . . X?%} are i.i.d, with probabili ty dis-

t r ibut ion p(X) then Pr((xl, x2,. . .xn) e A! 7%)) -
Pr(A! 7%)) ~ 1 as n , c~.

3. JA~?%)J _< 2 n(H(X)+r where for any set S, JS I is the
number of e lements in S.

4. JA~?%)[> (1 - e)2 n(H(X)-~) for n sufficiently large.

RESONANCE J February 2006 57

GENERAL J ARTICLE

Shannon's source-
coding theorem

states that to

describe a source
by a code C, on an

average at least

H(X) bits (or, D-ary

symbols) are
required.

Proof. The proof of (1) follows from the definition of

A! n) and that of (2) from Theorem 3.1.

To prove (3), we observe that the following set of equa-
tions hold:

1---- Z p(Xl'" "''Xn) ~ Z P(X l ' " "''Xn)
(xl z,~)eX" (z ! z,~)EA~,~)

>

(xl x,,)eA~ '')

2-n(H(X)+ ~) = 2-n(H(X)+e)JA~n)l.

To prove (4), note by (2) that for n large enough

P r ((x l , . . . , x ,) �9 A~ ")) > 1 - e.

This means that

1 - e < P r ((x l , . . . , x ,) e A!"))=

p (x l , x 2 , �9 �9 �9 x n)

(xl x.)eA~ ")

<

4. Source C o d i n g T h e o r e m

Shannon's source-coding theorem states that to describe
a source by a code C, on an average at least H(X) bits
(or, D-ary symbols) are required. The theorem further
states that there exist codes that have an expected code-
length very close to H (X). The following theorem shows
the existence of codes with expected code-length close
to the source entropy. This theorem can also be called
the achievability-part of Shannon's source-coding theo-
rem, and says that the average number of bits needed
to represent a symbol x from the source is H(X) , the
entropy of the source.

58 RESONANCE I February 2006

GENERAL [ARTICLE

Rgure 1. Typical sets and
source-coding.

Theorem 4.1. Let X n = (X 1 , X 2 , . . . X n) be an inde-
pendent and identically distributed (i.i.d.) source with
distribution p(X). Let t? > 0. Then there exists an n o --
n0(y), depending on ~ such that for all n > no, there ex-
ists a code which maps sequences x n = (xl, x2 , . . . , xn)
of length n into binary strings such tha t the mapping is
one-to-one (and therefore invertible) and

E[lg(xn)] < H(X) 4- rh

where g(x '~) is the length of the code representing x n.

Proof. Let X1,X2,... ,X, be i.i.d, random variables
chosen from the probabili ty distribution p(X). The goal
is to find short descriptions for such sequences of ran-
dom variables. Consider the following encoding scheme:
For a chosen e > 0 and integer n > 0 (both to be chosen
later) part i t ion the sequences in ,l:'n into two sets: the

typical set A! '~) and its complement as shown in Figure
1. Order all the elements in each set according to some
order. Then we can represent each sequence of A! ~) by
giving the index of tha t sequence in the set. From Theo-
rem 3.2, there are at most 2 n(H(x)+~) such sequences, and
hence, the indexing of elements in A! ") requires no more
than [n(g(x) + e)] < n(H(X) + e) + 1 bits. Similarly,

the sequences not in A! n) can be indexed by In log 12dl]
< n log IX I + 1 bits since the number of sequences not in
the typical set is less than IA'[n. Suppose we prefix every

code sequence in A~ n) by a 0 and every code sequence
not in A! '~) by a 1, then we can uniquely represent every

Let X 1, X 2 X be

i.i.d, random

variables chosen

from the probability

distribution p(X). The

goal is to find short

descriptions for such

sequences of

random variables.

RESONANCE I February 2006 59

GENERAL J ARTICLE

The converse to the

source-coding

theorem states that

every code that

maps sequences of

length n from a

source X into binary

strings, such that the

mapping is one-to-

one, has an average

code length that is at

least the entropy

H(X).

6 0

sequence of length n from X n. The average length of
codewords in such an encoding scheme is given by

E[e(X")]= p(x")e(x")= p(x")e(x")+
x~EJd "~ xnEA!n)

Z p(x")g(x")<_ ~ p(xn)[n(H(X)+e)+2]+
x,~eX,~_A!") x,,~A~ '~)

log IXl + 2]
xnEX,~-A! n)

= Pr{A!n)}[n(g(x)+e)+2]+(1-Pr{A!n)))[nloglXl+2]

= Pr{A!n)}[n(H(X)+e)]+(1-Pr{A~n)))[nloglXI]+2.

By (2) of Theorem 3.2, there exists a no(e) such tha t for

n > no(e), 1 - Pr(A~ n)) < e. Thus

E[l(Xn)] <_ n(H(X)+e)+ne(log IXl)+2 = n(H(X)+e').

2 Given 77 > 0 choose an e and where d _= e + e log I XJ + ~.
no(e) large enough such tha t e' < ~. Since the choice of
e depends on q?, no(e) can be wr i t ten as n0(~). �9

The above result proves the existence of a source-coding
scheme which achieves an average code length of (H(X)+
e'). However, this proof is non-construct ive since it does
not describe how to explicitly find such a typical set.
The converse to the source-coding theorem states tha t
every code tha t maps sequences of length n from a source
X into binary strings, such tha t the mapping is one-
to-one, has an average code length tha t is at least the
entropy H(X). We will prove another version of this
result in the following section by restr ict ing the coding
to a special class of codes known as prefix-free codes.

5. Ef f ic ient C o d i n g o f I n f o r m a t i o n

The notion of trees is in t roduced to il lustrate how a
code, tha t maps a sequence of symbols from a source X

RESONANCE J February 2006

GENERAL J ARTICLE

O

2

m O r n

•

0 8

o l 1
,6

T 2

onto binary, or more generally, D-ary strings, may be
described. This not ion will fur ther enable us to provide
coding techniques tha t are described by building appro-
priate trees and labeling the edges of the tree so tha t the
codewords of the code are specified by taking sequences
of edge-labels on this tree.

Definition 5.1. A D-a ry tree is a finite (or semi-infinite)
rooted tree such tha t D branches s tem outward from
each node.

Definition 5.2. The complete D-ary tree of length N is
the D-ary tree with D N leaves, each at depth N from
the root node.

Figures 2 and 3 respectively, show a complete 3-ary tree
and an incomplete 3-ary tree of length N = 2.

Definition 5.3. A code is prefix-free if no codeword in the
code is a prefix of another codeword in the same code.

As an example, the code with codewords 0 and 011 is
not prefix-free. A prefix-free code has the property tha t
a codeword is recognizable as soon as its last digit is
known. This ensures tha t if a sequence of digits corre-
sponding to several codewords in the code are wri t ten
contiguously, then the codewords from the sequence can
be read out instantaneously. For example, suppose the
codewords of a code are u 1 = 0, u2 = 10, u 3 = 110
and u4 = 111. Then the following sequence of digits
011010010 corresponds to the codewords Ul, u3, u2, ul , u2.

Figure 2. A complete 3..ary
tree of length 2.
Figure 3. An Incomplete 3-
ary tree of length 2.

A prefix-free code

has the property

that a codeword is

recognizable as

soon as its last

digit is known.

RESONANCE I February 2006

GENERAL J ARTICLE

62

There exists a D-
ary prefix-free

code whose code-

lengths are the
positive integers

wt,w 2 w Kifand
only if

~ I K D -~ < 1.

For the rest of the article, we restrict our attention to
prefix-free codes. Every D-ary prefix-free code can be
represented on a D-ary tree wherein the set of codewords
in the code correspond to a set of leaf nodes in the D-ary
tree and the length of a codeword is equal to the depth
of the corresponding leaf node from the root node. We
now state a necessary and sufficient condition for the
existence of prefix-free codes.

L e m m a 5.1 (Kraft 's Inequality): There exists a D-ary
prefix-free code whose code-lengths are the positive in-
tegers Wl,W2,... ,Wg if and only if

K

~ D -~i < 1.
i = l

Proof. Observe that in a complete D-ary t r ee of length
N , D N-w leaves stem from each node that is at depth
w from the root node, for w < N.

Suppose there exists a D-ary prefix-free code whose code-
lengths are Wl, w2, . . . , Wg. Without loss of generality,
let Wl < w2 < . . . _< wK. Let N = m a x i w i = Wg. We
will now construct a tree for the prefix-free code start-
ing with a complete D-ary tree of length N. Order the
leaves at depth N in some fashion. Starting with i = 1
and the first leaf node zl, if Wl < N, identify the node,
say v, in the tree that is at depth wl and from where
the leaf node z 1 stems. Delete the portion of the tree
from v down to its leaves. By this process, we make this
vertex v a leaf node at depth Wl. For i = 2, identify
the next leaf node z2 not equal to v. Find a node v2
at depth w2 from which z2 stems and delete the sub-
tree from v2 down to its leaves, thereby making v2 a leaf
node. Similarly, repeat the process for i = 3, 4 , . . . , K.
By this process, at each step, D N-wl leaf nodes in the
original complete D-ary tree are deleted. However, since
the complete D-ary tree contained only D g leaf nodes,
we have D N-~I + D N-w2 + . . . "4- D g - w K <_ D N. Dividing
by D g gives the desired condition.

RESONANCE J February 2006

GENERAL I ARTICLE

To prove the converse, suppose wl , w 2 , . . . ,WK are pos-
itive integers satisfying the inequality)--~'~=z D - ~ -< 1
(*). Then, without loss of generality, let wl _< w2 _<
�9 .. _< wK. Set N = m a x / w i = wK. We want to show
that we are able to construct a prefix-free code with
codeword lengths wl, w2, . . . ,wK. Start again with the

.complete D-ary tree.

Let i = 1. Identify a node zl at depth wl to be the first
codeword of the code we intend to construct. If Wl < N,
delete the subtree s temming from z 1 down to its leaves so
that Zl becomes a leaf node. Next, increment i by 1 and
look for a node zi in the remaining tree which is not a
codeword and is at depth w~. If there is such a node, call
this the i th codeword and delete the subtree s temming
from zi down to its leaves. Repeat the above process by
incrementing i by 1. This algorithm terminates when
either i > K or when the algorithm cannot find a node zi
satisfying the desired property in the i th step for i <_ K.

If the algorithm identifies K codeword nodes, then a
prefix-free code can be constructed by labeling the edges
of the tree as follows: At each node, label the r _< D
edges that s tem from it as 0, 1, 2 . . . , r - 1 in any order.
The i th codeword is then the sequence of edge-labels
from the root node up to the i th codeword node.

The only part remaining to be seen is that the above
algorithm will not te rminate before K codeword nodes
have been identified. To show this, consider the i th step
of this algorithm when Zx, z2 , . . . , zi-1 have been identi-
fied and zi needs to be chosen. The number of surviving
leaves at depth N not s temming from any codeword is
D N " (D N-w1 Jr" D N-w2 + . . . + DN-W~-l) . But by our

assumption (.) , this number is greater than zero. Thus,
there exists a node z~ which is not a codeword and which
is at depth w~ in the tree tha t remains at step i. Further-
more, since wi _> wi-1 _> w i - 2 . . . _> Wx, the node zi will
not lie in any of the paths from the root node to any of

If the algorithm

identifies K codeword

nodes, then a prefix-

free code can be

constructed by

labeling the edges of

the tree as follows: At

each node, label the r

<_ D edges that stem

from it as 0,1,2 r-1

in any order. The i th

codeword is then the

sequence of edge-

labels from the root

node up to the i th

codeword node.

RESONANCE J February 2006

GENERAL [ARTICLE

The depth of a

codeword-node is

equal to the length of

the codeword in the
code, and the

codeword is the

sequence of edge-
labels on this tree

from the root node up

to the corresponding

codeword-node.

zl, z2 . . . , zi-1. This argument holds for i = 1, 2 , . . . , K;
hence, this algorithm will always be able to identify K
codeword nodes and construct the corresponding prefix-
free code. �9

A. Trees with Probability Ass ignments

Let us suppose that there is a D-ary prefix-free code
that maps symbols from a source U onto D-ary strings
such that the mapping is invertible. For convenience, let
ul, u2 , . . . , ug be the source symbols and let the code-
words corresponding to these symbols also be denoted
by Ux, u2 , . . . , UK. The proof of the Kraft inequality tells
us how to specify a D-ary prefix-free code on a D-ary
tree. That is, a D-ary tree can be built with the edges
labeled as in the proof of Lemma 5.1 such that the code-
words are specified by certain leaf nodes on this tree, the
depth of a codeword-node is equal to the length of the
codeword in the code, and the codeword is the sequence
of edge-labels on this tree from the root node up to the
corresponding codeword-node. Furthermore, probabili-
ties can be assigned to all the nodes in the tree as fol-
lows: assign the probability p(ui) for the codeword node
which corresponds to the codeword ui (or, the source
symbol ui.) Assign the probability zero to a leaf node
that is not a codeword node. Assign a parent node (that
is not a leaf node), the sum of the probabilities of its
children nodes. It is easy to verify that for such an as-
signment, the root node will always have a probability
equal to 1. Such a D-ary tree gives a complete descrip-
tion of the D-ary prefix-free code. This description will
be useful in describing two specific coding methods: the
Shannon-Fano coding algorithm and the Huffman cod-
ing algorithm.

B. Source Coding Theorem for Prefix-Free Codes

Before we present the two coding techniques, we present
another version of the source-coding theorem for the

64 RESONANCE J February 2006

GENERAL J ARTICLE

special case of prefix-free codes:

Theorem 5.1. Let g~, g~, . . . , g* be the optimal codeword
lengths for a source with distribution p(X) and a D-
ary alphabet, and let L* be the corresponding expected
length of the optimal prefix-free code (L* -- Y]iPig*).
Then

HD(X) < L* <_ HD(X) + 1.

Proof. We first show that the expected length L of any
prefix-free D-ary code for a source described by the ran-
dom variable X with distribution p(X) is at least the en-
tropy HD(X). To see this, let the code have codewords
of length gl,g2,. . , and let the corresponding probabil-
ities of the codewords be Pl,P2, Consider the dif-
ference between the expected length L and the source
entropy H o (X) ,

i
L - M o (x) = logo

"-"i "-'i Pi

logo D - l ' + log
i i

Let r, = D-t ' / ()-~j D-t~) and c -- ~-]j D-t~. Then,

L - H o (X) = E p l log O P--/- log O c.
i ri

The first term on the right-hand side is a well-known
term in information theory, called the 'divergence' be-
tween the probability distributions r and p can be shown
to be non-negative. (See [2]). The second term is also
non-negative since c < 1 by the Kraft inequality. This
shows that L - HD(X) > O.

Suppose there is a prefix-free code with codeword lengths
gl, g2,.., such that gi -- [logo ~] . Then the gi's satisfy

the Kraft inequality since ~-]i D-e~ < ~-]i Pi = 1. Fur-
thermore, we have

1 1
lOgD----<gi<-- lOgD--+l .

Pi Pi

The expected
length L of any
prefix-free D-ary

code for a source
described by the
random variable X
with distribution
p(X) is at least the

entropy Ho(X).

RESONANCE I February 2006

GENERAL [ARTICLE

This theorem says

that an optimal

code will use at

most one bit more

than the source

entropy to describe

the source

alphabets.

Hence, the expected length L of such a code satisfies

HD(X) = Z p i l o g D 1 < L
Pi i

1 + I) = H o (X) + I . Pi~'i <-- ~ Pi(lOgD P-7
i i

Since an optimal prefix-free code can only be better than
the above code, the expected length L* of an optimal
code satisfies the inequality L* < L < HD(X) +1. Since
we have already shown that any prefix-free code must
have an expected length which is at least the entropy,
this proves that

HD(X) < L* < HD(X) -t- 1.

Note that in the above theorem, we are trying to find a
description of all the alphabets of the source individu-
ally. This theorem says that an optimal code will use at
most one bit more than the source entropy to describe
the source alphabets. In order to achieve a better com-
pression, we can find a corresponding code for a new
source whose alphabets are sequences of length n > 1 of
the original source X. As n gets larger, the correspond-
ing optimal code will have an effective code-length as
close to its source entropy as possible. In fact, it can
be shown that the effective code-length for an optimal
code then satisfies H(X) < E[~Xn] * < H (X) + .~. This
result is in accordance with Theorem 4.1 of Section 4.

C. S h a n n o n - F a n o Prefix-Free Codes

Following the proof-technique of Theorem 5.1, we present
a natural source-coding algorithm that is popularly kn-
own as the Shannon-Fano algorithm. For a source U,
this algorithm constructs D-cry prefix-free codes with
expected length at most one more than the entropy of
the source. The algorithm is as follows:

6~ RESONANCE] February 2006

GENERAL J ARTICLE

(i) Suppose the source U is described by the source
symbols ul , u 2 , . . . , Ug having probabili ty of occur-

rences Pl = P(uz),P2 = p (u 2) , . . . , p K = p (u g) ,
respectively. Then, for i = 1, 2 , . . . , K , set wi =
[log O ~] to be the length of the codeword corre-
sponding to ui. Observe tha t the sequence of wi's
satisfies the Kraf t inequality since

D - ' ~ < ~ Pi = 1.
i i

(ii) Using the a lgor i thm mentioned in the proof of
the Kraft- inequal i ty (Lemma 5.1), a D-ary tree is
grown such tha t the codeword nodes are at depths
wl, w 2 , . . . , Wg on this tree. The sequence of edge
labels from the root node to a codeword node spec-
ify the codeword of the Shannon-Fano code.

The effective code
length of the

Shannon-Fano code

is then Zip i w r This
quantity is less than

Ho(U)+I from the
proof of Theorem 5.1.

We can further assign probabilities to the nodes of this
tree as ment ioned before. The effective code length of
the Shannon-Fano code is then ~-~iPiWi. This quant i ty
is less than H o (U) § 1 from the proof of Theorem 5.1.

Example 5.1. Consider a source U with alphabet set
/ / = {ul, u2, u3, u4, us} with the probabili ty of occur-
rences p(ul) = 0.05,p(u2) = 0.1,p(u3) = 0.2,p(u4) =
0.32,p(u~) = 0.33. For D = 2, the lengths of the
codewords for a Shannon-Fano binary prefix free code

are wl = [log 20.-~5] --- 5, w2 = [log 20Af] = 4, w3 = _._1]=
~] = 3, w4 = [log 2 0.-~2] = 2, and w 5 = [log 2 0.33 [l~ 0.2

2. The Shannon-Fano algori thm constructs a (D = 2)
binary tree as shown in Figure 4. The codewords cor-

responding to ul, u2, u3, u4, u5 are 00000, 0001,010, 10,
11, respectively. The average code-length is 5 �9 0.05 +
4 �9 0.1 + 3 �9 0.2 + 2 �9 0.32 + 2 �9 0.33 = 2.55 bits and the
entropy of the source is 2.0665 bits.

RESONANCE J February 2006

GENERAL I ARTICLE

24

0

0

t . 3 5

0

0 ~0.15

l ,
i
0.15

I o

0 e 0.2

u 3

l
O . 2

1 o

c)
: 0.32

i 0.65 u5

!
--- 0.33

U 1
0 --

o.os

1 o

~ 0.i

u 2

Figure 4. A Shannon-Fano
binary prefix.free code.

6. Huffman Coding

This section presents Huffman's algorithm for construct-
ing a prefix-free code for a source U. The binary case
is considered first where we obtain an optimal binary
prefix-free code. The more general D-ary case, for D >
2, is considered next.

A.Binary Case

The objective of
Huffman coding is to

construct a binary

tree with probability

assignments such

that a chosen set of
leaves in this tree

are codewords.

Using the notion of trees with probabilities, the objec-
tive of Huffman coding is to construct a binary tree with
probability assignments such that a chosen set of leaves
in this tree are codewords. We will first show that to ob-
tain an optimal code, the binary tree that we construct
must satisfy the following two lemmas.

Lemma 6.1. The binary tree of an optimal binary prefix-
free code for U has no unused leaves.

Proof. Suppose to the contrary that there is a leaf node
v in the binary tree that is not a codeword, then there

68 RESONANCE J February 2006

GENERAL J ARTICLE

is a parent node v ~ that has v as its child node. Since the
tree is binary, v has another child node u. Suppose u is
a codeword node corresponding to the codeword c, then
deleting u and v and representing v ~ as the codeword
node c yields a code with a lower average code-length
since we have reduced the code-length for the codeword
c without affecting the code lengths of the remaining
codewords. However, since we assumed that the binary
tree represented an optimal code to begin with, this is
a contradiction. �9

Lemma 6.2. There is an optimal binary prefix-free code
for U such that the two least likely codewords, say Ug_ 1

and Ug, differ only in their last digit.

Proof. Suppose we have the binary tree for an optimal
code. Let ui be one of the longest codewords in the tree.
By Lemma 6.1, there are no unused leaves in this tree,
so there is another codeword uj which also has the same
parent node as ui. Suppose uj ~ Ug, then we can inter-
change the codeword nodes for uj and uK. This inter-
change will not increase the average code-length since
p(Ug) < p(uj) and since the code-length of Ug is at
least the code-length of uj in the original code. Now if
ui ~ Ug-1, we can similarly interchange the codeword
nodes for ui and uK-1. Thus, the new code has u/~ and
Ug-1 among its longest codewords and uK and Ug-1

are connected to the same parent node. Since the code-
words are obtained by the sequence of edge-labels from
the root node up to the corresponding codeword nodes,
the codewords for u g and uK_ 1 differ only in their last
digit. �9

The above two lemmas suggest that to construct an op-
timal binary tree, it is useful to begin with the two least
likely codewords. Assigning these two codewords as leaf
nodes that are connected to a common parent node gives
part of the tree for the optimal code. The parent node is
now considered as a codeword having a probability that

The above two

l e m m a s suggest

that to construct an

optimal binary tree,
it is useful to begin

with the two least

l ikely codewords.

RESONANCE J February 2006

GENERAL J ARTICLE

Consider the problem
of twenty questions

where we wish to find
an efficient series of

yes-or-no questions to
determine an object

from a class of
objects. Suppose the

probability distribution
of the objects in this

class is known a priori

and it is assumed

that any question
depends on the series

of answers received
before that question is
to be posed, then the

Huffman coding
algorithm provides an

optimal solution to this

problem.

is the sum of the probabilities of the two leaf nodes and
the two codewords corresponding to the leaf nodes are
now ignored. The algori thm proceeds as before by con-
sidering the two least likely codewords tha t are available
in the new code and constructs the subtree correspond-
ing to these vertices as before.

Huffman's a lgori thm for const ruct ing an optimal binary
prefix-free code for a source U wi th K symbols is sum-
marized below. It is assumed tha t P(u) ~ 0 for all
u E/4. Tha t is, no codeword will be assigned to a sym-
bol u E /4 tha t has a probabili ty of occurrence equal to
zero.

(i) Assign labels, i.e., ul, u 2 , . . . , UK to K vertices which
will be the leaves of the final tree, and assign the
probabili ty P(ui) to the vertex labeled ui, for i =
1 , . . . , K . Let these K vertices be called 'active'
vertices.

(ii) Create a new node v and join the two least likely
active vertices ui and uj (i.e., two vertices with the
least probabilities) to v. Tha t is connect v to ui
and uj. Assign the labels 0 and 1 to the two edges
(v, ui) and (v, uj) in any order.

(iii) Deactivate the two vertices connected to v and ac-
t ivate the node v. Assign the new active vertex v
the sum of the probabi l i t ies of ui and uj.

(iv) If there is only one active vertex, then call this the
root vertex and stop. Otherwise, re turn to Step
(ii).

Example 6.1. Consider a source U with alphabet set

/4 = {ul, u2, u3, u4, us} with the probabil i ty of occur-
rences p(ul) = 0.05, p(u2) = 0.1,p(u3) = 0.2,p(u4) --
0.32,p(us) = 0.33. The Huffman coding algori thm con-
structs a binary tree as shown in Figure 5. The code-
words corresponding to u 1, u2, u3, u4, u5 are 000, 001,01,

70 RESONANCE J February 2006

GENERAL J ARTICLE

0

1

1

0

t , 0 . 3 5

1

"L& :1_

L o ~ 0 . 0 5

- 0 . 1 5 1SL 2

1 o 0 . 1

1.1 3
e 0 . 2

0 e 0 . 3 2

0 . 6 5

1] -1 5
o 0 . 3 3

Figure 5. An (opUmal) bi-
nary Huffman code.

10, 11, respectively. The average code-length is 3.0.05 +
3.0.1 + 2 . 0 . 2 + 2 . 0 . 3 2 + 2 - 0 . 3 3 = 2.15 bits. Note that
this number is smaller than the average code-length of
the Shannon-Fano code in Example 5.1.

Example 6.2. Consider the problem of twenty questions
where we wish to find an efficient series of yes-or-no
questions to determine an object from a class of objects.
Suppose the probability distribution of the objects in
this class is known a priori and it is assumed that any
question depends on the series of answers received before
that question is to be posed, then the Huffman coding
algorithm provides an optimal solution to this problem.

B . D - a r y c a s e

The algorithm for the binary case can be easily gener-
alized to construct an optimum D-ary prefix-free code.
The following two lemmas, which are the extensions of
Lemmas 6.1 and 6.2 for the D-ary case, are stated with-
out proof [3].

L emma 6.3. The number of unused leaves for an optimal
D-ary prefix-free code for a source U with K possible
values, K _> D, is the remainder when (K - D) (D - 2)
is divided by D - 1.

L emma 6.4. There is an optimal D-ary prefix-free code
for a source U with K possible values such that the D - r

There is an optimal
D-ary prefix-free
code for a source
U with K possible
values such that
the D- r least likely
codewords differ
only in their last
digit, where r is the
remainder when
(K-D)(D-2) is
divided by D - I .

RESONANCE J February 2006 71

GENERAL J ARTICLE

least likely codewords differ only in their last digit , where
r is the remainder when (K - D) (D - 2) is d iv ided by
D - 1 .

Based on the two lemmas, Huf fman ' s a lgor i thm for con-
s t ruc t ing an opt imal D-ary prefix-free code (D > 3) for
a source U wi th K symbols, such t h a t P(u) # 0 for all
u, is given by:

Figure 6. An (optimal) 3-ary
Huffman code.

(i)

(ii)

(iii)

(i,)

Label K vertices as ul , u 2 , . . . , u K and assign the
probabi l i ty P(u i) to the ver tex labeled ui, for i --
1, 2 , . . . , K . Call these K vert ices 'active' . Let r
be the remainder when (g - D) (D - 2) is d ivided
b y D - 1.

Form a new node v and connec t the D - r least

likely active vertices to v via D - r edges. Label
these edges as 0, 1, 2 , . . . , D - r - 1 in any r a n d o m
order.

Deact ivate the D - r act ive vertices t ha t are con-
nected to the new node v and act ivate v. Assign
v the sum of the probabi l i t ies of the D - r deacti-
va ted vertices.

If there is only one active ver tex remaining, then
call this vertex the root node and stop. Otherwise,
r e tu rn to Step (ii).

/

0 U 2_
8 0 . 0 5

t 1 U 2
0 . 3 5 8. 0 .1

2 U 3
Q 0 . 2

-:- 0 . 3 2
U 4

U 5

-r. 0 . 3 3

72 RESONANCE J February 2006

GENERAL J ARTICLE

Example 6.3. Consider the same source U as in Example
6.1. The Huffman coding algorithm constructs a 3-ary
prefix-free code as shown in Figure 6. The codewords
corresponding to ul, u2, u3, u4, u5 are 00, 01,02, 1, 2, re-
spectively. The average code-length is 2-0.05 § 2 .0 .1§
2 �9 0.2 + 1 �9 0.32 + 1 �9 0.33 = 1.35 ternary digits and the
entropy of the source is H3(U) = 1.3038 ternary digits.

Remark 6.1. While the proof of Theorem 5.1 seems to
suggest that the Shannon-Fano coding technique is a
very natural technique to construct a prefix-free code,
it turns out that this technique is not optimal. To il-
lustrate the sub-optimality of this technique, consider
a source with two symbols ul and u2 with probabil-
ity of occurrences p(ul) = 1/16 and p(u2) = 15/16.
The Shannon-Fano algorithm finds a binary prefix-free
code with codeword lengths equal to Flog 2 T~16] = 4

and Flog 215--~T61~] = 1, respectively, whereas the Huffman-
coding algorithm yields a binary prefix-free code with
codeword lengths equal to 1 for both.

7. S u m m a r y

This article has presented a derivation of the best achiev-
able performance for a source encoder in terms of the
average code length. The source-coding theorem for
the case of prefix-free codes shows that the best cod-
ing scheme for a source X has an expected code-length
bounded between H(X) and H(X) + 1. Two coding
techniques, the Shannon-Fano technique and the Huff-
man technique, yield prefix-free codes which have ex-
pected code-lengths at most one more than the source
entropy. The Huffman coding technique yields an op-
timal prefix-free code yielding a lower expected code-
length compared to a corresponding Shannon-Fano code.
However, the complete proof of the optimality of Huff-
man coding [2] is not presented here; Lemma 6.1 only
presents a necessary condition that an optimal code must
satisfy.

Suggested Reading

[1] C ESlunnon, AMathemti-
cal Theory of Communica.
tions, Be//System Teckn/-
c a / J o ~ d , VoL 27, pp379-
423, July, 1948; VoL27, pp.
623 -656, October 1948.

[2] T M Cover and J A Tho-
mas, E/mmmu of l~orma-
t/on T / u ~ , Wiley Series in
Telecommunications, John
Wiley & Sons, Inc., New
York, 1991.

[3] J L Massey, App//edD/gi-
tal Information Ttwory L
Lecture Notes, ETH,
Zurich. Available online at
http://www.isi.ee.ethz.ch/
educat ion/publ ic /pdfs /
aditt.pdf

[4] R L Karandiksr,OnRan-
domness and Probability:
How to Model Uncertain
Events Mathematically,
Resonance, VoL 1, No.2, Feb.
1996.

[5] WFeller, Anlmroductionto
Pvobab~ ~ o ~ and ~s
Applications, Vols.1,2,
Wiley-Eastern, 1991.

[6] S Natarajan, Entropy, Cod-
ing and Data Compression,
Resonance, VoL6, No.9, 2001.

Address for Correspondence
Deepak Sridhara

Inslilul for Mathematik
Universit~t ZOrich

Emaih
sridhara@malh.unizh.ch

RESONANCE J February 2006 73

