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Efficient Coding of Information: Huffman Coding 

Deepak Sridhara 

In his classic paper  of  1948, C laude  S h a n n o n  con-  
s idered the  p r o b l e m  of  ef f ic ient ly  descr ib ing  a 
source  that  o u t p u t s  a s e q u e n c e  of  symbol s ,  each 
assoc ia ted  w i t h  a probabi l i ty  of  occurrence ,  and 
provided t h e  t h e o r e t i c a l  l imits  of  achievable  per-  
formance .  In 1951,  D a v i d  H u f f m a n  presented  a 
t e c h n i q u e  that  a t ta ins  this  per formance .  This  ar- 
t ic le  is a br ie f  overv i ew  of  s o m e  of  their  results .  

1. I n t r o d u c t i o n  

Shannon's landmark paper 'A Mathematical Theory of 
Communication' [1] laid the foundation for communica- 
tion and information theory as they are perceived to- 
day. In [1], Shannon considers two particular problems: 
one of efficiently describing a source that outputs a se- 
quence of symbols each occurring with some probabil- 
ity of occurrence, and the other of adding redundancy 
to a stream of equally-likely symbols so as to recover 
the original stream in the event of errors. The for- 
mer is known as the source-coding or data-compression 
problem and the latter is known as the channel-coding 
or error-control-coding problem. Shannon provided the 
theoretical limits of coding achievable in both situations, 
and in fact, he was also the first to quantify what is 
meant by the "information" content of a source as de- 
scribed here. 
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This article presents a brief overview of the source-coding 
problem and two well-known algorithms that were dis- 
covered subsequently after [1] that come close to solv- 
ing this problem. Of particular note is Huffman's algo- 
rithm that turns out to be an optimal method to rep- 
resent a source under certain conditions. To state the 
problem formally: Suppose a source U outputs symbols 
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1 By a D-ary sir ing w e  m e a n  a 

sequence (YvY2 ..... Yn) where 
each yj belongs to the set 
{0,1,2,...,D-1}. 

Intuitively, the optimal 

number of bits needed 

to represent a source 
symbol uj with 

probability of 
occurrence p; is 

around log 2 llpi bits. 

problem formally: Suppose a source U outputs  symbols 
Ul, u 2 , . . . ,  uK, belonging to some discrete a lphabet /~ ,  
with probabilities p(ul) ,P(U2), . . . ,p(ug),  respectively. 
The source-coding problem is one of finding a mapping 
from /4 to a sequence of D-ary strings 1, called code- 
words, such tha t  this mapping is invertible. For the 
coding to be efficient, the aim is to find an invertible 
mapping (or, a code) that  has the  smallest possible av- 
erage codeword-length (or, code-length).  By the way 
this problem is stated, a source U can also be t reated 
as a discrete random variable U tha t  takes values from 
/4 -- {ul, u 2 , . . . ,  uN} and that  has a probability distri- 
bution given by p(V), where p(U = ui) = p(ui), for 
i = 1 , 2 , . . . , K .  

As an example, suppose a random variable U takes on 
four possible values ul, u2, u3, u4 with probability of oc- 
currences R(Ul)= 1, p(u2)-- �88 P(U3)= 1, p(u4)-~ 1. 
A naive solution for representing the  symbols u l , . . . ,  u4 
in terms of binary digits is to represent each symbol 
using two bits: ul = 00, u2 = 01, u3 -- 10, u4 = 11. 
The average code-length in this representation is two 
bits. However, this representat ion turns out to be a 
sub-optimal one. An efficient representation uses fewer 
bits to represent symbols occurring with a higher prob- 
ability and more bits to represent symbols occurring 
with a lower probability. An optimal representation 
for this example is ul = 0, u2 = 10, u3 = l l0 ,  ua = 
111. The  average code-length in this representation is 
1- 7 + 2 . ~ + 3 . ~ + 3 . g l  1 1 = 1.75 bits. Intuitively, the optimal 
number of bits needed to represent a source symbol ui 
with probability of occurrence Pi is around log 2 ~ bits. 
Further, since ui occurs with probabili ty pi, the effec- 

i Shan- tive code-length of ui in such a code is Pi log2 p'7" 
non's idea was to quantify the ' information'  content of 
a source or random variable U in precisely these terms. 
Shannon defined the entropy of a source U to measure 
its information content, or equivalently, the entropy of 
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a random variable U to measure its 'uncertainty', as 
H(U) = ~iPi log2 ~ The coding techniques discussed 

Pi" 
in this article are evaluated using this measure of 'infor- 
mation' content. 

This article is organized as follows. Section 2 introduces 
some definitions and notation that will be used in this 
paper. Section 3 provides the notion of typical sequences 
that occur when a sequence of independent and identi- 
cally distributed random variables are considered. This 
section also states the properties of typical sequences 
which are used to prove the achievability part of Shan- 
non's source-coding theorem, in Section 4. Section 5 
introduces the notion of D-ary trees to illustrate the en- 
coding of a source into sequences of D-ary alphabets. 
Another version of the source-coding theorem for the 
special case of prefix-free codes is presented here. A 
coding technique, credited to Shannon and Fano, which 
is a natural outcome of the proof of the source-coding 
theorem stated in Section 5, is also presented. Sec- 
tion 6 presents Huffman's optimal coding algorithm that 
achieves a lower average code-length than the Shannon- 
Fano algorithm. The paper is concluded in Section 7. 

2. P r e l i m i n a r i e s  

Shannon defined the 

entropy of a source U 

to measure its 

information content, 

or equivalently, the 

entropy of a random 

variable U to measure 

its 'uncertainty', as 

H(U)=Z,p, log 2 llpr 

Some basic definitions and notation that will be used in 
this article are introduced here. 

Let X be a discrete random variable taking values in a 
finite alphabet A'. For each x E A' let p(x) denote the 
probability that the random variable X takes the value 
x written as Pr(X = x). 

Definition 2.1. The expectation of a function f (X)  de- 
fined over the random variable X is defined by 

E[f(X)] = ~ f(x)p(x) 
xE)~ 

Definition 2.2. The entropy H(X) of a discrete random 
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The entropy H(X) of a 
discrete random 

variable X is defined 
by H(X) = 

- Z p(x) log p(x). 
XE,,~" 

variable X is defined by 

H (X) = - ~ p ( x )  logp(x). 
xEA' 

To avoid ambiguity, the term p(x) logp(x) is defined to 
be 0 when p(x) = 0. By the previous definition, H(X) = 
-E[logp(X)]. For most of the discussion, we will use 
logarithms to the base 2, and therefore, the entropy is 
measured in bits. (However, when we use logarithms to 
the base D for some D > 2, the corresponding entropy 
of X is denoted as HD(X ) and is measured in terms of 
D-ary symbols.) Note that in the above expression, the 
summation is over all possible values x assumed by the 
random variable X, and p(x) denotes the corresponding 
probability of X = x. 

We will use uppercase letters to indicate random vari- 
ables, lowercase letters to indicate the actual values as- 
sumed by the random variables, and script-letters (e.g., 
X) to indicate alphabet sets. The probability distribu- 
tion of a random variable X will be denoted by p(X) or 
simply p. 

Extending the above definition to two or more random 
variables, we have 

Definition 2.3. The joint entropy of a vector of random 
variables (X1, X2 , . . . ,  Xn) is defined by 

H ( X 1 , X 2 , .  . . , X n )  = 

- -  ~, P ( X l , ' ' ' , X n )  l O g p ( X l , X n . . . , X n )  

(zl,x2 ..... =,-,)e,Vl xX2x...xX,-, 

w h e r e  p ( x l ,  x 2 , .  . . X n )  = P r ( X  1 = X l ,  X 2 : x 2 , .  . . X n __~ 

Xn). 

Definition 2.4. (a) A collection of random variables 
{X1, X2, . . .  X,~} with Xi taking values from an alphabet 
A" is called independent if for any choice {Xl, x2, . . ,  xn} 

RESONANCE I February 2006 



GENERAL I ARTICLE 

with X i  = xi,  i = 1, 2 , . . .  n, the probability of the joint 
event {X 1 = X l , . . . ,  X,~ = xn} equals the product 

n 

1-Ii=l P r ( Z i  = xi).  

(b) A collection of random variables {X1, X2 , . . .  Xn} is 
said to be identically distr ibuted if 2(i = 2(: that  is, all 
the alphabets are the  same, and the probability P r  (Xi  = 
x) is the same for all i. 

(c) A collection of random variables {X1, X2 , . . .  X ,}  is 
said to be independent  and identically distr ibuted (i.i.d.) 
if it is both independent  and identically distributed. 

An important  consequence of independence is that  if 
{X1, X2,. �9 �9 Xn} are independent  random variables, each 
taking on only finitely many values, then for any func- 
tion f/(.), i = 1 , 2 , . . . n ,  

n n 

E[ H f i (X i ) ]  = H E[ f i (X i ) ] .  
i=1  i = l  

Thus if {X1, X2,. �9 �9 Xn} are independent  and take values 
over finite alphabets,  then the entropy 

H ( X ] , X 2 ,  . . . X n )  =- - E [ l o g p ( X 1 , X 2 ,  . . . X,~)] = 

n n 

E[logp(X,)] = ~ H(X,). 
i=1  i = l  

If, in addition, they are identically distributed, then 

A collection of 

random variables 

{X,, X 2 .. . . .  X~} is said 

to be identically 

distributed if ~=.r  

that is, all the 

alphabets are the 

same, and the 

probability Pr(Xj=x) is 

the same for all i. 

H(XI ,X2 , .  . .Xn) ---- nH(Xi) = nH(Xl) .  

Note that  if X1,. �9 �9 Xn are a sequence of i.i.d, random 
variables as above, then their joint entropy is H ( X a ,  X2, 
. . . , X n ) = n H ( X ) .  

Def in i t ion  2.5. A sequence {]In} of random variables is 
said to converge to a random variable Y in probability if 
for each e > 0 

Pr( IYn  - YI > ~) , O, as n , ~ ,  
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The assertion that 
X .  ~ E[X1] with 
probability one is 

called the strong law 
of large numbers and 

the assertion that 
X,-~ E[X1] in 

probability is called 
the weak law of large 

numbers. 

56 

and with probability one if 

Pr( lim Yn = Y) = 1. 
n - - - *  OQ 

It can be shown that if Yn converges to Y with probabil- 
ity one, then Yn converges to Y in probability, but the 
converse is not true in general. 

The law of large numbers (LLN) of probability theory 
n says that the sample mean Xn -- 1/n ~-],i=1 Xi of n 

i.i.d, random variables {X1,X2, . . .Xn}  gets close to 
m = E[Xi] as n gets very large. More precisely, it says 
that ){n converges to E[Xa] with probability 1 and hence 
in probability. Here we are considering only the case 
when the random variables take on finitely many values. 
The LLN is valid for random variables taking infinitely 
many values under some appropriate hypothesis (see R L 
Karandikar [4]). The assertion that  ){n ) E[X1] with 
probability one is called the strong law of large numbers 
and the assertion that ){,~ ) E[X1] in probability is 
called the weak law of large numbers. See Karandikar [4] 
and Feller [5] for extensive discussions (including proofs) 
on both the weak law and the strong law of large num- 
bers. 

3. T yp i ca l  S e t s  a n d  t h e  A s y m p t o t i c  E q u i p a r t i -  
t ion  T h e o r e m  

As a consequence of the law of large numbers, we have 
the following result: 

Theorem 3.1. If Xa, X2, . . .  are independent and identi- 
cally distributed (i.i.d.) random variables with a prob- 
ability distribution p(.), then 

1 
- - - logp(X1,X2, . . . ,Xn)  ~ H(X) 

n 

with probability 1. 

Proof. Since X 1 , . . . , X ~  are i.i.d, random variables, 
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p(Xl , . . .  ,X?%) = Hip(X,).  Hence, 

l logp(X1,X2, ... ,X?%) 1 Z l o g p ( X i  ) 
n n 

i 

converges to -E[logp(X)] - H(X) with probabili ty 1 
as n , oo, by the s t rong law of large numbers. �9 

1 This theorem says tha t  the quant i ty  ~ log p(x;:x2...,x,) is 

close to the entropy H(X)  when n is large. Therefore, it 
makes sense to divide the set of sequences (Xl, x2, �9 �9 �9 x?%) 
�9 9='?% into two sets: the typical set wherein each se- 
quence (xl, x2, . .  �9 xn) is such tha t  1 log  1 is close 

to the entropy H (X)  and the non-typical  set containing 
1 log 1 bounded away from the sequences with ~ p(~l ..... ~,) 

entropy H(X).  As n increases, the probabili ty of se- 
quences in the typical  set becomes high. 

Definition 3.1. For each e > 0, let A~ 7%) be the set of 
sequences (xl, x 2 , . . . ,  x?%) �9 9:'?% with the following prop- 
erty: 

2 -n(H(X)+e) ~_ p ( x l ,  x 2 , . . .  , x?%) ~ 2 -?%(H(x)-e). 

Call A~ 7%) a typical set. 

Theorem 3.2. Fix e > 0. For A~ 7%) 
following hold: 

as defined above the  

. If (Xl,X2,...,x?%) �9 A~ n), then H ( X ) - e  < _ z  
?% 

logp(xl ,x2 , . . . ,x?%) <_ H(X) + e. 

. If {X 1, X 2 , . . .  X?%} are i.i.d, with probabili ty dis- 

t r ibut ion p(X) then  Pr((xl, x2,. . .xn) e A! 7%)) - 
Pr(A! 7%)) ~ 1 as n , c~. 

3. JA~?%)J _< 2 n(H(X)+r where for any set S, JS I is the 
number  of e lements  in S. 

4. JA~?%)[ > (1 - e)2 n(H(X)-~) for n sufficiently large. 
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Shannon's source- 
coding theorem 

states that to 

describe a source 
by a code C, on an 

average at least 

H(X) bits (or, D-ary 

symbols) are 
required. 

Proof. The proof of (1) follows from the definition of 

A! n) and that of (2) from Theorem 3.1. 

To prove (3), we observe that the following set of equa- 
tions hold: 

1---- Z p(Xl'" "''Xn) ~ Z P(X l ' "  "''Xn) 
(xl ..... z,~)eX" (z ! ..... z,~)EA~,~) 

> 

(xl ..... x,,)eA~ '') 

2-n(H(X)+ ~) = 2-n(H(X)+e)JA~n)l. 

To prove (4), note by (2) that for n large enough 

P r ( ( x l , . . . , x , )  �9 A~ ")) > 1 -  e. 

This means that 

1 - e  < P r ( ( x l , . . . , x , )  e A!"))= 

p ( x l ,  x 2 ,  �9 �9 �9 x n )  

(xl ..... x.)eA~ ") 

< 

4. Source  C o d i n g  T h e o r e m  

Shannon's source-coding theorem states that to describe 
a source by a code C, on an average at least H(X)  bits 
(or, D-ary symbols) are required. The theorem further 
states that there exist codes that have an expected code- 
length very close to H (X). The following theorem shows 
the existence of codes with expected code-length close 
to the source entropy. This theorem can also be called 
the achievability-part of Shannon's source-coding theo- 
rem, and says that the average number of bits needed 
to represent a symbol x from the source is H(X) ,  the 
entropy of the source. 
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Rgure 1. Typical sets and 
source-coding. 

Theorem 4.1. Let X n = ( X 1 , X 2 , . . . X n )  be an inde- 
pendent  and identically distributed (i.i.d.) source with 
distribution p(X). Let t? > 0. Then there exists an n o -- 
n0(y), depending on ~ such that  for all n > no, there ex- 
ists a code which maps sequences x n = (xl, x2 , . . . ,  xn) 
of length n into binary strings such tha t  the mapping is 
one-to-one (and therefore invertible) and 

E[lg(xn)] < H(X) 4- rh 

where g(x '~) is the length of the code representing x n. 

Proof. Let X1,X2,... ,X,  be i.i.d, random variables 
chosen from the probabili ty distribution p(X). The goal 
is to find short descriptions for such sequences of ran- 
dom variables. Consider the following encoding scheme: 
For a chosen e > 0 and integer n > 0 (both to be chosen 
later) part i t ion the sequences in ,l:'n into two sets: the 

typical set A! '~) and its complement  as shown in Figure 
1. Order all the elements  in each set according to some 
order. Then we can represent each sequence of A! ~) by 
giving the index of tha t  sequence in the set. From Theo- 
rem 3.2, there are at most  2 n(H(x)+~) such sequences, and 
hence, the indexing of elements in A! ") requires no more 
than [n(g(x) + e)] < n(H(X) + e )  + 1 bits. Similarly, 

the sequences not in A! n) can be indexed by In log 12dl] 
< n log IX I + 1 bits since the  number of sequences not in 
the typical set is less than  IA'[ n. Suppose we prefix every 

code sequence in A~ n) by a 0 and every code sequence 
not in A! '~) by a 1, then  we can uniquely represent every 

Let X 1, X 2 . . . . .  X be 

i.i.d, random 

variables chosen 

from the probability 

distribution p(X). The 

goal is to find short 

descriptions for such 

sequences of 

random variables. 
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The converse to the 

source-coding 

theorem states that 

every code that 

maps sequences of 

length n from a 

source X into binary 

strings, such that the 

mapping is one-to- 

one, has an average 

code length that is at 

least the entropy 

H(X). 

6 0  

sequence of length n from X n. The  average length of 
codewords in such an encoding scheme is given by 

E[e(X")]= p(x")e(x")= p(x")e(x")+ 
x~EJd "~ xnEA!n) 

Z p(x")g(x")<_ ~ p(xn)[n(H(X)+e)+2]+ 
x,~eX,~_A!") x,,~A~ '~) 

log IXl + 2] 
xnEX,~-A! n) 

= Pr{A!n)}[n(g(x)+e)+2]+(1-Pr{A!n)))[nloglXl+2] 

= Pr{A!n)}[n(H(X)+e)]+(1-Pr{A~n)))[nloglXI]+2. 

By (2) of Theorem 3.2, there exists a no(e) such tha t  for 

n > no(e), 1 -  Pr(A~ n)) < e. Thus  

E[l(Xn)] <_ n(H(X)+e)+ne(log IXl)+2 = n(H(X)+e'). 

2 Given 77 > 0 choose an e and where d _= e + e log I XJ + ~. 
no(e) large enough such tha t  e' < ~. Since the choice of 
e depends on q?, no(e) can be wr i t ten  as n0(~). �9 

The above result proves the existence of a source-coding 
scheme which achieves an average code length of (H(X)+ 
e'). However, this proof is non-construct ive since it does 
not describe how to explicitly find such a typical set. 
The  converse to the source-coding theorem states tha t  
every code tha t  maps sequences of length n from a source 
X into binary strings, such tha t  the  mapping is one- 
to-one, has an average code length tha t  is at least the 
entropy H(X). We will prove another  version of this 
result in the following section by restr ict ing the coding 
to a special class of codes known as prefix-free codes. 

5. Ef f ic ient  C o d i n g  o f  I n f o r m a t i o n  

The notion of trees is in t roduced to il lustrate how a 
code, tha t  maps a sequence of symbols from a source X 
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O 

2 

m O r n  

• 

0 8 

o l 1 
,6 

T 2 

onto binary, or more  generally, D-ary  strings, may be 
described. This not ion will fur ther  enable us to provide 
coding techniques tha t  are described by building appro- 
priate trees and labeling the edges of the tree so tha t  the  
codewords of the  code are specified by taking sequences 
of edge-labels on this tree. 

Definition 5.1. A D-a ry  tree is a finite (or semi-infinite) 
rooted tree such tha t  D branches s tem outward from 
each node. 

Definition 5.2. The  complete D-ary  tree of length N is 
the D-ary  tree with D N leaves, each at  depth  N from 
the root node. 

Figures 2 and 3 respectively, show a complete 3-ary tree 
and an incomplete  3-ary tree of length N = 2. 

Definition 5.3. A code is prefix-free if no codeword in the  
code is a prefix of another  codeword in the same code. 

As an example, the  code with codewords 0 and 011 is 
not prefix-free. A prefix-free code has the property tha t  
a codeword is recognizable as soon as its last digit is 
known. This ensures tha t  if a sequence of digits corre- 
sponding to several codewords in the code are wri t ten 
contiguously, then the codewords from the sequence can 
be read out instantaneously.  For example, suppose the  
codewords of a code are u 1 = 0, u2 = 10, u 3 = 110 
and u4 = 111. Then  the following sequence of digits 
011010010 corresponds to the  codewords Ul, u3, u2, ul ,  u2. 

Figure 2. A complete 3..ary 
tree of length 2. 
Figure 3. An Incomplete 3- 
ary tree of length 2. 

A prefix-free code 

has the property 

that a codeword is 

recognizable as 

soon as its last 

digit is known. 
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62 

There exists a D- 
ary prefix-free 

code whose code- 

lengths are the 
positive integers 

wt,w 2 ..... w Kifand 
only if 

~ I K D  -~ < 1. 

For the rest of the article, we restrict our attention to 
prefix-free codes. Every D-ary prefix-free code can be 
represented on a D-ary tree wherein the set of codewords 
in the code correspond to a set of leaf nodes in the D-ary 
tree and the length of a codeword is equal to the depth 
of the corresponding leaf node from the root node. We 
now state a necessary and sufficient condition for the 
existence of prefix-free codes. 

L e m m a  5.1 (Kraft 's  Inequality): There exists a D-ary 
prefix-free code whose code-lengths are the positive in- 
tegers Wl,W2,... ,Wg if and only if 

K 

~ D -~i < 1. 
i = l  

Proof. Observe that in a complete D-ary t r ee  of length 
N ,  D N-w leaves stem from each node that is at depth 
w from the root node, for w < N. 

Suppose there exists a D-ary prefix-free code whose code- 
lengths are Wl, w2, . . . ,  Wg. Without loss of generality, 
let Wl < w2 < . . .  _< wK. Let N = m a x i w i  = Wg.  We 
will now construct a tree for the prefix-free code start- 
ing with a complete D-ary tree of length N. Order the 
leaves at depth N in some fashion. Starting with i = 1 
and the first leaf node zl, if Wl < N, identify the node, 
say v, in the tree that is at depth wl and from where 
the leaf node z 1 stems. Delete the portion of the tree 
from v down to its leaves. By this process, we make this 
vertex v a leaf node at depth Wl. For i = 2, identify 
the next leaf node z2 not equal to v. Find a node v2 
at depth w2 from which z2 stems and delete the sub- 
tree from v2 down to its leaves, thereby making v2 a leaf 
node. Similarly, repeat the process for i = 3, 4 , . . . ,  K. 
By this process, at each step, D N-wl leaf nodes in the 
original complete D-ary tree are deleted. However, since 
the complete D-ary tree contained only D g leaf nodes, 
we have D N-~I  + D N-w2 + . . .  "4- D g - w K  <_ D N. Dividing 
by D g gives the desired condition. 
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To prove the converse, suppose wl ,  w 2 , . . .  ,WK are pos- 
itive integers satisfying the inequality )--~'~=z D - ~  -< 1 
(*). Then, without  loss of generality, let wl _< w2 _< 
�9 .. _< wK. Set N = m a x / w i =  wK. We want to show 
that  we are able to construct a prefix-free code with 
codeword lengths wl, w2, . . .  ,wK. Start again with the  

.complete D-ary tree. 

Let i = 1. Identify a node zl at depth wl to be the first 
codeword of the code we intend to construct. If Wl < N,  
delete the subtree s temming from z 1 down to its leaves so 
that  Zl becomes a leaf node. Next, increment i by 1 and 
look for a node zi in the  remaining tree which is not a 
codeword and is at depth  w~. If there is such a node, call 
this the i th  codeword and delete the subtree s temming 
from zi down to its leaves. Repeat  the above process by 
incrementing i by 1. This algorithm terminates when 
either i > K or when the  algorithm cannot  find a node zi 
satisfying the desired property in the i th  step for i <_ K. 

If the algorithm identifies K codeword nodes, then a 
prefix-free code can be constructed by labeling the edges 
of the tree as follows: At each node, label the r _< D 
edges that  s tem from it as 0, 1, 2 . . . ,  r - 1 in any order. 
The i th codeword is then the sequence of edge-labels 
from the root node up to the i th  codeword node. 

The only part remaining to be seen is that  the above 
algorithm will not te rminate  before K codeword nodes 
have been identified. To show this, consider the i th  step 
of this algorithm when Zx, z2 , . . . ,  zi-1 have been identi- 
fied and zi needs to be chosen. The number of surviving 
leaves at depth  N not s temming from any codeword is 
D N " (D N-w1 Jr" D N-w2 + . . .  + DN-W~-l ) .  But by our 

assumption ( .) ,  this number  is greater than zero. Thus, 
there exists a node z~ which is not a codeword and which 
is at depth w~ in the  tree tha t  remains at step i. Further- 
more, since wi _> wi-1 _> w i - 2 . . .  _> Wx, the node zi will 
not lie in any of the paths from the root node to any of 

If the algorithm 

identifies K codeword 

nodes, then a prefix- 

free code can be 

constructed by 

labeling the edges of 

the tree as follows: At 

each node, label the r 

<_ D edges that stem 

from it as 0,1,2 .... r-1 

in any order. The i th 

codeword is then the 

sequence of edge- 

labels from the root 

node up to the i th 

codeword node. 
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The depth of a 

codeword-node is 

equal to the length of 

the codeword in the 
code, and the 

codeword is the 

sequence of edge- 
labels on this tree 

from the root node up 

to the corresponding 

codeword-node. 

zl, z2 . . . ,  zi-1. This argument holds for i = 1, 2 , . . . ,  K; 
hence, this algorithm will always be able to identify K 
codeword nodes and construct the corresponding prefix- 
free code. �9 

A. Trees with Probability Ass ignments  

Let us suppose that there is a D-ary prefix-free code 
that maps symbols from a source U onto D-ary strings 
such that  the mapping is invertible. For convenience, let 
ul, u2 , . . . ,  ug  be the source symbols and let the code- 
words corresponding to these symbols also be denoted 
by Ux, u2 , . . . ,  UK. The proof of the Kraft inequality tells 
us how to specify a D-ary prefix-free code on a D-ary 
tree. That  is, a D-ary tree can be built with the edges 
labeled as in the proof of Lemma 5.1 such that  the code- 
words are specified by certain leaf nodes on this tree, the 
depth of a codeword-node is equal to the length of the 
codeword in the code, and the codeword is the sequence 
of edge-labels on this tree from the root node up to the 
corresponding codeword-node. Furthermore, probabili- 
ties can be assigned to all the nodes in the tree as fol- 
lows: assign the probability p(ui) for the codeword node 
which corresponds to the codeword ui (or, the source 
symbol ui.) Assign the probability zero to a leaf node 
that is not a codeword node. Assign a parent node (that 
is not a leaf node), the sum of the probabilities of its 
children nodes. It is easy to verify that  for such an as- 
signment, the root node will always have a probability 
equal to 1. Such a D-ary tree gives a complete descrip- 
tion of the D-ary prefix-free code. This description will 
be useful in describing two specific coding methods: the 
Shannon-Fano coding algorithm and the Huffman cod- 
ing algorithm. 

B. Source Coding Theorem for  Prefix-Free Codes 

Before we present the two coding techniques, we present 
another version of the source-coding theorem for the 
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special case of prefix-free codes: 

Theorem 5.1. Let g~, g~, . . . ,  g* be the optimal codeword 
lengths for a source with distribution p(X)  and a D- 
ary alphabet, and let L* be the corresponding expected 
length of the optimal prefix-free code (L* -- Y]iPig*). 
Then 

HD(X ) < L* <_ HD(X ) + 1. 

Proof. We first show that  the expected length L of any 
prefix-free D-ary code for a source described by the ran- 
dom variable X with distribution p(X)  is at least the en- 
tropy HD(X ). To see this, let the code have codewords 
of length gl,g2,. . ,  and let the corresponding probabil- 
ities of the codewords be Pl,P2, .. . .  Consider the dif- 
ference between the expected length L and the source 
entropy H o ( X ) ,  

i 
L -  M o ( x )  = logo 

"-"i "-'i Pi 

logo D - l '  + log  
i i 

Let r, = D-t ' / ()-~j  D-t~) and c -- ~-]j D-t~. Then, 

L - H o ( X )  = E p l  log O P--/- log O c. 
i ri  

The first term on the right-hand side is a well-known 
term in information theory, called the 'divergence' be- 
tween the probability distributions r and p can be shown 
to be non-negative. (See [2]). The second term is also 
non-negative since c < 1 by the Kraft inequality. This 
shows that L - HD(X ) > O. 

Suppose there is a prefix-free code with codeword lengths 
gl, g2,.., such that gi -- [logo ~] .  Then the gi's satisfy 

the Kraft inequality since ~-]i D-e~ < ~-]i Pi = 1. Fur- 
thermore, we have 

1 1 
lOgD----<gi<-- lOgD--+l .  

Pi Pi 

The expected 
length L of any 
prefix-free D-ary 

code for a source 
described by the 
random variable X 
with distribution 
p(X) is at least the 

entropy Ho(X ). 
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This theorem says 

that an optimal 

code will use at 

most one bit more 

than the source 

entropy to describe 

the source 

alphabets. 

Hence, the expected length L of such a code satisfies 

HD(X ) = Z p i l o g  D 1 < L 
Pi i 

1 + I ) = H o ( X ) + I .  Pi~'i <-- ~ Pi(lOgD P-7 
i i 

Since an optimal prefix-free code can only be better than 
the above code, the expected length L* of an optimal 
code satisfies the inequality L* < L < HD(X) +1. Since 
we have already shown that any prefix-free code must 
have an expected length which is at least the entropy, 
this proves that 

HD(X) < L* < HD(X ) -t- 1. 

Note that in the above theorem, we are trying to find a 
description of all the alphabets of the source individu- 
ally. This theorem says that an optimal code will use at 
most one bit more than the source entropy to describe 
the source alphabets. In order to achieve a better com- 
pression, we can find a corresponding code for a new 
source whose alphabets are sequences of length n > 1 of 
the original source X. As n gets larger, the correspond- 
ing optimal code will have an effective code-length as 
close to its source entropy as possible. In fact, it can 
be shown that the effective code-length for an optimal 
code then satisfies H(X)  < E[~Xn] * < H ( X ) +  .~. This 
result is in accordance with Theorem 4.1 of Section 4. 

C. S h a n n o n - F a n o  Prefix-Free Codes 

Following the proof-technique of Theorem 5.1, we present 
a natural source-coding algorithm that  is popularly kn- 
own as the Shannon-Fano algorithm. For a source U, 
this algorithm constructs D-cry prefix-free codes with 
expected length at most one more than the entropy of 
the source. The algorithm is as follows: 
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(i) Suppose the source U is described by the source 
symbols ul ,  u 2 , . . . ,  Ug having probabili ty of occur- 

rences Pl = P(uz),P2 = p ( u 2 ) , . . . , p K  = p ( u g ) ,  
respectively. Then,  for i = 1, 2 , . . . ,  K ,  set wi = 
[log O ~ ]  to be the  length of the codeword corre- 
sponding to ui. Observe tha t  the sequence of wi's 
satisfies the  Kraf t  inequality since 

D - ' ~  < ~ Pi = 1. 
i i 

(ii) Using the a lgor i thm mentioned in the proof of 
the Kraft- inequal i ty  (Lemma 5.1), a D-ary  tree is 
grown such tha t  the  codeword nodes are at depths  
wl, w 2 , . . . ,  Wg on this tree. The sequence of edge 
labels from the root  node to a codeword node spec- 
ify the codeword of the Shannon-Fano  code. 

The effective code 
length of the 

Shannon-Fano code 

is then Zip i w r This 
quantity is less than 

Ho(U)+I from the 
proof of Theorem 5.1. 

We can further  assign probabilities to the  nodes of this 
tree as ment ioned before. The effective code length of 
the Shannon-Fano  code is then ~-~iPiWi. This quant i ty  
is less than H o ( U )  § 1 from the proof of Theorem 5.1. 

Example  5.1. Consider  a source U with alphabet  set 
/ /  = {ul, u2, u3, u4, us} with the probabili ty of occur- 
rences p(ul)  = 0.05,p(u2) = 0.1,p(u3) = 0.2,p(u4) = 
0.32,p(u~) = 0.33. For D = 2, the  lengths of the 
codewords for a Shannon-Fano  binary prefix free code 

are wl = [log 20.-~5] --- 5, w2 = [log 20Af] = 4, w3 = _._1]= 
~ ]  = 3, w4 = [log 2 0.-~2] = 2, and w 5 = [log 2 0.33 [l~ 0.2 

2. The  Shannon-Fano  algori thm constructs  a (D = 2) 
binary tree as shown in Figure 4. The codewords cor- 

responding to ul,  u2, u3, u4, u5 are 00000, 0001,010, 10, 
11, respectively. The  average code-length is 5 �9 0.05 + 
4 �9 0.1 + 3 �9 0.2 + 2 �9 0.32 + 2 �9 0.33 = 2.55 bits and the 
entropy of the source is 2.0665 bits. 
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Figure 4. A Shannon-Fano 
binary prefix.free code. 

6. Huffman Coding 

This section presents Huffman's algorithm for construct- 
ing a prefix-free code for a source U. The binary case 
is considered first where we obtain an optimal binary 
prefix-free code. The more general D-ary case, for D > 
2, is considered next. 

A.Binary  Case 

The objective of 
Huffman coding is to 

construct a binary 

tree with probability 

assignments such 

that a chosen set of 
leaves in this tree 

are codewords. 

Using the notion of trees with probabilities, the objec- 
tive of Huffman coding is to construct a binary tree with 
probability assignments such that a chosen set of leaves 
in this tree are codewords. We will first show that to ob- 
tain an optimal code, the binary tree that we construct 
must satisfy the following two lemmas. 

Lemma 6.1. The binary tree of an optimal binary prefix- 
free code for U has no unused leaves. 

Proof. Suppose to the contrary that there is a leaf node 
v in the binary tree that is not a codeword, then there 
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is a parent node v ~ that  has v as its child node. Since the 
tree is binary, v has another child node u. Suppose u is 
a codeword node corresponding to the codeword c, then 
deleting u and v and representing v ~ as the codeword 
node c yields a code with a lower average code-length 
since we have reduced the code-length for the codeword 
c without affecting the code lengths of the remaining 
codewords. However, since we assumed that the binary 
tree represented an optimal code to begin with, this is 
a contradiction. �9 

Lemma 6.2. There is an optimal binary prefix-free code 
for U such that the two least likely codewords, say Ug_ 1 

and Ug, differ only in their last digit. 

Proof. Suppose we have the binary tree for an optimal 
code. Let ui be one of the longest codewords in the tree. 
By Lemma 6.1, there are no unused leaves in this tree, 
so there is another codeword uj which also has the same 
parent node as ui. Suppose uj ~ Ug, then we can inter- 
change the codeword nodes for uj and uK. This inter- 
change will not increase the average code-length since 
p(Ug) < p(uj) and since the code-length of Ug is at 
least the code-length of uj in the original code. Now if 
ui ~ Ug-1, we can similarly interchange the codeword 
nodes for ui and uK-1. Thus, the new code has u/~ and 
Ug-1 among its longest codewords and uK and Ug-1 

are connected to the same parent node. Since the code- 
words are obtained by the sequence of edge-labels from 
the root node up to the corresponding codeword nodes, 
the codewords for u g and uK_ 1 differ only in their last 
digit. �9 

The above two lemmas suggest that to construct an op- 
timal binary tree, it is useful to begin with the two least 
likely codewords. Assigning these two codewords as leaf 
nodes that are connected to a common parent node gives 
part of the tree for the optimal code. The parent node is 
now considered as a codeword having a probability that 

The above two 

l e m m a s  suggest 

that to construct an 

optimal binary tree, 
it is useful to begin 

with the two least 

l ikely codewords. 
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Consider the problem 
of twenty questions 

where we wish to find 
an efficient series of 

yes-or-no questions to 
determine an object 

from a class of 
objects. Suppose the 

probability distribution 
of the objects in this 

class is known a priori 

and it is assumed 

that any question 
depends on the series 

of answers received 
before that question is 
to be posed, then the 

Huffman coding 
algorithm provides an 

optimal solution to this 

problem. 

is the sum of the probabilities of the two leaf nodes and 
the two codewords corresponding to the leaf nodes are 
now ignored. The  algori thm proceeds as before by con- 
sidering the two least likely codewords tha t  are available 
in the new code and constructs  the  subtree correspond- 
ing to these vertices as before. 

Huffman's a lgori thm for const ruct ing an optimal  binary 
prefix-free code for a source U wi th  K symbols is sum- 
marized below. It is assumed tha t  P(u) ~ 0 for all 
u E/4.  Tha t  is, no codeword will be assigned to a sym- 
bol u E /4  tha t  has a probabili ty of occurrence equal to 
zero. 

(i) Assign labels, i.e., ul,  u 2 , . . . ,  UK to K vertices which 
will be the  leaves of the final tree, and assign the 
probabili ty P(ui) to the vertex labeled ui, for i = 
1 , . . . , K .  Let these K vertices be called 'active'  
vertices. 

(ii) Create a new node v and join the  two least likely 
active vertices ui and uj (i.e., two vertices with the 
least probabilities) to v. Tha t  is connect  v to ui 
and uj.  Assign the labels 0 and 1 to the two edges 
(v, ui) and (v, uj) in any order. 

(iii) Deactivate the two vertices connected to v and ac- 
t ivate the node v. Assign the  new active vertex v 
the sum of the probabi l i t ies  of ui and uj.  

(iv) If there  is only one active vertex, then call this the 
root vertex and stop. Otherwise,  re turn  to Step 
(ii). 

Example 6.1. Consider a source U with alphabet  set 

/4 = {ul,  u2, u3, u4, us} with the  probabil i ty of occur- 
rences p(ul) = 0.05, p(u2) = 0.1,p(u3) = 0.2,p(u4) -- 
0.32,p(us) = 0.33. The Huffman coding algori thm con- 
structs  a binary tree as shown in Figure 5. The code- 
words corresponding to u 1, u2, u3, u4, u5 are 000, 001,01, 
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Figure 5. An (opUmal) bi- 
nary Huffman code. 

10, 11, respectively. The average code-length is 3.0.05 + 
3.0.1 + 2 . 0 . 2 + 2 . 0 . 3 2 + 2 - 0 . 3 3  = 2.15 bits. Note that 
this number is smaller than the average code-length of 
the Shannon-Fano code in Example 5.1. 

Example 6.2. Consider the problem of twenty questions 
where we wish to find an efficient series of yes-or-no 
questions to determine an object from a class of objects. 
Suppose the probability distribution of the objects in 
this class is known a priori  and it is assumed that  any 
question depends on the series of answers received before 
that question is to be posed, then the Huffman coding 
algorithm provides an optimal solution to this problem. 

B .  D - a r y  c a s e  

The algorithm for the binary case can be easily gener- 
alized to construct an optimum D-ary prefix-free code. 
The following two lemmas, which are the extensions of 
Lemmas 6.1 and 6.2 for the D-ary case, are stated with- 
out proof [3]. 

L emma  6.3. The number of unused leaves for an optimal 
D-ary prefix-free code for a source U with K possible 
values, K _> D, is the remainder when ( K  - D ) ( D  - 2) 
is divided by D - 1. 

L emma  6.4. There is an optimal D-ary prefix-free code 
for a source U with K possible values such that  the D - r  

There is an optimal 
D-ary prefix-free 
code for a source 
U with K possible 
values such that 
the D- r  least likely 
codewords differ 
only in their last 
digit, where r is the 
remainder when 
(K-D)(D-2) is 
divided by D - I .  
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least likely codewords  differ only in their  last digit ,  where  
r is the  remainder  when ( K  - D ) ( D  - 2) is d iv ided by 
D - 1 .  

Based on the  two lemmas,  Huf fman ' s  a lgor i thm for con- 
s t ruc t ing  an opt imal  D-ary  prefix-free code (D > 3) for 
a source U wi th  K symbols,  such t h a t  P(u )  # 0 for all 
u, is given by: 

Figure 6. An (optimal) 3-ary 
Huffman code. 

(i) 

(ii) 

(iii) 

(i,) 

Label K vertices as ul ,  u 2 , . . . ,  u K and assign the  
probabi l i ty  P(u i )  to the  ver tex  labeled ui, for i -- 
1, 2 , . . . , K .  Call these K vert ices 'active' .  Let r 
be the  remainder  when  ( g  - D ) ( D  - 2) is d ivided 
b y D -  1. 

Form a new node v and  connec t  the  D - r least 

likely active vertices to v via D - r edges. Label 
these  edges as 0, 1, 2 , . . . ,  D - r - 1 in any r a n d o m  
order. 

Deact ivate  the  D - r act ive vertices t ha t  are con- 
nected  to the  new node  v and  act ivate  v. Assign 
v the  sum of the  probabi l i t ies  of the  D - r deacti-  
va ted  vertices. 

If there  is only one active ver tex  remaining,  then  
call this vertex the  root  node  and  stop. Otherwise,  
r e tu rn  to  Step (ii). 

/ 

0 U 2_ 
8 0 . 0 5  

t 1 U 2 
0 . 3 5  8.  0 .1  

2 U 3 
Q 0 . 2  

-:- 0 . 3 2  
U 4 

U 5 

-r. 0 . 3 3  
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Example 6.3. Consider the same source U as in Example 
6.1. The Huffman coding algorithm constructs a 3-ary 
prefix-free code as shown in Figure 6. The codewords 
corresponding to ul, u2, u3, u4, u5 are 00, 01,02, 1, 2, re- 
spectively. The average code-length is 2-0.05 § 2 .0 .1§  
2 �9 0.2 + 1 �9 0.32 + 1 �9 0.33 = 1.35 ternary digits and the 
entropy of the source is H3(U ) = 1.3038 ternary digits. 

Remark 6.1. While the proof of Theorem 5.1 seems to 
suggest that  the Shannon-Fano coding technique is a 
very natural technique to construct a prefix-free code, 
it turns out that  this technique is not optimal. To il- 
lustrate the sub-optimality of this technique, consider 
a source with two symbols ul and u2 with probabil- 
ity of occurrences p(ul) = 1/16 and p(u2) = 15/16. 
The Shannon-Fano algorithm finds a binary prefix-free 
code with codeword lengths equal to Flog 2 T~16] = 4 

and Flog 215--~T61~] = 1, respectively, whereas the Huffman- 
coding algorithm yields a binary prefix-free code with 
codeword lengths equal to 1 for both. 

7. S u m m a r y  

This article has presented a derivation of the best achiev- 
able performance for a source encoder in terms of the 
average code length. The source-coding theorem for 
the case of prefix-free codes shows that  the best cod- 
ing scheme for a source X has an expected code-length 
bounded between H(X) and H(X) + 1. Two coding 
techniques, the Shannon-Fano technique and the Huff- 
man technique, yield prefix-free codes which have ex- 
pected code-lengths at most one more than the source 
entropy. The Huffman coding technique yields an op- 
timal prefix-free code yielding a lower expected code- 
length compared to a corresponding Shannon-Fano code. 
However, the complete proof of the optimality of Huff- 
man coding [2] is not presented here; Lemma 6.1 only 
presents a necessary condition that an optimal code must 
satisfy. 
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