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Abstract. In this article weakly isotropic quadratic forms over a (formally) real
field are studied. Conditions on the field are given which imply that every weakly
isotropic form over that field has a weakly isotropic subform of small dimension.
Fields over which every quadratic form can be decomposed into an orthogonal sum
of a strongly anisotropic form and a torsion form are characterized in different
ways.
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1. Introduction

The concept of weak isotropy was introduced by Prestel in [15] and studied in the
1970ies, especially by Prestel and Brocker. The main motivation for this concept is
the failure of any kind of local-global principle for isotropy of quadratic forms in a
general situation. It turned out that, over any (formally) real field, weakly isotropic
forms can be characterized, on the one hand in terms of the semi-orderings (cf. [15]),
on the other hand in terms of the real places of the field (cf. [15], [4]). Applications
of weakly isotropic forms occur in real algebra and geometry (cf. [17]).

The present article investigates weakly isotropic forms in view of the question
what kind of subforms and orthogonal decompositions they admit. This leads to
consider in particular those weakly isotropic forms which are minimal in the sense
that they do not contain any proper subform which is weakly isotropic. The ques-
tion of how large the dimension of such a form may be gives rise to a new field
invariant. This invariant will be compared with other invariants and properties of
fields. This work is mainly inspired by ideas and results due to Arason and Pfister,
found in [1].

The reader is assumed to be familiar with the general theory of quadratic forms
over fields as it is presented for example in the books by Lam and Scharlau (cf.
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[9] or [18]). The terms ‘form’ and ‘quadratic form’ shall always refer to a regular,
finite dimensional quadratic form.

Let F always be a field of characteristic different from 2. A quadratic form over
F may be given by a diagonalization (ay, ..., a,) with entries ay, ..., a, € F*
which determines the form up to isometry. We denote by W F the Witt ring of (Witt
equivalence classes of) quadratic forms over F' and by I F the fundamental ideal
in WF, given by the even-dimensional forms. For n > 1 we write /" F for the nth
power (I F)" of the ideal I F.

A quadratic form ¢ over F is said to be weakly isotropic if there is an integer
m > lsuchthatm x ¢ = ¢ L ... L ¢ is isotropic; the lowest such m shall then
be called the weak isotropy index of ¢ and denoted by wi (¢). Note that wi(¢) = 1
means that ¢ is isotropic. We say that ¢ is strongly anisotropic if it is not weakly
isotropic and write wi(¢) = oo in this case.

In order to study weakly isotropic forms one needs also to consider torsion
forms. A quadratic form ¢ over F is torsion if m x ¢ is hyperbolic for a certain
m > 1. The least such m then is a power of 2 (cf. [18, p. 53]) and equal to the order
of the class of ¢ in WF. By Pfister’s local-global principle (cf. [13, Satz 22]), a
quadratic form over F is torsion if and only if its signature at every ordering of F
is zero.

We denote by F* the multiplicative group of the field F and by S_F*? the
subgroup consisting of the non-zero sums of squares in F. The elements of Y F*>
are said to be torally positive. If —1 € Y F %2 then the field F is said to be nonreal,
otherwise F is real. If F is a nonreal field, then every quadratic form over F is
torsion and in particular weakly isotropic. The notion of weak isotropy is therefore
only interesting over real fields.

Let 8 be a binary (i.e. 2-dimensional) quadratic form over F. Writing 8 =
(a, —ad) with a,d € F*, we have that 8 is weakly isotropic if and only if 8 is
torsion, if and only if d € Y F*2. If a quadratic form contains a torsion binary
form, then it is clearly weakly isotropic. The question whether the converse impli-
cation also holds is the starting point for the present investigation. Given a weakly
isotropic quadratic form ¢ over a real field F', does ¢ contain a torsion binary form?

If the answer to this question is positive for every weakly isotropic form over
F, then it follows by an induction argument that every quadratic form over F has
a ‘weak decomposition’ in the following sense. If a quadratic form ¢ over a real
field F can be decomposed into an orthogonal sum

y LB L...1LB

where y is a strongly anisotropic form and gy, ..., B, (r > 0) are torsion binary
forms over F, then this is called a weak decomposition of ¢. Note that the number
r then is uniquely determined by ¢, and so is the isometry class of yr, , over the
pythagorean closure F,y,j, of F.

We say that F has the weak decomposition property or that F is a WD-field, if
either F is nonreal, or if every quadratic form over F has a weak decomposition in
the above sense.

In (4.2) we will characterize real WD-fields as those fields having the Property
C investigated by Arason and Pfister in [1]. Property C means that torsion forms are
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‘strongly balanced’, i.e. decomposable into a sum of binary torsion forms. Easily
accessible examples of WD-fields are number fields and extensions of transcen-
dence degree at most two of real closed fields.

Arason and Pfister have also obtained examples of real fields not satisfying
Property C. In [1, Satz 2 & Satz 3] they show that if k is a real field with two totally
positive elements u, v such that v is not represented by (1, u), then the 3-dimen-
sional form (1, X, —(u + Y24+ vX)) over the field k(X, Y) is weakly isotropic but
contains no torsion binary form. In particular the form (1, X, —(1 4+ Y2 + 3X))
over the field Q(X, Y) gives evidence that this is not a WD-field.

This example suggests to study the following concepts. A weakly isotropic
quadratic form is said to be minimal weakly isotropic (m.w.i.) if none of its proper
subforms is weakly isotropic. Since it is desirable to have an upper bound for the
dimensions of minimal weakly isotropic forms over F, we define

w(F) = sup{dim(¢) | ¢ m.w.i. formover F} € NU {oo}.

We consider w(F) as an invariant of the field F and want to compare it with
other field invariants related to quadratic form theory. For a nonreal field F it
seems natural to agree that w(F) = 1. If F is real, then the hyperbolic plane
H = (1, —1) should be considered as a minimal weakly isotropic form so that we
obtain w(F) > 2 in this case. With these definitions, F' is a WD-field if and only if
w(F) <2.

The Pythagoras number of F is denoted by p(F); this invariant is defined as
the least integer m > 1 such that every totally positive element in F is equal to a
sum of m squares if such an integer exists, otherwise p(F) = oo.

The following section provides some preliminary results, in particular on prod-
ucts of two quadratic forms where one of them is multiplicative or represents only
elements which are sums of squares in the field.

In Section 3 we obtain two upper bounds on the invariant w(F). On the one
hand, w(F) < p(F) holds for any field F which is not real pythagorean (3.3). On
the other hand, if n > 3 is such that " F is torsion-free, then w(F) < on=2 3.5).
The latter also allows us to compare w(F’) with the u-invariant of the field F (3.6).

In Section 4 we show that for m > 3 it suffices that there exists no minimal
weakly isotropic form of dimension m over F in order to have w(F) < m (4.1).
This criterion allows us in (4.2) to characterize WD-fields in a way that extends [1,
Satz 4]. A list of examples of WD-fields is given in (4.3).

In Section 5 we introduce three further field invariants b, b’, and pu encoding
properties of fields related to sums of squares. For a non-pythagorean field F, we
refine the previously shown inequality w(F) < p(F) to a chain of inequalities
w(F) < b(F) < b'(F) < pu(F) < p(F). Furthermore, some open problems are
formulated.

2. Totally positive quadratic forms

For any quadratic form ¢ over F' we denote by Dr(¢) the set of non-zero elements
of F which are represented by ¢. Recall that the form ¢ over F is said to be mul-
tiplicative if either ¢ is hyperbolic or if ¢ is anisotropic and a¢p = ¢ holds for
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any a € Dp(¢). Foray,...,a, € F* the form (1, —a;) ® --- ® (1, —a,) over
F is called an n-fold Pfister form and denoted by ((ay, ..., a,)). Pfister forms are
multiplicative. In particular any Pfister form is either hyperbolic or anisotropic.

Proposition 2.1. Let p be a multiplicative form and ¢ an arbitrary quadratic form
over F.

(a) Assumethatdim(¢) > 2andletay, ...,a, € F* besuchthatep = (ay, ..., a,).
The form p ® ¢ is isotropic over F if and only if there existt], ..., t, € Dr(p)
such that {(ait1, . .., anty) is isotropic. Moreover, the choice of t1, . .., t, can be

made such that t; = 1.

(b) If p @ @ is hyperbolic and  is a subform of ¢ with dim(yr) > % dim(¢), then
p ® V¥ is isotropic.

(c) If dim(@) > 3 and if p ® ¢ is isotropic, then there exists a form © € I*F with
dim(¥) = 2dim(p) — 2 such that ¢ is a subform of 9 and such that p ® ¥ is
hyperbolic.

Proof. If p is hyperbolic then all statements are trivial. We may thus assume that
the multiplicative form p is anisotropic. Statement (a) is well-known (cf. [10, Chap.
1]). Statement (b) is obvious, since p ® ¥ is a subform of p ® ¢ withdim(p ® ) >
% dim(p ® ¢). For the proof of (c), suppose that p ® ¢ is isotropic. Letay, ..., a, €
F>* be such that ¢ = (ay, ..., a,). We assume that n = dim(¢) > 3. By (a), there
existtq,...,t, € Drp(p) such that (a1, ..., a,t,) is isotropic, hence of the form
¥’ L {c, 1, —1) for a certain c € F* and some form v’ over F, where dim(y/') =
(n—3)>0.Lett =11 ---t,. Since p is multiplicative we have t € Dr(p). We put
Y =" L {ct)and ¥ = ¢ L —. Note that dim(#) = 2dim(gp) — 2. Now ¥ is
Witt equivalent to the form a; (1, —#1) L --- L a,(1, —t,) L c(1, —t). Therefore
# € I*F and p ® ¥ is hyperbolic, as p is multiplicative and represents t1, ..., ,
and 7. O

We are now going to apply the proposition to link weakly isotropic forms and
torsion forms with each other.

Corollary 2.2. Let ¢ be a quadratic form over F.

(a) Assume thatdim(¢) > 2andletay, ...,a, € F* besuchthatp = {(ay, ..., a,).
Then ¢ is weakly isotropic over F if and only if there exist ty, ..., t, € 3 . F*?
such that the form (aity, . . ., anty) is isotropic. Moreover, the choice of 1, . . . , t,

can be made such that t; = 1.

(b) If ¢ is torsion (of order 2™, with m > 0) and if ¥ is a subform of ¢ such that
dim(y) > %dim((p), then r is weakly isotropic (of index wi(p) < 2™).

(c) If dim(¢) > 3 and if ¢ is weakly isotropic, then there exists a torsion form
9 € I*F with dim(¢9) = 2dim(¢p) — 2 and such that ¢ is a subform of 9.

Proof. Form > 0 we put p,, = 2™ x (1) = (—1, ..., —1)) and observe that this
form is multiplicative. A form ¢ is weakly isotropic (resp. torsion) if and only if
pm ® @ is isotropic (resp. hyperbolic) for m sufficiently large. Now the statements
follow immediately from the proposition. O
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Remark 2.3. Let T be a preordering of F, that is, a subset of F which is closed
under addition and under multiplication, and which contains all squares in F. A
quadratic form ¢ over F is said to be T -isotropic (resp. T -hyperbolic) if there exist
f,...,tm € T\ {0} such that (t{, ..., t,) ® ¢ is isotropic (resp. hyperbolic). It is
easily observed that all statements of the corollary remain valid if ‘weakly isotropic’
and ‘torsion’ are replaced by ‘T -isotropic’ and ‘T -hyperbolic’, respectively, and if
Y F*?isreplaced by T* = T \ {0} in (a). The proof then uses the fact that a form
¢ over F is T-isotropic (resp. T-hyperbolic) if and only if {(—#1, ..., —tn) @ ¢
is isotropic for some non-zero elements #1, ..., t, € T. For our purposes, we only
need the special case where T = Y F *2U {0}, which is formulated in the corollary.

We say that a form p over F is totally positive if Dr(p) C Y F*2. If we have
equality Dr(p) = Y F*2, then we say that p is positive-universal. A typical exam-
ple of a positive-universal form over a real field F is obviously the form p x (1)
when p = p(F) < oo.

Proposition 2.4. Let p be a positive-universal form over F. Then any quadratic
form ¢ over F with dim(p) > 2 is weakly isotropic if and only if p ® ¢ is isotropic.

Proof. For m sufficiently large p is a subform of m x (1). Therefore, if p ® ¢
isotropic then ¢ is weakly isotropic. To prove the converse, assume that ¢ =

(a1, ..., an) is weakly isotropic. Then there exist #1,...,t, € ZFX2 such that
¢ = (niay, ..., tyay) is isotropic. As the form p is positive-universal it represents
t1,..., 4. Then p ® ¢ contains ¢ as a subform and is thus isotropic as well. m]

Corollary 2.5. Let ¢ be a quadratic form of dimension at least 2 over F. If ¢ is
weakly isotropic, then wi(¢) < p(F).

Proof. We may assume that p(F) < oo. The statement follows by applying the
last proposition to the positive-universal form p(F) x (1). O

The last statement is well-known at least in the case where F is real pythago-
rean, when it shows that weakly isotropic forms over F are already isotropic and
therefore allows us to conclude that the Witt ring W F is torsion-free.

Remark 2.6. We may say that an element ¢ € Y F*? is positive-universal if the
binary form (1, #) has this property, that is, if Dr ({1, t)) = ZF“. If F is non-
real, then —1 is a positive-universal element. Over a real field there may exist no
positive-universal element. However, if " happens to be a field with finitely many
square classes and whose Witt ring W F is of elementary type (cf. [12]), then F has
a positive-universal element; this is easily shown by induction on the construction
of WF starting from basic Witt rings.

3. Weakly isotropic subforms

In this section we give sufficient conditions for a form over F' to contain a weakly
isotropic subform of dimension at most m. In particular, this will give us upper
bounds for the invariant w(F).
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The following proposition will be the crucial ingredient in many of the subse-
quent proofs. It generalizes an observation due to Elman and Lam; in [5, p. 289],
they treated the case where the form p below is a binary form and obtained in this
way their so-called ‘B-decomposition’.

Proposition 3.1. Let ¢ and p be quadratic forms over F where ¢ is anisotropic. If
p ® @ is isotropic, then ¢ contains a subform  such that p ® ¥ is isotropic and
dim(y) < dim(p).

Proof. Suppose that p®¢ is isotropic. We write p = (b1, ..., by) withby, ... b, €
F*, m = dim(p). We consider ¢ as a quadratic map defined on a vector space V.
Since p ® ¢ = b1 L --- L by is isotropic, there exist x1, ...x, € V, not all
equal to zero, such that b1p(x1) + -+ - + by (xy,) = 0. Let W we the subspace of
V spanned by the vectors xi, ..., x,. Hence 1 < dim(W) < m. Let ¥ denote the
restriction of the quadratic map ¢ to this subspace. Since ¢ is anisotropic, so is V.
Hence v is a regular quadratic form over F' and a subform of ¢. We further have
dim(yr) < m = dim(p) and p ® ¥ is isotropic. o

Corollary 3.2. Let ¢ be a quadratic form over F and m > 2. If ¢ is weakly isotro-
pic of index wi(¢) < m, then there exists a subform W of ¢ with dim(yr) < m such
that \r is weakly isotropic of index wi(y¥) < m.

Proof. 1f ¢ is isotropic then we may take for v the hyperbolic plane (1, —1). If ¢
is anisotropic, then we put p = m x (1) and apply the proposition. O

We are ready to give a first bound on w(F).
Theorem 3.3. If F is real pythagorean, then w(F) = 2, otherwise w(F) < p(F).

Proof. If F is nonreal, then w(F) = 1 < p(F). Assume for the rest that F is real.
If p(F) = 1, then F is real pythagorean and (1, —1) is the only minimal weakly
isotropic form over F, in particular w(F) = 2.

Assume now that p(F) > 2. Let ¢ be an arbitrary weakly isotropic form over
F. Then dim(¢) > 2 as F is real and by (2.5), ¢ has index wi(p) < p(F). From
(3.2) we obtain that ¢ contains a weakly isotropic subform ¢ with dim(y) < p(F).
This shows that weakly isotropic forms over F of dimension greater than p(F) are
not minimal. Hence w(F) < p(F). O

In view of the theorem it should be mentioned that there cannot be a bound
on the Pythagoras number in terms of the w-invariant. In fact, in [7] it was shown
that for a uniquely ordered field F the Pythagoras number p(F) can be any given
positive integer and that p(F') = oo is also possible. On the other hand, it is obvious
that w(F) = 2 if F is uniquely ordered.

We now obtain a criterion for the existence of weakly isotropic subforms of
dimension bounded by a given number.

Proposition 3.4. Let ¢ be an anisotropic quadratic form over F and m > 2. The
following conditions are equivalent:
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(1) ¢ contains a weakly isotropic subform  of dimension at most m.
(2) There exists an m-dimensional totally positive form ¥ over F such that ¥ @ ¢
is isotropic.

Proof. Assume that ¢ has a weakly isotropic subform 1 with dim(y) < m. Then
taking T = r x (1) for r large enough, we have that t ® ¢ is isotropic. By (3.1),
7 then contains a subform ' with dim(#%') < dim(y) < m such that %' ® ¥ is
isotropic. Then ¢ is totally positive and 9’ ® ¢ is isotropic. We may further replace
?' by =9 L (1,..., 1) such that dim(¢%) = m. This shows that (1) implies (2).

To prove the converse, assume now that ¥ is a totally positive form over F of
dimension m and such that ¥ ® ¢ is isotropic. Then (3.1) says that there exists a
subform 1 of ¢ such that dim(y) < dim(¥)) = m and such that 9 ® ¥ is isotropic.
Since ¥ is totally positive, it follows that ¥ is weakly isotropic. O

Theorem 3.5. Assume that n > 2 is such that I" F is torsion-free. Then wi(p) <
2"=2 for any weakly isotropic form ¢ of dimension at least 3 over F. In particular
w(F) < 2"2, provided that n > 3.

Proof. Let ¢ be a quadratic form over F' with dim(¢) > 3. Suppose that ¢ is weakly
isotropic. By (2.2, c) there exists a torsion form ©# € I?F which contains ¢ and
with dim(9) = 2dim(¢) — 2. Since I"F is torsion-free, 2"~2 x ¥ is hyperbolic.
Therefore ¢ has index wi(¢) < 2”72, by (2.2, b). If further n > 3, then 2" "2 > 2
and (3.2) yields that ¢ contains a weakly isotropic subform of dimension at most
2n=2, O

Let u(F) denote the u-invariant of F as introduced in [5], that is
u(F) = sup {dim(p) | ¢ anisotropic torsion form over F'} .

Corollary 3.6. Assume that F is a real field with 4 < u(F) < oo and letm > 2
be the integer such that 2" < u(F) < 2"™%!. Then w(F) < 2"~ in particular
w(F) < Ju(F).

Proof. If u(F) < 2m+1 then I"T1F is torsion-free, thus the statement follows
from (3.5). |

To complement these results we give an example showing that the value of the
w-invariant of a field does neither give a bound on the u-invariant nor imply that a
certain power of the fundamental ideal in the Witt ring is torsion-free.

Example 3.7. Let n € N. It is well-known that the field k = R(#)) ... (%)) is
hereditarily pythagorean (cf. [3, p. 108]), and this fact can be reformulated by say-
ing that for F' = k(X) one has p(F) = 2 (cf. [3, p. 95]). Hence, with (3.3) we obtain
that w(F) = 2. On the other hand, (1+ X2, ¢, ...,1,) is an anisotropic torsion
form in /"1 F. Therefore 1" F is not torsion-free and u(F) > 2"*!. Using that
F(v/—1)is a C,41-field (cf. [6]), it is not difficult to show that the smallest power
of I F which is torsion-free is I" T2 F and that u(F) = u(F(v/—=1)) = 2"+ (cf. [2,
3.5 Proposition & 3.6 Remarks]).

Moreover, if for n € N we write F,, for the field F constructed above with
respect to n, then L = |,y Fy is a real field with w(L) = p(L) = 2 and
u(L) = oo and such that /™ L is not torsion-free for any m € N.
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4. Fields with weak decomposition property

The following statement gives a criterion to decide whether the invariant w(F) is
smaller than a given number.

Theorem 4.1. Assume that m > 3 is such that there exists no minimal weakly
isotropic form of dimension m over F. Then w(F) < m.

Proof. In order to keep the language simple we shall say that a weakly isotropic
form over F is ‘small’ if its dimension is strictly smaller than m. The claim is that
every weakly isotropic form over F contains a small weakly isotropic form. We
may assume that F is real, so that any weakly isotropic form over F' has dimension
at least 2.

Since m > 3, any isotropic form contains a small weakly isotropic form, namely
the hyperbolic plane. Using (2.1, a) an arbitrary weakly isotropic form over F can
be converted in a finite number of steps into an isotropic form by changing at each
step only one coefficient by multiplication with an element of ) F *2 Ttis therefore
sufficient to show that the property of having a small weakly isotropic subform is
invariant under this operation.

Letgp = ¢ L (a) witha € F* and a form ¢ over F and let ¢ = ¢ L {(ar)
with # € Y F*2. Assuming that ¢ has a small weakly isotropic subform, we want
to show that the same is true for ¢. Since ¢ = v L (a) has a small weakly iso-
tropic subform we conclude that ¥ has a subform y with dim(y) < m such that
y L (a) is weakly isotropic. Then ¢+ = y L (at) is also weakly isotropic, by (2.1,
a). Moreover, ¥ is contained in ¢ = v L (at) and dim(¢%) < m. By the hypothesis
on F and m, if dim(¢}) = m then the weakly isotropic form ¢ is not minimal. So
in any case ¢ has a small weakly isotropic subform, which then is also a subform
of ¢. O

From the theorem we obtain an extension and a different proof of [1, Satz 4],
where the implication (4) = (3) is stated.

Corollary 4.2. For a real field F, the following conditions are equivalent:

(1) w(F) =2.
(2) Every form ¢ over F can be decomposedintop =y L 1 L --- L B, wherey
is a strongly anisotropic form and By, . .., B, (r > 0) are torsion binary forms.

(3) Every torsion form ¢ over F can be decomposed into an orthogonal sum of
torsion binary forms.

(4) Every torsion 2-fold Pfister form over F contains a torsion binary form.

(5) Every 3-dimensional weakly isotropic form over F contains a torsion binary
form.

(6) Every F-quaternion division algebra which is split over every real closure of
F contains a totally positive quadratic extension of F.

Proof. If w(F) = 2, then any weakly isotropic form over F' contains a weakly iso-
tropic form of dimension 2, hence a torsion binary form. By induction on the dimen-
sion it follows that (1) implies (2). The implications (2) = (3) = (4) are obvious.
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The equivalence of (4) and (5) follows from the facts, that any 3-dimensional form
@ is up to a scalar factor a subform of a unique 2-fold Pfister form m, that ¢ is weakly
isotropic if and only if 7 is torsion, and that ¢ contains a torsion binary form if and
only if 7 does. The equivalence of (4) and (6) follows from Pfister’s local-global
principle together with the one-to-one correspondence between F'-quaternion (divi-
sion) algebras and (anisotropic) 2-fold Pfister forms. Finally, (5) implies (1) by the
above theorem. O

In view of the last corollary, especially of condition (2), we say that a real field
F has the weak decomposition property or is a WD-field, if w(F) < 2.

Examples 4.3. (1) If I 3 F is torsion-free, then F is a WD-field, by (3.5). This shows
that any number field as well as any extension of transcendence degree at most
two of a real closed field has the weak decomposition property.

(2) If F is an ED-field (cf. [15]), then it is (obviously) a WD-field.

(3) By [1, Satz 5], if F is the rational function field k(X) over a number field %,
then F is a WD-field.

@) If p(F) <2, then F is a WD-field. In particular the rational function field F =
k(X) over any hereditarily pythagorean field k is a WD-field, since p(F) = 2
(cf. [3, p- 95D).

Conjecture 4.4. Let k be a hereditarily pythagorean field. If F | k is a field extension
of transcendence degree one, then F is a WD-field.

In view of condition (5) in the corollary above we want to give a characterization
of minimality for weakly isotropic forms in dimension three.

Note that in order to study questions about (weak) isotropy we need to know
quadratic forms only up to a scalar factor. In particular, when dealing with odd-
dimensional forms we may assume them to have determinant equal to 1.

Proposition 4.5. Let ¢ be a 3-dimensional quadratic form of trivial determinant
over F. Let V denote the underlying vector space of ¢.

(a) The form ¢ is weakly isotropic if and only if it is totally indefinite, if and only if
for any ordering P of F there exists a non-zero vector v € V such that ¢ (v) is
negative at P.

(b) If ¢ is weakly isotropic, then ¢ is minimal weakly isotropic if and only if for
any non-zero vector v € V there exists an ordering P of F such that ¢(v) is
positive at P.

Proof. The first equivalence in (a) is well-known and can be checked, for example,
by applying Pfister’s local-global principle to the form (1) L ¢ (which has signa-
ture O or 4 at any ordering). The second equivalence in (a) follows from the fact
that the 3-dimensional form ¢ cannot be negative definite at any ordering of F, as
its determinant is totally positive.

Assume now that ¢ is weakly isotropic but not minimal. Then it contains a
binary subform B which is weakly isotropic and therefore of the form (a, —ad)
wherea € F* andd € Y F*?. Comparing determinants we obtainp = g L (—d).
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Hence there exists v € V such that ¢(v) = —d, which obviously is negative at
every ordering of F. This shows one implication claimed in (b).

To prove the converse implication, assume that ¢ is weakly isotropic and that
there exists v € V for which ¢(v) is negative at every ordering of F. By the Ar-
tin-Schreier Theorem d = —¢@(v) is a sum of squares in F. Decomposing ¢ into
(—d) L B and comparing determinants we find a torsion binary form § contained
in ¢. Hence ¢ is not minimal. O

5. Further results and open problems

We are going to define three more field invariants. This will allow us to refine the
earlier observation that w(F) < p(F) holds when F is not real pythagorean.

We denote by b(F) (resp. by b'(F)) the least m € N U {oo} such that, given
any set S C ZFX2 with |S| = m + 1 (resp. with |S| < 00), there exists an
m-dimensional totally positive form p over F' which represents all elements of S.

Remarks 5.1. (1) For any integer m > b(F) and any S C ZFXZ with |S| =m+1
there exists an m-dimensional totally positive form p over F which represents
all elements of S. This is readily shown by induction on m. In fact, form > b(F),
writing § = S’ U {a} where |S’| = m the induction hypothesis yields that there
is a totally positive form p’ of dimension m — 1 over F representing the elements
of §’, and then one can take p = p’ L (a).

(2) For m € N, one has m > b(F) if and only if for any choice of m elements
fly ooty € Y F %2 there exists an m-dimensional totally positive form p
over F representing 1 and 71, ..., t,. Indeed, given a set of m + 1 elements
{ag, ...,am} C Y F %2 if there is an m-dimensional totally positive form p
over F representing 1 and the products apa; for I < i < m, then agp is also
totally positive and represents ag, . . . , dp-

This shows in particular that Property B considered in [1] for a real field F
corresponds to the condition that b(F) < 2.

Let pu(F) denote the least integer m > 1 such that there exists a positive-
universal form of dimension m over F; if there is no positive-universal form over
F, then let pu(F) = oo.

Proposition 5.2. For any F one has the inequalities
b(F) < b'(F) < pu(F) < p(F).

Moreover, if any of these numbers is equal to 1, then F is pythagorean and all four
numbers are equal to 1.

Proof. These facts are obvious from the definitions. O

Examples 5.3. (1) If F is a number field, then b(F) = b'(F) = 2. This can be
shown by an approximation argument, as it was explained to the author by
David Leep.

(2) If F is a real field with finite square class group and such that W F' is of ele-
mentary type, then in view of (2.6) we obtain b(F) = b'(F) = pu(F) < 2.By
the next proposition this implies that w(F) = 2.
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We obtain the following refinement of (3.3).
Proposition 5.4. If F is not real pythagorean then w(F) < b(F).

Proof. By (4.1), it suffices to show that there exists no minimal weakly isotropic
form of dimensionn = b(F) + 1. Letg = (ay, ..., a,) be a weakly isotropic form
over F of dimension n. By (2.1, a), there exist elements 71, ...,t, € ZFXZ such
that ¢ = {(a\11, ..., ayt,) is isotropic. By the definition of b(F), there exists an
(n — 1)-dimensional totally positive form p over F representing all the elements
t,..., 1. Now, p ® ¢ contains ¢ and is therefore isotropic. Hence by (3.1), ¢
contains a weakly isotropic subform of dimension n — 1. O

Proposition 5.5. Assume that F carries a 2-henselian discrete valuation v and let
Fy be its residue field. Then w(F) = w(Fy).

Proof. Let t be a uniformizer for v. Let ¢ be a quadratic form over F. We may
write ¢ = ¢o L t¢ where g and ¢ have diagonalizations whose entries are units
with respect to v. It is well-known that ¢ is isotropic (resp. weakly isotropic) over
F if and only if at least one of the residue forms @ and 7 is isotropic (resp. weakly
isotropic) over F),. Therefore ¢ is a minimal weakly isotropic form over F if and
only if one of the residue forms is trivial and the other one is a minimal weakly
isotropic form over F,. This implies the statement. O

Remark 5.6. The analogous statement holds for each of the invariants b, b’, pu
introduced here, as well as for the Pythagoras number. That is, under the hypothe-
sis of the proposition we have b(F) = b(F,), b'(F) = b'(F,), pu(F) = pu(Fy,),
and p(F) = p(Fy). This follows just from the one-to-one correspondence between
the square classes of totally positive elements in F and in F,. Note that, in con-
trast to these invariants, the w-invariant is not determined only by the interaction
between the totally positive elements of the given field.

By the last proposition, there can be no lower bound on the w-invariant in
terms of the stability index. The latter field invariant was introduced in [4]. Fields
of stability index O or 1 are SAP-fields (see [16] or [17] for this notion).

Question 5.7. Is there an upper bound on w(F) when F is a SAP-field?

Recall that w(F) < 2 if F is an ED-field. This fact motivates to ask:
Question 5.8. What values can b(F) take when F is an ED-field?

We have not seen examples of minimal weakly isotropic forms of dimension
greater than 3 and thus have no evidence so far that the w-invariant can have values

larger than 3. Needless to say, the author expects the following.

Conjecture 5.9. Given any numberm > 2, there exists a real field F with a minimal
weakly isotropic form of dimension m.



102 K. J. Becher

Acknowledgements. The author expresses his gratitude to David Leep and to Jan Van
Geel for many discussions, questions, answers, and suggestions. He further gratefully
acknowledges the financial support provided by the European RTN Network ‘Algebraic
K -Theory, Linear Algebraic Groups, and Related Structures’ (HPRN-CT-2000-00287)
and by the Swiss National Science Foundation (Grant No. 200020-100229/1). Finally, the
author thanks the referee and Thomas Unger for very valuable remarks on a preliminary
version of this paper.

References

1. Arason, J.K., Pfister, A.: Zur Theorie der quadratischen Formen tiber formalreellen
Korpern. Math. Z. 153, 289-296 (1977)
2. Becher, K.J.: On fields of u-invariant 4. Arch. Math. (Basel) to appear
3. Becker, E.: Hereditarily-Pythagorean fields and orderings of higher level. Monografias
de Matematica 29. Instituto de Matematica Pura e Aplicada, Rio de Janeiro, 1978
4. Brocker, L.: Zur Theorie der quadratischen Formen iiber formal reellen Korpern.
Math. Ann. 210, 233-256 (1974)
5. Elman, R., Lam, T.Y.: Quadratic forms and the u-invariant I. Math. Z. 131, 283-304
(1973)
6. Greenberg, M.J.: Lectures on forms in many variables. W. A. Benjamin, Inc., New
York, 1969
7. Hoffmann, D.W.: Pythagoras numbers of fields. J. Amer. Math. Soc. 12, 839-848
(1999)
8. Hoffmann, D.W.: Isotropy of quadratic forms and field invariants. Cont. Math. 272,
73-101 (2000)
9. Lam, T.Y.: The algebraic theory of quadratic forms. W. A. Benjamin, Inc., Reading,
Mass., 1973
10. Lam, T.Y.: Orderings, valuations, and quadratic forms. CBMS Regional Conf. Ser. in
Math. 52, American Mathematical Society, Providence, R.I., 1983
11. Marshall, M.: Some local-global principles for formally real fields. Canad. J. Math.
29, 606-614 (1977)
12. Marshall, M.: The elementary type conjecture in quadratic form theory. Cont. Math.
344, 275-293 (2004)
13. Pfister, A.: Quadratische Formen in beliebigen Korpern. Invent. Math. 1, 116-132
(1966)
14. Pfister, A.: Quadratic Forms with Applications to Algebraic Geometry and Topology.
London Math. Soc. Lect. Notes 217, Cambridge University Press, Cambridge, 1995
15. Prestel, A.: Quadratische Semi-Ordnungen und quadratische Formen. Math. Z. 133,
319-342 (1973)
16. Prestel, A.: Lectures on Formally Real Fields. Lecture Notes in Mathematics 1093,
Springer, Berlin, 1984
17. Prestel, A., Delzell, Ch.: Positive Polynomials. Springer Monographs in Mathematics.
Springer, Berlin, 2001
18. Scharlau, W.: Quadratic and Hermitian forms. Grundlehren der Mathematischen Wis-
senschaften 270, Springer, Berlin, 1985



