
Int J Comput Vis (2009) 81: 155–166
DOI 10.1007/s11263-008-0152-6

EPnP: An Accurate O(n) Solution to the PnP Problem

Vincent Lepetit · Francesc Moreno-Noguer · Pascal Fua

Received: 15 April 2008 / Accepted: 25 June 2008 / Published online: 19 July 2008
© Springer Science+Business Media, LLC 2008

Abstract We propose a non-iterative solution to the PnP
problem—the estimation of the pose of a calibrated camera
from n 3D-to-2D point correspondences—whose computa-
tional complexity grows linearly with n. This is in contrast
to state-of-the-art methods that are O(n5) or even O(n8),
without being more accurate. Our method is applicable for
all n ≥ 4 and handles properly both planar and non-planar
configurations. Our central idea is to express the n 3D points
as a weighted sum of four virtual control points. The prob-
lem then reduces to estimating the coordinates of these con-
trol points in the camera referential, which can be done in
O(n) time by expressing these coordinates as weighted sum
of the eigenvectors of a 12 × 12 matrix and solving a small
constant number of quadratic equations to pick the right
weights. Furthermore, if maximal precision is required, the
output of the closed-form solution can be used to initial-
ize a Gauss-Newton scheme, which improves accuracy with
negligible amount of additional time. The advantages of our
method are demonstrated by thorough testing on both syn-
thetic and real-data.1

Keywords Pose estimation · Perspective-n-Point ·
Absolute orientation

1The Matlab and C++ implementations of the algorithm presented in
this paper are available online at http://cvlab.epfl.ch/software/EPnP/.
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1 Introduction

The aim of the Perspective-n-Point problem—PnP in short—
is to determine the position and orientation of a camera
given its intrinsic parameters and a set of n correspondences
between 3D points and their 2D projections. It has many
applications in Computer Vision, Robotics, Augmented Re-
ality and has received much attention in both the Photogram-
metry (McGlove et al. 2004) and Computer Vision (Hartley
and Zisserman 2000) communities. In particular, applica-
tions such as feature point-based camera tracking (Skrypnyk
and Lowe 2004; Lepetit and Fua 2006) require dealing with
hundreds of noisy feature points in real-time, which requires
computationally efficient methods.

In this paper, we introduce a non-iterative solution with
better accuracy and much lower computational complexity
than non-iterative state-of-the-art methods, and much faster
than iterative ones with little loss of accuracy. Our approach
is O(n) for n ≥ 4 whereas all other methods we know of are
either specialized for small fixed values of n, very sensitive
to noise, or much slower. The specialized methods include
those designed to solve the P3P problem (Gao et al. 2003;
Quan and Lan 1999). Among those that handle arbitrary val-
ues of n (Fischler and Bolles 1981; Dhome et al. 1989;
Horaud et al. 1989; Haralick et al. 1991; Quan and Lan
1999; Triggs 1999; Fiore 2001; Ansar and Daniilidis 2003;
Gao et al. 2003), the lowest-complexity one (Fiore 2001)
is O(n2) but has been shown to be unstable for noisy 2D
locations (Ansar and Daniilidis 2003). This is currently ad-
dressed by algorithms that are O(n5) (Quan and Lan 1999)
or even O(n8) (Ansar and Daniilidis 2003) for better accu-
racy whereas our O(n) approach achieves even better accu-
racy and reduced sensitivity to noise, as depicted by Fig. 1
in the n = 6 case and demonstrated for larger values of n in
the result section.

http://cvlab.epfl.ch/software/EPnP/
mailto:fmorenoguer@gmail.com
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Fig. 1 Comparing the accuracy of our method against state-of-the-art
ones. We use the boxplot representation: The boxes denote the first
and third quartiles of the errors, the lines extending from each end
of the box depict the statistical extent of the data, and the crosses
indicate observations that fall out of it. Top row: Accuracy of non-
iterative methods as a function of noise when using n = 6 3D-to-2D
correspondences: AD is the method of Ansar and Daniilidis (2003);

Clamped DLT is the DLT algorithm after clamping the internal pa-
rameters with their known values; and EPnP is our method. Bottom
row: Accuracy of iterative methods using n = 6: LHM is Lu’s et al.
method (Lu et al. 2000) initialized with a weak perspective assump-
tion; EPnP+LHM is Lu’s et al. algorithm initialized with the output of
our algorithm; EPnP + GN, our method followed by a Gauss-Newton
optimization

A natural alternative to non-iterative approaches are it-
erative ones (Lowe 1991; DeMenthon and Davis 1995;
Horaud et al. 1997; Kumar and Hanson 1994; Lu et al. 2000)
that rely on minimizing an appropriate criterion. They can
deal with arbitrary numbers of correspondences and achieve
excellent precision when they converge properly. In par-
ticular, Lu et al. (2000) introduced a very accurate algo-
rithm, which is fast in comparison with other iterative ones
but slow compared to non-iterative methods. As shown in
Figs. 1 and 2, our method achieves an accuracy that is al-
most as good, and is much faster and without requiring an
initial estimate. This is significant because iterative methods
are prone to failure if poorly initialized. For instance, Lu’s
et al. approach relies on an initial estimation of the cam-
era pose based on a weak-perspective assumption, which
can lead to instabilities when the assumption is not satis-
fied. This happens when the points of the object are pro-
jected onto a small region on the side of the image and our
solution performs more robustly under these circumstances.

Furthermore, if maximal precision is required our output can
be used to initialize Lu’s et al., yielding both higher stabil-
ity and faster convergence. Similarly, we can run a Gauss-
Newton scheme that improves our closed-form solution to
the point where it is as accurate as the one produced by Lu’s
et al. method when it is initialized by our method. Remark-
ably, this can be done with only very little extra computa-
tion, which means that even with this extra step, our method
remains much faster. In fact, the optimization is performed
in constant time, and hence, the overall solution still remains
O(n).

Our central idea is to write the coordinates of the n 3D
points as a weighted sum of four virtual control points. This
reduces the problem to estimating the coordinates of the
control points in the camera referential, which can be done
in O(n) time by expressing these coordinates as weighted
sum of the eigenvectors of a 12 × 12 matrix and solving
a small constant number of quadratic equations to pick the
right weights. Our approach also extends to planar config-
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Fig. 2 Comparing computation times of our method against the
state-of-the-art ones introduced in Fig. 1. The computation times of
a MATLAB implementation on a standard PC, are plotted as a func-
tion of the number of correspondences. Our method is both more ac-
curate—see Fig. 1—and faster than the other non-iterative ones, espe-
cially for large amounts of noise, and is almost as accurate as the iter-
ative LHM. Furthermore, if maximal precision is required, the output
of our algorithm can be used to initialize a Gauss-Newton optimization
procedure which requires a negligible amount of additional time

urations, which cause problems for some methods as dis-
cussed in Oberkampf et al. (1996), Schweighofer and Pinz
(2006), by using three control points instead of four.

In the remainder of the paper, we first discuss related
work focusing on accuracy and computational complexity.
We then introduce our new formulation and derive our sys-
tem of linear and quadratic equations. Finally, we compare
our method against the state-of-the-art ones using synthetic
data and demonstrate it using real data. This paper is an
expanded version of that in Moreno-Noguer et al. (2007),
where a final Gauss-Newton optimization is added to the
original algorithm. In Sect. 4 we show that optimizing over
a reduced number of parameters, the accuracy of the closed-
solution proposed in Moreno-Noguer et al. (2007) is con-
siderably improved with almost no additional computational
cost.

2 Related Work

There is an immense body of literature on pose estimation
from point correspondences and, here, we focus on non-
iterative approaches since our method falls in this category.
In addition, we will also introduce the Lu et al. (2000) it-
erative method, which yields very good results and against
which we compare our own approach.

Most of the non-iterative approaches, if not all of them,
proceed by first estimating the points 3D positions in the
camera coordinate system by solving for the points depths.
It is then easy to retrieve the camera position and orientation
as the Euclidean motion that aligns these positions on the

given coordinates in the world coordinate system (Horn et
al. 1988; Arun et al. 1987; Umeyama 1991).

The P3P case has been extensively studied in the liter-
ature, and many closed form solutions have been proposed
such as Dhome et al. (1989), Fischler and Bolles (1981),
Gao et al. (2003), Haralick et al. (1991), Quan and Lan
(1999). It typically involves solving for the roots of an eight-
degree polynomial with only even terms, yielding up to four
solutions in general, so that a fourth point is needed for
disambiguation. Fisher and Bolles (1981) reduced the P4P
problem to the P3P one by taking subsets of three points
and checking consistency. Similarly, Horaud et al. (1989)
reduced the P4P to a 3-line problem. For the 4 and 5 points
problem, Triggs (1999) derived a system of quadratic poly-
nomials, which solves using multiresultant theory. However,
as pointed out in Ansar and Daniilidis (2003), this does not
perform well for larger number of points.

Even if four correspondences are sufficient in general
to estimate the pose, it is nonetheless desirable to consider
larger point sets to introduce redundancy and reduce the sen-
sitivity to noise. To do so, Quan and Lan (1999) consider
triplets of points and for each one derive four-degree poly-
nomials in the unknown point depths. The coefficients of
these polynomials are then arranged in a (n−1)(n−2)

2 × 5 ma-
trix and singular value decomposition (SVD) is used to es-
timate the unknown depths. This method is repeated for all
of the n points and therefore involves O(n5) operations.2 It
should be noted that, even if it is not done in Quan and Lan
(1999), this complexity could be reduced to O(n3) by apply-
ing the same trick as we do when performing the SVD, but
even then, it would remain slower than our method. Ansar
and Daniilidis (2003) derive a set of quadratic equations
arranged in a n(n−1)

2 × (
n(n+1)

2 + 1) linear system, which,
as formulated in the paper, requires O(n8) operations to be
solved. They show their approach performs better than Quan
and Lan (1999).

The complexity of the previous two approaches stems
from the fact that quadratic terms are introduced from the
inter-point distances constraints. The linearization of these
equations produces additional parameters, which increase
the complexity of the system. Fiore’s method (Fiore 2001)
avoids the need for these constraints: He initially forms a
set of linear equations from which the world to camera rota-
tion and translation parameters are eliminated, allowing the
direct recovery of the point depths without considering the
inter-point distances. This procedure allows the estimation
of the camera pose in O(n2) operations, which makes real-
time performance possible for large n. Unfortunately, ignor-
ing nonlinear constraints produces poor results in the pres-
ence of noise (Ansar and Daniilidis 2003).

2Following Golub and Van Loan (1996), we consider that the SVD
for a m × n matrix can be computed by a O(4m2n + 8mn2 + 9n3)

algorithm.
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By contrast, our method is able to consider nonlinear con-
straints but requires O(n) operations only. Furthermore, in
our synthetic experiments, it yields results that are more ac-
curate than those of Ansar and Daniilidis (2003).

It is also worth mentioning that for large values of n

one could use the Direct Linear Transformation (DLT) algo-
rithm (Abdel-Aziz and Karara 1971; Hartley and Zisserman
2000). However, it ignores the intrinsic camera parameters
we assume to be known, and therefore generally leads to less
stable pose estimate. A way to exploit our knowledge of the
intrinsic parameters is to clamp the retrieved values to the
known ones, but the accuracy still remains low.

Finally, among iterative methods, Lu’s et al. (2000) is
one of the fastest and most accurate. It minimizes an er-
ror expressed in 3D space, unlike many earlier methods that
attempt to minimize reprojection residuals. The main diffi-
culty is to impose the orthonormality of the rotation matrix.
It is done by optimizing alternatively on the translation vec-
tor and the rotation matrix. In practice, the algorithm tends
to converge fast but can get stuck in an inappropriate local
minimum if incorrectly initialized. Our experiments show
our closed-form solution is slightly less accurate than Lu’s
et al. when it find the correct minimum, but also that it is
faster and more stable. Accuracies become similar when af-
ter the closed-form solution we apply a Gauss-Newton opti-
mization, with almost negligible computational cost.

3 Our Approach to the PnP Problem

Let us assume we are given a set of n reference points whose
3D coordinates are known in the world coordinate system
and whose 2D image projections are also known. As most
of the proposed solutions to the PnP Problem, we aim at
retrieving their coordinates in the camera coordinate system.
It is then easy and standard to retrieve the orientation and
translation as the Euclidean motion that aligns both sets of
coordinates (Horn et al. 1988; Arun et al. 1987; Umeyama
1991).

Most existing approaches attempt to solve for the depths
of the reference points in the camera coordinate system. By
contrast, we express their coordinates as a weighted sum of
virtual control points. We need 4 non-coplanar such con-
trol points for general configurations, and only 3 for pla-
nar configurations. Given this formulation, the coordinates
of the control points in the camera coordinate system be-
come the unknown of our problem. For large n’s, this is a
much smaller number of unknowns that the n depth values
that traditional approaches have to deal with and is key to
our efficient implementation.

The solution of our problem can be expressed as a vector
that lies in the kernel of a matrix of size 2n × 12 or 2n × 9.
We denote this matrix as M and can be easily computed

from the 3D world coordinates of the reference points and
their 2D image projections. More precisely, it is a weighted
sum of the null eigenvectors of M. Given that the correct
linear combination is the one that yields 3D camera coordi-
nates for the control points that preserve their distances, we
can find the appropriate weights by solving small systems
of quadratic equations, which can be done at a negligible
computational cost. In fact, for n sufficiently large—about
15 in our implementation—the most expensive part of this
whole computation is that of the matrix M�M, which grows
linearly with n.

In the remainder of this section, we first discuss our pa-
rameterization in terms of control points in the generic non-
planar case. We then derive the matrix M in whose kernel
the solution must lie and introduce the quadratic constraints
required to find the proper combination of eigenvectors. Fi-
nally, we show that this approach also applies to the planar
case.

3.1 Parameterization in the General Case

Let the reference points, that is, the n points whose 3D co-
ordinates are known in the world coordinate system, be

pi , i = 1, . . . , n.

Similarly, let the 4 control points we use to express their
world coordinates be

cj , j = 1, . . . ,4.

When necessary, we will specify that the point coordi-
nates are expressed in the world coordinate system by using
the w superscript, and in the camera coordinate system by
using the c superscript. We express each reference point as
a weighted sum of the control points

pw
i =

4∑

j=1

αij cw
j , with

4∑

j=1

αij = 1, (1)

where the αij are homogeneous barycentric coordinates.
They are uniquely defined and can easily be estimated. The
same relation holds in the camera coordinate system and we
can also write

pc
i =

4∑

j=1

αij cc
j . (2)

In theory the control points can be chosen arbitrarily.
However, in practice, we have found that the stability of
our method is increased by taking the centroid of the ref-
erence points as one, and to select the rest in such a way
that they form a basis aligned with the principal directions
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Fig. 3 Left: Singular values of
M�M for different focal
lengths. Each curve averages
100 synthetic trials. Right:
Zooming in on the smallest
eigenvalues. For small focal
lengths, the camera is
perspective and only one
eigenvalue is zero, which
reflects the scale ambiguity. As
the focal length increases and
the camera becomes
orthographic, all four smallest
eigenvalues approach zero

of the data. This makes sense because it amounts to con-
ditioning the linear system of equations that are introduced
below by normalizing the point coordinates in a way that is
very similar to the one recommended for the classic DLT
algorithm (Hartley and Zisserman 2000).

3.2 The Solution as Weighted Sum of Eigenvectors

We now derive the matrix M in whose kernel the solution
must lie given that the 2D projections of the reference points
are known. Let A be the camera internal calibration matrix
and {ui}i=1,...,n the 2D projections of the {pi}i=1,...,n refer-
ence points. We have

∀i, wi

[
ui

1

]
= Apc

i = A
4∑

j=1

αij cc
j , (3)

where the wi are scalar projective parameters. We now ex-
pand this expression by considering the specific 3D coordi-
nates [xc

j , y
c
j , z

c
j ]� of each cc

j control point, the 2D coordi-

nates [ui, vi]� of the ui projections, and the fu, fv focal
length coefficients and the (uc, vc) principal point that ap-
pear in the A matrix. Equation 3 then becomes

∀i, wi

⎡

⎣
ui

vi

1

⎤

⎦ =
⎡

⎣
fu 0 uc

0 fv vc

0 0 1

⎤

⎦
4∑

j=1

αij

⎡

⎢⎣
xc
j

yc
j

zc
j

⎤

⎥⎦ . (4)

The unknown parameters of this linear system are the
12 control point coordinates {(xc

j , y
c
j , z

c
j )}j=1,...,4 and the n

projective parameters {wi}i=1,...,n. The last row of (4) im-
plies that wi = ∑4

j=1 αij z
c
j . Substituting this expression in

the first two rows yields two linear equations for each refer-
ence point:

4∑

j=1

αijfux
c
j + αij (uc − ui)z

c
j = 0, (5)

4∑

j=1

αijfvy
c
j + αij (vc − vi)z

c
j = 0. (6)

Note that the wi projective parameter does not appear
anymore in those equations. Hence, by concatenating them
for all n reference points, we generate a linear system of the
form

Mx = 0, (7)

where x = [cc
1
�, cc

2
�, cc

3
�, cc

4
�]� is a 12-vector made of the

unknowns, and M is a 2n × 12 matrix, generated by arrang-
ing the coefficients of (5) and (6) for each reference point.
Unlike in the case of DLT, we do not have to normalize the
2D projections since (5) and (6) do not involve the image
referential system.

The solution therefore belongs to the null space, or ker-
nel, of M, and can be expressed as

x =
N∑

i=1

βivi (8)

where the set vi are the columns of the right-singular vectors
of M corresponding to the N null singular values of M. They
can be found efficiently as the null eigenvectors of matrix
M�M, which is of small constant (12 × 12) size. Comput-
ing the product M�M has O(n) complexity, and is the most
time consuming step in our method when n is sufficiently
large, about 15 in our implementation.

3.3 Choosing the Right Linear Combination

Given that the solution can be expressed as a linear combi-
nation of the null eigenvectors of M�M, finding it amounts
to computing the appropriate values for the {βi}i=1,...,N co-
efficients of (8). Note that this approach applies even when
the system of (7) is under-constrained, for example because
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Fig. 4 Effective number N of null singular values in M�M. Each ver-
tical bar represents the distributions of N for a total of 300 experiments.
On the left, we plot the results for a fixed image noise of σ = 10 pix-

els and an increasing number of reference points, and the results on
the right correspond to a fixed n = 6 number of reference points and
increasing level of noise in the 2D projections

the number of input correspondences is (4) or (5), yielding
only (8) or (10) equations, which is less than the number of
unknowns.

In theory, given perfect data from at least six reference
points imaged by a perspective camera, the dimension N

of the null-space of M�M should be exactly one because
of the scale ambiguity. If the camera becomes orthographic
instead of perspective, the dimension of the null space in-
creases to four because changing the depths of the four
control points would have no influence on where the refer-
ence points project. Figure 3 illustrates this behavior: For
small focal lengths, M�M has only one zero eigenvalue.
However, as the focal length increases and the camera be-
comes closer to being orthographic, all four smallest eigen-
values approach zero. Furthermore, if the correspondences
are noisy, the smallest of them will be tiny but not strictly
equal to zero.

Therefore, we consider that the effective dimension N of
the null space of M�M can vary from 1 to 4 depending on
the configuration of the reference points, the focal length of
the camera, and the amount of noise, as shown in Fig. 4.
In this section, we show that the fact that the distances be-
tween control points must be preserved can be expressed in
terms of a small number of quadratic equations, which can
be efficiently solved to compute {βi}i=1,...,N for N = 1, 2, 3
and 4.

In practice, instead of trying to pick a value of N among
the set {1,2,3,4}, which would be error-prone if several
eigenvalues had similar magnitudes, we compute solutions
for all four values of N and keep the one that yields the
smallest reprojection error

res =
∑

i

dist2
(

A[R|t]
[

pw
i

1

]
,ui

)
, (9)

where dist(m̃,n) is the 2D distance between point m ex-
pressed in homogeneous coordinates, and point n. This
improves robustness without any noticeable computational
penalty because the most expensive operation is the com-
putation of M�M, which is done only once, and not
the solving of a few quadratic equations. The distribu-
tion of values of N estimated in this way is depicted by
Fig. 4.

We now turn to the description of the quadratic con-
straints we introduce for N = 1,2,3 and 4.

Case N = 1: We simply have x = βv. We solve for β by
writing that the distances between control points as retrieved
in the camera coordinate system should be equal to the ones
computed in the world coordinate system when using the
given 3D coordinates.

Let v[i] be the sub-vector of v that corresponds to the
coordinates of the control point cc

i . For example, v[1] will
represent the vectors made of the three first elements of
v. Maintaining the distance between pairs of control points
(ci , cj ) implies that

‖βv[i] − βv[j ]‖2 = ‖cw
i − cw

j ‖2. (10)

Since the ‖cw
i − cw

j ‖ distances are known, we compute β in
closed-form as

β =
∑

{i,j}∈[1;4] ‖v[i] − v[j ]‖ · ‖cw
i − cw

j ‖
∑

{i,j}∈[1;4] ‖v[i] − v[j ]‖2
. (11)

Case N = 2: We now have x = β1v1 + β2v2, and our dis-
tance constraints become

‖(β1v[i]
1 + β2v[i]

2 ) − (β1v[j ]
1 + β2v[j ]

2 )‖2 = ‖cw
i − cw

j ‖2.

(12)
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β1 and β2 only appear in the quadratic terms and we
solve for them using a technique called “linearization” in
cryptography, which was employed by Ansar and Daniilidis
(2003) to estimate the point depths. It involves solving a lin-
ear system in [β11, β12, β22]� where β11 = β2

1 , β12 = β1β2,

β22 = β2
2 . Since we have four control points, this produces a

linear system of six equations in the βab that we write as:3

Lβ = ρ, (13)

where L is a 6×3 matrix formed with the elements of v1 and
v2, ρ is a 6-vector with the squared distances ‖cw

i − cw
j ‖2,

and β = [β11, β12, β22]� is the vector of unknowns. We
solve this system using the pseudoinverse of L and choose
the signs for the βa so that all the pc

i have positive z coordi-
nates.

This yields β1 and β2 values that can be further refined
by using the formula of (11) to estimate a common scale β

so that cc
i = β(β1v[i]

1 + β2v[i]
2 ).

Case N = 3: As in the N = 2 case, we use the six distance
constraints of (12). This yields again a linear system Lβ =
ρ, although with larger dimensionality. Now L is a square
6 × 6 matrix formed with the elements of v1, v2 and v3, and
β becomes the 6D vector [β11, β12, β13, β22, β23, β33]�. We
follow the same procedure as before, except that we now use
the inverse of L instead of its pseudo-inverse.

Case N = 4: We now have four βa unknowns and, in
theory, the six distance constraints we have been using
so far should still suffice. Unfortunately, the linearization
procedure treats all 10 products βab = βaβb as unknowns
and there are not enough constraints anymore. We solve
this problem using a relinearization technique (Kipnis and
Shamir 1999) whose principle is the same as the one we use
to determine the control points coordinates.

The solution for the βab is in the null space of a first
homogeneous linear system made from the original con-
straints. The correct coefficients are found by introduc-
ing new quadratic equations and solving them again by
linearization, hence the name “relinearization”. These new
quadratic equations are derived from the fact that we have,
by commutativity of the multiplication

βabβcd = βaβbβcβd = βa′b′βc′d ′ , (14)

where {a′, b′, c′, d ′} represents any permutation of the inte-
gers {a, b, c, d}.

3We use the indices a and b for the β’s in order to differentiate from
the indices i and j used for the 3D points.

3.4 The Planar Case

In the planar case, that is, when the moment matrix of the
reference points has one very small eigenvalue, we need
only three control points. The dimensionality of M is then
reduced to 2n × 9 with 9D eigenvectors vi , but the above
equations remain mostly valid. The main difference is that
the number of quadratic constraints drops from 6 to 3. As a
consequence, we need use of the relinearization technique
introduced in the N = 4 case of the previous section for
N ≥ 3.

4 Efficient Gauss-Newton Optimization

We will show in the following section that our closed-form
solutions are more accurate than those produced by other
state-of-the-art non-iterative methods. Our algorithm also
runs much faster than the best iterative one we know of
Lu et al. (2000) but can be slightly less accurate, especially
when the iterative algorithm is provided with a good ini-
tialization. In this section, we introduce a refinement pro-
cedure designed to increase the accuracy of our solution
at very little extra computational cost. As can be seen in
Figs. 1 and 2, computing the solution in closed form and
then refining it as we suggest here yields the same accu-
racy as our reference method (Lu et al. 2000), but still much
faster.

We refine the four values β = [β1, β2, β3, β4]� of the co-
efficients in (8) by choosing the values that minimize the
change in distance between control points. Specifically, we
use Gauss-Newton algorithm to minimize

Error(β) =
∑

(i,j) s.t. i<j

(
‖cc

i − cc
j‖2 − ‖cw

i − cw
j ‖2

)
, (15)

with respect β . The distances ‖cw
i − cw

j ‖2 in the world co-
ordinate system are known and the control point coordinates
in camera reference are expressed as a function of the β co-
efficients as

cc
i =

4∑

j=1

βj v[i]
j . (16)

Since the optimization is performed only over the four βi

coefficients, its computational complexity is independent of
the number of input 3D-to-2D correspondences. This yields
fast and constant time convergence since, in practice, less
than 10 iterations are required. As a result, the computa-
tional burden associated to this refinement procedure is al-
most negligible as can be observed in Fig. 2. In fact, the time
required for the optimization may be considered as constant,
and hence, the overall complexity of the closed-form solu-
tion and Gauss-Newton remains linear with the number of
input 3D-to-2D correspondences.
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Fig. 5 (Color online) Non Planar case. Mean and median rotation and translation errors for different experiments

5 Results

We compare the accuracy and speed of our approach against
that of state-of-the-art ones, both on simulated and real im-
age data.

5.1 Synthetic Experiments

We produced synthetic 3D-to-2D correspondences in a
640 × 480 image acquired using a virtual calibrated cam-
era with an effective focal length of fu = fv = 800 and a
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Fig. 6 Median error as a function of required amount of computation, itself a function of the number of points being used, for our approach and
the LHM iterative method (Lu et al. 2000)

principal point at (uc, vc) = (320,240). We generated dif-
ferent sets for the input data. For the centered data, the 3D
reference points were uniformly distributed into the x,y,z
interval [−2,2] × [−2,2] × [4,8]. For the uncentered data,
the ranges were modified to [1,2] × [1,2] × [4,8]. We also
added Gaussian noise to the corresponding 2D point coor-
dinates, and considered a percentage of outliers, for which
the 2D coordinate was randomly selected within the whole
image.

Given the true camera rotation Rtrue and translation ttrue,
we computed the relative error of the estimated rotation R by
Erot (%) = ‖qtrue − q‖/‖q‖, where q and qtrue are the nor-
malized quaternions corresponding to the rotation matrices.
Similarly, the relative error of the estimated translation t is
determined by Etrans(%) = ‖ttrue − t‖/‖t‖.

All the plots discussed in this section were created by
running 300 independent MATLAB simulations. To esti-
mate running times, we ran the code 100 time for each ex-
ample and recorded the average run time.

5.1.1 The Non-Planar Case

For the non-planar case, we compared the accuracy and run-
ning times of our algorithm, which we denote as EPnP,
and EPnP + GN when it was followed by the optimiza-
tion procedure described above, to: AD, the non-iterative
method of Ansar and Daniilidis (2003); Clamped DLT,
the DLT algorithm after clamping the internal parameters
with their known values; LHM, the Lu’s et al. (2000) itera-
tive method initialized with a weak perspective assumption;
EPnP + LHM, Lu’s et al. algorithm initialized with the out-
put of our algorithm.

On Fig. 1, we plot the rotational errors produced by the
three non-iterative algorithms, and the three iterative ones as
a function of noise when using n = 6 points. We use the box-

plot representation,4 where each column depicts the distrib-
ution of the errors for the 300 different simulations. A con-
cise way to summarize the boxplot results is to plot both
the mean and median results for all simulations: The differ-
ence between the mean and the median mainly comes from
the high errors represented as red crosses in the boxplots.
The greater it is, the less stable the method. This is shown
in Fig. 5a, where in addition to the rotation error we also
plot the translation error. The closed form solution we pro-
pose is consistently more accurate and stable than the other
non-iterative ones, especially for large amounts of noise. It is
only slightly less accurate than the LHM iterative algorithm.
When the Gauss-Newton optimization is applied the accu-
racy of our method becomes then similar to that of LHM
and, as shown in Fig. 5b, it even performs better when in-
stead of using well spread data as in the previous case, we
simulate data that covers only a small fraction of the image.

In Fig. 5c, we plot the errors as a function of the num-
ber of reference points, when the noise is fixed to σ = 5.
Again, EPnP performs better than the other non-iterative
techniques and very nearly as well as LHM. It even repre-
sents a more stable solution when dealing with the uncen-
tered data of Fig. 5d and data which includes outliers, as
in Fig. 5e. Note that in all the cases where LHM does not
converge perfectly, the combination EPnP + LHM provides
accurate results, which are similar to the EPnP + GN solu-
tion we propose. In the last two graphs, we did not compare
the performance of AD, because this algorithm does not nor-
malize the 2D coordinates, and hence, cannot deal well with
uncentered data.

4The boxplot representation consists of a box denoting the first
Q1 and third Q3 quartiles, a horizontal line indicating the median,
and a dashed vertical line representing the data extent taken to be
Q3 + 1.5(Q3 − Q1). The red crosses denote points lying outside of
this range.
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Fig. 7 Planar case. Errors as a function of the image noise when using
n = 6 reference points. For Tilt = 0◦, there are no pose ambiguities and
the results represent the mean over all the experiments. For Tilt = 30◦,
the errors are only averaged among the solutions not affected by the

pose ambiguity. The right-most figure represents the number of solu-
tions considered as outliers, which are defined as those for which the
average error in the estimated 3D position of the reference points is
larger than a threshold

As shown in Fig. 2, the computational cost of our method
grows linearly with the number of correspondences and re-
mains much lower than all the others. It even compares fa-
vorably to clamped DLT, which is known to be fast. As
shown in Fig. 6, EPnP + GN requires about a twentieth
of the time required by LHM to achieve similar accuracy
levels. Although the difference becomes evident for a large
number of reference points, it is significant even for small
numbers. For instance, for n = 6 points, our algorithm is
about 10 times faster than LHM, and about 200 times faster
than AD.

5.1.2 The Planar Case

Schweighofer and Pinz (2006) prove that when the refer-
ence points lie on a plane, camera pose suffers from an
ambiguity that results in significant instability. They pro-
pose a new algorithm for resolving it and refine the so-
lution using Lu’s et al. (2000) method. Hereafter, we will
refer to this combined algorithm as SP + LHM, which
we will compare against EPnP, AD, and LHM. We omit
Clamped DLT because it is not applicable in the planar case.
We omit as well the EPnP + GN, because for the planar
case the closed-form solution for the non-ambiguous cases

was already very accurate, and the Gauss-Newton optimiza-
tion could not help to resolve the ambiguity in the rest of
cases.

Figure 7 depicts the errors as a function of the im-
age noise, when n = 10 and for reference points lying
on a plane with tilt of either 0 or 30 degrees. To obtain
a fair comparison we present the results as was done in
Schweighofer and Pinz (2006) and the errors are only av-
eraged among those solutions not affected by the pose am-
biguity. We also report the percentage of solutions which
are considered as outliers. When the points are lying on
a frontoparallel plane, there is no pose ambiguity and all
the methods have a similar accuracy, with no outliers for
all the methods, as shown in the first row of Fig. 7. The
pose ambiguity problem appears only for inclined planes,
as shown by the bottom-row graphs of Fig. 7. Note that for
AD, the number of outliers is really large, and even the er-
rors for the inliers are considerable. EPnP and LHM pro-
duce a much reduced number of outliers and similar re-
sults accuracy for the inliers. As before, the SP + LHM
method computes the correct pose for almost all the cases.
Note that we did not plot the errors for LHM, because
when considering only the correct poses, it is the same as
SP + LHM.
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Fig. 8 Real images. Top. Left: Calibrated reference image. Right: Re-
projection of the model of the box on three video frames. The camera
pose has been computed using the set of correspondences depicted by

the thin blue lines. Bottom. Left: Calibrated reference image. Right: Re-
projection of the building model on three video frames. The registration
remains accurate even when the target object is partially occluded

As in the non-planar case, the EPnP solution proposed
here is much faster than the others. For example for n = 10
and a tilt of 30◦, our solution is about 200 times faster than
AD, 30 times faster than LHM, even though the MATLAB
code for the latter is not optimized.

5.2 Real Images

We tested our algorithm on noisy correspondences, that may
include erroneous ones, obtained on real images with our
implementation of the keypoint recognition method of (Lep-
etit and Fua 2006). Some frames of two video sequences are
shown in Fig. 8. For each case, we trained the method on
a calibrated reference image of the object to be detected,
for which the 3D model was known. These reference im-
ages are depicted in Fig. 8-left. At run time, the method
generates about 200 correspondences per image. To filter
out the erroneous ones, we use RANSAC on small sub-
sets made of 7 correspondences from which we estimate the
pose using our PnP method. This is effective because, even
though our algorithm is designed to work with a large num-
ber of correspondences, it is also faster than other algorithms
for small numbers of points, as discussed above. Further-
more, once the set of inliers has been selected, we use all
of them to refine the camera pose. This gives a new set of
inliers and the estimation is iterated until no additional in-
liers are found. Figure 8-right shows different frames of the
sequences, where the 3D model has been reprojected using
the retrieved pose.

6 Conclusion

We have proposed an O(n) non-iterative solution to the PnP
problem that is faster and more accurate than the best cur-
rent techniques. It is only slightly less accurate than one the
most recent iterative ones (Lu et al. 2000) but much faster
and more stable. Furthermore, when the output of our al-
gorithm is used to initialize a Gauss-Newton optimization,
the precision is highly improved with a negligible amount
of additional time.

Our central idea—expressing the 3D points as a weighted
sum of four virtual control points and solving in terms of
their coordinates—is very generic. We demonstrated it in
the context of the PnP problem but it is potentially applica-
ble to problems ranging from the estimation of the Essential
matrix from a large number of points for Structure-from-
Motion applications (Stewènius et al. 2006) to shape recov-
ery of deformable surfaces. The latter is particularly promis-
ing because there have been many approaches to parame-
terizing such surfaces using control points (Sederberg and
Parry 1986; Chang and Rockwood 1994), which would fit
perfectly into our framework and allow us to recover not
only pose but also shape. This is what we will focus on in
future research.
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