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Abstract The effect of numerical quadrature in finite element methods for solving
quasilinear elliptic problems of nonmonotone type is studied. Under similar assump-
tion on the quadrature formula as for linear problems, optimal error estimates in the L2

and the H1 norms are proved. The numerical solution obtained from the finite element
method with quadrature formula is shown to be unique for a sufficiently fine mesh.
The analysis is valid for both simplicial and rectangular finite elements of arbitrary
order. Numerical experiments corroborate the theoretical convergence rates.
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1 Introduction

The use of numerical quadrature for the practical implementation of finite element
methods (FEMs), when discretizing boundary value problems, is usually required.
Indeed, except in very special cases, the inner product involved in the FEM cannot
be evaluated exactly and must be approximated. This introduces additional errors in
the numerical method, which rates of decay have to be estimated. The control of the
effects introduced by numerical quadrature is important for almost all applications of
FEMs to problem in engineering and the sciences. Compared to the huge literature
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concerned with the analysis of FEM, the effect of numerical quadrature has only be
treated in a few papers. Such results have been derived by Ciarlet and Raviart [12]
and Strang [30] for second order linear elliptic equation, by Raviart [27] for parabolic
equations and by Baker and Dougalis for second order hyperbolic equations [7]. In our
paper we derive optimal a priori convergence rates in the H1 and L2 norm for FEMs
with numerical quadrature applied to quasilinear elliptic problems of nonmonotone
type. The analysis is valid for dimensions d ≤ 3 and for simplicial or quadrilateral
FEs of arbitrary order. We also show the uniqueness of the numerical solutions for
a sufficiently fine FE mesh. Both the a priori convergence rates and the uniqueness
results are new.

We first mention that quasilinear problems as considered in this paper are used in
many applications [5]. For example, the stationary state of the Richards problems [8]
used to model infiltration processes in porous media is the solution of a nonlinear non-
monotone quasilinear problem as considered in this paper (see Sect. 5 for a numerical
example). Second, our results are also of interest in connection to the recent develop-
ment of numerical homogenization methods (see for example [1,2,15,16,19] and the
references therein). Indeed, such methods are based on a macroscopic solver whose
bilinear form is obtained by numerical quadrature, with data recovered by microscopic
solvers defined on sampling domains at the quadrature nodes [1,2,15]. Convergence
rates for FEMs with numerical quadrature are thus essential in the analysis of numeri-
cal homogenization methods and the a priori error bounds derived in this paper allow to
use an approach similar to the linear case for the analysis of nonlinear homogenization
problems [3,4].

We briefly review the literature for FEM applied to quasilinear elliptic prob-
lems of nonmonotone type. In the absence of numerical quadrature, optimal a priori
error estimates in the H1 and L2 norms where first given by Douglas and Dupont
[13]. This paper contains many ideas useful for our analysis. We also mention that
Nitsche derived in [25] an error estimate for the L∞ norm (without numerical quad-
rature). The analysis of FEMs with numerical quadrature for quasilinear problems
started with Feistauer and Ženíšek [18], where monotone problems have been consid-
ered. The analysis (for piecewise linear triangular FEs) does not apply for nonmono-
tone problems that we consider. Nonmonotone problems have been considered by
Feistauer et al. in [17], where the convergence of a FEM with numerical quadrature
has been established for piecewise linear FEs. Convergence rates have not been derived
in the aforementioned paper and the question of the uniqueness of a numerical solution
has not been addressed. This will be discussed in the present paper for simplicial or
quadrilateral FEs of arbitrary order (see Theorem 5). We note that in [17], it is also
discussed the approximation problem introduced by using a curved boundary of the
domain for the dimension d = 2; this was generalized for d = 3 in [23].

The paper is organized as follows. In Sect. 2 we introduce the model problem
together with the FEM based on numerical quadrature. We also state our main results.
In Sect. 3 we collect and prove several preliminary results as a preparation for the anal-
ysis of the numerical method given in Sect. 4. Numerical examples are given in Sect. 5.
They corroborate our theoretical convergence rates and illustrate the application of the
numerical method to the (stationary) Richards equation. Finally, an appendix contains
the proof of technical lemmas used to derive the a priori convergence rates.

123



FEMs with numerical quadrature for nonmonotone nonlinear elliptic problems 399

Notations LetΩ ⊂ R
d be open and denote by W s,p(Ω) the standard Sobolev spaces.

We use the standard Sobolev norms ‖ · ‖Hs (Ω) and ‖ · ‖W s,p(Ω). For p = 2 we use the
notation Hs(Ω), and H1

0 (Ω) denotes the closure in H1(Ω) of C∞
0 (Ω) (the space of

functions of class C∞ with compact support inΩ). Let (·, ·) denote the scalar product
in L2(Ω) or the duality between H−1(Ω) and H1

0 (Ω). For a domain K ⊂ Ω , |K |
denotes the measure of K . For a smooth function a(x, u), we will sometimes use the
notations ∂ua, ∂2

u a or alternatively au, auu for the partial derivatives ∂
∂u a, ∂

2

∂u2 a.

2 Model problem and FEM with numerical quadrature

2.1 Model problem

Let Ω be a bounded polyhedron in R
d where d ≤ 3. We consider quasilinear elliptic

problems of the form

−∇ · (a(x, u(x))∇u(x)) = f (x) in Ω,

u(x) = 0 on ∂Ω.
(1)

We make the following assumptions on the tensor a(x, s) = (amn(x, s))1≤m,n≤d

– the coefficients amn(x, s) are continuous functions onΩ×R which are uniformly
Lipschitz continuous with respect to s, i.e., there exist Λ1 > 0 such that

|amn(x, s1)− amn(x, s2)| ≤ Λ1|s1 − s2|, ∀x ∈ Ω, ∀s1, s2 ∈ R,

∀ 1 ≤ m, n ≤ d. (2)

– a(x, s) is uniformly elliptic and bounded, i.e., there exist λ,Λ0 > 0 such that

λ‖ξ‖2 ≤ a(x, s)ξ · ξ, ‖a(x, s)ξ‖ ≤ Λ0‖ξ‖, ∀ξ ∈ R
d , ∀x ∈ Ω, ∀s ∈ R.

(3)

We also assume that f ∈ H−1(Ω). Consider the forms

A(z; v,w) :=
∫

Ω

a(x, z(x))∇v(x) · ∇w(x)dx, ∀z, v, w ∈ H1
0 (Ω), (4)

and

F(w) := ( f, w), ∀w ∈ H1
0 (Ω). (5)

From (3), it can be shown that the bilinear form A(z; ·, ·) is elliptic and bounded in
H1

0 (Ω), i.e., there exist λ,Λ0 > 0 such that

λ‖v‖2
H1(Ω)

≤ A(z; v, v), ∀z, v ∈ H1
0 (Ω), (6)

A(z; v,w) ≤ Λ0‖v‖H1(Ω)‖w‖H1(Ω), ∀z, v, w ∈ H1
0 (Ω). (7)
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We can then state the weak formulation of problem (1) which reads: find u ∈ H1
0 (Ω)

such that

A(u; u, w) = F(w), ∀w ∈ H1
0 (Ω). (8)

Theorem 1 [10,14,22] Assume (2), (3) and f ∈ H−1(Ω). Then Problem (8) has a
unique solution u ∈ H1

0 (Ω).

Remark 1 The existence of a solution u of the weak formulation (8) of problem (1) was
first shown in [13, p. 693], using a compactness argument. We refer to [10, Thm. 11.6]
for a short proof of the uniqueness of the solution. In [22], the existence and the
uniqueness of a weak solution of Problem (1) are shown for f ∈ L2(Ω), with more
general mixed Dirichlet–Neumann boundary conditions, on a bounded domain with a
Lipschitz boundary. For the proof of the uniqueness, the divergence form of the dif-
ferential operator is an essential ingredient. In the case of a domain Ω with a smooth
boundary ∂Ω , assuming the α-Hölder continuity of the right-hand side f on Ω and
a ∈ C2(Ω × R), it is shown in [13] that the solution has regularity u ∈ C2+α(Ω) and
that it is unique (using results from [14]).

Remark 2 Since the tensor a(x, s) depends on x , and also is not proportional in gen-
eral to the identity I , the classical Kirchhoff transformation (see for instance [26])
cannot be used in our study.

A comment about monotonicity A (nonlinear) form M(·, ·) defined on H1(Ω) ×
H1(Ω) is called a H1(Ω)-monotone if it satisfies

M(v, v − w)− M(w, v − w) ≥ 0, ∀v,w ∈ H1(Ω).

Notice that the form (v,w) 
→ A(v; v,w) in (4) is not monotone in general, so the
results in [18] do not apply in our study. For instance, it is non-monotone for the tensor
a(x, u) := b(u)I with a differentiable scalar function b satisfying s0b′(s0)+b(s0) < 0
for some real s0.

2.2 FEM with quadrature formula

In this section we present the FEM with numerical quadrature that will be used through-
out the paper. We shall often use the following broken norms for scalar or vector
functions vh that are piecewise polynomial with respect to the triangulation Th ,

‖vh‖W̄ s,p(Ω) :=
( ∑

K∈Th

‖vh‖p
W s,p(K )

)1/p
,

‖vh‖H̄ s (Ω) :=
( ∑

K∈Th

‖vh‖2
Hs (K )

)1/2
,

‖vh‖W̄ s,∞(Ω) := max
K∈Th

‖vh‖∞
W s,∞(K ),

for all s ≥ 0 and all 1 ≤ p < ∞.
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FEMs with numerical quadrature for nonmonotone nonlinear elliptic problems 401

Let Th be a family of partition of Ω in simplicial or quadrilateral elements K of
diameter hK and denote h := maxK∈Th hK . We assume that the family of triangula-
tions is conformal and shape regular. For some results (where indicated), we will need
in addition the following inverse assumption

h

hK
≤ C for all K ∈ Th and all Th of the family of triangulations. (9)

We consider the following FE spaces

S�0(Ω,Th) = {vh ∈ H1
0 (Ω); vh |K ∈ R�(K ), ∀K ∈ Th}, (10)

where R�(K ) is the space P�(K ) of polynomials on K of total degree at most � if
K is a simplicial FE, or the space Q�(K ) of polynomials on K of degree at most �
in each variables if K is a quadrilateral FE. We next consider a quadrature formula
{xK j , ωK j }J

j=1, where xK j ∈ K are integration points and ωK j quadrature weights.

For any element K of the triangulation, we consider a C1-diffeomorphism FK such
that K = FK (K̂ ), where K̂ is the reference element. For a given quadrature for-
mula on K̂ , the quadrature weights and integration points on K ∈ Th are given by
ωK j = ω̂ j |det(∂FK )|, xK j = FK (x̂ j ), j = 1, . . . , J . We next state the assumptions
that we make on the quadrature formulas.

(Q1) ω̂ j > 0, j = 1, . . . , J ,
∑

j∈J ω̂ j |∇ p̂(x̂ j )|2 ≥ λ̂‖∇ p̂‖2
L2(K̂ )

, ∀ p̂(x̂) ∈ R�(K̂ ),

λ̂ > 0;
(Q2)

∫
K̂ p̂(x)dx = ∑J

j=1 ω̂ j p̂(x̂ j ), ∀ p̂(x̂) ∈ Rσ (K̂ ), where σ = max(2� − 2, �)

if K̂ is a simplicial FE, or σ = max(2�− 1, �+ 1) if K̂ is a rectangular FE.

Notice that (Q1), (Q2) are the usual assumptions for the case of linear elliptic problems.
Based on the above quadrature formulas we define for all zh; vh, wh ∈ S�0(Ω,Th),

Ah(z
h; vh, wh) =

∑
K∈Th

J∑
j=1

ωK j a(xK j , zh(xK j ))∇vh(xK j ) · ∇wh(xK j ). (11)

From (3) and (Q1), it can be shown that the bilinear form Ah(zh; ·, ·) is elliptic and
bounded in S�0(Ω,Th), i.e., there exist λ,Λ0 > 0 (independent of h) such that

λ‖vh‖2
H1(Ω)

≤ Ah(z
h; vh, vh), ∀zh, vh ∈ S�0(Ω,Th) (12)

Ah(z
h; vh, wh) ≤ Λ0‖vh‖H1(Ω)‖wh‖H1(Ω), ∀zh, vh, wh ∈ S�0(Ω,Th). (13)

The FE solution of (1) with numerical integration reads: find uh ∈ S�0(Ω,Th) such
that

Ah(u
h; uh, wh) = Fh(w

h) ∀wh ∈ S�0(Ω,Th), (14)
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where the linear form Fh(·) is an approximation of (5) obtained for example by using
quadrature formulas. If one uses the same quadrature formulas for (5) as used for (11)
and if (Q2) holds, then for 1 ≤ q ≤ ∞ with � > d/q, if f ∈ W �,q(Ω) we have

|Fh(w
h)− F(wh)| ≤ Ch�‖ f ‖W �,q (Ω)‖wh‖H1(Ω), ∀wh ∈ S�0(Ω,Th), (15)

and if f ∈ W �+1,q(Ω), we have

|Fh(w
h)− F(wh)| ≤ Ch�+1‖ f ‖W �+1,q (Ω)‖wh‖H̄2(Ω), ∀wh ∈ S�0(Ω,Th), (16)

where C is independent of h (see [11, Sect. 29]).
The existence of a solution of (14) (summarized in Theorem 2) can be established

using the Brouwer fixed point theorem for the nonlinear map Sh : S�0(Ω,Th) →
S�0(Ω,Th) defined by

Ah(z
h; Shzh, wh) = Fh(w

h), ∀wh ∈ S�0(Ω,Th). (17)

Details can be found for example in [13] (see also [9]).

Theorem 2 Assume that the bilinear form Ah(zh; ·, ·), zh ∈ S�0(Ω,Th), defined in
(11) is uniformly elliptic (12) and bounded (13). Then, for all h > 0, the nonlin-
ear problem (14) possesses at least one solution uh ∈ S�0(Ω,Th). A solution uh is
uniformly bounded in H1

0 (Ω), i.e.

‖uh‖H1(Ω) ≤ C‖ f ‖W 1,q (Ω)

where C is independent of h.

Remark 3 Notice that there is no smallness assumption on h in Theorem 2.

The uniqueness of a solution of (14) will also be proved along with our convergence
rate estimates. A smallness assumption on h is essential [6].

Given a solution uh of (14) the next task is now to estimates the error u −uh where
u is the unique solution of (8). The convergence ‖u − uh‖H1(Ω) → 0 for h → 0 of
a numerical solution of problem (12) has been given in [17, Thm. 2.7] for piecewise
linear simplicial FEs. We now state in Theorem 3 below the convergence for the L2

norm for general simplicial and quadrilateral FEs in S�0(Ω,Th). It will be used to
derive our optimal convergence rates in the L2 or H1 norms. It can be proved using a
compactness argument similar to [17, Thm. 2.6] or [13, p. 893]. For the convenience
of the reader we give a short proof in the appendix.

Theorem 3 Let uh be a numerical solution of (14). Assume that for any sequences
(vhk )k>0, (w

hk )k>0 in S�0(Ω,Th) satisfying‖whk ‖H1(Ω) ≤ C and‖vhk ‖W̄ 2,∞(Ω) ≤ C,
where C is independent of k, we have for hk → 0,

|A(whk ;whk , vhk )− Ahk (w
hk ;whk , vhk )| → 0, (18)

|Fhk (w
hk )− F(whk )| → 0, (19)

then ‖u − uh‖L2(Ω) → 0 for h → 0.
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Remark 4 In the case of linear simplicial FEs, it is shown in [17, Thm. 2.6] that The-
orem 3 holds if one considers in the assumptions all sequences (vhk )k>0 bounded in
W 1,p(Ω) for some p with d < p ≤ ∞. It is sufficient for our study to consider
sequences bounded for the broken norm of W 2,∞(Ω).

2.3 Main results

We can now state our main results: the uniqueness of the numerical solution and
optimal a priori error estimates for the H1 and L2 norms.

Theorem 4 Consider u the solution of problem (1), and uh one solution of (14). Let
� ≥ 1. Assume (Q1), (Q2), (2), (3) and

u ∈ H �+1(Ω), (20)

amn ∈ W �,∞(Ω × R), ∀m, n = 1, . . . d, (21)

f ∈ W �,q(Ω), where 1 ≤ q ≤ ∞, � > d/q. (22)

Then, there exists a constant C1 depending only on the domain Ω and family of FE
spaces (S�0(Ω,Th))h>0 such that if the exact solution u satisfies

C1Λ1λ
−1‖u‖H2(Ω) < 1, (23)

where Λ1, λ are the constants in (2),(3), then the following H1 error estimate holds
for all h > 0,

‖u − uh‖H1(Ω) ≤ Ch�, (24)

where C is independent of h. If in addition to the above hypotheses, (9) holds, then
there exists h0 > 0 such that for all h ≤ h0, the solution uh of (14) is unique.

Remark 5 Notice that if the tensor a(x, s) is independent of s, then Λ1 = 0 and (23)
is automatically satisfied. In that case, we retrieve in Theorem 4 the usual assumptions
for linear elliptic problems [11]. Notice that the analysis in [9, Sect. 8.7] also relies on
such a smallness assumption on the solution.

Assuming slightly more regularity on the solution and the tensor and (9), we can
remove the smallness assumption (23), as illustrated in the following theorem. In
addition, we obtain an optimal L2 error estimate.

Theorem 5 Consider u the solution of problem (1). Let � ≥ 1. Letμ = 0 or 1. Assume
(Q1), (Q2), (9), (63) and

u ∈ H �+1(Ω) ∩ W 1,∞(Ω),
amn ∈ W �+μ,∞(Ω × R), ∀m, n = 1, . . . d,

f ∈ W �+μ,q(Ω), where 1 ≤ q ≤ ∞, � > d/q.
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In addition to (2), (3), assume that ∂uamn ∈ W 1,∞(Ω × R), and that the coefficients
amn(x, s) are twice differentiable with respect to s, with the first and second order
derivatives continuous and bounded on Ω × R, for all m, n = 1, . . . d.

Then there exists h0 > 0 such that for all h ≤ h0, the solution uh of (14) is unique
and the following H1 and L2 error estimates hold:

‖u − uh‖H1(Ω) ≤ Ch�, for μ = 0, 1, (25)

‖u − uh‖L2(Ω) ≤ Ch�+1, for μ = 1. (26)

Here, the constants C are independent of h.

Notice that the above rates of convergence in the H1 and L2 norms are the same
as what is known in the absence of numerical quadrature [13], or for linear elliptic
problems with numerical quadrature [11]. The assumption (63) is an hypothesis on
the adjoint L∗ of the linearized operator corresponding to (1). This hypothesis is also
required to use the Aubin–Nitsche duality argument for L2 estimates in the case of
linear problems [12]. Under our assumptions on the coefficients of (1), (63) is for
example automatically satisfied if the domain Ω is a convex polyhedron.

3 Preliminaries

3.1 Useful inequalities

Based on the quadrature formulas defined in Sect. 2.2, we consider, for v,w scalar or
vector functions that are piecewise continuous with respect to the partition Th of Ω ,
the semi-definite inner product

(v,w)Th :=
∑

K∈Th

J∑
j=1

ωK j v(xK j ) · w(xK j ).

and the semi-norm ‖v‖Th ,2 where for all r ≥ 1 we define

‖v‖Th ,r :=
( ∑

K∈Th

J∑
j=1

ωK j (v(xK j ))
r
)1/r

. (27)

We have (Hölder)

|(v,w)Th | ≤ ‖v‖Th ,p‖w‖Th ,q , (28)

where 1/p + 1/q = 1.
Notice that for vh in a piecewise polynomial spaces (as S�0(Ω,Th)), we have for

all r ≥ 1,

‖vh‖Th ,r ≤ C‖vh‖Lr (Ω), (29)
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where C depends on the degree of the (piecewise) polynomials, on r and the shape
regularity but is independent of h. The proof of (29), that can be obtained following
the lines of [27, Lemma 5] is based on a scaling argument and the equivalence of
norms on a finite-dimensional space.

We shall often use the estimate

|(zv,w)| ≤ ‖z‖L3(Ω)‖v‖L6(Ω)‖w‖L2(Ω), ∀z ∈ L3(Ω), ∀v ∈ L6(Ω),

∀w ∈ L2(Ω), (30)

which is a consequence of the Cauchy–Schwarz and Hölder inequalities. Using the
continuous inclusion H1(Ω) ⊂ L6(Ω) for dimΩ ≤ 3, the special case z = v = w

in (30) yields the so-called Gagliardo–Nirenberg [24] inequality,

‖v‖L3(Ω) ≤ C‖v‖1/2
L2(Ω)

‖v‖1/2
H1(Ω)

, ∀v ∈ H1(Ω). (31)

A discrete version of (30) holds for continuous functions on Ω ,

|(zv,w)h | ≤ ‖z‖Th ,3‖v‖Th ,6‖w‖Th ,2 (32)

If zh, vh, wh are in piecewise polynomial spaces (as S�0(Ω,Th)), then using (29) we
have

|(zhvh, wh)h | ≤ C‖zh‖L3(Ω)‖vh‖L6(Ω)‖wh‖L2(Ω), (33)

where C depends on the degrees of the (piecewise) polynomials and on the exponent
r = 2, 3, 6 in (27) (see (29)).

The following results will be often used.

Lemma 1 Assume (9). Let k ≥ 1 and v0 ∈ Hk+1(Ω) and consider a sequence (vh)

in S�0(Ω,Th) satisfying for all h small enough,

‖vh − v0‖H1(Ω) ≤ C0hk .

Then, for all h small enough,

‖vh‖H̄ k+1(Ω) + ‖vh‖W̄ k,6(Ω) ≤ C(‖v0‖Hk+1(Ω) + C0),

‖vh‖W̄ k,3(Ω) ≤ C‖v0‖Hk+1(Ω).

where the constant C depends only on k, the domain Ω and the finite element space
(S�0(Ω,Th))h>0.
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Proof It follows from the inverse inequality (9) that for all integers m ≥ n ≥ 0 and
all p, q ≥ 1 (see [11, Thm. 17.2])1

|vh |W̄ m,q (Ω) ≤ C

hmax(d(1/p−1/q),0)+m−n
|vh |W̄ n,p(Ω) ∀vh ∈ S�0(Ω,Th), (34)

where C depends on m, n, p, q, the dimension d, the domain Ω and the family
of finite element spaces (S�0(Ω,Th))h>0. The triangle inequality ‖vh‖W̄ k,q (Ω) ≤
‖vh − Ihv0‖W̄ k,q (Ω) + ‖Ihv0‖W̄ k,q (Ω) and the inequality (38) below concludes the
proof. ��

3.2 Error bounds on Ah − A

Let � ≥ �′ ≥ 1. We consider the usual nodal interpolant [11, Sect. 12] Ih : C0(Ω) →
S�0(Ω,Th) onto the FE space S�0(Ω,Th) defined in (10). Then, we have the following
estimates (see [11, Thm. 16.2])

‖Ihz‖W 1,∞(Ω) ≤ C‖z‖W 1,∞(Ω), ∀z ∈ W 1,∞(Ω), (35)

‖Ihz − z‖W 1,∞(Ω) ≤ Ch‖z‖W 2,∞(Ω), ∀z ∈ W 2,∞(Ω), (36)

‖Ihz − z‖H1(Ω) ≤ Ch�
′ ‖z‖H�′+1(Ω)

, ∀z ∈ H �′+1(Ω), (37)

‖Ihz‖W̄ �′−1,∞(Ω)+‖Ihz‖W̄ �′,6(Ω)+‖Ihz‖H̄�′+1(Ω)

≤ C‖z‖H�′+1(Ω)
, ∀z ∈ H �′+1(Ω). (38)

In our analysis, we need a priori estimates for the difference between the forms (4)
and (14) (Propositions 1, 2 below). Consider for all element K ∈ Th the quadrature
error functional

EK (ϕ) :=
∫

K

ϕ(x)dx −
J∑

j=1

ωK jϕ(xK j ), (39)

defined for all continuous function ϕ on K . The next task is to estimate the quantity
|EK (a(·, zh)∇vh · ∇wh)|, where a(·, ·) is the tensor given in (1). Such error estimates
have been derived for the linear case in [11, Thm. 28.2]. In the non-linear case, it is
the purpose of the following Propositions 1, 2.

Proposition 1 Let � ≥ 1. Assume (Q2), u ∈ H �+1(Ω). Then,

– for a ∈ (W �,∞(Ω × R))d×d , we have for all wh ∈ S�0(Ω,Th),

|Ah(Ihu;Ihu, wh)− A(Ihu;Ihu, wh)| ≤ Ch�‖wh‖H1(Ω), (40)

where C depends on ‖a‖(W �,∞(Ω×R))d×d and ‖u‖H�+1(Ω) but is independent of h.

1 Notice that (34) remains valid for q = ∞, replacing 1/q by 0 in the right-hand side (similarly for p).
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– Assume (9). For a ∈ (W �+1,∞(Ω × R))d×d , we have for all vh, wh ∈ S�0(Ω,Th),

|Ah(�hu;�hu, wh)− A(�hu;�hu, wh)|
≤ Ch�+1(‖wh‖H̄2(Ω)+ ‖wh‖W 1,6(Ω)), (41)

where C depends on ‖a‖(W �+1,∞(Ω×R))d×d and ‖u‖H�+1(Ω) but is independent of h.

Here, Ihu denoted the usual nodal interpolant of u on S�0(Ω,Th), while�hu denotes
the L2-orthogonal projection of u on S�0(Ω,Th).

The proof of Proposition 1 relies on the following lemma which gives an estimate on
each finite element K ∈ S�0(Ω,Th), with the proof postponed to the Appendix.

Lemma 2 Assume that (Q2) holds and a ∈ (W �,∞(Ω×R))d×d , then, for all K ∈ Th,
and all z, v, w ∈ R�(K ),

|EK (a(·, z)∇v · ∇w)| ≤ Ch�K ‖a‖(W �,∞(K×R))d×d ‖∇w‖L2(K )(
‖v‖Hγ (K )(1 + ‖z‖�W �−1,∞(K ))+ ‖z‖W �,α(K )‖∇v‖Lβ (K )

)
, (42)

Assume that (Q2) holds and a ∈ (W �+1,∞(Ω × R))d×d , then, for all K ∈ Th, and
all z, v, w ∈ R�(K ),

|EK (a(·, z)∇v · ∇w)| ≤ Ch�+1
K ‖a‖(W �+1,∞(K×R))d×d(

(1 + ‖z‖�+1
W �−1,∞(K ))‖v‖Hγ (K )‖∇w‖H1(K ) + ‖z‖W �,α(K )‖∇v‖Lβ (K )‖∇w‖H1(K )

+‖z‖Hγ (K )‖∇v‖Lα(K )‖∇w‖Lβ (K ) + ‖z‖W �,α(K )‖∇v‖H1(K )‖∇w‖Lβ (K )

)
(43)

Here γ = � if v ∈ P�(K ), γ = � + 1 if v ∈ Q�(K ), 1 ≤ α, β ≤ ∞ with
1/α + 1/β = 1/2. The constants C are independent of hK and the element K . For
the case � = 1, the term ‖z‖W �−1,∞(K ) can be omitted in the above estimates.

Proof of Proposition 1 The proof of (40) is a consequence of (42) in Lemma 2 with
α = 3, β = 6. We have

|Ah(z
h; vh, wh)− A(zh; vh, wh)|

≤ C
∑

K∈Th

h�K ‖a‖(W �,∞(K×R))d×d ‖zh‖W �,3(K )‖∇vh‖L6(K )‖∇wh‖L2(K )

+
∑

K∈Th

h�K ‖a‖(W �,∞(K×R))d×d (1 + ‖zh‖�W �−1,∞(K ))‖vh‖H�+1(K )‖∇wh‖L2(K )

≤ Ch�‖a‖(W �,∞(Ω×R))d×d (‖zh‖W̄ �,3(Ω)‖∇vh‖L6(Ω)‖∇wh‖L2(Ω)

+(1 + ‖zh‖�
W̄ �−1,∞(Ω))‖vh‖H̄�+1(Ω)‖∇wh‖L2(Ω)).
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for all zh, vh, wh ∈ S�0(Ω,Th), where we applied for the first sum the Hölder inequal-
ity and for the second sum the Cauchy–Schwarz inequality. Finally, we take zh = vh =
Ihu, and we use the bound (38) to obtain (40).

The proof of (41) is a consequence of (43) in Lemma 2 and is very similar to
that of (40). The main difference is we take zh = vh = �hu, where �hu is the
L2-orthogonal projection of u on S�0(Ω,Th). We have ‖�hu − u‖L2(Ω) ≤ h�+1 and
‖�hu − u‖H1(Ω) ≤ Ch� and we use Lemma 1. ��

We shall also need the following estimate where only the first derivatives of vh and
zh are involved in the right-hand side of (44). This is crucial for using Proposition 4
in the proof of Lemma 5, and for showing the estimate (18) of Theorem 3 in the proof
of Theorem 5. Notice that for piecewise linear simplicial FEs the result follows from
[17, Lemma 2.5].

Proposition 2 Let � ≥ 1. Assume (Q2), a ∈ (W 1,∞(Ω × R))d×d . We have for all
zh, vh, wh ∈ S�0(Ω,Th),

|Ah(z
h; vh, wh)− A(zh; vh, wh)|

≤ Ch‖∇vh‖L2(Ω)(‖∇wh‖H̄1(Ω) + ‖∇zh‖Lα(Ω)‖∇wh‖Lβ(Ω)), (44)

where 1 ≤ α, β ≤ ∞ with 1/α + 1/β = 1/2 and C is independent of h.

The proof2 of Proposition 2 relies on the following lemma with proof postponed to
Appendix.

Lemma 3 Let � ≥ 1. If (Q2) holds and a ∈ (W 1,∞(Ω×R))d×d , then, for all K ∈ Th,
and all z, v, w ∈ R�(K ),

|EK (a(·, z)∇v · ∇w)|
≤ ChK ‖a‖(W 1,∞(K×R))d×d ‖∇v‖L2(K )

(‖∇w‖H1(K ) + ‖∇z‖Lα(K )‖∇w‖Lβ(K )

)
,

where 1 ≤ α, β ≤ ∞ with 1/α + 1/β = 1/2.

Proof of Proposition 2 Using Lemma 3, we have

|Ah(z
h; vh, wh)− A(zh; vh, wh)|

≤ C
∑

K∈Th

hK ‖a‖(W 1,∞(K×R))d×d ‖∇vh‖L2(K )‖∇wh‖H1(K )

+
∑

K∈Th

hK ‖a‖(W 1,∞(K×R))d×d ‖∇vh‖L2(K )‖∇zh‖Lα(K )‖∇wh‖Lβ(K )

≤ Ch‖a‖(W 1,∞(Ω×R))d×d ‖∇vh‖L2(Ω)(‖∇wh‖H̄1(Ω) + ‖∇zh‖Lα(Ω)‖∇wh‖Lβ(Ω)).

where we applied the Cauchy–Schwarz and Hölder inequalities. ��

2 Notice that we need Proposition 2 for � possibly larger than one. Thus, simply setting � = 1 in Proposi-
tion 1 is not sufficient.
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Similarly, we have (see the proof in Appendix)

Proposition 3 Let � ≥ 1. Assume (Q2), au ∈ (W 1,∞(Ω×R))d×d and u ∈ H2(Ω)∩
W 1,∞(Ω). Then, for all vh ∈ S�0(Ω,Th), w ∈ H2(Ω),

(au(·,Ihu)∇Ihu · ∇vh,Ihw)h − (au(·,Ihu)∇Ihu · ∇vh,Ihw)

≤ Ch‖vh‖H1(Ω)‖w‖H2(Ω)

and for all wh ∈ S�0(Ω,Th), v ∈ H2(Ω),

(au(·,Ihu)∇Ihu · ∇Ihv,w
h)h − (au(·,Ihu)∇Ihu · ∇Ihv,w

h)

≤ Ch‖v‖H2(Ω)‖wh‖H1(Ω)

where C depends on a, u and is independent of h.

3.3 Finite element method with numerical quadrature for indefinite linear elliptic
problems

In this section, we generalize to the case of numerical quadrature a result of Schatz
[28,29] for the finite element solution of non-symmetric indefinite linear elliptic prob-
lems of the form

L ϕ = f on Ω, ϕ = 0 on ∂Ω, (45)

where L ϕ := −∇ · (a(x)∇ϕ) + b(x) · ∇ϕ + c(x)ϕ, with a ∈ (W 1,∞(Ω))d×d ,
b ∈ (L∞(Ω))d , c ∈ L∞(Ω). We assume that the tensor a(x) is uniformly elliptic
and bounded, i.e. satisfies (3). We consider the associated bilinear form on H1(Ω)×
H1(Ω),

B(v,w) = (a(x)∇v,∇w)+ (b(x) · ∇v + c(x)v,w), ∀v,w ∈ H1(Ω). (46)

Using the Cauchy–Schwarz and Young inequalities, we have that B(v,w) satisfies the
so-called Gårding inequality (with λ1, λ2 > 0)

λ1‖v‖2
H1(Ω)

− λ2‖v‖2
L2(Ω)

≤ B(v, v), ∀v ∈ H1
0 (Ω), (47)

and (Λ0 > 0)

|B(v,w)| ≤ Λ0‖v‖H1(Ω)‖w‖H1(Ω), ∀v,w ∈ H1(Ω). (48)

The proof of the error estimate given in Proposition 4 below for FEM relies on the
Aubin–Nitsche duality argument. The use of such duality argument is instrumental in
deriving the error estimates (26) (see Lemmas 5, 6).
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Proposition 4 Let � ≥ �′ ≥ 1. Consider B(·, ·) defined in (46) and a bilinear form
Bh(·, ·) defined on S�0(Ω,Th)× S�0(Ω,Th), satisfying also a Gårding inequality

λ1‖vh‖2
H1(Ω)

− λ2‖vh‖2
L2(Ω)

≤ Bh(v
h, vh), ∀vh ∈ S�0(Ω,Th), (49)

and for all v ∈ H �′+1(Ω), wh ∈ S�0(Ω,Th),

|B(Ihv,w
h)− Bh(Ihv,w

h)| ≤ Ch�
′ ‖v‖H�′+1(Ω)

‖wh‖H1(Ω),

|B(wh,Ihv)− Bh(w
h,Ihv)| ≤ Ch�

′ ‖wh‖H1(Ω)‖v‖H�′+1(Ω)
.

(50)

Assume that for all f ∈ H−1(Ω), the solution ϕ ∈ H1
0 (Ω) of problem (45) is unique.

For a fixed f , assume that the solution of (45) exists with regularity ϕ ∈ H �′+1(Ω).
Then, for all h small enough, the finite element problem

Bh(ϕ
h, vh) = ( f, vh) ∀vh ∈ S�0(Ω,Th) (51)

possesses a unique solution ϕh ∈ S�0(Ω,Th); and ϕh satisfies the estimate

‖ϕh − ϕ‖H1(Ω) ≤ Ch�
′ ‖ϕ‖H�′+1(Ω)

(52)

where C is independent of h.

Proof Due to the finite dimension of the linear system (51), to prove the uniqueness
of ϕh , it suffices to show that the homogeneous system has a unique solution. This
will be proved if we can show the a priori estimate (52).

We define ξ h = ϕh − Ihϕ and claim (as proved below) that for all η > 0 there
exists h0 > 0 such that for all h ≤ h0, we have3

‖ξ h‖L2(Ω) ≤ η‖ξ h‖H1(Ω) + Ch�
′ ‖ϕ‖H�′+1(Ω)

, (53)

where C is independent of h. We choose η such that λ1 − 2η2λ2 > 0. Using the
Gårding inequality (49) and (53), we obtain

‖ξ h‖2
H1(Ω)

≤ C(h2�′ ‖ϕ‖2
H�′+1(Ω)

+ Bh(ξ
h, ξ h)).

Using (48) and (50) we obtain

Bh(ξ
h, ξ h) = B(ϕ − Ihϕ, ξ

h)+ (B(Ihϕ, ξ
h)− Bh(Ihϕ, ξ

h))

≤ Ch�
′ ‖ϕ‖H�′+1(Ω)

‖ξ h‖H1(Ω)

3 Notice that one cannot simply let the parameter η tend to zero in (53) because h0 depends on η.
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where we used also (37). Applying the Young inequality, we deduce for all μ > 0,

‖ξ h‖2
H1(Ω)

≤ C(1 + 1/μ)h2�′ ‖ϕ‖2
H�′+1(Ω)

+ Cμ‖ξ h‖2
H1(Ω)

.

We choose μ such that 1 − Cμ > 0, and using the triangular inequality and (37), we
deduce (52).

It remains to prove the above claim (53). Since by assumption the kernel of the oper-
ator L : H1

0 (Ω) → H−1(Ω) is zero, using the Gårding inequality (47), it follows
from the Fredholm alternative (see [21]) that the adjoint operator L ∗ : H1

0 (Ω) →
H−1(Ω) is an isomorphism and for all g ∈ H−1(Ω), the adjoint problem

B(v, ϕ∗) = (g, v), ∀v ∈ H1
0 (Ω), (54)

has a unique solution ϕ∗ ∈ H1
0 (Ω). Now, let Y = {g ∈ L2(Ω) ; ‖g‖L2(Ω) = 1} and

recall that

‖ξh‖L2(Ω) = sup
g∈Y

(ξ h, g). (55)

For g ∈ Y , we consider wg ∈ H1
0 (Ω) the unique solution of the adjoint problem (54)

with right-hand side g. We take in (54) the test function v = ξ h and using (48), (50),
we observe for χ ∈ H �′+1(Ω) that

(ξ h, g) = B(ξ h, wg)

= B(ξ h, wg − Ihχ)+ (
B(ϕh,Ihχ)− Bh(ϕ

h,Ihχ)
)

+(
Bh(ϕ

h,Ihχ)− B(ϕ,Ihχ)
) + B(ϕ − Ihϕ,Ihχ)

≤ C‖ξ h‖H1(Ω)‖wg − Ihχ‖H1(Ω) + Ch�
′ ‖ϕh‖H1(Ω)‖χ‖H�′+1(Ω)

+C‖ϕ − Ihϕ‖H1(Ω)‖Ihχ‖H1(Ω).

Using ‖ϕh‖H1(Ω) ≤ ‖ξ h‖H1(Ω) + ‖Ihϕ‖H1(Ω) and (37), we obtain for all χ ∈
H �′+1(Ω),

(ξ h, g) ≤ C‖ξ h‖H1(Ω)(‖wg − Ihχ‖H1(Ω) + h�
′ ‖χ‖H�′+1(Ω)

)

+Ch�
′ ‖χ‖H�′+1(Ω)

‖ϕ‖H�′+1(Ω)
. (56)

Since the injection L2(Ω) ⊂ H−1(Ω) is compact, the set Y is compact in H−1(Ω).
Using that L ∗ : H1

0 (Ω) → H−1(Ω) is an isomorphism, we obtain that the set

Z := {z ∈ H1
0 (Ω); B(v, z) = (g, v), ∀v ∈ H1

0 (Ω), g ∈ Y },

is compact in H1(Ω). For a fixed η > 0, the set Z is therefore contained in the union
of a finite family of balls with centers zi ∈ Z and radius η/3 for the H1(Ω) norm.
Taking any z ∈ Z , there exists i0 such that ‖z − zi0‖H1(Ω) ≤ η/3. Since H �′+1(Ω) is
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dense in H1(Ω), for all i there exists zi ∈ H �′+1(Ω) such that ‖zi − zi‖H1(Ω) ≤ η/3.
Then, we have

‖z − Ihzi0‖H1(Ω) ≤ ‖z − zi0‖H1(Ω) + ‖zi0 − zi0‖H1(Ω) + ‖zi0 − Ihzi0‖H1(Ω)

≤ η/3 + η/3 + Ci0 h�
′ ‖zi0‖H�′+1(Ω)

where we use (37). We take χ := zi0 . Notice that ‖χ‖H�′+1(Ω)
≤ C(η) with C(η)

independent of z, i0 and h. Taking h small enough so that Ci h�
′
C(η) ≤ η/3 for all i ,

we obtain that for all η > 0 there exists h0 > 0 such that for all h ≤ h0 and for all
z ∈ Z ,

there exists χ ∈ H �′+1(Ω) such that ‖χ‖H�′+1(Ω)
≤ C(η), ‖z − Ihχ‖H1(Ω) ≤ η.

(57)

Using (55), (56), and (57) with z = wg , we deduce that (53) holds for all h ≤ h0. ��
Remark 6 In Proposition 4, notice that we did not use neither an assumption of the
form (63) on the adjoint L ∗ of the operator L in (45), nor the inequality (9). In
fact, we will use Proposition 4 in the proof of Lemma 5 only for the special case
�′ = 1. If for the case �′ = 1, we add the regularity assumption (63) on L ∗ (or e.g.,
the assumption that Ω is a convex polyhedron) then the end of the proof of Prop-
osition 4 can be simplified as follows: for all g ∈ Y we have wg ∈ H2(Ω) with
‖wg‖H2(Ω) ≤ C‖g‖L2(Ω); thus, in (56) one can simply consider χ := wg and use
(37).

4 A priori analysis

Lemma 4 If the hypotheses of Theorem 5 are satisfied, then for all h > 0,

‖u − uh‖H1(Ω) ≤ C(h� + ‖u − uh‖L2(Ω)), (58)

where C is independent of h.

Proof Let ξ h = uh − vh with vh = Ihu. Using (12), we have

λ‖ξ h‖2
H1(Ω)

≤ Ah(u
h; uh − vh, ξ h) = Ah(u

h; uh, ξ h)− A(u; u, ξ h)

+ A(u; u − vh, ξ h)

+ A(u; vh, ξ h)− A(vh; vh, ξ h)

+ A(vh; vh, ξ h)− Ah(v
h; vh, ξ h)

+ Ah(v
h; vh, ξ h)− Ah(u

h; vh, ξ h).

We now bound each of the five above terms. For the first term using (8), (14) and (15)
we have

|Ah(u
h; uh, ξ h)− A(u; u, ξ h)| = |Fh(ξ

h)− F(ξ h)| ≤ Ch�.
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For the second term using (7) and (37) yields

A(u; u − vh, ξ h) ≤ Ch�‖ξ h‖H1(Ω).

For the third term using (2),(30), (37), (38) and the inequality ‖u − vh‖L3(Ω) ≤
C‖u − vh‖H1(Ω) we obtain

|A(u; vh, ξ h)− A(vh; vh, ξ h)| ≤ ‖(a(·, u)− a(·, vh))∇vh‖L2(Ω)‖∇ξ h‖L2(Ω)

≤ C‖u − vh‖L3(Ω)‖vh‖W 1,6(Ω)‖∇ξ h‖L2(Ω)

≤ Ch�‖ξ h‖H1(Ω).

Similarly for the fifth term using (32) gives

|Ah(v
h; vh, ξ h)− Ah(u

h; vh, ξ h)| ≤ ‖(a(·, vh)− a(·, uh))∇vh‖Th ,2‖∇ξ h‖Th ,2

≤ C‖ξ h‖Th ,3‖∇vh‖Th ,6‖∇ξ h‖Th ,2

≤ C‖vh‖W 1,6(Ω)‖ξ h‖L3(Ω)‖∇ξ h‖L2(Ω). (59)

For the fourth term we use Proposition 1. We obtain

‖ξ h‖H1(Ω) ≤ C(h� + ‖ξ h‖L3(Ω)), (60)

where we used (38) in the inequality (59). Using the Gagliardo–Nirenberg inequality
(31) and the Young inequality, we have

‖ξ h‖L3(Ω) ≤ Cη−1‖ξ h‖L2(Ω) + Cη‖ξ h‖H1(Ω),

for all η > 0. Choosing η small enough, this together with (60) and the triangu-
lar inequalities ‖u − uh‖ ≤ ‖u − Ihu‖ + ‖ξ h‖, ‖ξ h‖ ≤ ‖u − uh‖ + ‖u − Ihu‖
(respectively for the H1 and L2 norms), and (37) yields the desired estimate (58). ��
Proof of Theorem 4 Inspecting the proof of Lemma 4 reveals, using ‖ξ h‖L3(Ω) ≤
C‖ξ h‖H1(Ω) in (60),

‖u − uh‖H1(Ω) ≤ Ch� + C1‖u − uh‖H1(Ω),

with C independent of h and C1 = C2Λ1λ
−1‖u‖H2(Ω), whereΛ1, λ are the constants

in (2),(3), and the constant C2 depends only onΩ and the FE space (S�0(Ω,Th))h>0.
Then, if we assume that C1 < 1, we immediately obtain the estimate (24).

Assuming such smallness hypothesis on u, we can also prove the uniqueness of uh

for all h small enough as follows. Let (uh) and (̃uh) be two sequences of solutions of
(14). We show that ξ h = ũh − uh is zero for all h small enough. Using (12) and (32),
we have, similarly to (59),
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λ‖ξ h‖H1(Ω) ≤ Ah (̃u
h; ξ h, ξ h) = ((a(·, uh)− a(·, ũh))∇uh,∇ξ h)h

≤ CΛ1‖ξ h‖L6(Ω)‖uh‖W 1,3(Ω)‖ξ h‖H1(Ω).

Using Lemma 1 and ‖ξ h‖L6(Ω) ≤ C‖ξ h‖H1(Ω) (dimΩ ≤ 3), we obtain for all h ≤ h0,

‖ξ h‖H1(Ω) ≤ C0Λ1λ
−1‖u‖H2(Ω)‖ξ h‖H1(Ω).

If one assumes C0Λ1λ
−1‖u‖H2(Ω) < 1 in the above inequality, then ξ h = 0, which

implies the uniqueness of uh . ��
For deriving the L2 error estimate (26), we consider the operator obtained by line-

arizing (4) and its adjoint

Lϕ = −∇ · (a(·, u)∇ϕ + ϕau(·, u)∇u), (61)

L∗ϕ = −∇ · (a(·, u)T ∇ϕ)+ au(·, u)∇u · ∇ϕ. (62)

It has been shown in [13] that these linear operators play an important role. We assume
here that L∗ satisfies

‖ϕ‖H2(Ω) ≤ C(‖L∗ϕ‖L2(Ω) + ‖ϕ‖H1(Ω)), for all ϕ ∈ H2(Ω) ∩ H1
0 (Ω). (63)

We recall here that (63) is also required for L2 estimates in the case of linear problems
[12], and that it is automatically satisfied if the domain is a convex polyhedron.

We consider the bilinear form corresponding to L∗ and its discrete counterpart
(linearized at Ihu) obtained by numerical quadrature

B(v,w) := (a(·, u)∇w,∇v)+ (au(·, u)∇u · ∇v,w), ∀v,w ∈ H1
0 (Ω), (64)

Bh(v
h, wh) := (a(·,Ihu)∇wh,∇vh)h

+(au(·,Ihu)∇Ihu · ∇vh, wh)h, ∀ vh, wh ∈ S�0(Ω,Th). (65)

For ξ ∈ L2(Ω), we then seek ϕ ∈ H1
0 (Ω), ϕ

h ∈ S�0(Ω,Th) such that

B(ϕ,w) = (ξ, w), ∀w ∈ H1
0 (Ω), (66)

Bh(ϕ
h, wh) = (ξ, wh), ∀wh ∈ S�0(Ω,Th). (67)

Lemma 5 Assume the hypotheses of Theorem 5 are satisfied. Then, for ξ ∈ L2(Ω)and
for all h small enough, the problems (66) and (67) have unique solutions ϕ ∈ H2(Ω),
ϕh ∈ S�0(Ω,Th). They satisfy

‖ϕ − ϕh‖H1(Ω) ≤ Ch‖ξ‖L2(Ω), (68)

‖ϕh‖H̄2(Ω) + ‖ϕh‖W 1,6(Ω) ≤ C‖ξ‖L2(Ω), (69)

where C is independent of h.
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Proof We show that Proposition 4 applies with �′ = 1 to the operator L = L�, with
the bilinear forms (64) and (65). Using (70) below, this proves (68). Lemma 1 next
yields the estimate (69) for ϕh .

Using the assumption u ∈ W 1,∞(Ω) and the Cauchy–Schwarz inequality, we
obtain that the bilinear form B(·, ·) satisfies the bound (48), and the Gårding inequali-
ties (47), (49) are obtained using (35), (3) and the Young inequality. Notice that B(·, ·)
is the bilinear form associated to the operator L∗ defined in (62). Since the operator
L : H1

0 (Ω) → H−1(Ω) in (62) is in divergence form, it can be shown (see [14]
and also [20, Corollary 8.2]) that L is injective. Since the Gårding inequality (47)
is satisfied by B(·, ·), using the Fredholm alternative, this implies (see [21]) that the
operator L∗ : H1

0 (Ω) → H−1(Ω) is an isomorphism. Next, from (63), we have the
estimate

‖ϕ‖H2(Ω) ≤ C‖ξ‖L2(Ω). (70)

It remains to prove (50) (with �′ = 1). Consider the following bilinear form,

Bh(v
h, wh) := (a(·,Ihu)∇wh,∇vh)

+(au(·,Ihu)∇Ihu · ∇vh, wh), ∀vh, wh ∈ S�0(Ω,Th).

Using

au(·,Ihu)∇Ihu − au(·, u)∇u

= (au(·,Ihu)− au(·, u))∇Ihu + au(·, u)∇(Ihu − u), (71)

(35) and the Hölder inequality (33), we obtain

|B(Ihv,w
h)− Bh(Ihv,w

h)| ≤ C‖Ihu − u‖L6(Ω)‖∇Ihv‖L3(Ω)‖wh‖H1(Ω)

+C‖Ihu − u‖H1(Ω)‖∇Ihv‖L3(Ω)‖wh‖L6(Ω)

≤ Ch�‖v‖H2(Ω)‖wh‖H1(Ω)

≤ Ch‖v‖H2(Ω)‖wh‖H1(Ω)

where we used the continuous injection H1(Ω) ⊂ L6(Ω) and (37). Similarly, we
have

|B(vh,Ihw)− Bh(v
h,Ihw)| ≤ C‖Ihu − u‖L6(Ω)‖∇vh‖L2(Ω)‖Ihw‖W 1,3(Ω)

+C‖Ihu − u‖H1(Ω)‖∇vh‖H1(Ω)‖Ihw‖L∞(Ω)

≤ Ch‖vh‖H1(Ω)‖w‖H2(Ω).

We finally show that (50) with �′ = 1 holds with B replaced by Bh . Indeed, for the first
term in Bh(·, ·), Bh(·, ·), we apply Proposition 2 with α = ∞, β = 2, and the same
proposition with tensor a replaced by aT , and we use (35) for z = u. For the second
term we apply Proposition 3. This proves (50) and concludes the proof of Lemma 5.

��
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Lemma 6 Assume the hypotheses of Theorem 5 are satisfied. Then,

– for μ = 0, we have for all h small enough,

‖u − uh‖L2(Ω) ≤ C(h� + ‖u − uh‖2
H1(Ω)

), (72)

– for μ = 1, we have for all h small enough,

‖u − uh‖L2(Ω) ≤ C(h�+1 + ‖u − uh‖2
H1(Ω)

), (73)

where C is independent of h.

Proof Let vh ∈ S�0(Ω,Th) and ξ h = vh −uh . Let ϕ, ϕh be the solutions of (66), (67)
respectively, with right-hand side ξ h . We have:

‖ξ h‖2
L2(Ω)

= Bh(ϕ
h, ξ h)

= Ah(v
h; vh, ϕh)− Ah(v

h; uh, ϕh)+ (ξ hau(·, vh)∇vh,∇ϕh)h .

A short computation using integration by parts shows that

−Ah(v
h; uh, ϕh)+ (ξ hau(·, vh)∇vh,∇ϕh)h

= Ah(u
h, uh, ϕh)+ (ξ hau∇ξ h − auu(ξ

h)2∇vh,∇ϕh)h

where

au(x) :=
1∫

0

au(x, v
h(x)− tξ h(x))dt,

auu(x) :=
1∫

0

(1 − t)auu(x, v
h(x)− tξ h(x))dt.

Thus we obtain

‖ξ h‖2
L2(Ω)

= Ah(v
h; vh, ϕh)− Ah(u

h, uh, ϕh)

+(ξ hau∇ξ h − auu(ξ
h)2∇vh,∇ϕh)h . (74)

Using (32), the boundedness of au, auu on Ω × R and Sobolev embeddings, we have

(ξ hau∇ξ h − auu(ξ
h)2∇vh,∇ϕh)h = (au∇ξ h − auuξ

h∇vh, ξ h∇ϕh)h

≤ C
((‖∇ξ h‖Th ,2 + ‖ξ h∇vh‖Th ,2

)‖ξ h∇ϕh‖Th ,2

)

≤ C(1 + ‖vh‖W 1,6(Ω))‖ξ h‖H1(Ω)‖ξ h‖L3(Ω)‖ϕh‖W 1,6(Ω).
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The first term in (74) can be written as

I := Ah(v
h, vh, ϕh)− Ah(u

h, uh, ϕh) = Ah(v
h, vh, ϕh)− A(vh, vh, ϕh)

+A(vh, vh, ϕh)− A(u, vh, ϕh)

+A(u, vh − u, ϕh − ϕ)

+A(u, vh − u, ϕ)

+A(u, u, ϕh)− Ah(u
h, uh, ϕh).

We now distinguish two cases to bound the above quantity I .

– For the case μ = 0, we take vh = Ihu. Using (8), (14), (37), (15), (40), (69), we
obtain similarly to the proof of Lemma 4, I ≤ C‖ξ h‖L2(Ω)h

�.

– For the case μ = 1, we take vh = �hu equal to the L2−orthogonal projection of
u on the finite element space S�0(Ω,Th). We have ‖�hu − u‖L2(Ω) ≤ Ch�+1 and
‖�hu − u‖H1(Ω) ≤ Ch�. Using (68) we obtain

A(u,�hu − u, ϕh − ϕ) ≤ C‖�hu − u‖H1(Ω)‖ϕh − ϕ‖H1(Ω)

≤ Ch�+1‖ϕ‖H2(Ω).

Using Green’s formula yields

A(u,�hu − u, ϕ) ≤ C‖�hu − u‖L2(Ω)‖ϕ‖H2(Ω) ≤ h�+1‖ϕ‖H2(Ω)

Using (8), (14), (16), (41) and (69) we deduce I ≤ C‖ξ h‖L2(Ω)h
�+1.

Using (69) and ‖vh‖W 1,6(Ω) ≤ C‖u‖H2(Ω) for vh = Ihu or vh = �hu, we obtain

‖ξ h‖L2(Ω) ≤ C(h�+μ + ‖ξ h‖H1(Ω)‖ξ h‖L3(Ω)) ≤ C(h�+μ + ‖ξ h‖2
H1(Ω)

).

Finally the triangle inequality ‖u − uh‖ ≤ ‖ξ h‖ + ‖vh − u‖ with the L2 and H1

norms, respectively, gives the estimates (72), (73). ��
Proof of Theorem 5 We first prove the H1 estimate (25) and then the L2 estimate
(26). We postpone to the end of Sect. 4.1 the proof of the uniqueness of the numerical
solution uh .

(i) Proof of the a priori estimate (25).

We know from Theorem 2 that a numerical solution uh exists for all h. Substituting
(72) of Lemma 6 into (58) of Lemma 4, we obtain that for all h ≤ h1 any solution uh

satisfies an inequality of the form

‖u − uh‖H1(Ω) ≤ C(h� + ‖u − uh‖2
H1(Ω)

),

with some constant C , or equivalently,

(1 − C‖u − uh‖H1(Ω))‖u − uh‖H1(Ω) ≤ Ch�. (75)
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From Theorem 3 together with Proposition 2 (α = 2, β = ∞) and (15), we have that
‖uh − u‖L2(Ω) → 0 for h → 0. Using Lemma 4, we deduce

‖uh − u‖H1(Ω) → 0 for h → 0.

Then there exists h2 such that for all h ≤ h2, 1 − C‖uh − u‖H1(Ω) ≥ 1/2. Finally we
set h0 = min(h1, h2) and the proof of (25) is complete.

(ii) Proof of the a priori estimate (26).

The L2 estimate (26) is an immediate consequence of the H1 estimate (25) and (73)
in Lemma 6. ��

4.1 Newton’s method

Consider for all zh ∈ S�0(Ω,Th) the bilinear form Nh(zh; ·, ·) defined on S�0(Ω,Th)×
S�0(Ω,Th) by

Nh(z
h; vh, wh) := (a(·, zh)∇vh,∇wh)h + (vhau(·, zh)∇zh,∇wh)h .

The Newton method for approximating uh by a sequence (zh
k ) in S�0(Ω,Th) can be

written as

Nh(z
h
k ; zh

k+1 − zh
k , v

h) = Fh(v
h)− Ah(z

h
k ; zh

k , v
h), ∀vh ∈ S�0(Ω,Th), (76)

where zh
0 ∈ S�0(Ω,Th) is an initial guess.

In this section, we show that under the hypotheses of Theorem 5, the Newton method
(76) can be used to compute the numerical solution uh of the nonlinear system (14).
We also prove the uniqueness of the finite element solution uh of (14) for all h small
enough. This generalizes the results in [13] to the case of numerical quadrature.

Consider for all h the quantity

σh = sup
vh∈S�0(Ω,Th)

‖vh‖L∞(Ω)
‖vh‖H1(Ω)

.

Using (9), one can show the estimates

σh ≤ C(1 + | ln h|)1/2 for d = 2, σh ≤ Ch−1/2 for d = 3,

where C is independent of h. The above estimates are a consequence of the inverse
inequality (34) with m = n = 0, q = ∞ and the continuous injection H1(Ω) ⊂
L p(Ω) with p = 6 for d = 3 and with all 1 ≤ p < ∞ for d = 2. For d = 1, we
simply have σh ≤ C . Notice that for all dimensions d ≤ 3, we have hσh → 0 for
h → 0.
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To prove that the Newton method (76) is well defined and converges, the following
lemma is a crucial ingredient.

Lemma 7 Let τ > 0. Under the assumptions of Theorem 5, there exist h0, δ > 0 such
that if 0 < h ≤ h0, and zh ∈ S�0(Ω,Th) with

‖zh‖W 1,6(Ω) ≤ τ and σh‖zh − Ihu‖H1(Ω) ≤ δ,

then for all linear form G on S�0(Ω,Th), there exists one and only one solution
vh ∈ S�0(Ω,Th) of

Nh(z
h; vh, wh) = G(wh), ∀wh ∈ S�0(Ω,Th). (77)

Moreover, vh satisfies

‖vh‖H1(Ω) ≤ C‖G‖H−1(Ω) (78)

where we write ‖G‖H−1(Ω) = supwh∈S�0(Ω,Th)
|G(wh)|/‖wh‖H1(Ω), and C is a con-

stant independent of h and zh.

Proof It is sufficient to prove (78), since it implies that the solution is unique and
hence exists in the finite-dimensional space S�0(Ω,Th). Assume that vh is a solution
of (77). Using (12), (33) and (31), we have

λ‖vh‖2
H1(Ω)

≤ Ah(z
h; vh, vh) = G(vh)− (vhau(·, zh)∇zh,∇vh)h

≤ (‖G‖H−1(Ω) + C‖au(·, zh)∇zh‖L6(Ω)‖vh‖L3(Ω))‖vh‖H1(Ω)

≤ (‖G‖H−1(Ω) + Cτ‖vh‖1/2
L2(Ω)

‖vh‖1/2
H1(Ω)

)‖vh‖H1(Ω).

From the Young inequality, we deduce

‖vh‖H1(Ω) ≤ C(‖G‖H−1(Ω) + ‖vh‖L2(Ω)). (79)

Next, applying Lemma 5, with ξ = v in (67), let ϕh be the solution for h small enough
of

Nh(Ihu;wh, ϕh) = (vh, wh) ∀wh ∈ S�0(Ω,Th);

it satisfies the bound

‖ϕh‖H1(Ω) ≤ C‖vh‖L2(Ω). (80)
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We obtain using an identity similar to (71) and the Cauchy–Schwarz inequality,

‖vh‖2
L2(Ω)

= Nh(Ihu; vh, ϕh)

= G(ϕh)+ Nh(Ihu; vh, ϕh)− Nh(z
h; vh, ϕh)

≤ (‖G‖H−1(Ω) + C‖Ihu − zh‖L∞(Ω)‖vh‖H1(Ω)

+C‖vh‖L∞(Ω)‖Ihu − zh‖H1(Ω))‖ϕh‖H1(Ω).

Using (80), we deduce

‖vh‖L2(Ω) ≤ C(‖G‖H−1(Ω) + 2σh‖Ihu − zh‖H1(Ω)‖vh‖H1(Ω))

≤ C(‖G‖H−1(Ω) + δ‖vh‖H1(Ω))

Substituting into (79), we obtain

(1 − Cδ)‖vh‖H1(Ω) ≤ C‖G‖H−1(Ω).

We choose δ > 0 so that 1 − Cδ > 0 which concludes the proof. ��
We may now state in the following theorem that the Newton method (76) is well

defined and converges. This results generalizes to the case of numerical quadrature
the result of [13, Thm. 2].

Theorem 6 Consider uh a solution of (14). Under the assumptions of Theorem 5,
there exist h0, δ > 0 such that if h ≤ h0 and σh‖zh

0 − uh‖H1(Ω) ≤ δ, then the
sequence (zh

k ) for the Newton method (76) is well defined, and ek = ‖zh
k − uh‖H1(Ω)

is a decreasing sequence that converges quadratically to 0 for k → ∞, i.e.

ek+1 ≤ Cσhe2
k , (81)

where C is a constant independent of h, k.

Proof The proof is a consequence of Lemma 7 and is obtained following the lines of
the proof of [13, Thm. 2]. For the convenience of the reader, a detailed proof is given
in the Appendix. ��

Using Theorem 6, we may now show the uniqueness of the numerical solution uh

of (14) for all h small enough.

Proof of Theorem 5

(iii) uniqueness of the numerical solution.

We know from Theorem 2 that a solution of (14) exists for all h. Consider two solu-
tions uh, ũh ∈ S�0(Ω,Th) of (14). Using (25), there exists h1 > 0 (independent of the
choice of uh, ũh) such that

for all h ≤ h1, ‖uh − u‖H1(Ω) ≤ Ch� and ‖ũh − u‖H1(Ω) ≤ Ch�.
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This yields

σh‖ũh − uh‖H1(Ω) ≤ σh‖ũh − u‖H1(Ω) + σh‖uh − u‖H1(Ω)

≤ 2Cσhh� → 0 for h → 0.

Thus, we have σh‖ũh − uh‖H1(Ω) ≤ δ for all h ≤ h2 for some h2 > 0. Then, apply-
ing Theorem 6 with initial guess zh

0 = ũh , we have that the sequence (zh
k )k≥0 of the

Newton method is well defined by (76), and ‖zh
k − uh‖H1(Ω) → 0 for k → ∞. Since

zh
k is in fact independent of k (because ũh solves (14)), we obtain ũh = uh for all

h ≤ h0 := min(h1, h2). ��

5 Numerical experiments

In this section, we present two test problems in dimension two to illustrate numerically
that the H1 and L2 estimates between the finite element solution and the exact solution
in Theorem 5 are sharp.

We consider the numerical resolution of non-linear problems of the form (1), with
Dirichlet and also more general boundary conditions, on the square domain Ω =
[0, 1]2 discretized by a uniform mesh with N × N Q1-quadrilateral elements or a
uniform mesh with N × N couples of P1-triangular elements which corresponds in
both cases to O(N 2) degrees of freedom. Notice that we obtain similar results when
considering either quadrilateral or triangular elements. For each quadrilateral element,
we consider the Gauss quadrature formula with J = 4 nodes, while for triangular ele-
ments we consider the quadrature formula with J = 1 node at the baricenter.

Evaluating L2 and H1 errors The L2 and H1 relative errors between the finite ele-
ment solutions uh and the exact solution u are approximated by quadrature formulas.
We compute

e2
L2 := ‖u‖−2

L2(Ω)

∑
K∈Th

J∑
j=1

ωK j |uh(xK j )− u(xK j )|2, (82)

e2
H1 := ‖∇u‖−2

L2(Ω)

∑
K∈Th

J∑
j=1

ωK j ‖∇uh(xK j )− ∇u(xK j )‖2, (83)

so that

eL2 ≈ ‖u − uh‖L2(Ω)

‖u‖L2(Ω)

, eH1 ≈ ‖∇(u − uh)‖L2(Ω)

‖∇u‖L2(Ω)

.

Here the values u(xK j ) and ∇u(xK j ) for the exact solution are computed either ana-
lytically, or approximated using a very fine mesh. In (82), (83), for each quadrilateral
element, we consider the Gauss quadrature formula with J = 4 nodes, which is exact

123



422 A. Abdulle, G. Vilmart

on Q3(K ), while for triangular elements we use a quadrature formula with J = 6
nodes on each triangle (the nodes and the middle of the edges) which is exact on
P2(K ). This way, the additional numerical quadrature error introduced in (82), (83)
is negligible compared to the accuracy of the studied finite element method.

Test problem We first consider the non-linear problem

−∇ · (a(x, u(x))∇u(x)) = f (x) inΩ

u(x) = 0 on ∂Ω
(84)

with Dirichlet boundary conditions and the anisotropic tensor

a(x, s) =
(

1 + x1 sin(πs) 0
0 2 + arctan(s)

)
. (85)

The source f in (84) is adjusted analytically so that the exact solution is

u(x) = 8 sin(πx1)x2(1 − x2), (86)

see the numerical solution on a 32 × 32 mesh in Fig. 1a. We also give a graphical
representation of the source f projected on the finite element space in Fig. 1b.

In Fig. 2a, we plot the L2 and H1 relative errors (82), (83) for the numerical solution
compared to the analytical solution (86), as a function of the size N of the meshes
made of N × N elements of quadrilateral type with size h = 1/N . As predicted by
Theorem 5, we observe that the error for the H1 norm has size O(h) (line of slope
one), and for the L2 norm, we observe an error of size O(h2) (line of slope two).

Concerning the Newton iterations (76), using the (artificial) initial guess zh
0 =

�h
(
10x1(1 − x1)x2(1 − x2)

)
, we observe that it requires about 7 iterations to con-

verge to uh up to machine precision for all meshes considered in Fig. 2a.

Richards’ equation for porous media flows Consider Richards’ parabolic equa-
tion for describing the fluid pressure u(x, t) in an unsaturated porous medium, with
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Fig. 1 Problem (84), (85). a Solution uh with mesh size 32 × 32. b L2-projection of the source f on the
finite element space with mesh size 32 × 32
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Fig. 2 eL2 error (solid lines) and eH1 error (dashed lines) as a function of the size N of a uniform N × N

mesh. a Problem (84), (85). Q1-quadrilateral FEs. b Problem (88), (87). P1-triangular FEs

permeability tensor a(s) and volumetric water content Θ ,

∂Θ(u)

∂t
− ∇ · (a(u)∇u))+ ∂a(u)

∂x2
= f

where x2 is the vertical coordinate, and f corresponds to possible sources or sinks.
We consider an exponential model for the permeability tensor a similar to the one in
[31], which we slightly modify to simulate an anisotropic porous media,

a(s) =
(

es 0
0 1.1e1.2s

)
. (87)

For our numerical simulation, we are interested only in the stationary state (where
∂u/∂t = 0). We therefore arrive at the following non-linear elliptic problem. For
simplicity, we let the source term be identically zero ( f (x) ≡ 0),

−∇ · (a(u(x))∇(u(x)− x2)) = 0 in Ω. (88)

We add mixed boundary conditions of Dirichlet and Neumann types,

u(x) = g1(x) on ∂ΩD1 = [0, 1] × {1},
u(x) = g2(x) on ∂ΩD2 = [0, 1] × {0},
n · a(u(x))∇(u(x)− x2) = 0 on ∂ΩN = {0} × [0, 1] ∪ {1} × [0, 1].

We put Neumann conditions on the left and right boundaries of the domain (n denotes
the vector normal to the boundary). On the top boundary ∂ΩD1 and the bottom bound-
ary ∂ΩD2 , we take respectively
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Fig. 3 Porous media flow problem (88), (87). Numerical solutions on various uniform meshes with N × N
couples of P1-triangular elements. a Level curves. Mesh size 4 × 4. b Level curves. Mesh size 16 × 16.
c Level curves. Mesh size 32 × 32. d Surface plot. Mesh size 16 × 16

g1(x) = −x3
1 ,

g2(x) = −2 + e−3x1 .

Notice that (88) is not exactly of the form (1), but can be cast into this form
using the change of variable v(x) := u(x) − x2. The corresponding tensor is then
a(x, s) = a(s + x2). Since no analytical formula for the solution u(x) is available, we
compute a reference a finescale solution on a uniform mesh with 1024 × 1024 cou-
ples of P1-triangular elements (one million degrees of freedom). Here, the Newton
iterations (76) converge in about 6 iterations with the initial guess zh

0 ≡ 0.
In Fig. 3 we represent the levels curves of the the numerical solutions on uniform

meshes of various sizes. Notice that the level curves for the finescale solution look
nearly identical to those of the solution with N = 32 in Fig. 3c.

In Fig. 2b, we plot the H1 and L2 relative errors on various uniform meshes with
N × N couples of P1-triangular elements with size h = 1/N . Similarly to the pre-
vious experiment, we observe an error of size O(h) in the H1 norm as predicted by
Theorem 5 (line of slope 0.97 for the meshes with N = 64, 128, 256), and O(h2) in
the L2 norm (line of slope 1.91 for the meshes with N = 64, 128, 256).
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6 Appendix

We give here the proofs of Theorem 3, Lemmas 2, 3, Prop. 3 and Theorem 6.

Proof of Theorem 3 As mentioned in Remark 4 we have to make sure that Theorem 3
remains true for general simplicial and quadrilateral FEs. We use a compactness argu-
ment similar to [17, Thm. 2.6] or [13, 893]. From Theorem 2, the numerical solution
exists for all h, and for any choice of the numerical solution, the sequence (uh)h>0
is bounded in H1

0 (Ω). Since the injection H1(Ω) ⊂ L2(Ω) is compact, from any
sequence of {h} tending to zero, there exists a subsequence {hk} such that for some
w ∈ H1(Ω), uhk → w strongly in L2(Ω) and weakly in H1(Ω). To conclude
the proof that ‖uh − u‖L2(Ω) → 0 for h → 0, it is sufficient to show that the
limit is unique with w = u. Let v ∈ C∞

0 (Ω) and vhk := Ihkv. Using (36) yields
‖v − vhk ‖W 1,∞(Ω) → 0 for k → ∞ and ‖vhk ‖W̄ 2,∞(Ω) ≤ C‖v‖W 2,∞(Ω). Using (8),
we have

A(w,w, v)− F(v) = A(w,w − uhk , v)+ (A(w, uhk , v)− A(uhk , uhk , v))

+A(uhk , uhk , v − vhk )

+(A(uhk , uhk , vhk )− Ah(u
hk , uhk , vhk ))

+(Ah(u
hk , uhk , vhk )− Fh(v

hk ))

+(Fh(v
hk )− F(vhk ))+ F(vhk − v).

Using (18), (19) it is straightforward that the right-hand side of the above equality
tends to zero for k → ∞. Thus we obtain that w satisfies

A(w;w, v) = F(v), ∀v ∈ C∞
0 (Ω),

and hence w is solution of (8) because C∞
0 (Ω) is dense in H1

0 (Ω). Since the solution
of (8) is unique (Theorem 1), we obtain w = u. ��
Proof of Lemma 2 As the functional EK in (39) is linear, we shall get the error
estimates for the expression EK (a(·, z)v(m)w(n)), where a(·, ·) is a scalar function
denoting a component of the tensor (amn(x, s))1≤m,n≤d and v(m), w(n) denote the
components of ∇vh |K , ∇wh |K . Consider a reference element K̂ . We use the notations
â(x, ·) := a(FK (x), ·), ẑ(x) := z(FK (x)), v̂(m)(x) := v(m)(FK (x)) and similarly for
w(n), where FK : K̂ → K is defined in Sect. 2.2. We have

EK (a(·, z)v(m)w(n)) = | det ∂FK |EK̂ (â(·, ẑ)v̂(m)ŵ(n)). (89)

(i) Proof of estimate (42).

We adapt the proof of [11, Thm. 28.2]. We start by applying the Bramble–Hilbert
Lemma [11, Thm. 28.1] to the linear form ϕ̂ 
→ EK̂ (ψ̂ϕ̂) with ψ̂ a polynomial on

K̂ . This is a linear bounded functional on W �,∞(Ω) which vanishes on P�−1(K̂ ) if
ψ̂ ∈ P�−1(K̂ ) (due to the assumption (Q2) for simplicial FEs) and if ψ̂ ∈ (Q�(K̂ ))′ 4

(due to the assumption (Q2) for quadrilateral FEs). Thus, in either cases,

4 We denote by (Q�(K̂ ))′ the space of all derivative of polynomials belonging to (Q�(K̂ )).
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EK̂ (ψ̂ϕ̂) ≤ C‖ψ̂‖L2(K̂ )|ϕ̂|W �,∞(K̂ ), ∀ϕ̂ ∈ W �,∞(K̂ ). (90)

We now take ϕ̂ = â(·, ẑ)v̂(m) and ψ̂ = ŵ(n), where ẑ, v̂, ŵ ∈ P�(K̂ ) or Q�(K̂ ) (and
thus ψ̂ is in P�−1(K̂ ) or in (Q�(K̂ )′, respectively). We obtain

|EK̂ (â(·, ẑ)v̂(m)ŵ(n)| ≤ C |â(·, ẑ)v̂(m)|W �,∞(K̂ )‖ŵ(n)‖L2(K̂ ).

Using the equivalence of norms on a finite dimensional space of polynomials, we have

|â(·, ẑ)v̂(m)|W �,∞(K̂ ) ≤ C
�∑

j=0

|â(·, ẑ)|W j,∞(K̂ )|v̂(m)|H�− j,(K̂ ),

where we note that the sum stops at � − 1 if v ∈ P�(K ). Using the Faà-di-Bruno
formula5, |â(·, ẑ)|W j,∞(K̂ ) can be bounded by a sum of terms of the form

‖∂νx̂ ∂k
u â(·, ẑ)‖L∞(K̂ )|ẑ|Wr1,∞(K̂ ) · · · |ẑ|Wrk ,∞(K̂ ) (91)

where ν ∈ N
d is a multi-index and |ν| + r1 + · · · + rk = j , with k ≥ 0 and ri ≥ 1

for all i . We recall the following inequalities [11, Theorems 15.1 and 15.2], for all
0 ≤ j ≤ �− 1,

‖∂νx̂ ∂k
u â‖L∞(K̂×R)

≤ Ch|ν|
k ‖∂νx̂ ∂k

u a‖L∞(K×R), 0 ≤ k + |ν| ≤ �, (92)

|v̂|W j,q (K̂ ) ≤ Ch j
k | det ∂FK |−1/q |v|W j,q (K ), ∀v ∈ W j,q(K ), 1 ≤ q < ∞,

(93)

|v̂|W j,∞(K̂ ) ≤ Ch j
k |v|W j,∞(K ), ∀v ∈ W j,∞(K ). (94)

Using the equivalence of norms, the term for k = 1, |ν| = 0, j = � can be bounded
as

‖∂uâ(·, ẑ)‖L∞(K̂ )|ẑ|W �,∞(K̂ )|v̂(m)|L∞(K̂ )
≤ C |â|W 1,∞(K̂×R)

|ẑ|W �,α(K̂ )‖v̂(m)‖Lβ(K̂ )

≤ Ch�| det ∂FK |−1/2|a|W 1,∞(K×R)|z|W �,α(K )‖v(m)‖Lβ(K )

where we use (93) with q = 2, α, β (1/α + 1/β = 1/2). For all other terms in (91)
we use the estimates (92) and (94). We obtain

|EK̂ (â(·, ẑ)v̂(m)w(n))| ≤ Ch�| det ∂FK |−1‖a‖W �,∞(K×R)‖w(n)‖L2(K )(
‖v(m)‖Hγ (K )(1 + ‖z‖�W �−1,∞(K ))+|z|W �,α(K )‖v(m)‖Lβ(K )

)
,

5 Here we use the fact that all functions in W 1,∞(R) are Lipschitz continuous. This implies that the usual
chain rule applies for differentiating with respect to x the composition a(x, z(x)) of s 
→ a(x, s) (where s
evolves in R) with a smooth scalar function z(x) defined on K .
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where γ = � − 1 if v ∈ P�(K ) and γ = � if v ∈ Q�(K ) (in the above estimate
‖z‖�

W �−1,∞(K )) can be omitted for � = 1). Finally, using (89) concludes the proof of
(42).

(ii) Proof of estimate (43).

We adapt the proof of [12, Thm. 2]. Consider the linear operator �̂0 : L1(K̂ ) →
P0(K̂ ) defined as

�̂0(ψ̂) = 1

|K̂ |
∫

K̂

ψ̂(x̂)dx̂ .

Let ϕ̂ ∈ W �+1,∞(K̂ ) and ψ̂ ∈ (R�(K̂ ))′. Then, we have

EK̂ (ψ̂ϕ̂) = EK̂ ((�̂0ψ̂)(�̂0ϕ̂1)ϕ̂2)

+EK̂ ((�̂0ψ̂)(ϕ̂1 −�0ϕ̂1)ϕ̂2)+ EK̂ ((ψ̂ − �̂0ψ̂)ϕ̂). (95)

where we set ϕ̂ := ϕ̂1ϕ̂2. We apply the Bramble–Hilbert Lemma three times, to esti-
mate each of the above terms. Using (Q2), the first term as a function of ϕ̂2 is a linear
form which vanishes on P�(K̂ ) (since �̂0ψ̂ ∈ P0(K̂ )), while the second and third
terms as functions of ϕ̂2, ϕ̂ respectively are linear forms which vanish on P�−1(K̂ ).
We use ‖�̂0ψ̂‖L2(K̂ ) ≤ C‖ψ̂‖L2(K̂ ) and ‖ψ̂ − �̂0ψ̂‖L2(K̂ ) ≤ C |ψ̂ |H1(K̂ ) (applying

the Bramble–Hilbert Lemma to the linear form ψ̂ 
→ ψ̂ − �̂0ψ̂ which vanishes on
P0(K̂ )). This yields

|EK̂ (ψ̂ϕ̂)| ≤ C(‖ψ̂‖L2(K̂ )‖ϕ̂1‖L2(K̂ )|ϕ̂2|W �+1,∞(K̂ )

+‖ψ̂‖L2(K̂ )|ϕ̂1|H1(K̂ )|ϕ̂2|W �,∞(K̂ ) + |ψ̂ |H1(K̂ )|ϕ̂|W �,∞(K̂ )).

Similarly to (i), we take ϕ̂2 = â(·, ẑ), ϕ̂1 = v̂(m) and ψ̂ = ŵ(n). We obtain

|EK̂ (â(·, ẑ)v̂(m)ŵ(n)| ≤ C(|â(·, ẑ)|W �+1,∞(K̂ )‖v̂(m)‖L2(K̂ )‖ŵ(n)‖L2(K̂ )

+|â(·, ẑ)|W �,∞(K̂ )|v̂(m)|H1(K̂ )‖ŵ(n)‖L2(K̂ )

+|â(·, ẑ)v̂(m)|W �,∞(K̂ )|ŵ(n)|H1(K̂ )).

In the above estimate, the quantity |â(·, ẑ)v̂(m)|W �,∞(K̂ ) can be bounded exactly as in
the proof in i). It remains to bound the first two terms in the above estimate. We use
again the Faà-di-Bruno formula for computing the derivatives up to order � + 1 of
â(·, ẑ). For the case where ẑ is differentiated � or �+ 1 times, we obtain terms of the
form

‖∂u∂x̂i â‖L∞(K̂×R)
|ẑ|H�(K̂ )‖v̂(m)‖Lα(K̂ )‖ŵ(n)‖Lβ(K̂ ),

‖∂uâ‖L∞(K̂×R)
|ẑ|W �,α(K̂ )|v̂(m)|H1(K̂ )‖ŵ(n)‖Lβ (K̂ ),

‖∂uâ‖L∞(K̂×R)
|ẑ|H�+1(K̂ )‖v̂(m)‖Lα(K̂ )‖ŵ(n)‖Lβ(K̂ ),
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where we use the equivalences of norms for spaces of polynomials on K̂ . For deriv-
atives of z of order j < �, we consider the norms |ẑ|W j,∞(K̂ ), |v̂(m)|H j ′ (K̂ ) and
‖ŵ(n)‖L2(K̂ ). We conclude the proof using (92), (93), (94) and (89), similarly to the
proof in (i). ��
Remark 7 Notice that in the above proof (ii) of (43) in Lemma 2, in the case of
simplicial elements, instead of (95), one can simply consider

EK̂ (ψ̂ϕ̂) = EK̂ ((�̂0ψ̂)ϕ̂)+ EK̂ ((ψ̂ − �̂0ψ̂)ϕ̂),

then take ψ̂ = ŵ(n) and ϕ̂ = â(·, ẑ)v̂(m), and use |v̂(m)|H�(K̂ ) = |v̂(m)|H�+1(K̂ ) = 0.

For quadrilateral elements, we had to use twice the projection �̂0 in (95) because we
have |v̂(m)|H�+1(K̂ ) �= 0 in general.

Proof of Lemma 3 For simplicial FEs with � = 1, the result was first shown in [17,
Lemma 2.5]. For general simplicial or quadrilateral FEs, we apply the Bramble–Hilbert
Lemma [11, Thm. 28.1] to the functional EK (ψ̂ ·) with ψ̂ a polynomial in (R�(K̂ ))′.
This is a linear bounded functional on W 1,∞(Ω) which vanishes on P0(K̂ ) (as Q2)
holds). Thus,

EK (ψ̂ϕ̂) ≤ C‖ψ̂‖L2(K̂ )|ϕ̂|W 1,∞(K̂ ), ∀ϕ̂ ∈ W 1,∞(K̂ ). (96)

Then we take ψ̂ = v̂(m) and ϕ̂ = â(·, ẑ)ŵ(n). The rest of the proof is similar to (i) in
the proof of Lemma 2. ��
Proof of Proposition 3 We follow the lines of the proofs of Proposition 2 and
Lemma 3, and take in the estimate (96) the functions ϕ̂ = âu(·, ẑ)z(n)ŵ, ψ̂ = v̂(m) and
ϕ̂ = âu(·, ẑ)v(m)ŵ, ψ̂ = ẑ(n), respectively. This yields for all zh, vh, wh ∈ S�0(Ω,Th)

the two estimates

(au(·, zh)∇zh · ∇vh, wh)h − (au(·, zh)∇zh · ∇vh, wh)

≤ Ch‖vh‖H1(Ω)

(
(1 + ‖zh‖2

W 1,∞(Ω))‖wh‖L2(Ω) + ‖zh‖H̄2(Ω)‖wh‖L∞(Ω)

+‖zh‖W 1,∞(Ω)‖wh‖H1(Ω)

)
≤ Ch‖zh‖W 1,∞(Ω)

(
(1 + ‖zh‖W 1,∞(Ω))‖vh‖H1(Ω)‖wh‖L2(Ω)

+‖vh‖H̄2(Ω)‖wh‖L2(Ω) + ‖vh‖H̄2(Ω)‖wh‖H1(Ω)

)
.

We conclude the proof of Proposition 3 by taking zh =: Ihu, and wh := Ihw,
vh := Ihv respectively, and using (36), (38). ��
Proof of Theorem 6 The proof follows closely the lines of the proof of [13, Thm. 2].
We first show that Lemma 7 applies with zh = uh for all h ≤ h0 small enough. Indeed,
we have from Theorem 5 that σh‖uh − Ihu‖H1(Ω) ≤ Cσhh� → 0 for h → 0, and
we obtain from Lemma 1 that ‖uh‖W 1,6(Ω) ≤ C where C is independent of h.
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We show that given zh
k satisfying σh‖uh − zh

k ‖H1(Ω) ≤ δ, the next approxima-
tion zh

k+1 exists and is uniquely defined. Since S�0(Ω,Th) is finite-dimensional, it is
sufficient to show for all vh ∈ S�0(Ω,Th) that

Nh(z
h
k ; vh, wh) = 0, ∀wh ∈ S�0(Ω,Th) (97)

implies vh = 0. Indeed, using (97) we have

Nh(u
h; vh, wh) = G(wh), ∀wh ∈ S�0(Ω,Th),

where

G(wh) = ((a(·, uh)− a(·, zh
k ))∇vh,∇wh)h

+(vh(
(au(·, uh)− au(·, zh

k ))∇(uh)− au(·, zh
k )∇(zh

k − uh)
)
,∇wh)h .

Then, ‖G‖H−1(Ω) ≤ Cσh‖uh − zh
k ‖H1(Ω)‖vh‖H1(Ω), and Lemma 7 yields

‖vh‖H1(Ω) ≤ Cσh‖uh − zh
k ‖H1(Ω)‖vh‖H1(Ω) ≤ Cδ‖vh‖H1(Ω).

If δ is chosen small enough, we have Cδ < 1 and thus vh = 0.
We now show (81). We have

Nh(u
h; zh

k+1 − uh, wh) = Nh(u
h; zh

k − uh, wh)+ Ah(u
h; uh, wh)− Ah(z

h
k ; zh

k , w
h)

+Nh(u
h; zh

k+1 − zh
k , w

h)− Nh(z
h
k ; zh

k+1 − zh
k , w

h)

= G1(w
h)+ G2(w

h) = G(wh), ∀wh ∈ S�0(Ω,Th),

where the first and second lines are equal to G1,G2 respectively. Then, similarly as
in the proof of Lemma 6, we have

G1(w
h) =

(
1

2
ãuu(z

h
k − uh)2∇uh + ãu(z

h
k − uh)∇(uh − zh

k ),∇wh
)

h

≤ Cσhe2
k‖wh‖H1(Ω),

where ãuu and ãu are certain averages of auu and au . Similarly,

G2(w
h) = ((a(·, uh)− a(·, zh

k ))∇(zh
k+1 − zh

k )+ (zh
k+1 − zh

k )

×(a(·, zh
k )∇(uh − zh

k )),∇wh)h

+((zh
k+1 − zh

k )
(
(a(·, uh)− a(·, zh

k ))∇uh,∇wh)h

≤ Cσh‖zh
k − uh‖H1(Ω)(2‖zh

k − uh‖H1(Ω) + ‖zh
k+1 − uh‖H1(Ω))‖wh‖H1(Ω)

+ Cσh‖zh
k −uh‖H1(Ω)‖uh‖W 1,6(Ω)(‖zh

k − uh‖H1(Ω) + ‖zh
k+1 − uh‖H1(Ω))

×‖wh‖H1(Ω)

≤ Cσhek(ek + ek+1)‖wh‖H1(Ω).
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Using Lemma 7 with zh = uh we obtain

ek+1 ≤ Cσh(e
2
k + ekek+1)

which yields

(1 − Cσhek)ek+1 ≤ Cσhe2
k

and taking δ small enough, we have 1 − Cσhek ≥ 1 − Cδ > 0 and this concludes the
proof. ��
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