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Abstract We present a three-dimensional distinct element
model (DEM) able to handle populations of spherocylin-
ders. We report on granular crystallization occurring when
vibrating mono-disperse assemblies of spherocylinders that
faithfully reproduce the corresponding results of physical
experiments from the literature.
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1 Introduction

Granular media are highly pervasive in nature and play an
important role in technology. Because of their particular
behavior, they have been said to constitute a fourth state of
matter. In the past, one was confined to carry out experimental
studies with real grains in order to gain some insight into their
behavior. With the availability of increased computational
power, it has become possible to design and implement sim-
ulation models of growing realism. Although granular media
present in nature are composed of grains that are all but spher-
ical, so far most simulation models were only able to handle
spherical grains. This is a large limitation, since many inter-
esting phenomena cannot be captured by such models. In this
paper we present a new three-dimensional distinct element
simulation method that can handle non-spherical grains and is
able to produce simulation experiments that confirm findings
reported using real such granular media. This demonstrates
that it is possible to simulate large-scale heterogeneous pop-
ulations composed of spheres and spherocylinders of various
size and shape parameters. In particular, we correctly repro-
duce the rearrangement of populations of spherocylinders
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subject to tapping. This paper is organized as follows: first,
we give a quick review of existing literature, then we describe
our simulation model and experiments we carried out with it
and finally we discuss the corresponding results.

2 Literature review

Probably the first distinct element simulation model can be
found in [2]. The main contribution of that model was its
way to handle contacts experienced by particles. It consists
in considering pairs of spheres in contact as constituted of lin-
ear springs and dashpots generating forces both normal and
tangential to the contact and similarly for the moments. This
approach will be extended to contacts between spherocylin-
ders and described in more detail in section 3. In [10] and later
in [3] this model was implemented using power diagrams for
particle contact detection, thereby yielding a particularly effi-
cient code. The contact force models were discussed in[13],
where the authors point at problems with the dissipative
behavior of the modeled media and propose a way to allevi-
ate them. Recently and independently of us, [1] proposed a
Metropolis-Monte-Carlo method to simulate the steady-state
distribution of populations of spherocylindrical grains. This
approach makes no use of any explicit mechanical properties
other than particle weight and is purely geometric in what
regards contacts. Some of the steady state distributions they
report turn out to correspond to metastable states. In contrast,
physical experiments were carried out [20] wherein a stable
distribution is obtained which happens to be crystalline. The
authors of [1] did not find this distribution because reach-
ing it with their Monte-Carlo approach would certainly have
taken prohibitively long simulation times. Indeed leaving a
metastable state to reach a stable one requires going through
many highly improbable transitions in their model.

3 Simulation method

We propose here an extension of the distinct element method
able to handle spherocylinder assemblies. A spherocylinder
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Fig. 1 A spherocylinder of characteristic diameter δ and length λ and
the referential (x, i, j,k)

is defined as follows. Let σ be a line segment in R
3 and δ a

positive real. The spherocylinder of shaft σ and diameter δ
(radius δ/2) is the set of points whose distance to σ is smaller
or equal to δ/2 (Figure 1). The length of σ is called λ as on
figure 1. In other words a spherocylinder is the Minkowski
sum of the line segment σ with a centered ball of diameter δ.

The distinct element method iteratively updates the state
of the medium, whose geometrical constituents are grains and
walls. At every time-step, the contacts between the elements
are detected and values for the resulting contact forces are
calculated. The model assumes those forces remain constant
for the duration�t of the time-step. The evolution of the state
of the medium is then computed by numerical integration of
Newton’s laws of motion for each individual grain. The pro-
cess is repeated at the next step with this new configuration.A
rough flow chart of the simulation process is given in Figure 2.

A main issue encountered when simulating granular
media is the choice of a suited physical contact model. In
DEM, grains are assumed to be homogeneous, deformable
solids. A grain which is in contact with others or with a wall
experiences deformation. In general, precise determination

Fig. 2 Simulation algorithm

of the contact deformation is not trivial. However, as stated
in [2], the behavior of a granular medium as a whole is more
due to the motions of the particles than to their deformations
which are small by comparison. Hence, precise knowledge
of deformation is not necessary for a good approximation of
mechanical behavior of the medium. In the model, a contact
will occur whenever two objects (two grains or a grain and a
wall) overlap. This overlap is taken as a measure of the defor-
mation of the particles at the contact point (see figure 3). The
contact force is then modeled by a force-overlap relation,
taking into account the overlap and its time derivative. A
motivation to model grains with spherocylinders is that an
overlap can easily be defined with this particular shape. Two
spheres overlap when the distance between the grain cen-
ters is smaller than the sum of their radii. Analogously, two
spherocylinders will overlap when the distance between their
shafts is smaller than the sum of their radii.

As shown in Figure 2, at every iteration of a simulation,
one must detect all the contacts between pairs of grains. One
first possibility is to check for contacts between each pair of
grains. This leads to contact detection inO(n2) time where n
is the number of grains. The complexity of detection can be
reduced by considering subdivisions of the simulation space
so that grains that are in contact may only be found in adja-
cent cells. However, one must track the grains that are in each
cell. Quadtrees are successive subdivisions of the simulation
space until there is no more than one grain per cell. A very
efficient algorithm for detecting contacts uses dynamic tri-
angulations so that grains which are in contact are connected
by an edge [10,4].

Implementation of the model was based on the program
previously developed by the authors [4] for the simulation of
spherical grains.Work on a triangulation-based contact detec-
tion for spherocylinders is in progress. However, a spatial
sorting algorithm was preferred to obtain the results reported
in section 5. This method consists in enclosing each sphero-
cylinder in a ball and testing those pairs of spherocylinders
for contacts whose enclosing balls intersect. In order to find
the pairs of enclosing balls which intersect, we chose a naive
method which has the virtue of being very simple. While
not adequate for large grain populations, this method is quite
suited for our purposes since it allows to treat cases with
1000 to 2000 grains without much overhead. Taking some
direction d as the altitude, it consists in sorting the balls in
decreasing order with respect to their highest point. They are
then scanned in this order and a given ball b is only tested for
contact with those balls whose highest point lies above the
lowest point of b. As the balls are sorted, we obtain a mean
complexity of O(n

5
3 ), which is nearly quadratic but reveals

helpful in practical cases.

3.1 Physical contact model

Consider two spherocylindrical grainsGi , i = 1, 2 (given by
their characteristic diameter δi , half-shafts ai , position xi of
the mass center, shaft σi , linear velocity vi and spin vector
ωi) experiencing a contact (Figure 3).
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Fig. 3 A contact between two spherocylinders

Let fG1→G2
and fG2→G1

be the forces applied by G1 on
G2 and by G2 on G1 respectively. Newton’s third law gives
fG1→G2

= −fG2→G1
, and we denote f = fG1→G2

. In order
to model those contact forces and give their application points
on either grain, we need to define some parameters which will
quantify the geometry of the contact area. In particular, we
need to find two points y1 ∈ σ1 and y2 ∈ σ2 for which
the shortest distance between σ1 and σ2 is attained, that is,
‖y1 − y2‖ = d(σ1, σ2).

Let us first consider the case when the shafts σ1 and σ2
of G1 and G2 are in general position. In this case, the pair
(y1,y2) is unique. Let ψσ1 : s �→ x1 + sa1 for s ∈ [−1, 1]
and ψσ2 : t �→ x2 + ta2 for t ∈ [−1, 1] be parametrizations
of σ1 and σ2. We suppose that the shafts are non-degenerate,
that is to say a1 �= 0 and a2 �= 0 otherwise the computa-
tion is either trivial or reduces to finding the point on a line
segment closest to another point. Finding y1 and y2 amounts
to minimizing ‖ψσ1(s)− ψσ2(t)‖2 for (s, t) ∈ [−1, 1]2. A
solution to this optimization problem was previously derived
[7,19]. Letting s∗ and t∗ be the optimal solution, y1 and y2
are given by: y1 = ψσ1(s

∗) and y2 = ψσ2(t
∗). Here is the

procedure we use:
Input: x1,a1,x2,a2
Output: (s∗, t∗) ∈ [−1, 1]2 so that ‖σ1(s

∗)− σ2(t
∗)‖ is

minimal.

1. Compute a = a2
1, b = −a1a2, c = a2

2, d = a1(x1 −x2),
e = −a2(x1 − x2), δ = ac − b2.

2. Compute t∗ = α(bd−ae
δ
) and s∗ = α(−bt∗−d

a
). If −bt∗−d

a
�∈

[−1, 1], compute t∗ = α(−bs∗−e
c

). Stop.

Here α is defined as:

α(u) =





−1 if u ≤ −1
u if u ∈] − 1, 1[
1 if u ≥ 1

. (1)

Now suppose σ1 and σ2 are parallel. In this case, we may
have several choices for the pair (y1,y2). Let p: σ1 → D be

the projection of σ1 on the line D supporting segment σ2. If
p(σ1)∩σ2 = ∅ then the y2 is the point on σ2 closest to p(σ1)
and y1 is the point on σ1 whose image under p is the point of
p(σ1) closest to σ2. If p(σ1) ∩ σ2 �= ∅, we choose y2 as the
center of p(σ1)∩ σ2 and y1 as the point on σ1 which projects
on y2.

Knowing y1 and y2, we define the unit vector “normal”
to the contact as:

un = y2 − y1

‖y2 − y1‖
(2)

For tangent spherocylinders, un is the normal vector to the
tangent plane. We define the application points of forces
fG1→G2

and fG2→G1
as the intersections of the segment

[y1, y2] with the boundaries of G2 and G1, that is respec-
tively c2 = y2 − r2un and c1 = y1 + r1un. The relative
velocity vr at the contact is introduced as the velocity of c2
with respect to c1,

vr = v2 − v1 − (y2 − x2 − r2un) ∧ ω2

+(y1 − x1 + r1un) ∧ ω1 (3)

The overlap ξ is defined as the solution of the differential
equation

ξ̇ = −vr (4)

for which ξ = 0 when the contact begins. The normal and
tangential overlaps are the projections of ξ on un and on the
plane perpendicular to un, ξn = ξ·un and ξt = ξ−(ξ·un)un.
We assume that un is constant during a contact. Then the time
derivatives of the normal and tangential overlaps are

ξ̇n = −vr · un (5)

ξ̇t = −vr + (vr · un)un. (6)

Equations (2), (3) and (5) yield

ξn = r1 + r2 − ‖y2 − y1‖ (7)

which expresses the normal overlap as the length of the seg-
ment joining c1 and c2. Practically, throughout a contact,
the time derivatives of both overlaps and the normal overlap
are calculated by direct application of equations (5), (6) and
(7). On the other hand, the tangential overlap is computed by
numerical integration of (6).

The components of f parallel and perpendicular to un,
the normal force fn and the tangential force f t , are calculated
by a force-overlap relation. In the program, the force-overlap
relation used is the linear viscoelastic model first proposed in
[2], fn = (knξn+cnξ̇n)un and f t = ktξt+ct ξ̇t . We take fric-
tion into account by replacing f t by f t = µ

‖fn‖
‖f t‖ f t whenever

‖f t‖ > µ‖fn‖, where µ is the Coulomb coefficient. More
details on that kind of force models, and especially about the
way kn and cn may be chosen is available in [13]. For the
sake of simplicity, this model takes no account of the rela-
tive orientation of the contacting grains. While the validity of
this approximation should certainly be further analysed, the
simulation results we obtain speak in its favour.
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3.2 Contact between a grain and a wall

Two types of walls are considered: planar and cylindrical
walls. In the simulations performed, the shafts of the grains
stay in one half-space defined by each plane and in the cylin-
drical space defined by each cylindrical wall. Under these
conditions, a grain G is in contact with a wall if and only
if the distance from one or both ends of its shaft to the wall
is smaller or equal to the radius of the grain. Suppose this
takes place for an end e. Let d be the normal to the wall and
passing through e. We define the application points of the
forces acting on the grain and the wall as the intersections
of d with the boundary of the grain and with the wall. The
contact force is calculated similarly to the contact between
two grains. When overlaps exist at both ends, for example if
the grain is parallel to the wall, the contact is modeled by two
forces.

3.3 Updating the state of the medium

For each contact, applying the physical contact model yields
expressions for the forces that act on the grains and the walls
and their application points. Let G be a grain like that of
figure 1, with mass m, inertia tensor I and subject to a set
of forces f1, . . . ,fn. Suppose that force f i has application
point ci . The laws of motion for G are

mẍ = mg + f1 + · · · + fn (8)

I ω̇ = (c1 − x) ∧ f1 + · · · + (cn − x) ∧ fn (9)

In the model, the trajectories of the particles are computed
individually by numerical integration of equations (8) and
(9). In the program, the forward Euler method is used for
these integrations. The orientation of the particles is repre-
sented using quaternions.

For spherocylindrical grains, the inertia tensor expressed
in the referential (x, i, j,k) of figure 1 is a diagonal matrix,
whose diagonal elements Iii , Ijj and Ikk are given by





Iii = 1
48πρδ

2λ3 + 3
64πρδ

4λ+ 1
60πρδ

5 + 1
24πρδ

3λ2

Ijj = Iii

Ikk = 1
32πρδ

4λ+ 1
60πρδ

5

(10)

4 Experiments

We simulate the rearrangement of mono-disperse populations
of spherocylinders enclosed within a cylindrical container
subject to vertical tapping. In order to do this, we use a cylin-
drical container of base diameterD, which is sufficiently high
so that the particles cannot escape from it. Its base is mobile
and can be subject to a 30 Hz sinusoidal vertical oscillation
whose amplitude a can be chosen, whereas its vertical wall
remains motionless. The grains used for the rearrangement
are spherocylinders of diameter δ and elongation parameter
φ = λ/δ. Population size isNp. Simulation processes are ini-
tialized by randomly placing the particles within the cylinder,

the directions of their shafts being uniformly distributed, and
letting them settle under the action of gravity. Once the kinetic
energy has dropped to zero, we start the vibrations. We mon-
itor the intensity of the vibrations via the ratio � = a(2πν)2

g
,

that is the maximal acceleration brought by the bottom plane
to the granular packing. Individual grains have density ρ and
we further define the medium’s volumetric density ρm as the
ratio of the total volume occupied by the grains divided by
the volume of the enclosing truncated cylinder (upon elimi-
nation of outliers). In order to capture the reordering behavior
as a function of the height of the enclosing cylinder, the latter
is subdivided into four horizontal layers of equal thickness
h = 4 mm, numbered in increasing order from bottom to top.
In other words, layer i comes to lie between heights (i− 1)h
and ih.

We monitor the behavior of the medium in terms of the
mean angle between the grain shafts and the bottom plane
as well as its volumetric density ρm, both globally and layer
by layer. Experiments an3, ..., an9 were designed to inves-
tigate the way elongated grains rearrange, and in particular
to observe possible re-orderings which would recall a phase
transition. Among these seven experiments, the main one is
an6. Experiment an9 involves shorter grains in order to show
how the elongation parameter φ changes the rearrangement
behavior. In this experiment, the number of grains is chosen
so that the initial filling height is closest possible to that of
an6. The other five experiments were carried out to investi-
gate possible influence of the restitution coefficient en and
the vibration intensity � on the results.

The parameter values for the various simulations we car-
ried out are given in table 1

5 Results and discussion

Lateral snapshots of experiment an6 at various evolution
stages are given in figure 4. Quantitatively the spherocyl-
inders rearrange vertically to a highly ordered state, at least
along the cylinder boundary. The cuts of the cylinder with
a plane through its axis shown in figure 4 further show that
this particular rearrangement also occurs way to the mid-
dle of the container. Obviously the concurring shapes and
sizes of both container and grains play a role on crystalli-
zation processes. In particular, this is why the spherocylin-
ders tend to crystallize vertically, achieving a high volumetric

Table 1 Experiments of vibrating mono-disperse media

�t (s) tc (s) en � φ δ (m) D (m) Np

an3 2 × 10−5 6 × 10−4 0.1 2.0 4.00 0.523 × 10−3 8 × 10−3 1000
an4 2 × 10−5 6 × 10−4 0.2 2.0 4.00 0.523 × 10−3 8 × 10−3 1000
an5 2 × 10−5 6 × 10−4 0.4 1.5 4.00 0.523 × 10−3 8 × 10−3 1000
an6 2 × 10−5 6 × 10−4 0.4 2.0 4.00 0.523 × 10−3 8 × 10−3 1000
an7 2 × 10−5 6 × 10−4 0.4 2.5 4.00 0.523 × 10−3 8 × 10−3 1000
an8 2 × 10−5 6 × 10−4 0.8 2.0 4.00 0.523 × 10−3 8 × 10−3 1000
an9 2 × 10−5 6 × 10−4 0.4 2.0 2.83 0.523 × 10−3 8 × 10−3 1414
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Fig. 4 Snapshots and cuts of experiment an6. Upper line: lateral snap-
shots. Lower line: corresponding cuts by a vertical plane containing
the cylinder axis. From left to right: initial situation, after 300 tapping
steps, after 900 tapping steps, after 4134 tapping steps

Fig. 5 Snapshots and cuts of experiment an9. Upper line: lateral snap-
shots. Lower line: corresponding cuts by a vertical plane containing
the cylinder axis. From left to right: initial situation, after 300 tapping
steps, after 900 tapping steps, after 4134 tapping steps

density. The final arrangements reported in [1] for Metropo-
lis-Monte-Carlo simulations of spherocylindric populations
are not crystalline. For obvious reasons one can not draw
any conclusions about the dynamic behavior of real grain
rearrangements from the Monte-Carlo process. Furthermore,

Fig. 6 Smoothed density ρm plotted versus the number of tapping steps
t for experiments an3-an9. Inset: oscillations of the measured density
and its moving average smoothed version for experiment an6

Fig. 7 Mean angle between the particles shafts and the bottom plane
versus the number t of tapping steps for several experiments

the final density attained in [1] corresponds to a metastable
state of significantly lower volumetric density than that of
the crystallized medium. This does not come as a surprise
since such a metastable state is very hard to escape, the crys-
tallization process certainly having a logarithmic behavior
also in the Metropolis-Monte-Carlo simulations. The trans-
formations in that model only allowing for rearrangements of
individual grains one at a time, crystallization becomes ex-
tremely unlikely. Moreover, many of the experiments in [1]
are carried out on the periodic boundary conditions, hence
there are no crystalline nucleation sites, which further slows
down crystallization.

We measured the volumetric density ρm of the consid-
ered medium. The inset in Figure 6 shows its graph against
the number of tapping steps. As can be seen, the density
plot shows quite strong oscillations which can be explained
by the effect of the sinusoidal tapping, the overall medium
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Fig. 8 Mean angle between particle shafts and the bottom plane plotted versus the number of tapping steps t in four horizontal layers for
experiments an3, . . . an9. Layers are numbered in increasing order from bottom to top and their thickness is h = 4 mm, that is layer i is lying
between heights (i − 1).h and i.h

behaving like an elastic spring. In order to filter out this effect
we smoothen the curve with a moving average as shown on
the inset of Figure 6 for experiment an6. The smoothed ver-
sion of the volumetric density ρm is given in Figure 6 for the
whole set of experiments.

In Figure 7 we plot the mean angle between the grain
shafts and the bottom plane against the number of tapping
steps. Figure 8 depicts the mean angle within several hori-
zontal subdivisions of the container. The mean angle does not
show the same oscillatory behavior as the volumetric density.
A possible explanation might be that during a tapping oscilla-
tion, the angle variations tend to average out. We see that the
beginning of a phase transition with respect to the angle takes
place at approximately constant density (between 10 and 100
tapings). Observe that the crystallization process as measured

by the volumetric density starts after about 100 tapping steps,
behaving logarithmically from there on until it reaches a value
as high as ρm = 0.75 after about 2000 tapings. This value
is not very far from the maximum possible density of tightly
packed spherocylinders in an unbounded three-dimensional
space, which equals ρmax

m = π
6

3φ+2√
3φ+√

2
, that is ρmax

m = 0.8787
when φ = 4.0.

Measured by the mean angle, the crystallization process
starts after 10 tapings already and behaves logarithmically
until it saturates after approximately 1000 tapings for exper-
iments an3, an5 and an9. Experiments an3 and an5 do not
show a logarithmic behavior during the re-ordering process.
The restitution coefficient used in experiment an3 is much
lower than that used in the other experiments. This causes
the energy reaching the grains to be small, which limits their
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motion. However, we see no dependence on en for en ≥ 0.2
(experiments an4, an6, an8). This would mean that in exper-
iment an3 the energy available to the system is too small for
it to reach the dynamical regime found in experiments an4,
an6 and an8. For experiment an5, the value of � is quite low,
which means that little energy is brought to the system. In
this case also, the other experiments (an6, an7) show there
is no dependence on � for � ≥ 2.0. Again, this suggests
that the energy available to the system is not sufficient to
reach the dynamics of experiments an4, an6 and an8. While
experiment an9 exhibits the same logarithmic re-ordering as
experiments an4, an6, an7 and an8, figure 7 shows that this
logarithmic part is shorter and that the saturation takes place
at a lower value of the mean angle. This shows that while the
dynamics of the re-ordering seems not to be dependent of the
elongation parameter, the saturation process is. It might be
that with small values of 
, the grains have more freedom
to arrange in a disordered state, and the transition to a crys-
talline ordering is less probable. Another possibility is that
the cylinder shape has less influence on short grains than on
long ones. Indeed when a slanted particle touches a cylindri-
cal wall at two points, a torque develops that tends to erect it.
The magnitude of this torque increases with particle length.
It can be observed that the logarithmic stage of reordering is
mainly due to global rearrangement processes (convection),
whereas the saturation stage is ruled by local rearrangements.
The logarithmic rearrangement behavior corresponds to that
observed for media composed of identical spherical grains.

Figure 8 shows that excepting top and bottom layers, the
mean angle increases monotonically to eventually stay be-
tween 80 and 90 degrees for experiments an3, an4, an6, an8
and between 60 and 80 degrees for experiments an5, an7, and
an9. This means that the crystallization does not only occur
along the container wall but involves all grains in those lay-
ers. Figure 8 also shows that in the logarithmic re-ordering
stage, layers seem to reorder from the top to the bottom as the
mean angle in a layer is always lower than that of the higher
layers. In the saturation stage, this behavior inverts for the
two central layers while the mean angle still increases in the
lowest layer and drops in the topmost layer as it gradually
empties. Again, this suggests that the nature of rearrange-
ment processes in the logarithmic and saturation phases is
not the same, the former being essentially due to global phe-
nomena and the latter involving local rearrangements in a
mostly static medium. This behavior matches that observed
in [20] on experiments with real elongated grains. Quanti-
tatively, the dynamics of our simulated media fits well that
reported there. In particular, the time slots for both reordering
processes match. The reordering is logarithmic in both cases,
and the initial and final volumetric densities also agree.

6 Conclusion

We have presented a performing distinct element simulation
scheme able to handle non-spherical grains in three dimen-
sions, and validated this model by faithfully reproducing the

crystallization of spherocylinders experimentally observed
by [20]. In the setups we simulated, we observe that the
crystallization process first shows a relatively fast global
rearrangement stage followed by a slower phase with occa-
sional local rearrangements. The faster phase is logarithmic
whenever the energy available for the grains to move is high
enough. Our simulation results raise many questions which
need further investigation. They concern among others the
particle trajectories during the whole process, the energy dis-
tribution within the medium, the influence of the boundary
conditions, i.e. container shapes and the crystallization of
grains with more complex shapes.
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