Ternary Ca-Fe-Mg carbonates: subsolidus phase relations at 3.5GPa and a thermodynamic solid solution model including order/disorder

Franzolin, E. ; Schmidt, M. ; Poli, S.

In: Contributions to Mineralogy and Petrology, 2011, vol. 161, no. 2, p. 213-227

Ajouter à la liste personnelle
    Summary
    Subduction carries atmospheric and crustal carbon hosted in the altered oceanic crystalline basement and in pelagic sediments back into the mantle. Reactions involving complex carbonate solid solutions(s) lead to the transfer of carbon into the mantle, where it may be stored as graphite/diamond, in fluids or melts, or in carbonates. To constrain the thermodynamics and thus reactions of the ternary Ca-Mg-Fe carbonate solid solution, piston cylinder experiments have been performed in the system CaCO3-MgCO3-FeCO3 at a pressure of 3.5GPa and temperatures of 900-1,100°C. At 900°C, the system has two miscibility gaps: the solvus dolomite-calcite, which closes at X MgCO3 ~0.7, and the solvus dolomite-magnesite, which ranges from the Mg to the Fe side of the ternary. With increasing temperature, the two miscibility gaps become narrower until complete solid solutions between CaCO3-Ca0.5Mg0.5CO3 is reached at 1,100°C and between CaCO3-FeCO3 at 1,000°C. The solvi are characterized by strong compositional asymmetry and by an order-disorder mechanism. To deal with these features, a solid solution model based on the van Laar macroscopic formalism has been calculated for ternary carbonates. This thermodynamic solid solution model is able to reproduce the experimentally constrained phase relations in the system CaCO3-MgCO3-FeCO3 in a broad P-T range. To test our model, calculated phase equilibria were compared with experiments performed in carbonated mafic protolithes, demonstrating the reliability of our solid solution model at pressures up to 6GPa in complex systems