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Abstract: In this paper, we first define a deterministic particle model for heat conduc-
tion. It consists of a chain of N identical subsystems, each of which contains a scat-
terer and with particles moving among these scatterers. Based on this model, we then
derive heuristically, in the limit of N → ∞ and decreasing scattering cross-section, a
Boltzmann equation for this limiting system. This derivation is obtained by a closure
argument based on memory loss between collisions. We then prove that the Boltzmann
equation has, for stochastic driving forces at the boundary, close to Maxwellians, a
unique non-equilibrium steady state.

1. Introduction

In this paper, we consider the problem of heat conduction for the continuum limit (N →∞)
of a particle model of a chain of N cells, each of which contains a (very simple) scatterer
in its interior. Particles move between the cells, interacting with the scatterers, but not
among themselves, similar to the model put forward in [4].

The paper begins with a detailed description of the scatterer model, which is
one-dimensional, with the dynamics also in 1 dimension. Once the principles of inter-
action are laid down, we proceed to derive, in a heuristic way, under the usual closure
assumptions, a Boltzmann equation for the limit system. (The reader who is interested
only in the formulation of the Boltzmann equation can directly skip to Eq. (4.5).) It
should be noted that in order to obtain a reasonable formal limit of the particle system,
the scattering probabilities have to be chosen proportional to 1/N .

Our main object of mathematical study is then this Boltzmann equation. In particular,
starting from Sec. 5 we show how to formulate the heat conduction problem. Namely,
heat conduction problems are usually described by prescribing the incoming fluxes on
both ends of the system. We however reformulate this as a problem of prescribing what
happens at one end only and then to find out what happens at the other. Using the inverse
function theorem on a suitable space, we will be able to show that the problem is related
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to a diffeomorphism in a suitable space (in fact a Banach cone) (starting from Sec. 7).
This Banach cone allows for a wide range of initial conditions, and is basically only
limited by conditions on the velocity distributions at infinite momenta. However, pure
Maxwellians are not in this cone (but on its boundary), although they naturally form the
equilibrium solutions. In a forthcoming paper with C. Mejía-Monasterio [1], we will
illustrate some of the properties of both the particle model and its Boltzmann formu-
lation, and also “justify” numerically the approximations which lead to the Boltzmann
equation.

2. The Particle Model

2.1. One cell. To define the particle model, we begin by describing the scattering pro-
cess in one cell. We begin with the description of one “cell”. The cell is 1-dimensional,
of length 2L , and with particles entering on either side. These particles all have the
same mass m, some velocity v and momentum p = mv. These particles do not interact
among themselves. Note that v ∈ R and more precisely, v > 0 if the particle enters from
the left, while v < 0 if it enters on the right side of the cell. In the center of the cell,
we imagine a “scatterer” which is a point-like particle which can exchange energy and
momentum with the particles, but does not change its own position. (This scatterer is to
be thought of as a 1-dimensional variant of the rotating disks used in [4].) The scatterer
has mass M and its “velocity” will be denoted by V . The collision rules are those of an
elastic collision, where ṽ and Ṽ denote quantities after the collision while v, V are those
before the collision. In equations,

ṽ = −�v + (1 + �)V,

Ṽ = (1 − �)v + �V,

with

� = M − m

M + m
, µ ≡ m

M
= 1 − �

1 + �
. (2.1)

Note that � ∈ (−1, 1), since we assume m and M to be finite and non-zero. If ṽ > 0,
we say that the particle leaves the cell to the right; if ṽ < 0, we say it leaves to the left.
In particular, although everything is 1-dimensional, particles can cross the scatterers.

For simplicity, we will assume � > 0, that is, M > m. For the momenta, we get the
analogous rules

p̃ = −�p + (1 − �)P,
P̃ = (1 + �)p + �P.

Note that the matrix

S =
( −� 1 − �

1 + � �

)
(2.2)

has determinant equal to −1 and furthermore S2 = 1.
We next formulate scattering in terms of probability densities (for momenta) for just

one cell. We denote by g(t, P) the probability density that at time t the scatterer has
momentum P (= MV ) and we will establish the equation for the time evolution of this
function. To begin with, we assume that particles enter only from the left of the cell, with
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momentum distribution (in a neighboring cell or a bath) p �→ f +
L (t, p), where p = mv.

Thus, there are, on average, p f +
L (t, p)d p/m particles entering the cell (per unit of time)

from the left with momentum in [p, p + d p].1Note that f +
L has support on p ≥ 0 only,

(indicated by the exponent “+”); it is the distribution of particles going to enter the cell
from the left. Also note that the distribution of the momenta after collision, i.e., before
leaving the cell, is in general not the same as f +

L .
Denote by P(t) the stochastic process describing the momentum of the scatterer.

We have for any interval (measurable set) of momenta A, for the probabilities P:

P (P(t + dt) ∈ A) = P (P(t) ∈ A; no collision in [t, t + dt])
+P (P(t + dt) ∈ A; collisions occurred in [t, t + dt]).

We assume for simplicity that with probability one, only one collision can occur in
an interval [t, t + dt]. If there is a collision in [t, t + dt] with a particle of velocity
v = p/m > 0, this particle must have left the boundary at time t − m

p L with momentum
p. Therefore,

P (P(t) ∈ A; a collision occurred in [t, t + dt])
= dt

∫
A

d P̃
∫

R+
d p δ

(
P̃ − �P − (1 + �)p

)
g(t, P) p

m f +
L

(
t − m

p L , p
)
.

This formulation neglects memory effects coming from the fact that a particle may have
hit the scatterer, bounce out of the cell and reenter to hit again the scatterer. Similarly,

P (P(t) ∈ A ; no collision occurred in [t, t + dt])
=

(
1 − dt

∫
R+

d p p
m f +

L

(
t − m

p L , p
) ) ∫

A
dP g(t, P).

We immediately deduce the evolution equation,

∂t g(t, P) = −g(t, P)
∫

R+
d p p

m f +
L

(
t − m

p L , p
)

+
1

�

∫
R+

d p g
(

t, P−(1+�)p
�

)
p
m f +

L

(
t − m

p L , p
)
. (2.3)

Note that this equation preserves the integral of g over P , i.e., it preserves probability.
This identity generalizes immediately to the inclusion of injection from the right,

with distribution f −
R having support in p < 0. One gets

∂t g(t, P) = −g(t, P)
∫

R

d p |p|
m

(
f +
L

(
t−m

p L , p
)

+ f −
R

(
t+ m

p L , p
))

+
1

�

∫
R

d p g
(

t, P−(1+�)p
�

) |p|
m

(
f +
L

(
t−m

p L , p
)

+ f −
R

(
t+ m

p L , p
))
. (2.4)

In the stationary case, this leads to

g(P) = 1

�λ

∫
R

d p g
(

P−(1+�)p
�

) |p|
m

(
f +
L (p) + f −

R (p)
)
, (2.5)

1 The factor p takes into account the probability of crossing the boundary of the cell (which is not the same
as the probability of a particle with momentum p to be in the cell).
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where

λ =
∫

R

d p |p|
m

(
f +
L (p) + f −

R (p)
)

(2.6)

is the particle flux (see Sec. 4.1 below).
It is important to note that the solution g of Eq. (2.5) only depends on the sum:

f = f +
L + f −

R , and thus, we can define a map

f �→ g f ,

where g f is the (unique) solution of Eq. (2.5). It will be discussed in detail in Sec. 6.
We can also compute the distribution of the momenta of the particles after collision.

We have

P ( p̃ ∈ A; a collision occurred in [t, t + dt])
= dt

∫
A

d p̃
∫

R

dP δ ( p̃ + �p − (1 − �)P) g(t, P) |p|
m f

(
t − m

|p| L , p
)
.

This particle reaches the left or right boundary of the cell (according to the sign of p̃)
after a time mL/| p̃| (assuming the scatterer is located in the center of the cell). Therefore,
we have for the ejection distributions f −

L (on the left) and f +
R (on the right):

| p̃|
m f −

L (t, p̃) = θ(− p̃)

1 − �

∫
R

d p g
(

t − m
| p̃| L , p̃+�p

1−�
) |p|

m f
(

t − m
| p̃| L − m

|p| L , p
)
,

and

| p̃|
m f +

R (t, p̃) = θ(+ p̃)

1 − �

∫
R

d p g
(

t − m
| p̃| L , p̃+�p

1−�
) |p|

m f
(

t − m
| p̃| L − m

|p| L , p
)
,

where θ is the Heaviside function. In the stationary case we get

| p̃|
m f −

L ( p̃) = θ(− p̃)

1 − �

∫
R

d p g
(

p̃+�p
1−�

) |p|
m f (p), (2.7)

and

| p̃|
m f +

R ( p̃) = θ(+ p̃)

1 − �

∫
R

d p g
(

p̃+�p
1−�

) |p|
m f (p). (2.8)

Since g = g f is determined by the incoming distribution fin = f +
L + f −

R (and is unique
if we normalize the integral of g to 1)

∫
R

dP g(t, P) = 1, (2.9)

we see that the outgoing distribution fout = f −
L + f +

R is entirely determined by the
incoming distribution. Note also that the flux is preserved:

∫
d p |p|

m fin(p) =
∫

d p |p|
m fout(p).
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2.2. Stationary solutions for one cell. Here, we will look for stationary states of the
evolution equation (2.3), which have also the property that the ejected distributions are
equal to the injected ones. It is almost obvious that Maxwellian fixed points can be found,
but for completeness, we write down the formulas. The reader should note that the dis-
tributions fin and fout have singularities at p = 0. This reflects the well-known fact that
slow particles need more time to leave the cell than fast ones. However F(p) ≡ p

m f (p)
is a very nice function, and it is this function which appears in all the calculations of the
fluxes, and stationary profiles. In this section we do the calculations with the quantity f .
Starting from Sec. 4, we will use F .

We impose the two incoming distributions

f +
L (p) = σθ(+p) m

|p|e
−βp2/(2m),

and

f −
R (p) = σθ(−p) m

|p|e
−βp2/(2m),

whereσ is an arbitrary positive constant (related toλ in (2.6)) and θ is the Heaviside func-
tion. It is easy to verify, using Gaussian integration and the identity M = M�2+m(1+�)2,
that the solution of Eq. (2.5) is given by

g(P) =
√

β

2πM
e−βP2/(2M) =

√
β

2πM
e−βP2(1−�)/((1+�)2m).

Moreover, using the same identity several times one gets from Eqs. (2.7) and (2.8) for
the exiting distributions

f −
L (p) = σθ(−p) m

|p|e
−βp2/(2m),

and

f +
R (p) = σθ(+p) m

|p|e
−βp2/(2m).

Therefore, we see that the Maxwellian fixed points (divided by |p|) preserve both the
distribution g of the scatterer, as well as the distributions of the particles.

In fact, there are also non-Maxwellian fixed points of the form

f +
L (p) = σθ(+p) m

|p|e
−β(p−ma)2/(2m),

and

f −
R (p) = σθ(−p) m

|p|e
−β(p−ma)2/(2m).

It is easy to verify that the solution of Eq. (2.5) is now given by

g(P) =
√

β

2πM
e−β(P−Ma)2/(2M).

Moreover,

f −
L (p) = σθ(−p) m

|p|e
−β(p−ma)2/(2m),

and

f +
R (p) = σθ(+p) m

|p|e
−β(p−ma)2/(2m).

The verification that this is a solution for any a ∈ R is again by Gaussian integration.
Note that if a �= 0 there is in fact a flux through the cell.
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3. N Cells

The model generalizes immediately to the case of N cells which are arranged in a row,
by requiring that the exit distributions of any given cell are equal to the entry distri-
butions of the neighboring cells: the cells are numbered from 1 to N and we have the
collections of functions f +

L,i , f −
L,i , f +

R,i , and f −
R,i for the particle and gi for the scatterers,

i = 1, . . . , N . The equality of entrance and exit distributions is given by the identities
f +
L,i+1 = f +

R,i , and f −
R,i = f −

L,i+1 for 1 ≤ i < N . The system is completely determined

by the two functions f +
L,1 and f −

R,N . Equations (2.5) generalize to

gi (P) = 1

�λ

∫
R

d p gi

(
P−(1+�)p

�

) |p|
m

(
f +
L,i (p) + f −

R,i (p)
)
, (3.1)

and similarly (2.7) and (2.8) lead to

| p̃|
m f −

L,i ( p̃) = θ(− p̃)
1−�

∫
R

d p gi

(
p̃+�p
1−�

) |p|
m fi (p),

| p̃|
m f +

R,i ( p̃) = θ(+ p̃)
1−�

∫
R

d p gi

(
p̃+�p
1−�

) |p|
m fi (p),

(3.2)

where fi = f +
L,i + f −

R,i . Clearly, the Gaussians of the previous section are still solutions
to the full equations for N contiguous cells.

Here we have closed the model by assuming independence between the particles
leaving and entering from the left (and from the right). In concrete systems this is not
true since a particle can leave a cell to the left and re-bounce back into the original cell
after just one collision with the scatterer in the neighboring cell, and, in such a situation
there is too much memory to allow for full independence. It is possible to imagine several
experimental arrangements for which independence is a very good approximation, see
also [3,4] for discussions of such issues. One of them could be to imagine long channels
between the scatterers where time decorrelation would produce independence. Note that
“chaotic” channels may be more complicated since they can modify the distribution of
left (right) traveling particles between two cells.

4. Continuous Space

We are now ready to derive, non-rigorously, a continuum model. The cells are now
replaced by a continuum, with a variable x ∈ [0, 1] replacing i/N , where i is the index
of the i th cell. The relations we have derived so far will be generalized to this continuum
formulation. So we have moving particles, of mass m and described by a time-dependent
density f (t, p, x).

The scatterers have mass M and their momentum distribution is called g(t, P, x).
It is best to think that the continuous variable x ∈ [0, 1] replaces the discrete index
i ∈ {0, . . . , N }. There is then an implicit rescaling of the form x ≈ i/N . Recall that the
scatterers are fixed in space (although they have momentum) but that the particles will
move in the domain [0, 1].

We first impose, for all x ∈ [0, 1], the normalization

∫
R

dP g(t, P, x) = 1, (4.1)



A Model of Heat Conduction 1021

which is the generalization of Eq. (2.9). The particles again do not interact with each
other, but only with the scatterers and, expressed in momenta, the matrix maps (p, P)
to ( p̃, P̃):

(
p̃
P̃

)
=

( −� 1 − �

1 + � �

) (
p
P

)
≡ S

(
p
P

)
, (4.2)

as in Eq. (2.2).
We now rewrite the problem in the form of a Boltzmann equation, which takes into

account this matrix, as well as the particle transport. One guesses, with ( p̃, P̃) related
to (p, P) as above:

∂t f (t, p, x) +
p

m
∂x f (t, p, x)

=
∫

dP

( | p̃|
m

f (t, p̃, x) g(t, P̃, x)− |p|
m

f (t, p, x) g(t, P, x)

)
, (4.3)

∂t g(t, P, x) =
∫

d p

( | p̃|
m

f (t, p̃, x) g(t, P̃, x)− |p|
m

f (t, p, x) g(t, P, x)

)
.

The time independent version of the equation will be derived (non-rigorously) below
from the model with a chain of cells. It is useful to introduce the function

F(t, p, x) = |p|
m

f (t, p, x),

and then Eq. (4.3) takes the form

m∂t F(t, p, x) + p∂x F(t, p, x)

= |p|
∫

dP
(

F(t, p̃, x) g(t, P̃, x)− F(t, p, x) g(t, P, x)
)
, (4.4)

∂t g(t, P, x) =
∫

d p
(

F(t, p̃, x) g(t, P̃, x)− F(t, p, x) g(t, P, x)
)
.

Remark. One can also imitate a scattering cross section by introducing a factorγ ∈ [0, 1]
in Eq. (4.4) (in the integrals) but this can be scaled away by a change of time and space
scales. See also Sec. 9.3.

We come now to the main equations whose solutions will be discussed in detail in
the remainder of the paper. Equation (4.4) takes, for the stationary solution, the form

sign(p)∂x F(p, x) =
∫

dP
(

F( p̃, x) g(P̃, x)− F(p, x) g(P, x)
)
, (4.5a)

0 =
∫

d p
(

F( p̃, x) g(P̃, x)− F(p, x) g(P, x)
)
. (4.5b)

We will show that this equation has non-equilibrium solutions.

Remark. Note that the model we have obtained here is not momentum-translation invari-
ant, because of the term sign(p), except when the r.h.s. of the equation is 0.
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Derivation of (4.5). The derivation of (4.5) from (3.1–3.2) is based on the following
formal limit: We replace the index i by the continuous variable x = i/N and set ε =
1/(2N ). We consider that f ±

L,i is at (i − 1
2 )/N = x − ε, while f ±

R,i is at x + ε. We have
the correspondences, with θ±(p) ≡ θ(±p):

θ+(p)F(p, x − ε) = |p|
m f +

L,i , θ−(p)F(p, x − ε) = |p|
m f −

L,i ,

θ+(p)F(p, x + ε) = |p|
m f +

R,i , θ−(p)F(p, x + ε) = |p|
m f −

R,i ,

g(P, x) = gi (P).

To simplify momentarily the notation, let

F−(p, x) θ+(p) ≡ θ+(p)F(p, x − ε), F−(p, x) θ−(p) ≡ θ−(p)F(p, x − ε),

F+(p, x) θ+(p) ≡ θ+(p)F(p, x + ε), F+(p, x) θ−(p) ≡ θ−(p)F(p, x + ε).

With these conventions, (3.1) becomes (setting λ = 1):

g(P, x) = 1

�

∫
R

dq g
(

P−(1+�)q
�

, x
)
(F−(q, x)θ+(q) + F+(q, x)θ−(q)) , (4.6)

which is equivalent to (4.5b). Similarly, Eq. (3.2) leads to

F−(p, x)θ−(p) = θ(−p)
1−�

∫
R

dq g
(

p+�q
1−� , x

)
(F−(q, x)θ+(q) + F+(q, x)θ−(q)) ,

F+(p, x)θ+(p) = θ(+p)
1−�

∫
R

dq g
(

p+�q
1−� , x

)
(F−(q, x)θ+(q) + F+(q, x)θ−(q)) .

(4.7)

Subtracting the first equation from the second in (4.7) leads to

F+(p, x)θ+(p)− F−(p, x)θ−(p)

= sign(p)

1 − �

∫
R

dq g
(

p+�q
1−� , x

)
(F−(q, x)θ+(q) + F+(q, x)θ−(q)) . (4.8)

On the other hand, since d p dP = d p̃ d P̃ we can, by (4.5b), impose the condition

∫
dP g(P, x) = 1,

for all x . Then we have the trivial identity

F−(p, x)θ+(p)−F+(p, x)θ−(p) =
∫

R

dP g(P, x) (F−(p, x)θ+(p)−F+(p, x)θ−(p)) .

(4.9)

Subtracting (4.9) from (4.8), we get for p > 0,

F+(p, x)− F−(p, x) = 1

1 − �

∫
dq g

(
p+�q
1−� , x

)
(F−(q, x)θ+(q) + F+(q, x)θ−(q))

−
∫

dq g(q, x)F−(p, x), (4.10)
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while for p < 0,

F+(p, x)− F−(p, x) = − 1

1 − �

∫
dq g

(
p+�q
1−� , x

)
(F−(q, x)θ+(q) + F+(q, x)θ−(q))

+
∫

dq g(q, x)F+(p, x). (4.11)

Note now that

F−(q, x)θ+(q) + F+(q, x)θ−(q)
= F(q, x − ε)θ+(q) + F(q, x + ε)θ−(q)
= F(q, x) + θ+(q) (F(q, x − ε)− F(q, x))

+θ−(q) (F(q, x + ε)− F(q, x)) .

Therefore, replacing the F± in the r.h.s. in (4.10) and (4.11) by F(p, x) is a higher order
correction in ε, and we finally get

F(p, x + ε)−F(p, x − ε) = sign(p)

1−�
∫

R

dq
(

g
(

p+�q
1−� , x

)
F(q, x)−g(q, x)F(p, x)

)
.

A further change of integration variables leads to (4.5a), while (4.6) leads to (4.5b).
(We have not taken into account another scaling of the scattering term by ε = 1/(2N )
which is needed to get the derivative. This corresponds to a particle model where the
scattering cross-section is proportional to 1/N . (We will come back to this question in
the discussion in Sect. 9.3 and in [1].) This ends the derivation of (4.5).

The derivative term in Eq. (4.5) reflects the gradients which have to appear when the
system is out of equilibrium. However, if the system is at equilibrium, the equivalence
between Eq. (4.5) and Eqs. (2.5)–(2.8) immediately tells us that stationary solutions in
the form of Gaussians (for F , not for f ) exist:

F(p) = γ

√
β

2πm
e−βp2/(2m), g(P) =

√
β

2πM
e−βP2/(2M). (4.12)

Furthermore, we have again translated versions of this fixed point,

F(p) = γ

√
β

2πm
e−β(p−ma)2/(2m), g(P) =

√
β

2πM
e−β(P−Ma)2/(2M), (4.13)

because in this case, the r.h.s. of Eq. (4.5) is zero.

4.1. Flux. We can define various fluxes of the particles (recall that F(p, x) = |p|
f (p, x)/m):

�P = particle flux = ∫
d p sign(p) F(p, x),

�M = momentum activity = ∫
d p |p| F(p, x),

�E = energy flux = ∫
d p sign(p)p2

2m F(p, x).
(4.14)
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Note that for the stationary Maxwellians of (4.13) these fluxes are equal to

�P =
√

2mπ

β
erf(a

√
βm/2),

�M = 2m

β
e−βma2/2 + a

√
2m3π

β
erf(a

√
βm/2),

�E = 2am2

β
e−βma2/2 + (1 + βma2)

√
2m3π

β3 erf(a
√
βm/2).

Also note that for a = 0 the quantity�M does not vanish. This is because it measures
the total outgoing flux, not the directed outgoing flux (which is of course 0 when a = 0).

Lemma 4.1. For every stationary solution of (4.5) the 3 fluxes of (4.14) are independent
of x ∈ [0, 1].
Proof. From (4.5a) we deduce that

∂x

∫
d p sign(p) F(p, x) =

∫
d p dP

(
F( p̃, x) g(P̃, x)− F(p, x) g(P, x)

)
,

which vanishes since d p dP = d p̃ d P̃ . Similarly, multiplying (4.5a) by p and integrating
over p, we get

∂x

∫
d p |p| F(p, x) =

∫
d p dP p

(
F( p̃, x) g(P̃, x)− F(p, x) g(P, x)

)
.

Multiplying (4.5b) by P and integrating over P , we get

0 =
∫

d p dP P
(

F( p̃, x) g(P̃, x)− F(p, x) g(P, x)
)
.

Adding these two equations, we see that

∂x

∫
d p |p| F(p, x) =

∫
d p dP (p + P)

(
F( p̃, x) g(P̃, x)− F(p, x) g(P, x)

)
.

But this vanishes, since P + p = P̃ + p̃ by momentum conservation, and using again
d p dP = d p̃ d P̃ . In a similar way, we first have

∂x

∫
d p

|p|p

2m
F(p, x)

=
∫

d p dP
p2

2m

(
F( p̃, x) g(P̃, x)− F(p, x) g(P, x)

)
.

Finally, multiplying this time (4.5b) by P2/M , integrating over P , adding to the above
equation and using energy conservation, we get

∂x

∫
d p

|p|p

2m
F(p, x)

=
∫

d p dP

(
p2

2m
+

P2

2M

) (
F( p̃, x) g(P̃, x)− F(p, x) g(P, x)

)

= 0.

Thus, all three fluxes are independent of x , as asserted. 
�
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5. Formulating the Heat-Conduction Problem

Based on the stationarity equation (4.5), we now formulate the problem of heat con-
duction in mathematical terms. We imagine that the input of the problem is given by
prescribing the incoming fluxes on both sides of the system. The system, in its stationary
state, should then adapt all the other quantities, F and g, to this given input, which
describes really the forcing of the system. In particular, the distribution of the outgoing
fluxes will be entirely determined by the incoming fluxes.

We now formulate this question in mathematical terms: the incoming fluxes are
described by two functions F0(p) (defined for p ≥ 0) and F1(p) (defined for p ≤
0). These are the incoming distributions on the left end (index 0) and the right end
(index 1) of the system.

In terms of these 2 functions, the problem of existence of a stationary state can be
formulated as (recall that the rescaled system has length one):

Is there a solution (F, g) of Eqs. (4.5) with the boundary conditions

F(p, 0) = F0(p), ∀p ≥ 0 and F(p, 1) = F1(p), ∀p ≤ 0. (5.1)

Assume for a moment that, instead of the boundary conditions (5.1) we were given
just F(p, 0), but now for all p ∈ R, not only for p > 0. Assume furthermore, that g(p, x)
is determined by (4.5b). In that case, the relation (4.5) can be written as a dynamical
system in the variable x :

∂x F(·, x) = X (F(·, x)). (5.2)

Thus, if F(·, 0) is given, then, in principle, F(·, 1) is determined (uniquely) by Eq. (5.2),
provided such a solution exists. We denote this map by Y0:

Y0 : F(·, 0) �→ F(·, 1).

What is of interest for our problem is the restriction of the image of Y to functions of
negative p only, since that corresponds to the incoming particles from the right side, and
so we define

(Y (F(·, 0))) (p) ≡ θ−(p) · (Y0(F(·, 0))) (p) = θ−(p) · F(p, 1).

Using this map Y , we will show that when F(·, 0) varies in a small neighborhood
the map Y is invertible on its image. By taking inverses the problem of heat conduction
for our model will be solved for small temperature and flux difference.

Of course, this needs a careful study of the function space on which Y is supposed
to act. This will be done below.

To formulate the problem more precisely, we change notation, and let

F+
0 (p) = θ+(p)F(p, 0),

F−
0 (p) = θ−(p)F(p, 0),

F+
1 (p) = θ+(p)F(p, 1),

F−
1 (p) = θ−(p)F(p, 1).

We assume now that F+
0 is fixed once and for all and omit it from the notation. Then, we

see that Y can be interpreted as a map which maps the function F−
0 to F−

1 , and we call
this map �.
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We will show below that for F−
0 in a small neighborhood D the map � is 1-1

onto its image �(D) and can therefore be inverted. For any F̂ in �(D), we can take
F−

0 = �−1(F̂), and we will have solved the problem of existence of heat flux.

6. The g Equation

We start here with the study of existence of g for given F . Since (4.5b) does not couple
different x , we can fix x . Equation (4.5b) is then equivalent to

g = AF (g),

where the operator AF acting on the function h is defined by

AF (h)(P̃, x) =
∫

d p F
(

p̃(p, P̃), x
)

h
(

P(p, P̃), x
)

∫
d p F (p, x)

,

(provided the denominator does not vanish). Note that for fixed P̃ and p, we can solve
the collision system (4.2) to find the corresponding P and p̃, namely

P = 1

�
P̃ − 1 + �

�
p and p̃ = 1 − �

�
P̃ − 1

�
p.

The action of the operator AF can then be rewritten as

AF (h)(P̃, x) =
�−1

∫
d p F(p, x)h

(
P̃/� − (1 + �)p/�, x

)
∫

ds F(s, x)
. (6.1)

In order to study this operator notice that it does not depend explicitly on x . It is con-
venient to study instead a family of operators indexed by functions ϕ of the momentum
only. We define (assuming the integral of ϕ does not vanish)

(
Lϕψ

)
(P̃) =

∫
d p ϕ(p)ψ

(
P̃/� − (1 + �)p/�

)
�

∫
d p ϕ(p)

.

A final change of variables will be useful when we study Lϕ :

(
Lϕψ

)
(p) =

∫
dq ϕ

(
p−�q
1+�

)
ψ(q)

(1 + �)
∫

dq ϕ(q)
. (6.2)

7. The Mathematical Setup and the Main Result

Having formulated the problem of existence of the stationary solution in general, we now
fix the mathematical framework in which we can prove this existence. This framework,
while quite general, depends nevertheless on a certain number of technical assumptions
which we formulate now.

We fix once and for all the ratio µ = m/M of the masses, and assume, for definite-
ness, that µ ∈ (0, 1). It seems that this condition is not really necessary, and probably



A Model of Heat Conduction 1027

the condition m �= M (and the masses non-zero) should work as well, but we have not
pursued this.

We next describe a condition on the incoming distribution, called F in the earlier sec-
tions. The basic idea, inspired from the equilibrium calculations, is that F(p, x) should
be close to

Freference(p) = exp(−βp2/(2m)) ≡ exp(−αp2),

while the derived quantity g(p, x) should be close to

greference(p) = exp(−βp2/(2M)) ≡ exp(−µαp2).

Upon rescaling p, we may assume henceforth that α = 1.
The operators of the earlier sections will now be described in spaces with weights

Wν(p) = exp(−νp2),

where we will choose ν = 1 for the F and ν = µ for the g.
We recall that the operator LF in “flat” space is

(LF g)(p) =
∫

dq F
(

p−�q
1+�

)
g(q)

(1 + �)
∫

dq F(q)
.

We then define the integral kernel in the space with weights exp(−p2) for F and
exp(−µp2) for g, and write

F(p) = e−p2
v(p) , g(p) = e−µp2

u(p).

Here, µ = m/M = (1 − �)/(1 + �), as before. Expressed with u and v the operator LF
takes the form

(Kvu) (p) = 1

(1 + �)
∫

dqe−q2
v(q)

· (Lvu) (p), (7.1)

where

(Lvu)(p) =
∫

dq v
(

p−�q
1+�

)
K (p, q)u(q),

and

K (p, q) = W1

(
p−�q
1+�

)
· Wµ(q)/Wµ(p).

A simple calculation shows that

K (p, q) = e−(�p−q)2/(1+�)2 . (7.2)

Our task will be to understand under which conditions the linear operator LF has an
eigenvalue 1. This will be done by showing that Kv is quasi-compact. It is here that we
were not able to give reasonable bounds on K (p, q) in the case of different exponentials
for p > 0 and p < 0, which represents different temperatures for ingoing and outgoing
particles.
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7.1. Function spaces. We now define spaces which are adapted to the simultaneous
requirement of functions being close to a Gaussian near |p| = ∞ and u and v having
limits, and Kv being quasi-compact. We define a space G1 of functions u with norm

‖u‖G1 =
∫

e−µp2 |u(p)|d p.

Similarly, F1 is the space of functions v with norm

‖v‖F1 =
∫

e−p2 |v(p)|d p.

Thus, the only difference is the absence of the factorµ = (1−�)/(1+�) in the exponent.
We also define a smaller space G2, contained in G1, with the norm

‖u‖G2 =
∫

|du(p)| +
∫

e−µp2 |u(p)|d p,

and the analogous space F2 contained in F1 with the norm

‖v‖F2 =
∫

|dv(p)| +
∫

e−p2 |v(p)|d p.

Remark. To simplify notation we write
∫ |du(p)| instead of the variation norm. How-

ever, the “integration by parts” formula would hold with the “correct” definition of
variation as well.

Lemma 7.1. One has the inclusion G2 ⊂ L∞, and more precisely

‖u‖L∞ ≤
∫

|du| + eµ
∫

e−µp2 |u(p)|d p ≤ eµ‖u‖G2 .

Furthermore, if u ∈ G2, then lim p→±∞ u(p) exists. The maps u �→ lim p→±∞ u(p) and
u �→ ∫

d p exp(−µp2) · u(p) are continuous functions from G2 to R. The unit ball of
G2 is compact in G1.

Analogous statements hold for the spaces F2 (defined without the factor µ).

Proof. The first statement is easy, but it will be convenient to have the explicit estimates.
We have

u(y)− u(x) =
∫

[x,y]
du,

and therefore

|u(x)| ≤
∫

|du| +
∫ 1/2

−1/2
|u(y)|dy ≤

∫
|du| + eµ

∫
e−µp2 |u(p)|d p.

The second statement follows at once since the functions in G2 are of bounded variation.
For the last assertions, it follows from the inclusion in L∞ that the unit ball of G2

is equi-integrable at infinity in L1
(

e−µp2
d p

)
. Moreover, a set of uniformly bounded

functions of uniformly bounded variation is compact in any L1(K , d p) for any compact
subset K of R (see [2], Helly’s selection principle). 
�
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7.2. A cone in F2. We will work in the space F2 but we will need a cone (of positive
functions, with adequate decay) in this space, in order to prove quasi-compactness of
Kv .

We define a cone CF in F2 by the condition

CF =
{
v ∈ F2, v ≥ 0 and Z · lim

p→±∞ v(p) < 1

}
, (7.3)

where

Z = Z(v) =
√
π∫

d p e−p2
v(p)

. (7.4)

Lemma 7.2. The cone CF has non empty interior (in F2) and is convex.

Proof. By Lemma 7.1 the maps v �→ lim p→±∞ v(p) and v �→ ∫
exp(−p2)v(p)d p are

continuous in F2 and hence the assertion follows. 
�
Remark. Note that a function in the interior of the cone is necessarily bounded away
from zero, since at infinity it must have a non-zero limit and in any compact set, if it is
never zero, it is bounded away from zero.

Remark. Note that the function v ≡ 1 (the Gaussian) is not in the cone CF . In fact, we

require that lim p→±∞ F(p)ep2 · ∫
e−p′2

d p′/
∫

F(p′)d p′ < 1.

7.3. The main result. On the set CF , we consider now the spatial evolution equations
(4.5) in the variables v and uv (which is the solution of Kvu = u with Kv defined in
(7.1)):

∂xv(p, x)

= sign(p)
∫

dP
(
(W1 ·v)( p̃, x) (Wµ ·uv(·,x))(P̃, x)

×(W1 ·v)(p, x) (Wµ ·uv(·,x))(P, x)
)

(7.5)

= sign(p)
∫

dP (W1 ·v) (−�p + (1 − �)P, x) (Wµ ·uv(·,x)) ((1 + �)p + �P, x)

−sign(p) v(p, x)
∫

dP e−µP2
uv(·,x)(P, x),

with initial condition v(·, x = 0) ∈ CF . We will give a more explicit variant in (8.9).
Any solution of this equation is a function of p and x , and it is easy to verify that it

satisfies Eq. (4.5a). Together with the definition of uv we have a complete solution of the
nonlinear system (4.5). Here we assume of course that the r.h.s. of the above equation
is well defined as a function, so that we can multiply by sign(p).

Theorem 7.3. For any v0 ∈ CF , there are a number xv0 > 0 and a neighborhood Vv0 of
v0 in CF such that the solution of (7.5) exists for any initial condition v0 = v(p, 0) ∈ Vv0

and for any x in the interval [0, xv0 ]. The function v0 �→ xv0 is continuous from CF to
R

+ compactified at infinity. We denote by �x the semi-flow integrating (7.5). For any
x ∈ [0, xv0 ], the map�x : v �→ �x (v) is a local diffeomorphism, i.e., a diffeomorphism
on Vv0 .
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Note that this implies in particular that the probability densities for g(·, x) and F(·, x)
remain positive for all x ∈ [0, xv0 ], which is of course crucial from the physics point of
view.

We will prove this in Sect. 8 (and in the Appendix).

8. Bound on the Operator Kv and Proof of Theorem 7.3

These bounds are the crux of the matter. They actually show, that, under the conditions on
F2 and the set CF , the operator Kv is quasi-compact. In terms of the physical problem,
this means that the scatterer is not heating up if the incoming fluxes are in F2.

The object of study is, for v ∈ CF , the operator

(Kvu) (p) = 1

(1 + �)
∫

e−q2
v(q)dq

∫
v

(
p−�q
1+�

)
K (p, q)u(q)dq,

and we are asking for a solution u of the equation Kv(u) = u.

Lemma 8.1. If v ≥ 0, Kv is a positive (nonnegative) operator, and
∫

d p e−µp2
(Kvu) (p) =

∫
d p e−µp2

u(p)

and

‖Kv‖G1 = 1.

Proof. Easy, compute and take absolute values. Alternately, consider that the probability
is conserved in the original space. 
�

Our main technical result is

Proposition 8.2. For v ∈ CF , there exist a ζ , 0 ≤ ζ < 1 and an R > 0 (both depend
on v continuously) such that for any u ∈ G2 one has the bound

∫ ∣∣dKv(u)
∣∣ ≤ ζ

∫ ∣∣du
∣∣ + R‖u‖G1 .

Proof. Since v will be fixed throughout the study of Kv , it will be useful to introduce
the abbreviation Q = Qv for the normalizing factor

Q = 1

(1 + �)
∫

e−q2
v(q)dq

. (8.1)

We will use a family of smooth cut-off functions χL (L > 1) which are equal to 1 on
[−L + 1

2 , L − 1
2 ] and which vanish on |q| > L + 1

2 . Let � be a C∞ function satisfying
0 ≤ � ≤ 1, with �(q) = 0 for q ≤ − 1

2 and �(q) = 1 for q ≥ 1
2 . We define χL by

χL(q) =

⎧⎪⎨
⎪⎩
�(q + L) if q ≤ −L + 1

2 ,

1 if − L + 1
2 ≤ q ≤ L − 1

2 ,

�(L − q) if q ≥ L − 1
2 .
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The functions χL are C∞, satisfy 0 ≤ χL ≤ 1 and
∥∥χ ′

L

∥∥
L∞ is independent of L . Let L1

and L2 be two positive numbers to be chosen large enough later on (depending on v).
We will use the partition of unity

1 = χL + χ⊥
L .

Using this decomposition of unity with L = L1 and L = L2, we write Kv = K (1)
v +

K (2)
v + K (3)

v with
(

K (1)
v u

)
(p) = Q

∫
dq v

(
p−�q
1+�

)
K (p, q)u(q) · χL1(q),

(
K (2)
v u

)
(p) = Q

∫
dq v

(
p−�q
1+�

)
K (p, q)u(q) · χ⊥

L1
(q) χL2(p − �q),

(
K (3)
v u

)
(p) = Q

∫
dq v

(
p−�q
1+�

)
K (p, q)u(q) · χ⊥

L1
(q) χ⊥

L2
(p − �q) .

We will now estimate the variation of the three operators separately.
For the variation of the first term, we find

d
(

K (1)
v u

)
(p) = +Q

∫
dq dv

(
p−�q
1+�

)
1

1+� · K (p, q)u(q)χL1(q)

+Q d p
∫

dq v
(

p−�q
1+�

)
∂p K (p, q) · u(q)χL1(q).

Using the explicit form of K (p, q) (see Eq. (7.2)), and some easy bounds which we
defer to the Appendix, we get the bound

∫ ∣∣∣d (
K (1)
v u

)
(p)

∣∣∣ ≤ O(1)Q
(

‖v‖L∞+
∫

|dv|
) ∫ L1+ 1

2

−L1− 1
2

|u(q)|dq

≤ O(1)Q
(

‖v‖L∞+
∫

|dv|
)

eµ(L1+ 1
2 )

2
∫

e−µq2 |u(q)|dq (8.2)

≤ const.‖u‖G1 · ‖v‖F2 .

The variation of K (2)
v leads to three terms:

d
(

K (2)
v u

)
(p)

= Q d p
∫

dq v
(

p−�q
1+�

)
K (p, q)u(q) · χ⊥

L1
(q) χ ′

L2
(p − �q)

+ Q
∫

dq dv
(

p−�q
1+�

)
1

1+� · K (p, q)u(q) · χ⊥
L1
(q) χL2(p − �q)

+Q d p
∫

dq v
(

p−�q
1+�

)
∂p K (p, q) · u(q) · χ⊥

L1
(q) χL2(p − �q)

:= dJ21 + dJ22 + dJ23.

In these terms, the variables p and q are in the domain

D = {(p, q) ∈ R
2 : |p − �q| < L2 + 1

2 and |q| > L1 − 1
2 },
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and for L1 = 3�L2/(1 − �2) and L2 sufficiently large we have from Lemma A.3:

K (p, q) < exp
(
−C1(�p − q)2 − C2L2

2

)
. (8.3)

Therefore, we get for dJ21:

∫
|dJ21| ≤ const.e−C2 L2

2‖u‖∞‖v‖∞
∫
(p,q)∈D

d p dqe−C1(�p−q)2 . (8.4)

The integral exists and is uniformly bounded in L2 (since |�p−q| → ∞when |q| → ∞).
The term dJ22 is handled in a similar way and leads to the bound

∫
|dJ22| ≤ const.e−C2 L2

2‖u‖∞
∫

|dv|. (8.5)

The following identity is useful:

∂p K (p, q) = −�∂q K (p, q). (8.6)

For the term dJ23 we observe that from (8.6) one gets, upon integrating by parts, with
the notation

dJ23 = �Q d p
∫

dq v
(

p−�q
1+�

)
K (p, q) · ∂q

(
χ⊥

L1
(q)χL2(p − �q)

)

+�Q d p
∫

dv
(

p−�q
1+�

) −�
1+� K (p, q)u(q) · χ⊥

L1
(q)χL2(p − �q)

+�Q d p
∫
v

(
p−�q
1+�

)
K (p, q)du(q) · χ⊥

L1
(q)χL2(p − �q)

:= dJ231 + dJ232 + dJ233.

All these terms are localized in the domain D. In dJ231 there appears a derivative

X = ∂q

(
χ⊥

L1
(q)χL2(p − �q)

)
= −χ ′

L1
(q)χL2(p − �q)

−�χ⊥
L1
(q)χ ′

L2
(p − �q)

:= X1 + X2.

The terms involving X1 and X2 can be bounded as dJ21 and dJ22 by observing that
suppχ ′

L1
⊂ {|q| < L1 + 1

2 }, and similarly for X2.
The terms dJ232 and dJ233 are bounded similarly.
Together, these lead to a bound

∫ ∣∣dK (2)
v (u)

∣∣ ≤ const.e−C2 L2
2‖v‖F2‖u‖G2 . (8.7)

Remark. Note that in this term, the norm ‖u‖G2 appears with a small coefficient, while
in (8.2) it was ‖u‖G1 (with a large coefficient).
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Finally, we estimate the total variation of K (3)
v (u) and here, the nature of the set CF

will be important. We have

d
(

K (3)
v u

)
(p)

= Q
∫

dq dv
(

p−�q
1+�

)
1

1+� K (p, q)u(q) · χ⊥
L1
(q) χ⊥

L2
(p − �q)

−Q d p
∫

dq v
(

p−�q
1+�

)
K (p, q)u(q) · χ⊥

L1
(q) χ ′

L2
(p − �q)

+Q d p
∫

dq v
(

p−�q
1+�

)
∂p K (p, q) · u(q) · χ⊥

L1
(q) χ⊥

L2
(p − �q)

:= dJ31 + dJ32 + dJ33.

The critical term is dJ33, but we first deal with the two others which are treated similar
to earlier cases.

For the first term we have by Lemma A.4 which tells us that K is exponentially
bounded on D′:

∫ ∣∣dJ31
∣∣ ≤ const.‖u‖L∞

∫
|s|>(L2− 1

2 )/(1+�)
|dv(s)|,

where D′ is the domain

D′ = {(p, q) : |q| > L1 and |p − �q| > L2}.

For the second term, we have, again by Lemma A.4 below,

∫
|dJ32| ≤ const.‖u‖L∞ ‖v‖L∞ .

The last term is more delicate, and uses the property Z · lim p→±∞ v(p) < 1 of the
definition of the cone CF , Eq. (7.3). integrate by parts as before using (8.6) and get

dJ33 = �Q d p
∫

dv
(

p−�q
1+�

) −�
1+� K (p, q)u(q) · χ⊥

L1
(q) χ⊥

L2
(p − �q)

×�Q d p
∫

dq v
(

p−�q
1+�

)
K (p, q)u(q) · ∂q

(
χL1(q)χ

⊥
L2
(p − �q)

)

×�Qd p
∫
v

(
p−�q
1+�

)
K (p, q)du(q) · χ⊥

L1
(q) χ⊥

L2
(p − �q)

:= dJ331 + dJ332 + dJ333.

The term dJ331 is bounded like dJ31.
In a similar way dJ332 and dJ32 are bounded by the same methods.
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The term dJ333 makes use of the limit condition in CF . Consider the integral of
|dJ333|. This leads to a bound and setting L ′

2 = (L2 − 1
2 )/(1 + �):

∫
|dJ333(p)| ≤ � Q sup

|s|>L ′
2

|v(s)| ·
∫

|du(q)|

·
∫

d p K (p, q) · χ⊥
L1
(q) χ⊥

L2
(p − �q)

≤ � Q

⎛
⎜⎝ sup

|q|>L1− 1
2

∫
d p K (p, q)

⎞
⎟⎠ · sup

|s|>L ′
2

|v(s)|
∫

|du| (8.8)

=
√
π∫

dqe−q2
v(q)

· sup
|s|>L ′

2

|v(s)|
∫

|du|

= Z · sup
|s|>L ′

2

|v(s)|
∫

|du|,

where Z was defined in Eq. (7.4). Collecting all the estimates, we get∫
|dKv(u)| ≤ C

∫
e−µq2 |u(q)|dq + ζ (L2)

∫
|du|,

where

ζ (L2) = O(1)e−C2 L2
2‖v‖F2 + O(1)

∫
|s|>L ′

2

|dv(s)| + Z · sup
|s|>L ′

2

|v(s)|.

Since v belongs to CF , it follows that

lim
L2→∞ ζ (L2) < 1,

and the lemma follows by taking L2 large enough. 
�
Proposition 8.3. For any v ∈ CF , the equation Kv(u) = u has a solution in G2. This
solution can be chosen positive, it is then unique if we impose ‖u‖G1 = 1. We call it uv .
The map v �→ uv is differentiable.

Proof. We apply the theorem of Ionescu-Tulcea and Marinescu [5] to prove the exis-
tence of u. Since for v > 0, the operator Kv is positivity improving, it follows by a well
known argument, see e.g., [7] that the peripheral spectrum consists only of the simple
eigenvalue one and the eigenvector can be chosen positive. If normalized, it is then
unique. Since the operator Kv depends linearly and continuously on v (in F2), the last
result follows by analytic perturbation theory (see [6]). 
�

We next consider Eq. (7.5) for v:

∂xv(p) = sign(p)

(
1
�

∫
e(1−�2)(p−q/(1+�))2/�2

v
(
(1−�)q−p

�

)
uv(q) dq

− v(p)
∫

e−µq2
uv(q) dq

)
. (8.9)
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Proposition 8.4. The r.h.s. of the equation for v is a C1 vector field on F2.

Proof. This follows easily from the fact that the map v �→ uv is C1. 
�

Theorem 8.5. Let v0 ∈ CF , and assume that v0 is bounded below away from zero and
has nonzero limits at ±∞. Then there is a number s = s(v) > 0 such that the solution
Eq. (8.9) with initial condition v0 exists in F2 and is nonnegative (moreover, it belongs
to CF ).

Proof. Follows at once from the previous proposition and the fact that v0 is in the interior
of CF . 
�

The proof of Theorem 7.3 is now completed by observing that the map � : v0 �→
�(v0) is indeed a local diffeomorphism, since it is given as the solution of an evolution
equation.

9. Remarks and Discussion

9.1. The behavior of the solution at p = ∞. Consider the limit p → ∞ in the expression
for Kv . We need �p −q = O(1) otherwise the Gaussian gives a negligible contribution.
In other words, q ∼ �p, and we are going to assume from now on that � > 0 (the other
case can be treated analogously). This implies p − �q ∼ (1 − �2)p which also tends to
infinity (the same infinity). Therefore,

Kvu(±∞) =
√
π v(±∞) u(±∞)∫

e−p2
v(p)d p

.

In particular, if Kvu = u and since we assumed

√
π v(±∞)∫

e−p2
v(p)d p

�= 1

we get u(±∞) = 0.
For the v equation, we have for large p, q ∼ p(1 + �) and (1 − �)q − p ∼ −�2 p.

Therefore (inverting limit and derivative) we get

∂xv(±∞) = sign(±∞)

[
√
π

√
1 + �

1 − �
u(±∞) v(∓∞)− v(±∞)

∫
e−µq2

u(q)dq

]
.

Note that the first term vanishes since u(±∞) = 0. Since the integral C(x) = ∫
e−µq2

u(q, x) is positive, we conclude that formally,

∂xv(±∞) = ∓v(±∞)C(x).
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9.2. Essential spectrum.

Conjecture. The essential spectrum of Kv is the interval [0, σ (v)] with

σ(v) = max

√
π v(±∞)∫

e−p2
v(p)d p

.

If σ(v) < 1 we are looking for an eigenvalue 1 outside the essential spectrum, which is
the case we have treated. If σ(v) > 1 we would be looking for an eigenvalue 1 inside
the essential spectrum which would be a much more difficult task, since it may well not
exist.

Idea of proof. Similar to the above estimates, the operator Kv should be written as
something small plus something compact plus something whose essential spectrum can
be computed. This last part is likely to be the limit operator at infinity.

9.3. Dependence on N. It should be noted that the equation for ∂x F has, in fact a scaling
of the form

N−1∂x F = O(1) + O(N−1).

This means that in the main theorem (Theorem 7.3), the limit xv0 of x for which we
have a result is quite probably bounded by a quantity of the form 1/(N ·�(v0)), where
�(v0) measures the deviation of the initial condition v0 from a Gaussian. Thus, either
xv0 is very small when N is large, or one has to take v0 very close to a Gaussian.

Another way to look at this scaling is to introduce a scattering probability γ = b/N
where b > 0 is a constant independent of N . In other words, a particle entering the array
of cells from the left has for large N a probability e−b to traverse all the N cells (and
leave on the right) without having experienced any scattering. This is analogous to a
rarefied gas. It is easy to verify that Eq. (2.4) is modified by a factor b/N multiplying
the right hand side, and hence Eq. (2.5) is unchanged. The stationary equations (4.5)
become

| p̃|
m f −

L (t, p̃) = θ(− p̃)

(
1 − b

N

)
| p̃|
m f (t, p̃)

+
b

N

θ(− p̃)

1 − �

∫
R

d p g
(

t − mL/| p̃|, p̃+�p
1−�

) |p|
m f

(
t − m

| p̃| L − m
|p| L , p

)
,

and

| p̃|
m f +

R (t, p̃) = θ(+ p̃)

(
1 − b

N

)
| p̃|
m f (t, p̃)

+
b

N

θ(+ p̃)

1 − �

∫
R

d p g
(

t − mL/| p̃|, p̃+�p
1−�

) |p|
m f

(
t − m

| p̃| L − m
|p| L , p

)
.

Equation (4.5a) follows as explained in Sect. 4 after a rescaling of space by a factor b.
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9.4. Discussion. The model presented in this paper has the nice property that one can
control the existence of a solution out of equilibrium. In particular, this means that there
is no heating up of the scatterers in the “chain”, when the system is out of equilibrium.

The reader should note, however, that the initial condition at the boundary does not
allow for different temperatures in the strict sense, only for different distributions at the
ends. For example, a function of the form

F(p, 0) =
{

exp(−αp2), if p > 0,
exp(−α′ p2), if p < 0,

with α �= α′ is not covered by Theorem 7.3. The reason for this failure is that we
could not find an adequate analog of Lemma A.4 for initial conditions of this type, and
therefore the bounds on the kernel K (p, q) are not good enough.

Acknowledgement. We thank Ph. Jacquet for a careful reading of the manuscript. This work was partially
supported by the Fonds National Suisse.

A. Appendix: Bounds on K ( p, q)

We study here the kernel K of (7.2), which equals

K (p, q) = eE(p,q),

with

E(p, q) = µp2 − µq2 −
(

p−�q
1+�

)2 = −(�p − q)2/(1 + �)2. (A.1)

Lemma A.1. Assume |q| < L. There are constants C = C(L , �) and D = D(L , �) > 0
such that for all p,

K (p, q) < Ce−Dp2
, (A.2)

and

|∂p K (p, q)| < Ce−Dp2
. (A.3)

Proof. Obvious. 
�
Lemma A.2. Assume |p − �q| < L. There are constants C = C(L , �) and D =
D(L , �) > 0 such that for all q,

K (p, q) < Ce−Dq2
, (A.4)

and

|∂p K (p, q)| < Ce−Dq2
, (A.5)

Proof. The proof is as in Lemma A.1, with the difference that now |p − �q| < L . 
�
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Lemma A.3. Consider the domain D defined by

D = {(p, q) ∈ R
2 : |p − �q| < L2 + 1

2 and |q| > L1 − 1
2 }, (A.6)

with

L1 = 3�

1 − �2 L2. (A.7)

For fixed � ∈ (0, 1) and sufficiently large L2 there are positive constants C1 and C2
such that for (p, q) ∈ D one has the bound

K (p, q) < exp
(
−C1(�p − q)2 − C2L2

2

)
.

Proof. From the definition of D and (1 − �2)q = (�p − q)− �(p − �q), we find (for
sufficiently large L2):

|�p−q| ≥
(

1−�2
)

|q|−�|p−�q| ≥
(

1−�2
) (

L1− 1
2

) −� (
L2 + 1

2

)
> �L2. (A.8)

Using the form

(�p − q)2 > 1
4 (�p − q)2 + 1

4�
2L2

2, (A.9)

the assertion follows immediately. 
�
We next study the region

D′ = {(p, q) : |q| > L1 and |p − �q| > L2}. (A.10)

In this region, we have the obvious bound

Lemma A.4. For (p, q) ∈ D′, one has the bound

E(p, q) = −
(
�p−q
1+�

)2
.
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