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Introd uction 

Since the discovery of T cells bearing the 7~i TCR [1], a large number of studies have 
described the molecular characteristics of this receptor and examined the possible 
functions of these cells in a wide range of vertebrate species. However, although we 
know the genetics of y and ~5 genes in great detail, the function of 5'8 T cells in vivo is 
only in part defined. In man, 5'5 T cells constitute -5% of circulating CD3 + cells and 
are most often CD4-8- or CD4-8 + [2, 3]. Although 5'8 T cells represent a small popu- 
lation when compared to o~[3 T cells, they show peculiar functional characteristics 
that make them unique and important. Rather than discussing studies on the 
78 T cells in general, this chapter will focus on the physiology of human 5'8 T lym- 
phocytes and their possible role in diseases. 

Gene organization of'y and ~ loci 

In the human genome the TCR 5' locus spans 160 kb of DNA, and maps to chromo- 
some 7. The 7 locus comprises two constant gene segments and five joining elements, 
J t, JR and JP1 located upstream of C5'1 and JP2 J2, which are upstream of C'{2. Four- 
teen vaaiable 5' (V 7) genes have been identified, including eight pseudogenes and six 
active genes (reviewed in [4]). These genes fall into four subgroups designated 
V,{I-VS'IV. Five functional genes belong to the VS'I family (VT2,3,4,5,8), whereas 
family II consists of only one gene, designated V,/9 (V72 in another nomenclature). 
Structural differences exist between C71 and C5'2 genes: Cy1 is made of three exons, 
with e~on 2 encoding the cysteine residue forming a disulfide bridge with the ~5 chain. 
C,{2 has an allelic polymorphism with either two or three copies of an exon homolo- 
gous to C71 exon 2 without codons for this cysteine residue. Thus, 5'5 receptors using 
C5'2 are not disulfide linked to the 8 chain. On the cell surface at least four forms of y 

Correspondence to: Gennaro De Libero, Experimental Immunology. University Hospital, Hebelstrasse 20, 
4031 Basel, Switzerland, 
e-mail: Gennaro.DeLibero@ unibas.ch 



220 G, De Libero 

chain can be found: the 40-kDa 5'1 chain, the differently glycosylated 72 chains (of 40 
or 44 kDa) encoded by the Cy2 gene with the duplication of the exon 2, and the 55- 
kDa form encoded by the C72 gene with the triplication of exon 2. 

The human ~5 locus is within the TCR c~ locus on chromosome 14. One C6 gene 
segment is located in front of the J8 segment cluster and is preceded by four different 
J8 segments. Three diversity (D) elements are also identified in front of the J8 cluster 
[5-7]. The number of V8 chains found expressed on the cell surface is limited to six 
[8]. A molecular map of the relative localization of V8 genes indicates V82 as the 
most 3' V8 gene, followed in a 3 ' -5 '  direction by V~5 genes 8, 7, 5, l, 6 and 4, while 
V~53 is located at 3' of C~5 [8]. 

The different TCR y8 which can be potentially expressed approximates to the 
large number of 1018. The 8 genes show an unprecedented junctional diversity with 
up to three D8 segments used in tandem, together with imprecise joining and the ex- 
tensive incorporation of N nucteotides [9]. Despite the small number of V8 genes, 
these characteristics generate TCR 8 chains with an extremely high variability in the 
CDR3 region, thus leading to a potential TCR 78 repertoire which is at least three or- 
ders of magnitude higher than the TCR c~[3 repertoire. This property may have im- 
portant implications in the antigen recognition by y8 T cells. 

Another striking feature of the TCR y6 is the preferential association of different 
V8 and Vy chains. V62 mostly associates with the VSO chain, while VS1 and V83 
chains mostly associate with Vy chains other than V3,9. This preferential association 
seems to be generated by some kind of antigen selection, since mixed combinations 
are found in y8 T cell clones isolated from thymus [10]. 

Maturation and selection in the thymus 

Ordered and coordinated rearrangement of Vy and V8 loci in the human fetal thymus 
has been reported. The initial rearrangements join V152 to D53, and downstream Vy 
genes (V5'8 and V79) to upstream Jy gene segments. These rearrangements are char- 
acterized by minimal junctional diversity. At later developmental stages there is a 
switch such that VSI is joined to upstream D8 gene segments and Vy genes are 
joined to downstream Jy gene segments, These rearrangements are characterized by 
extensive junctional diversity [ t 0, l 1 ]. 

How y8 T cells differentiate in human thymus is not as clear as in the mouse. 
Mouse thymic y8 T cells are positively selected [12] and autoreactive "/8 T cells are 
anergized [t3] or deleted [14]. Positive selection is driven by cortical epithelial cells 
[15] and for some TCR y8 by MHC class I-like TL molecules [16]. The p56 lck pro- 
tein tyrosine kinase, the CD45 protein tyrosine phosphatase [17] and the adapter 
SLP-76 [ 18] are necessary for intrathymic y~5 T cell differentiation. MAP kinase acti- 
vation is required for positive selection of c~, but not y5 T ceils [191. lk-7 [20], IL-7 
receptor [21] as well as IL-2 receptor beta chain [22] are required for maturation of 
3/8 thymocytes. CD30 is required for negative selection of 5'8 T cells [23]. 

Maturation and selection in other organs 

Mouse 5'8 T cells may also mature extrathymically. Intestinal maturation is inferred 
by the absence of Thy 1 antigen on mouse 5'8 T cells [24], and by the presence of ira- 
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mature T cells in the gut of normal [25] and athymic mice (reviewed in [26]). Like- 
wise in the human gut a minor population of cells has a phenotype of T cell progeni- 
tors. These precursor cells are CD7 +, CD2-, CD3-, CD4-, CD5-, and CD8- [27], and 
give rise to phenotypicalty mature o~t3 and T8 T cells. 

TCR 3'8 transgenic or deficient mice have been instrumental in further under- 
standing extrathymic maturation of these cells. CD3 ~ chain-deficient animals dis- 
play highly reduced numbers of thymocytes, but normal numbers of intraepithelial 
lymphocytes (IELs), which however constitute a new population. These cells express 
normal levels of TCR-CD3 complexes associated with FcaRI3' homodimers. In con- 
trast to CD3 ~-containing IELs, these cells do not proliferate when triggered with an- 
ti-TCR mAbs or mitogens, suggesting that they mature in the intestine independently 
fl'om TCR engagement [28]. In the intestine, precursor cells are Thy-1 +, CD3-, 
CD44 +, CD25 § CD45R-, CD24 +. They mature into the 3'8 T cell lineage after ex- 
pression of CD3e chain and IL-2 receptor [29] and in the presence of locally pro- 
duced IL-7 [30]. Expression of CD45 is also required for normal numbers of IEL 3'8 
T cells. Indeed, in CD45 null mice apparently normal intestinal T cell maturation is 
followed by increased intestinal apoptosis and reduced numbers of IEL 3'8 T cells 
[3 t]. After maturation in the gut, y8 T cells become CD3 bright but are still function- 
ally immature. They acquire a potent cytolytic activity only upon interaction with an- 
tigens and continuous stimulation [32]. Most likely antigen recognition induces an 
oligoclonal expansion of IELs, as suggested by the clonality of TCR sequences of in- 
traepithelial, but not intra lamina propria T cells [33]. Extrathymic selection of 3'8 T 
cells has also been reported in the lung of mice [34]. These 3'8 T cells are positively 
selected by strain-specific polymorphic ligands that are encoded outside of the clas- 
sical H-2 region. Selection can take place in the absence of thymus and requires IL-7 
[35]. Maturation of 3'8 T cells may also occur in decidual tissue [36]. 

Distribution of~t3 T ceils in human tissues 

A detailed analysis of the distribution of different V 7 and V8 chains in various hu- 
man tissues has been partially performed. Within the lymphoid organs, 3'8 T cells ap- 
pear to be evenly distributed [2]. At variance with mouse, 78 T cells are rare in hu- 
man skin, and form a minority of IELs in the gut. Nevertheless, human 3'~5 T cells ap- 
pear preferentially associated with epithelial cells, as seen in the mouse. In the tonsil 
they m-e mainly located in the interfollicular area, often around the small vessels and 
in the intraepithelial and sub epithelial zones. In these areas about 30% of cells ex- 
press the TCR 3'8 [37], while very few @ T cells are found in liver, kidney, salivary 
glands 1138], and the bronchial tree [39]. [n the thymus, which is the organ where 
most lymphocytes develop, 3'8 T cells are a very minor population, constituting less 
than 1% of total thymocytes. 

The small number of available V3' and V8 segments are not used randomly and 
the TCR T5 repertoire is markedly restricted. The intestinal 3'8 T cells mostly use the 
VS1 and V83 chains paired with members of V3'I gene family [40]. Nearly all the re- 
maining 3'8 T cells in peripheral blood use VSI. Only a fraction of total thymocytes 
(tess than 0.05%) express the V~,/9/V82 heterodimer. On the contrary, V~9/V82 T 
cetts are very frequent in peripheral blood, in the tonsil and in the spleen, where they 
represent 5-10% of total lymphocytes and 50-80% of 3'8 T cells [10, 41]. VT9/V82 
cells are rare also in the placenta and in the peripheral blood of neonates [42]. Dur- 
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ing the first years of life these cells expand and become the predominant circulating 
~'8 T cell population. This finding has suggested the possibility that environmental 
antigens stimulate and increase the number of these cells during the first years of life 
[421. 

Antigen specificities of human ~ T cells 

Despite intensive efforts, the antigens stimulating human 7~5 T cells remain in part 
unknown. Several types of antigen specificities have been reported. Here the most 
conunon ones, which are likely the most important, will be discussed first. 

Recognition of non-peptidic phosphorylated antigens 

Peripheral ~,~i T ceils react with ligands present in many different microbes. Lysates 
from Mycobacterium tuberculosis, M. bov'is, M. leprae, Listeria monocytogenes, Sta- 
phylococcus aureus, group A streptococci, Escherichia coli, Salmonella o, phi, Yer- 
sinia enterocolitica, Frcmcisella tularensis and Plasmodiunz falciparum induce pro- 
liferation of human T~5 T cells (reviewed in [43]). In all these cases proliferating ceils 
express the V79/V82 heterodimer. 

The mycobacterial ligands have been extensively studied. They are protease~re- 
sistant non-peptidic compounds with a tow molecular weight (<3 kDa) [44]. Con- 
stant et al. [45] isolated four different active compounds from M. tuberculosis cell 
extracts. One of these substances contains triphosphorylated thymidine linked to an 
unknown compound. Tanaka et al. [46] found that monoalkylpbosphates may induce 
activation of VT9/V~52 cells and not of other yfi T cell clones bearing different V T and 
V5 chains. In a third publication, it was reported that M. tuberculosis lysates contain 
active compounds with phosphate and an unidentified carbohydrate [47]. In later 
studies a ligand was purified from culture supernatants of M. scrojhlaceum and M. 
fortuitum and characterized as a phosphorylated molecule without nucleotide resi- 
dues [48]. This compound was identified as isopentenylpyrophosphate (IPP), which 
is an intermediate of prenyl and cholesterol biosynthesis and is present in both pro- 
karyotic and eukaryotic cells [48]. At the same time we reported that IPP, together 
with five other naturally occurring non-peptidic metabolites, stimulate the same pop- 
ulation of ' [~ T cells [491. In addition, we isolated and characterized from M. ulber- 
culosis cell extracts a non-peptidic molecule with a molecular mass of 262 daltons, 
containing a pyrophosphate but no nitrogen or cheton residues [43]. This molecule 
has an activity which is ~1000 times higher than IPP and could represent an interme- 
diate in IPP synthesis in bacteria. By analysis of all active compounds reported so far 
it appears that the length and structure of the alkyl chain arc important for immuno- 
genicity. For example, while methylphosphate is active, dimethylphosphate and tri- 
methylphosphate are not stimulatory [46]. We found that substitutions of IPP with a 
cheton in position 2 or with a hydroxyl in position 3 destroy immunogenicity. More- 
over, the number and position of the phosphate groups also play an important role: 
while 2,3-diphosphoglyceric acid is active, neither 2-diphosphoglyceric acid nor 3- 
diphosphoglyceric acid are immunogenic (our unpublished data). 

Recently, two new antigen reactivities have been reported for VT9/V~52 cells. 
Bukowski et al. [50] have shown that this population specifically recognizes several 
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Compound Natural source Structure P groups m,w. 
identification 

TubAgt M. tuberculosis No 1 - 
TubAg2 M. tuberculosis No 1 - 
TubAg3 M. tuberculosis Partial 3 - 
TubAg4 M. tube~rulosis Partial 3 - 
NIEP No Yes 1 126 
Methyl@ No Yes 1 1 ! 2 
n-Propyt-P No Yes t 140 
iso-propyl-P No Yes 1 140 
sec-gutyl-P No Yes 1 t 54 
[3-Hydroxyethyl-P No Yes 1 I42 
Phosphoglycolic acid Yes Yes I 156 
P-non peptidic M. smegmatis No ? - 
P-non peptidic M. formitum No ? - 
P-non peptidic M tuberculosis No 9 _ 
tPP M. smegmatis Yes 2 216 
IPP-CH2OH M. fortuimm Partial 2 276 
DMAPP Yes Yes 2 216 
Farnesyl-PP Yes Yes 2 382 
Geranyl-PP Yes Yes 2 314 
Geranyl-geranyl-PP Yes Yes 2 450 
Monoethyl-2'-dTTP ? Yes 3 510 
Monoethyl-2',3'-dTFP ? Yes 3 494 
Monoethyl-2'-dUTP 9 Yes 3 512 
PP-non peptidic M. tuberculosis Partial 2 262 
DPG Yes Yes 2 266 
G-3-P Yes Yes t 172 
Xylose- 1 -P Yes Yes 1 200 
Ribose- t-P Yes Yes 1 200 
Ethylamine Yes Yes 0 45 
n-Propylamine Yes Yes 0 59 
n-Butylamine Yes Yes 0 73 
iso-Propylamine Yes Yes 0 59 
iso-Butylamiae Yes Yes 0 73 
sec-Butylamine Yes Yes 0 73 
iso-Amylamine Yes Yes 0 87 

p, Phosphate; MER monoethylphosphate; P-non peptidic, phosphorylated non peptide; IPP, isopentenylpy- 
rophosphale; DMAPP, dymethylallylpyrophosphate; PP, pyrophosphate; 2'-dTTP, 2'-deoxythymidine tri- 
phosphate; 2',3'-d'FFR 2',3'-dideoxythymidine rriphosphate; 2'-dUTR 2'-deoxyuridine triphosphate; 
DPG, diphosphoglyceric acid; G-3-P, glycerol-3-phosphate 

a lkylamines  re leased  in mi l l imola r  amounts  by different  bacteria.  Recogn i t ion  of  
these compounds  is media ted  by the VT9/V82 T C R  and is affected by the type o f  the 
alkyl chain. Thus,  a lkylamines  represent  a new class of  78 l igands  wide ly  present  in 
nature and capable  o f  recrui t ing a large number  o f  78 T cells. A second react ivi ty  is 
directed against  b isphosphonates  (pamidronate  and alendronate) ,  drugs usual ly used 
to contrast  bone resorption.  One  of  the most  f requent  side effects  o f  this therapy is an 
acute-phase react ion,  whose  intensity appears  correlated with expansion o f  the 
Vy9/V62 T cell  populat ion [51 ]. The  m e c h a n i s m  by which these compounds  induce  
prol i ferat ion o f  "[8 T cells  is not  clear: they could  direct ly  m i m i c  IPP and other  pre- 
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Fig. 1. Four possible models of interaction between 7~ T cell receptor, stimulatory ligand and putative an- 
tigen-presenting molecule (APt!4") are shown (APC antigen-presenting cell) 

nylphosphates, due to a structural homology, or instead induce accumulation of IPP 
and other metabolic intermediates since they block the mevalonate pathway [52]. Ta- 
ble 1 reports the active ligands described so far. 

Analysis of  several 5'5 clones pointed out that only cells expressing both VT9 and 
V32 chains react to non-peptidic ligands [46]. In addition, the junctional regions of  
the V79 or V~2 chains are important to confer reactivity to non-peptidic ligands [53], 
implying a reactivity different from that to protein superantigens and MHC-peptide 
complexes. However, as T cell clones with different junctional sequences cross-react 
with the same collection of  ligands [49, 54], it has to be argued that many different 
~5 TCR recognize a structural motif common to all these compounds. An additional 
important observation is that a consistent fraction of  V,/9/V82 thymocytes [55] or 
V3,9/V52 clones isolated from postnatal thymus [10] also react to this class of  li- 
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gands, suggesting the possibility that this receptor has intrinsic structural characteris- 
tics which confer reactivity to non-peptidic ligands and their putative antigen-pre- 
senting molecules (APM). Whether dedicated molecules exist which present non- 
peptidic ligands to V79/V82 TCR is still an open issue. Filler cells and membrane- 
membrane interactions are definitely required to optimally stimulate y~5 T cells [54, 
56, 57] and only cells of human origin have this capacity (our unpublished results). 
These filler cells might provide necessary co-stimulation or, alternatively, they could 
associate non-peptidic ligands with species-specific APM, thus forming new com- 
plexes recognized by the Vy9/V82 TCR. Another possible way of interaction is ini- 
tial binding of ligands to APC and induction of conformational changes of surface 
APM, which then make cognate interaction with the TCR. A speculative possibility 
is that non-peptidic ligands first bind to conserved regions of the Vy9/V~2 TCR, 
which acquires a new confo~vnation and the capacity to interact with APC. These 
four possible models of interaction are illnstrated in Figure 1. 

Recognition of cell surface molecules 

Antigen reactivities of human y8 T cells against allo-MHC molecules [58-60], CDlc 
[61,621, and CD48 [631 have been described. However, only a few 78 clones react to 
these molecules, suggesting that they are rare specificities. Also in the mouse a few 
alloreactive y~ clones were isolated and characterized. The reactivities of these cells 
are quite different from those of cr.[3 T cells. One clone reacted to an unknown pep- 
tide presented by the TL 27b molecule [64], a second to the MHC class I-like TL 
10b molecule [65], and a third to the MHC class II l-Ek surface glycoprotein [66], 
independently of associated peptides and antigen processing [67]. Site-directed mu- 
tagenesis of MHC molecules showed that the topology of y5 TCR interaction with 
the MHC is distinct from that of o~[~ T cells [67]. An intriguing finding is that mouse 
[68] and human [69] y8 T cells accumulate in the decidua during normal pregnancy. 
Mouse y8 T cells recognize non-MHC-encoded molecules present on both mouse 
and human trophoblast cell lines, but not other tumor cells [70]. The recognized sur- 
face structures have not been identified. 

Recognition of peptides and carbohydrates  

Rare human yg T cell clones have been isolated which recognize peptide-MHC com- 
plexes [59, 71-73]. In mice there are also examples of these infrequent reactivities. 
Polyclonal y6 T cells specific for ovalbumin were induced after antigen inhalation 
[74]. It was not analyzed whether they were activated by the intact protein or by 
small peptides. A series of mouse hybridomas were reported to be stimulated by pep- 
tides derived from bacterial heat shock proteins (HSPs) [75]. Recognition of these 
peptides required presentation by unknown non-MHC molecules, and was affected 
either by amino acid substitutions in the peptide or by the polymorphism of Vy 
chain. 

Mouse T~ T cells may also recognize di- and trisaccharides coupled to class I- 
binding peptides [76]. The crystal structure analysis of these glycosylated peptide- 
MHC complexes has shown that the carbohydrates are located in the central region 
of the putative TCR binding site without altering the overall MHC structure [77]. 
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These findings support a model of antigen recognition by these 78 TCR characterized 
by cognate interaction with the sugar residues and not with MHC molecules. 

Recognition of heat shock proteins 

A few studies have reported the possible recognition of HSPs by human yfi T cells 
[78-80]. In two of these studies a rabbit antiserum or an mAb specific for an un- 
known human 58-kDa HSP partially inhibited reactivity of freshly isolated, but not 
of cloned, 3'8 T cells to a tumor line stained by these antibodies. The HSP stimulat- 
ing 78 cells was not identified and solid data supporting cognate interaction of the 
3'8 TCR with members of this protein family have not been published. Taken togeth- 
er, all these findings show that antigen recognition by 78 T cells is different from 
that of ~ T cells. Additional evidence supporting this conclusion comes from the 
different length of CDR3 loops which are often critical for antigen binding in Ig and 
appear to provide the principal peptide binding residues in c~13 TCRs. Comparison 
of the CDR3 regions of Ig H and L chains with TCR ~, ~3, y and 5 chains, showed 
that Ig H and TCR 5 CDR3 are the most variable in size and are significantly longer 
than Ig L and TCR y chains, respectively. In contrast, TCR o~ and 13 chains pairing is 
constrained by nearly identical average CDR3 lengths [81]. These TCR structural 
differences have been related to 78 TCR recognition of molecules other than pep- 
tide-MHC complexes and, in general, more to a type of antigen recognition similar 
to that of Ig [821. 

Effector functions of'~8 T cells 

Like o~{3 T cells, y8 T cells can be classified in different functional subsets. 78 T cell 
clones are potent cytotoxic cells which lyse different tumor cell lines [1] and secrete 
different lymphokines irrespective of the expressed V chains [3]. y8 T cells isolated 
from leprosy patients release soluble factors that positively influence development of 
granulomas [83]. In contrast, an inhibitory role in granuloma formation during my- 
cobacterial infection has been attributed to y8 T cells in mice lacking the 8 gene [84] 
or treated with anti-TCR y8 mAbs [85]. Another important function is protection 
during infections. By releasing proinftammatory lymphokines, ')'8 T cells might facil- 
itate activation of macrophages in the early phases of infection, This has been de- 
scribed in mice infected with Candida albicans, in which 5'8 T cells facilitate nitric 
oxide production by macrophages and, thus, enhance resistance to mucosal candidia- 
sis [86]. In addition, by killing the infected target cells, y5 T cells might contribute to 
microbial burden, as shown with cytotoxic CD8 + T cells in mycobacterial and listeri- 
al infections in mice [87-89] or with human CD8 + TCR o~[3 § T cells [90, 91]. 

y8 T cells may also regulate the effector phases of the immune response. After in- 
halation of soluble antigens, Y8 T cells potently inhibit induction of IgE secretion in 
the mouse, possibly by blocking maturation of Th2 cells [74]. Thus, 78 T cells might 
have a prominent role in protection against primary allergic sensitization to environ- 
mental antigens. 

78 T cells may also influence the functional type of T helper cells which develop 
during immune responses. In mice infected with Listeria monocytogenes, y6 T cells 
produce Thl-type cytokines, while they produce Th2-type cytokines in Nippostron- 
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gyIus brasiliensis-infected animals [92]. In both infections y5 T cells are among the 
first type of lymphocytes activated. As the effector phase of the immune response is 
influenced by the cytokine milieu in which the initial antigen priming occurs, 3'8 T 
cells may have the important regulatory role of determining the later response [92]. 
Furthermore, a possible role during viral infection has been proposed based on the 
findings that Vy9/V82 T cells recognize and kill target cells infected with different 
types of viruses [93]. 

An additional important function attributed to human 3'5 T cells is help to B ceils. 
Indeed, it has been shown that, analogously to c~13 T cells, human 3'5 T may facilitate 
B cell maturation, isotype switching and IgG production [94]. 

Role of'~3 T cells in animal disease models 

Studies conducted in mice deficient in 3'5 T cells by homologous recombination or 
treated with anti-TCR y8 mAbs have provided convincing evidence of the impor- 
tance of 75 T cells in different disease models. 3'5 T cells provide protection during 
lethal encephalitis with HSV-1 [95], in malaria after immunization with inactivated 
sporozoites [96], and in the early phases of listeriosis [84, 97]. In the absence of 3'fi T 
cells, mice are more susceptible to high M. tuberculosis inocula [98] and have more 
severe tissue inflammatory injury after low inocula of the same bacteria [99]. In in- 
fection with Nocardia asteroides, y8 cells induce local recruitment of neutrophits re- 
sponsible for microbial clearance [I00]. In autoimmune disease models, 3'8 T cells 
appear to have an important regulatory role on c~[3 T cells and other effector cells. 
Elimination of 76 T cells worsens clinical manifestations in adjuvant arthritis [101] 
and lupus nephritis [102], leads to the aggravation and disease recurrence in experi- 
mental allergic encephalomyelitis [103], and mediates prevention of diabetes follow- 
ing mucosal insulin aerosolization in NOD mice [104]. 

Evidence for participation ol'3~3 T cells in human diseases 

Infections 

Expansion of human 75 T cells has been described in bacterial, viral and parasite in- 
fections. The number of y8 T cells has been found increased in infections of bacterial 
origin such as brucellosis [105], salmonellosis [106], tuberculosis [107] and tulare- 
mia [108]. Increase of yg T ceils in hospital workers who are in close contact with tu- 
berculosis patients has been also reported [109]. Increased numbers of circulating y5 
T cells have been found in parasite infections such as malaria [106, l l0, 1ll], ehr- 
lichosis [112], leishmaniasis [113, 114], toxoplasmosis [115], and trypanosomiasis 
[116]. In most of these infections the expanded cells display a VT9]V82 TCR. 

The number of Y5 T cells is also altered in some viral infections. In patients with 
AIDS a large number of oligoclonal VS1 + cells are found in the peripheral blood 
[117] and of V82 + cells in the lung [118}. These 7~5 populations might contribute to 
the immune defense against opportunistic microorganisms frequently present in HIV- 
infected patients. Expansion of y8 T cells has also been found after cytomegalovirus 
(CMV) infection in kidney transplant patients [119]. The expanded cells express oli- 
goclonal VS1 and V83 chains and proliferate when challenged with CMV-infected 
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fibroblasts. These findings strongly suggest that an antigen-driven proliferation oc- 
curs during this viral infection. 

The exact role of the expanded ?'8 populations in infections is not clear. 3'8 T cells 
might recognize microbial ligands and contribute to protection by reducing microbial 
load or by killing cells infected with intracellular pathogens. 3'5 T cells might also 
exert the important function of signaling the microbial presence in the early phases 
of infection, when a small load of microbial cells is present in tissues and other lym- 
phocyte populations have not yet been recruited. 

Tumors 

One of the first identified functions of human 78 T cells was the "nonspecific" cyto- 
toxicity toward tumor targets [1]. Moreover, some human Y8 T cells kill Burkitt's 
lymphomas, thymic lymphomas and erythroleukemia cells [54, 120, 121]. Other 
studies identified y8 T cell clones reacting with unknown surface molecules ex- 
pressed by activated B cells or EBV-transformed cells [122]. In all these cases no an- 
tigens interacting with the 3'8 TCR have been identified. Only a single y8 T cell clone 
that recognizes a peptide derived from the Ig expressed by a myeloma from the same 
patient has been described [123]. In some CNS neoplasms, including primary malig- 
nancies, metastatic cancers, and meningiomas, oligoclonal expansion of y8 popula- 
tions was detected [124]. y8 T cells were found infiltrating cutaneous melanocytic tu- 
mors and capable of killing solid tumors [125]. 75 T cells may also accumulate 
around epithelial [1261, renal [127] and lung [1281 carcinomas. 

A recent finding is that many tumors of epithelial origin express MICA [129]. 
Since this MHC-re]ated molecule stimulates VS1 + T cells [130], recognition of this 
surface antigen may allow 3'8 T ceil response against tumor cells. 

Autoimmune and inflammatory diseases 

A possible involvement of 78 T cells in the pathogenesis of autoimmune diseases has 
been claimed. However, clear evidence of direct participation of 5'8 T cells in autoim- 
mune reactions is not available. Most of the studies have analyzed the relative num- 
ber of T8 T cells in peripheral blood or in other tissues, their phenotype and TCR rep- 
ertoire. In rheumatoid arthritis the number of y8 T cells is increased in the affected 
joints [131], mainly in those with active synovitis [132]. In multiple sclerosis 78 T 
cells accumulate around brain lesions during the exacerbation phases [133] and in 
the cerebrospinal fluid where they display polyclonal VS1 chains [134, 135]. Expan- 
sion of y8 T cells has been reported in cases of autoimmune thrombocytopenia [136] 
and autoimmune neutropenia [137]. In this latter study it was reported that five af- 
fected patients showed monoclonal expansion of 78 T cells, thus suggesting a direct 
correlation with the development of neutropenia. Interestingly, clonal expansion of 
VS1 + T cells was observed in an HTLV-I carrier patient with chronic neutropenia 
[ 138]. Taken together, these findings suggest that in some circumstances neutrophils 
might express surface molecules recognized by unique subsets of 3'8 TCR. 

The number of circulating 78 T cells is increased in several inflammatory diseas- 
es. Coeliac disease (CD), an immune-mediated disorder arising from an hyper-re- 
sponsiveness to gluten with histological alterations in the small intestine, is charac- 
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terized by increased numbers of intraepitheliat and lamina propria 75 T cells showing 
a phenotype of activated and memory cells [139, 140]. However, increased numbers 
of 3'8 T cells are found also in patients with normal jejunal morphology or with latent 
disease [14l]. Furthermore, the number of `/8 T cells does not directly correlate with 
the presence of gluten in the diet [ 142]. According to all these observations, it is like- 
ly that y8 T cells do not react against gluten components. Interestingly, most `/6 T 
cells in duodenum of CD patients express polyclonal TCR with predominant use of 
VSI, V83 and V88 chain [40], and the rare J53 segment [143]. It is tempting to spec- 
ulate that recognition of polymorphic molecules expressed by normal epithelial cells 
drives expansion of `/8 T cells expressing these particular V8 and J5 gene segments. 
Candidate "{~ T cell ligands m'e the MICA and MICB molecules, which activate VS1 + 
T cells [130]. In CD, 78 T cells might have an anti-inflammatory rote facilitating the 
repair of damaged tissue. The local protective role might be exerted by release of 
epithelial cell growth factors such as keratinocyte growth factor [144]. 

In inflammatory bowel disease (IBD), the number of 78 T cells has also been 
found to be increased in blood [145] and intestine [1461. VSI-D53-JSt-bearing cells 
were found to be expanded in patients either with severe disease or in those with re- 
cently diagnosed or less severe forms of IBD. 

Other inflammatory diseases showing increased numbers of ,/8 T cells are Still's 
disease [ t 47], hypertrophic obstructive adenoids [ 148], Lyme arthritis [ 149], derma- 
titis herpetiformis [150], primary Sjogren's syndrome and untreated patients with 
systemic lupus erythematosus [151]. In chronic cutaneous lupus erythematosus 
V,/9/V82 T cells were observed in close vicinity to the damaged basal keratinocyte 
layer, suggesting their participation in the inflammatory reaction [152]. In lupus ne- 
phritis, `/8 T cells help production of anti-DNA immunoglobulins [153]. in patients 
undergoing surgical interventions, there is infiltration of T8 T cells immediately after 
blood circulation is reestablished in tigated ischemic arteries, suggesting specific and 
immediate recruitment at the site of injury [154]. 75 T cells are also present in the 
transition zone between normal intima and fatty streaks in atherosclerotic plaques, 
suggesting a role in initiating the inflammatory process in atherosclerosis [155]. 

All these studies suggest that 78 T cells have multiple roles in autoimmune and 
inflammatory diseases. It is likely that in some cases `/8 T cells participate in the 
pathogenesis of autoimmune diseases as they may recognize self antigens. However, 
it is conceivable that in other instances they may also limit inflammatory reactions 
and facilitate tissue repair. 

Regulation of ~ T cells 

The property of recognizing a large variety of non-peptidic ligands present both in 
eukaryotic and prokaryotic cells makes VT9/V82 cells a readily activated cell popu- 
Iation. Their overactivation may sometimes be responsible for dangerous acute in- 
flammatory reactions, as reported in malaria infection [l i0] and following therapy 
with bisphosphonates [51]. Therefore, this type of antigen reactivity necessitates a 
tight control, which is likely provided by different mechanisms, leading to a fine bal- 
ance between activation and inhibition of 3'5 T cells. 

One regulatory mechanism is provided by weak agonist non-peptidic tigands 
which induce a state of transient anergy in 78 T cells after repeated stimulation. Nat- 
ural compounds such as 2,3-diphosphoglyceric acid, which is present in huge 
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amounts (5 mM) in erythrocytes, induce unresponsiveness in y8 T cells to the most 
active ligands [156]. This state of anergy lasts for a few days and is associated with 
partial tyrosine phosphorylation of the CD3-TCR complex. All the V79/V82 T cells 
are affected by this inhibitory TCR engagement [156]. Thus, this mechanism may ef- 
ficiently and simultaneously shut off the response of the whole Vy9/V82 T cell popu- 
lation, preventing its massive activation. Such a regulation may occur in patients 
constantly exposed to P. falciparum, e.g., individuals living in malaria-endemic areas 
who do not expand Vy9/V52 cells in vivo [157] and do not suffer from the pathogno- 
monic acute inflammatory reaction concomitant to the blood stage of the disease. 

A second regulatory mechanism is represented by expression of inhibitory recep- 
tors (IR) shared with NK cells. These receptors recognize MHC class I molecules 
and inhibit the response of 5'8 T cells more effectively when low rather than high an- 
tigen doses are present [t58]. Engagement of IR facilitates recruitment of SHP-1 
pbosphatase to TCR-CD3 complex and affects phosphorylation of Lck and ZAP-70 
kinase, but not of CD3 ~ chain upon TCR triggering [158]. These events may cause 
abortion of proximal TCR-mediated signaling. The role of IR is to set a higher TCR 
75 activation threshold and therefore to focus the response of y8 T cells against APC 
loaded with high amounts of antigen. 

In some cases, activation of y8 T cells requires facilitatory mechanisms. Optimi- 
zation of "/8 T cell response is important in tissues where a small number of y8 T 
cells is present and their effector functions have to be maximized to be effective. An 
enhancing mechanism is provided by expression of the CD66a molecule. This sur- 
face glycoprotein belongs to the CD66/CEA family and makes homotypic interac- 
tions with different CD66/CEA members. Engagement of CD66a with its physiologi- 
cal ligands enhances the amounts of released lymphokines, while it does not induce a 
shift of the dose-response curve (our unpublished data). Thus, it increases the poten- 
cy of y8 response. As CD66 molecules are frequently expressed by epithelial cells, 
this interaction facilitates release of large amounts of lymphokines in epithelial tis- 
sues when small numbers of responding ,/8 T cells are present. 

The function of ~5 T cells in immune response 

The enormous body of information derived from the reviewed studies allows us to 
discuss the role of y8 T cells in immune response on the basis of solid experimental 
data. A series of hypotheses can be made based on non-peptidic antigen specificity, 
on effector functions and also on cell number and distribution in human diseases. 

The first function attributed to y8 T lymphocytes was that of sentinel cells accord- 
ing to their tissue distribution [ 159]. As 3'5 T cells in the mouse have the tendency to 
accumulate in the epithelia, it was suggested that this population may participate in 
the early host response against invading pathogens. A sentinel function has been at- 
tributed also to human VT9/V82 lymphocytes according to their unique antigen rec- 
ognition characteristics, rather than tissue distribution [43]. Vy9/V82 cells may fulfill 
the function of readily recruited and alerted sentinel cells, capable of immediately 
signaling the presence of danger. Their activation would have important consequenc- 
es such as prompt release of pro-inflammatory cytokines and chemokines capable of 
facilitating the onset of local inflammation. 

A second important function of 78 T cells may be to fill the gap between innate 
and acquired immunity, providing the response during the time when antigen-specif- 
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ic c~[3 T cells have not yet been recruited and expanded [43, 50]. The capacity of a 
series of  ligands to activate a large number o f  u T cells, all sharing the same VT/V8 
pair, in a cross-reactive manner is unique for a lymphocyte population. This type of 
T cell activation is different from activation induced by peptides or bacterial and vi- 
ral superantigens and, to some extent, it resembles ligand recognition by receptors 
expressed on the surface of  innate immunity cells (e.g., CD14, CR1 and mannose re- 
ceptor). In other words, VT9/V82 receptors recognize patterns of  molecules and do 
not make fine discriminations among them. In this respect, this subset of  human 3,8 T 
cells exploits an antigen-recognition strategy typical of  innate immunity cells, while 
at the same time retaining the functions of  other lymphocytes. 

A third important fnnction is to drive maturation of  antigen-specific T cells into 
different effector subsets. As shown during the early phases of infection in mice, the 
lymphokine secretion pattern of  78 T lymphocytes controls the subsequent functional 
maturation of cq3 T cells [92]. Although there is no clear evidence that similar mech- 
anisms also occur in human infections, it is likely that soluble factors released by hu- 
man T8 T cells influence local tymphokine milieu. Therefore, it is conceivable that 
human y8 T cells also participate in the Thl  versus Th2 functional maturation of c~13 
T cells. 

A fourth function of  human ~'~5 T cells is recognition of damaged or transformed 
epithelial cells expressing MICA and MICB proteins, whose gene transcription is 
regulated by promoter heat shock elements similar to those of  HSP genes. As MICA 
and MICB are recognized by VSl-bearing cells, this subset may patrol the presence 
of  recently altered cells in epithelial tissues. 

Conclusions 

In conclusion, the large number of studies on human ~'8 T cells have shown that these 
lymphocytes share several characteristics in common with 0~3 T cells, and also em- 
body many unique properties. Some investigations have perhaps suffered a constant 
analogy with the r T cell population, which has precluded new and original experi- 
mental approaches. Nevertheless, this gigantic amount of  work has provided solid 
clues for defining the role of  human 75 T cells in diseases. In addition, we have also 
learnt more about the extreme plasticity of  the immune system and its polymorphic 
capacity to adapt and recognize foreign molecules. 
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