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Diameters of Chevalley groups over local rings

Oren Dinai

Abstract. Let G be a Chevalley group scheme of rank l. Let Gn :=
G(Z/pn

Z) be the family of finite groups for n ∈ N and some fixed prime
number p > p0. We prove a uniform poly-logarithmic diameter bound of
the Cayley graphs of Gn with respect to arbitrary sets of generators. In
other words, for any subset S which generates Gn, any element of Gn is
a product of Cnd elements from S ∪ S−1. Our proof is elementary and
effective, in the sense that the constant d and the functions p0(l) and
C(l, p) are calculated explicitly. Moreover, we give an efficient algorithm
for computing a short path between any two vertices in any Cayley graph
of the groups Gn.

1. Introduction. We start by recalling a few essential definitions and back-
ground results. Let G be any group, and let S ⊂G\ {1} be a non-empty subset.
Define Cay(G,S), the (left) Cayley graph of G with respect to S, to be the
undirected graph with vertex set V :=G and edges E :={{g, sg} : g∈G, s∈S}.

Now, given any finite graph Γ = (V,E), one defines diam(Γ), the diameter
of Γ, to be the minimal l ≥ 0 such that any two vertices are connected by
a path involving at most l edges (with diam(Γ) = ∞ if the graph is not
connected). Now define the diameter of a group G with respect to S ⊆ G to
be diam(G,S) := diam(Cay(G,S)).

One is naturally interested in minimizing the diameter of a group with
respect to an arbitrary set of generators. For this we define

diam(G) := max{diam(G,S) : S ⊆ G and S generates G}.

The diameter of groups, aside from being a fascinating field of research, has
a huge amount of applications to other important fields. In addition to Group
theory and Combinatorics, the diameter of groups is widely known for its role in
Theoretical Computer Science areas such as Communication Networks, Algo-
rithms and Complexity (for a detailed review about these aspects, see [4]). The
wide spectrum of applications involved makes this an interdisciplinary field.

It turns out that quite a lot is known about the “best” generators, i.e.
that a small number of well-chosen generators can produce a relatively small
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diameter (see [4]). But very little was known until recently about the worst
case. A well known conjecture of Babai (cf. [2,3]) asserts:

Conjecture 1 (Babai). There exist two constants d,C > 0 such that for any
finite non-abelian simple group G we have

diam(G) ≤ C · logd(|G|).
This bound may even be true for d = 2, but not for smaller d, as the groups
Alt(n) demonstrate.

For these type of groups, there has been enormous progress recently, due
in particular to Pyber–Szabó [18] and Breuillard et al. [6], when many families
of Cayley graphs of finite groups of Lie type have been shown to be expander
families (see also [5,10,13] for previous results). Recently there was also some
progress concerning the Alternating groups by Helfgott–Seress [14].

However, although most of the known results are effective, in the sense that
the constants can be computed in principle, they are usually not explicit: no
specific values are given, the exception being [15] which contains an explicit
version of Helfgott’s solution of Babai’s conjecture for SL2(Z/pZ). But even
this does not give an efficient algorithm for computing a short path between
any two vertices in the Cayley graph, whose existence is guaranteed by the
diameter bounds.

In Sect. 2 we introduce the required definitions to be used in the next
sections. In Sect. 3 we prove Theorem 1.1 which is the main result of this
manuscript and gives explicit bounds for the constant d and the functions
p0 = p0(l) and C = C(l, p) as stated in the abstract. In Sect. 4 we explain the
variant of the “Solovay–Kitaev” algorithm that provides fast computations of
representations of a given element as a short word, with respect to an arbitrary
set of generators.

Theorem 1.1. Let G be a Chevalley group scheme of rank l and dimension
k. Fix a prime number p > max

{
l+2
2 , 19

}
. Denote Gn := G(Z/pn

Z) for n ∈
N. For any i ≥ 2 set Ci(p, k) := diam(Gi) and di = di(3) where di(r) :=

log(4r)
log(2i)−log(i+1) . Then for any n ≥ 1 and i ≥ 2, we have

diam(Gn) ≤ Cin
1+di .

Note that Ci ≤ |Gi| ≤ pik, and di is monotone decreasing to 2 + log2(3).

The following corollary is a special case of Theorem 1.1.

Corollary 1.2. Let G be a Chevalley group of rank l and dimension k, and let
p and Gn be chosen as above. Then for any n ≥ 1 we have

diam(Gn) ≤ Cp2kn10,

for some constant C which depends on G but not on p.

This result extends [9] which proves a similar bound for the groups SLl. The
results in [9] improve the work of Gamburd and Shahshahani [12], who prove
similar bounds for restricted sets of generators which are projections of subsets
in SL2(Z) with certain density properties (cf. [12, Theorem 2.1]). Their work



Vol. 99 (2012) Diameters of Chevalley groups over local rings 419

was influenced by the Solovay–Kitaev Lemma (cf. [8,16,17]). A recent preprint
of Varju [19] uses different methods to get similar polylog diameter bounds in
some contexts. For a comparison of the advantages and disadvantages between
our results and those of Varju see [19].

Note that, for a fixed family of generating sets, one can often prove that the
relevant Cayley graphs form an expander family, which provides asymptotically
better bounds, however these bounds are not usually explicit. There is also
some interest in poly-logarithmic bounds for the diameter of groups: in [11],
there are applications of such bounds to questions in arithmetic geometry, and
there is a possibility that explicit bounds as we have obtained could be useful
to obtain more quantitative versions of certain of those results.

2. Preliminaries. First, we begin with a few preliminary definitions.

Definition 2.1. Let A,B be subsets of a group G and r ∈ N. Denote:

• A · B = {ab : a ∈ A, b ∈ B}.
• A(r) the subset of products of r elements of A with A(0) = {1}.
• A[r] the subset of products of r elements of A ∪ A−1 ∪ {1}.

Denote the commutator word {a, b} := (ba)−1ab, and denote

• {A,B}1 := {{a, b} : a ∈ A, b ∈ B},
• {A,B}r the subset of products of r elements of {A,B}1.

The group G will be called r-strongly perfect if G = {G,G}r. Similarly, if L
is a Lie algebra with Lie bracket [a, b], then we replace the previous notations
by [A,B]r and the product by summation, and L will be called r-strongly
perfect if L = [L,L]r.

Definition 2.2. Let G be a Chevalley group scheme associated with a connected
complex semi-simple Lie group Gc, and let L be its Lie algebra (cf. [1]). Let p be
a prime number and Zp be the p-adic integers. Set Γ0 := G(Zp), L0 := L(Zp),
and denote for n ≥ 1:

• Gn := G(Zp/pn
Zp) ∼= G(Z/pn

Z).
• πn the natural projection from Γ0 onto Gn.
• Γn := Γ(pn) = Ker(πn).
• Given g, h ∈ Γ0 denote g ≡

n
h if πn(g) = πn(h).

• Δn := Γn/Γn+1.

Both Γ0 and L0 have an operator ultra-metric which is induced by the
l∞-norm and the absolute value on Zp (which is defined, say, by |p| = 1

2 and
then extended uniquely to Zp).

We will use the following proposition due to Weigel [20, Prop. 4.9]. The
proof for the classical groups is easy, so we give here an elementary proof of it.

Proposition 2.3 (Weigel). Let G be a Chevalley group over Zp and L0 and Γn

be as in Definition 2.2. Then

Γn = exp(pnL0).
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Proof. The case exp(pnL0) ⊆ Γn is trivial, so we will prove the opposite
inclusion. We will prove only Γ1 ⊆ exp(pL0) since the case n > 1 follows
by the same argument. Let g ∈ Γ1 be g = I + pA for some p-adic matrix
A. Since ln(g) = pA − 1

2 (pA)2 + 1
3 (pA)3 − . . . converges, we are left to show

that ln(g) ∈ L0 where ln(g) := A − 1
2pA2 + 1

3p2A3 − . . . is the “normalized”
logarithm.

We can assume that L is a simple Lie algebra since the statement holds
for semi-simple Lie algebras if it holds for simple Lie algebras. We will prove
this claim when G is a classical Chevalley group, i.e., of type Al, Bl, Cl, or Dl.
In all these cases we will use the classical faithful matrix representations of
G and L (over Qp). If G is of type Al, then g ∈ G(Zp) ⇔ det(g) = 1 and
A ∈ L(Zp) ⇔ Tr(g) = 0. Since p Tr(ln(g)) = Tr(ln(g)) = ln(det(g)) = 0 we are
done1 in this case.

Now suppose G is a Chevalley group of type Bl, Cl, or Dl. Then we have
a vector space V of finite dimension (over Qp) with some non-singular bi-
linear form β on V . For A ∈ End(V ) denote by A∗ the β-adjoint2 of A. Then
g ∈ G(Zp) ⇔ gg∗ = I and A ∈ L(Zp) ⇔ A + A∗ = 0. Since ln(g) and
ln(g∗) = ln(g)∗ converge and g, g∗ commute, we get that

ln(gg∗) = ln(g) + ln(g)∗ = p(ln(g) + (ln(g))∗) = ln(I) = 0,

so we are done in these cases as well. �

Definition 2.4. Let N ≤ H ≤ G be a chain of groups (not necessarily normal)
and S ⊆ G. Denote:

• diam(H/N ;S) = min{l : H ⊆ S[l]N}.
• diamG(H/N) := max {diam(H/N ;S) : 〈S〉 = G}.
• diam(H/N) := diamH(H/N).

Note that diam(H/N) is the worst diameter of the Schreier graphs of H/N ,
and if N = 1, then this is the worst diameter of the Cayley graphs of H.

Simple Fact 2.5. Let N ≤ H ≤ G be a chain of groups and S ⊆ G. Then,
• diam(G/N ;S) ≤ diam(G/H;S) + diam(H/N ;S),
• diam(G/N) ≤ diamG(G/H) + diamG(H/N).

3. Main results.

Theorem 3.1. Suppose L(Zp) is r-strongly perfect. Then for any i, j ∈ N,

Δi+j = {Δi,Δj}r .

Proof. The direction [⊇]: This is clear since {Γi,Γj}r ⊆ Γi+j . Moreover, if
g, g′ ∈ Γ0 and g ≡

i+1
I + piA, g′ ≡

j+1
I + pjA′ for some matrices A,A′, then

{g, g′} ≡
i+j+1

I + pi+j [A,A′].

1We used the identity det(eA) = eTr(A) which is valid over any valuation ring (using the
Jordan decomposition of A over an algebraic closed field extending the ring).
2So that A �→ A∗ is an anti-automorphism of End(V ) of order 2 with β(Av, w) ≡ β(v, A∗w).
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The direction [⊆]: Let g ∈ Γn/Γn+1 with n = i + j. By Lemma 2.3, g ≡
n+1

exp(pnA) for some A ∈ L0. Therefore g ≡
n+1

I + pnA. By the assumption, A =
∑r

k=1[Ak, A′
k] for some A1, A

′
1, . . . , Ar, A

′
r ∈ L0. Denote gk := exp(piAk) ∈ Γi

and g′
k := exp(pjA′

k) ∈ Γj . Therefore gk ≡
i+1

I + piAk and g′
k ≡

j+1
I + pjAk and

g ≡
n+1

I + pnA ≡
n+1

{g1, g
′
1} · . . . {gr, g

′
r} .

�

Lemma 3.2. Let G be a Chevalley group of rank l, L its Lie algebra, and let
p ≥ l+2

2 be an odd prime number. If G is a group of exceptional Lie type, then
suppose that p > 19. Then L(Zp) is 3-strongly perfect.

Proof. Let B = {es, hr : s ∈ Φ, r ∈ Π} be a Chevalley basis of L, where Φ is
the root system associated to L and Π are the simple roots of Φ+ (for some
fixed order). Without loss of generality,3 we can assume that Φ is irreducible.

For any r ∈ Φ denote Lr := Zper and Hr := Zphr where hr = [er, e−r]
is the co-root of r. We have L(Zp) = LΦ ⊕ H where H :=

⊕
r∈Π Hr and

LΦ :=
⊕

r∈Φ Lr. We will use the following facts about the Lie bracket of the
root system. For any h ∈ H and s ∈ Φ we have [h, es] = (h, s)es where (·, ·)
is the inner product in H. For any linearly independent pair of roots (i.e.,
r �= ±s) we have [er, es] ∈ LΦ, and if their sum r + s /∈ Φ, then [er, es] = 0.

For any X ⊆ Φ denote LX :=
⊕

r∈X Lr. We will say that X is covered if
there exists h ∈ H with (h,X) ⊆ (Zp)×. We will say that Φ is k-covered if
Φ = X1 ∪ . . . ∪ Xk and each Xi is covered. Note that if X is covered by some
h, then LX ⊆ [L(Zp), L(Zp)]1, i.e., every element of LX is a bracket; indeed if
y =

∑
arer ∈ LX , then [h, y′] = y where y′ =

∑ ar

(r,h)er ∈ LX .
Note also that H ⊆ [L(Zp), L(Zp)]1; indeed for any x =

∑
arhr ∈ H we

have x = [x′, x′′] where x′ =
∑

r∈Π arer and x′′ =
∑

r∈Π e−r. Therefore we
see that L(Zp) is (k + 1)-strongly perfect provided Φ is k-covered. In order to
complete the proof, we will show that Φ is 2-covered.

We will use the following notations. Suppose that Φ can be embedded into
an Euclidean space E ∼= H of dimension l such that {αi} is an orthonormal
basis of E. Set h1 :=

∑
αi ∈ H and h2 :=

∑
λiαi ∈ H where λ1, . . . , λl ∈

Z∩(−p, p), and for any i �= j we have λi −λj ∈ Z\pZ; e.g., we can take the λi’s
to be a subset of

{
0,±1,±2, . . . ,±p−1

2

}
. Later we will put more restrictions

on the choice of the λi’s.
First suppose that Φ is one of the classical root systems. If Φ = Al, then

by [9] it is 2-strongly perfect since Φ is covered (cf. [12]). Now suppose Φ is
of type Bl, Cl, or Dl. Set Φ = X1 ∪ X2 where X1 ⊆ {±(αi − αj) : i �= j} and
X2 ⊆ {±(αi + αj),±αi,±2αi : i �= j}. If p > 2, then (h1,X1) ⊆ {±1,±2} ⊆
(Zp)×. If in addition 2(p − 1) ≥ l, then we can find λ1, . . . , λl as above such
that

∑
λi = 0; therefore (h2,X2) ⊆ (Zp)×. We got that the classical root

systems are 2-covered, and so they are 3-strongly perfect.

3Since the statement holds for semi-simple Lie algebras if it holds for simple Lie algebras.
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Now we shall see that essentially the same argument works if Φ is an excep-
tional root system (cf. [7, §8] for a complete list of roots of each type). If Φ is of
type G2 with l = 2, then (h1,X1) ⊆ {±1, . . . ,±5}; therefore (h1,X1) ⊆ (Zp)×

provided p > 5; so Φ is 1-covered provided p ≥ 5.
Now suppose Φ is of type F4 and Φ =

{
±αi,±αi ± αj ,

∑4
k=1 ±αk : i �= j

}
.

Split the set Φ = X1 ∪X2 where X1 is the “unbalanced” subset of sums where
the number of +’s is not equal to the number of −’s and X2 is the “balanced”
subset; i.e., X2 := {αi − αj , αi1 + αi2 − αi3 − αi4}. Set {λi} = {0, 1,±2}.
Then (h1,X1) ⊆ {±1,±2,±4} and (h2,X2) ⊆ {±1,±2,±4}. Therefore Φ is
2-covered provided p ≥ 5.

Now let us show that E8 is 3-covered (and therefore also E6, E7). Now
l = 8, and again we split Φ into an unbalanced set X1 and a balanced set
X2. Set {λi} = {0, 1,±2,±3,±4}. Then (h1,X1) ⊆ ±{2, 4, 8} and (h2,X2) ⊆
±{1, . . . , 19}. Therefore we get that Φ is 2-covered provided p > 19; so we are
done. �

Now we are in position to prove Theorem 1.1.

Proof of Theorem 1.1. Denote Ln(j) = diamGn
(Δj) for 0 ≤ j < n. Then by

Fact 2.5,

diam(Gn) ≤ Ln(0) + Ln(1) + · · · + Ln(n − 1).

By induction on j, we will prove that for any i ≥ 2 and 0 ≤ j < n,

Ln(j) ≤ Cij
di ,

and therefore,

diam(Gn) ≤
n−1∑

j=0

Cij
di ≤ Cin

1+di ,

as we claimed.
Fix some i ≥ 2. The induction base is for j < i, and then trivially Ln(j) ≤

diam(Gi) = Ci. Now suppose j ≥ i. Then by Theorem 3.1, by Lemma 3.2 with
r = 4, and by the induction assumption, we get

Ln(j) ≤ 4rLn

(⌊
j + 1

2

⌋)
≤ 4rCi

(
j + 1

2

)di

= 4r

(
j + 1
2j

)di

Cij
di ≤ Cij

di ,

since by the definition of di, 4r( j+1
2j )di ≤ 1 for any j ≥ i. �

Remark 3.3. The combination of Theorem 3.1, Lemma 3.2, and Theorem 1.1
gives a generalization of what is known as the “Solovay–Kitaev method”.

Geometrically we divide the group Γ0 into neighborhoods of the identity
Γn and their “layers” Δn. First, we use the global properties of the Lie brack-
ets in order to get local properties of the commutators in these layers. Then
Theorem 1.1 allows us to “glue” the local properties valid in these layers into
a global property.

Note that this method can prove, at best, a bound of order of magnitude
logd(|G|), with d arbitrary close to 2, but not a better bound. This follows
because the best possible situation is that L is 1-strongly perfect.
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4. The Solovay–Kitaev algorithm. Now we give an explicit description and
analysis of the Solovay–Kitaev algorithm (cf. [8, §3] and also [17]). First we
describe a procedure based on Theorem 3.1 and Lemma 3.2 from the previ-
ous section. This procedure is an effective version of these statements about
finding an explicit decomposition of an element as a product of (at most four)
commutators.

4.1. Commutator decomposition. The main algorithm (in the next section)
will use the subalgorithm SK ′(g, n), which gets an input g ∈ Γn with n ≥ 2;
then it returns a pair of quadruples ((gi), (g′

i)) such that {g1, g
′
1}·. . . {g4, g

′
4} ≡

n+1

g where gi, g
′
i ∈ Γm with m ≥ n−1

2 . Note that this is a direct consequence of
Theorem 3.1 and Lemma 3.2; if g ≡

n+1
exp(pnA) ≡

n+1
I + pnA for some A ∈ L0

and A =
∑r

k=1[Ak, A′
k] (with r = 4), then by Theorem 3.1 we get the required

solution g ≡
n+1

{g1, g
′
1} · . . . {gr, g

′
r}; in order to solve A =

∑r
k=1[Ak, A′

k], we

first find the decomposition of A as a linear combination in the Chevalley basis
and then use Lemma 3.2 in order to decompose it as a sum of (at most) four
Lie brackets.

4.2. The Solovay–Kitaev algorithm. Denote by SK(g, s, n) the Solovay–
Kitaev algorithm; the algorithm gets an element g ∈ Γ0, n ∈ N, and a m-tuple
s with entries in Γ0 that generates Gn = Γ0/Γn; then it returns a word w ∈ Fm

(in m letters) such that g ≡
n

w(s). If n ≤ 2, then SK returns such a word sim-

ply by checking all the possible words of length l(w) ≤ |G2| = |G(Z/p2
Z)|.

If n > 2, set w0 = SK(g, s, n − 1) and z = w0(s)−1g ∈ Γn−1 and let
(x, y) = SK ′(z, n − 1). Set for k = 1, . . . 4, wk := SK(xk, s, n − 1) and
w′

k := SK(yk, s, n − 1) and return w := w0 · {w1, w
′
1} · . . . {w4, w

′
4}.

4.3. Analysis of the algorithm. The return length of the output word of the
algorithm is Cin

1+di , the same as was described in Theorem 1.1. Note that
d2 < 9;Ci ≤ pik where k = dim(L) = |Φ|+ |Π| ; and di is monotone decreasing
to 2 + log2(3).

Acknowledgements. I would like to thank Alex Lubotzky for bringing to my
attention Thomas Weigel’s results and Emmanuel Kowalski for many helpful
comments and suggestions.

References

[1] E. Abe, Chevalley groups over local rings, Tohoku Mathematical Journal 21

(1969), 474–494.
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