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Abstract The development of the human brain, from the
fetal period until childhood, happens in a series of inter-
twined neurogenetical and histogenetical events that are
influenced by environment. Neuronal proliferation and mi-
gration, cell aggregation, axonal ingrowth and outgrowth,
dendritic arborisation, synaptic pruning and myelinisation
contribute to the ‘plasticity of the developing brain’. These
events taken together contribute to the establishment of
adult-like neuroarchitecture required for normal brain func-
tion. With the advances in technology today, mostly due to
the development of non-invasive neuroimaging tools, it is
possible to analyze these structural events not only in ana-
tomical space but also longitudinally in time. In this review
we have highlighted current ‘state of the art’ neuroimaging
tools. Development of the new MRI acquisition sequences
(DTI, CHARMED and phase imaging) provides valuable in-
sight into the changes of the microstructural environment of
the cortex and white matter. Development of MRI imaging
tools dedicated for analysis of the acquired images (i) TBSS
and ROI fiber tractography, (ii) new tissue segmentation tech-
niques and (iii) morphometric analysis of the cortical mantle
(cortical thickness and convolutions) allows the researchers to
map the longitudinal changes in the macrostructure of the
developing brain that go hand-in-hand with the acquisition of
cognitive skills during childhood. Finally, the latest and the
newest technologies, like connectom analysis and resting state

fMRI connectivity analysis, today, for the first time provide the
opportunity to study the developing brain through the prism of
maturation of the systems and networks beyond individual
anatomical areas. Combining these methods in the future and
modeling the hierarchical organization of the brain might
ultimately help to understand the mechanisms underlying com-
plex brain structure function relationships of normal develop-
ment and of developmental disorders.
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Introduction

In order to understand how the brain grows to master com-
plex cognitive functions is a fascinating task of develop-
mental neuroscience. Every step in brain development
contains major micro- and macrostructural changes that lead
to functional competence from the fetus to the newborn to
the child and into adulthood.

Non-invasive neuroimaging has allowed researchers in
recent years to start to assess these important structural
changes during brain development. The three major struc-
tural characteristics of the developing human brain are dy-
namic changes in cortical thickness, the cortical folds with
the complex surface structure tightly linked to functional
specificity and the underlying connectivity that provides the
basis for functional networks. These three major character-
istics of the human brain have an intertwined time course of
development in the later fetal and early neonatal life.

Noninvasive imaging modalities such as conventional
magnetic resonance imaging, diffusion tensor imaging and
functional imaging have for the first time allowed researchers
to describe these macro- and microstructural changes and func-
tional maturation in vivo during human brain development.
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Recent major research efforts have: (1) defined the early
cortical folding in the developing brain and hence the time-
related changes in cortical surface and folding [1–3]; (2)
determined the changes in cortical thickness [4] that vary as
a function of development, and recent methodological advan-
ces have allowed studying these changes from the fetus to the
newborn into childhood [5, 6]; (3) established the cortical
connections by diffusion tensor imaging (DTI) in the devel-
oping human infant [7–10], and (4) defined the intrinsic
functional networks that are present in the early developing
brain and are measured by resting state fMRI.

Cortical thickness

During the prenatal and early postnatal development, the tel-
encephalic wall changes drastically. From 9 PCW (post-con-
ceptual weeks) to the first few postnatal months, it is composed
of the transient fetal zones that disappear before late infancy.
These transient fetal zones (marginal zone, cortical plate, sub-
plate, intermediate zone, subventricular and ventricular zone)
are sites of specific neurogenetic and histogenetic events (cel-
lular proliferation and migration, axonal outgrowth and in-
growth, cell aggregation and differentiation [11]). The
intensity and occurrence of these neurogenetic events within
the specific transient fetal zones change the underlying archi-
tecture of cells and fibers resulting in changes of water content
and microstructural characteristics of the tissue [12]. Thus,
these transient fetal zones, due to the age specific differences
in extracellular and intracellular water content, can be reliably
seen in conventional T1-weighted and T2-weighted MRI
images [12, 13]. Moreover, DTI that relies on the movement
of water molecules within a given voxel is able to reveal
underlying cytoarchitecture andmyeloarchitecture of the tissue
within the developing brain [14]. Thus, measures of anisotropy
(direction dependent movement of water molecules restricted
by fibers) within the transient fetal zones have become a
helpful tool in studying the developing brain [15]. The dramat-
ic developmental changes in the cellular (postmigratory neu-
rons and glial cells), fibers (axonal and dendritic networks) and
water content within the cortical plate during early develop-
ment is indirectly reflected in (1) different and age-specific T1-
weighted and T2-weighted MRI signal intensity (Fig. 1) and
(2) different and age-specific anisotropy [9, 16, 17]. In sum-
mary, as the cortical plate matures, it is at first composed of
densely packed postmigratory neurons and can be seen as a
hyperintense zone compared to subcortical areas on conven-
tional T1-weighted images and a zone with relatively high
values of fractional anisotropy due to its radial organisation.
After the 24th PCW, the predominance of the subplate zone
(transient fetal zone that is placed below the cortical plate and
serves as a fiber “waiting compartment”) can be reliably iden-
tified on the T1-weighted, fractional anisotropy (FA) and T2-

weighted MRI images [12, 15, 18]. At this point of develop-
ment, the subplate zone is abundant with water, awaiting
axonal fibers and extracellular matrix (seen as hypointense
zone on T1-weighted MRI images and a zone with low FA
values). The ingrowth of axons from the subplate zone into the
cortical plate [19], the gradual disappearance of the subplate
zone at the late prenatal and early postnatal period, and the
consequential growth and arborisation of neuronal dendrites
that extend into childhood cause a change into now isotropic
movement of water molecules within the cortical plate (cortex
after birth). Further, from 1 year up to childhood, the future
cortex is identified as a hypointense zone in comparison to the
underlying myelinating white matter in T1-weighted MRI
images and is characterized by low, isotropic, FA values
(Fig. 1).

From this basic image contrast, image analysis-based
tools for whole-brain quantitative assessment have been
developed to measure cortical volume and thickness meas-
urements [20]. The reliable age-specific processing tools for
MRI segmentation of brain tissue during the late prenatal,
postnatal and early childhood are challenging [21–26], but
major progress has been made with fully automated rater
independent segmentation tools even for the newborn brain
[23]. Cortical thickness (measured as the shortest length
between two adjacent vertex on the cortical and white sur-
face mesh) is dependent on a reliable extraction of gray
matter and white matter surfaces. The majority of the tech-
niques designed for the quantitative measurement of the
cortex (cortical surface area and thickness) are developed
for the analysis of the cortex from mid childhood (6 years)
towards the aging population [27, 28]. The neurobiological
basis of cortical area and thickness changes [29, 30] com-
puted from MRI images and its genetic background [31]
remain an active area of research as well as the correlation
with cognitive functions [32]. New techniques of analysis
such as the mapping of regions with similar cortical thick-
ness changes throughout development [33], open a new
window for mathematical modeling and explanation of cor-
tical growth.

Cortical folding

The quantitative and qualitative mapping of individual sulci
appearance, mainly using the interface between the devel-
oping cortex and white matter zone, allows the coherent 3-D
reconstruction of white matter surface. The reconstruction of
white matter surface thus enables the in vivo measurement
of cortical folding (Fig. 2). A sulcation index can be derived
and allows measurement of variations with age, gender
and presence of brain lesions and highlights early inter-
hemispherical structural asymmetries that may be related
to the cortical functional specialisation of the brain.
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Females have lower cortical surface and smaller volumes
of cortex and white matter than males, but equivalent sulca-
tion. During development the highest sulcal index is found
in the central region, followed by the temporo-parieto-
occipital region, with the lowest sulcation index in the
frontal region, which confirms that the medial surface folds
before the lateral surface, and that the morphological differ-
entiation of sulci begins in the central region, and progresses
in an occipitofrontal direction. Recent applications of simi-
lar image analysis tools to MR images from the fetal brain
confirm the timescale of appearance of sulci and gyri to be
similar to the results from postnatal preterm infants brain
folding [34–36]. Specific early brain asymmetries have been
described with the right hemisphere presenting gyral com-
plexity earlier than the left. It is particularly evident at the
level of the superior temporal sulcus (STS), which parallels

early functional competence in response to auditive stimuli
in newborns. Asymmetries were further highlighted in three
specific regions over the external cortical surface [3] with
deeper STS on the right side, and a larger posterior region of
the sylvian fissure on the left side, close to the planum
temporal as well as larger anterior region of the sylvian
fissure on the left side, close to Broca’s region, both regions
of later language function. The high complexity observed in
the adult brain is present in the term newborn; more specif-
ically, sulcal patterns become variable across individuals.
Central sulci showed less interindividual variations than
parietal, temporal and frontal sulci. These data have contrib-
uted to a new extended framework for modeling cortical
folding presented recently [37]. It is based on a system of
reaction-diffusion equations defined on a surface that
evolves through the action of morphogens; this model

Fig. 2 Computation of the hemispheric gray matter surface (40,971
vertices) in the longitudinally scanned subject at age 33 PCW, 40 PCW
and 6 years. The cortex and the white matter were segmented using the
newly developed fully automated neonatal segmentation [23] and were
corrected manually. Computation of the gray surface was performed

using the MNI toolbox developed at ACE lab (http://www.bic.mni.
mcgill.ca/~alan/). Computation of the white and gray matter surface
allows the longitudinal measurements of the gyrification index, surface
area and cortical thickness as well as the extensive study of appearance
and development of primary, secondary and tertiary convolutions

Fig. 1 a Longitudinal coronal
T1-weighted MRI images of
one child at 33 PCW, 40 PCW
and 6 years of age. Note the
inversion of the T1-weighted
MRI signal intensity as well as
the age-specific MRI properties
of the cerebal (cortical and
white matter) tissue. Develop-
ment of the age-specific MRI
segmentation techniques are
based on these primary image
contrasts of the cerebral ana-
tomical structures. b Longitudi-
nal fractional anisotropy (FA)
maps in children ages 28, 36
PCW and 6 years. Red arrows
indicate the high anisotropy in
the frontal cortex at 28 PCW
with the gradual decrease
reaching the low values at 36
PCW and 6 years of life
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allows introduction of noise (just like in biology of situa-
tions such as intrauterine growth restriction or brain lesions)
that will lead to morphological variability in the brain sulcal
pattern [1, 2].

Preterm birth dramatically changes the expected environ-
ment during development, and studies have shown that both
cortical volume [38] and surface area [39] of extremely
preterm infants imaged at term equivalent age were de-
creased and were less complex than in normal infants, and
this impairment seemed to increase with decreasing gesta-
tional age at birth [40].

That these early changes persist into childhood and
potentially adulthood has been shown. Kesler noted
abnormalities in sulcation in the temporal lobes of pre-
maturely born children when compared to term control
subjects at school age [41]. Twins and newborns born
after poor intrauterine growth (IUGR) were found to
have reduced brain surfaces and reduced sulcation in-
dexes. These differences were paralleled with poorer
neurobehavioral performance [1]. Comparison of mono-
zygotic and dizygotic twins has further shown that de-
gree of gyral and sulcal concordance was not different
between the two, which indicates an important environ-
mental component in early cortical folding [42]. During
adolescence, when mature cortical folding is established,
changes in cortical thickness are indicators of functional
development [28]. Regionally specific trajectories of cortical
thinning correlate with lower, normal or higher IQ [31],
and pathologies such as attention deficit hyperactivity
disorder are associated with delayed cortical thinning [5].

Then again, infants with early white matter lesions
(WMI) showed a trend to increased gyrification in overlay-
ing cortex [2, 43] but reduced gray matter volume.

In fetuses with the well-known diagnosis of ventriculo-
megaly, usually diagnosed by antenatal ultrasound, high-
resolution MRI was able to assess both brain tissue vol-
umes and gyrification and found no difference in absolute
brain tissue volumes but reduced cortical folding in
parieto-occipital cortex overlying the area of predominant
ventricular dilatation. The authors conclude that while
tissue volumes seem to be preserved, cortical folding
may be affected in regions where ventricles are dilated
[44]. The genetic control of cortical convolutions [45] and
its tight relationship with the cortical fiber ingrowth [46]
suggest that the variability in appearance of gyri and sulci
depends on the normal ingrowth of fibers. As the subplate
zone, a “fiber waiting compartment” exists in the fetal and
early postnatal period (the appearance of the stable prima-
ry gyri and sulci coincides with the thalamocortical in-
growth) the variable secondary and tertiary gyri and sulci
appear parallel with the disappearance of subplate zone
and ingrowth of long and short corticocortical association-
al fibers [13, 18].

Connectivity by DTI

Studying white matter development with in vivo imaging
was largely impossible prior to the use of advanced mag-
netic resonance techniques, diffusion imaging being of par-
ticular interest in the assessment of the white matter
microstructure during development [9]. The distance that a
molecule diffuses in one direction in space may or may not
be the same as in some other direction; thus, we measure
these differences by measuring the diffusion anisotropy.
Diffusion MRI measures the micron-scale displacement of
water molecules. As evidenced in many experimental stud-
ies, axonal membranes play the primary role for anisotropic
diffusion in the white brain matter. Eigenvector maps and
RGB color-coded maps indicate the orientation of the major
eigenvector providing an indication of the direction in
which water diffusion is highest (typically parallel to white
matter fiber fascicles). The first eigenvalue often referred to
as axial diffusivity was shown to be affected by axonal
integrity [47]. The second and third eigenvectors describe
diffusivity perpendicular to the axial diffusivity. Radial dif-
fusivity represents the average of the second and third
eigenvectors; it was shown to be affected by changes in
axon caliber and myelin ensheathment [48].

Tractography algorithms follow these discrete orienta-
tion estimates from point to point to reconstruct the white
matter pathways and thus the global connectivity of the
brain. The use of diffusion tensor imaging (DTI) has
allowed visualization of early white matter connectivity
demonstrating the existence of interhemispheric callosal
fibers in the non-myelinated stage at 28 weeks of gestation
and has, for the first time, further allowed characterization
of differences in white matter connectivity in preterm vs.
full-term infants [9] and the effects of injury to the white
matter in prematurity [10]. Since those early studies, DTI
has seen many methodological developments, which have
allowed improved resolution and whole-brain coverage in
reasonable scanning time, as well as becoming multidirec-
tional to begin to address complex brain white matter
structure.

In order to perform DTI, the b value at which to make the
measurement has to be optimized, as it differs between the
newborn and adult brain. In general, a b value corresponding
to approximately 1.1/Dav provides the best signal-to-noise
ratio for such a measurement [49]. Typical DTI acquisition
sequences for the newborn brain are given in Table 1 (repro-
duced from Hüppi [50]). Nevertheless, the sensitivity of DTI
images to motion during acquisition appears to be a crucial
problem with unsedated newborns [51]. For fetal brain imag-
ing, DWI and DTI sequences have been adapted to be per-
formed within a breath-hold of the mother. These sequences
rely on fast spin-echo with echo-planar readouts with short TR
(2,500 ms, b0600 s/mm2) [52].
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In ex vivo DTI studies on fetal brain development, high
angular resolution diffusion imaging (HARDI) has been
recently proposed [53].

The four main approaches to analyzing DTI data are region
of interest (ROI) quantification, voxel-based morphometry,
histogram analyses and tract-based analysis. Manual ROI se-
lection and quantification is the most frequently used. This
method is time consuming and is characterised by a large inter-
rater variability due to a bias in ROI selections. Nevertheless, it
has been a gold standard and a first step in connectivity and
network maturation analysis. For example, early fetal ROI-
driven tractography reveals the timetable of appearance of first
fiber bundles and thus is able to show, for example, early
maturation of the limbic system [15, 18]. Voxel-based mor-
phometry (VBM) is an alternative method initially designed to
quantify regional changes in volume on conventional imaging
[54]. Its automated analysis eliminates a priori knowledge and
user bias but it is vulnerable to error due to registration and
normalization. Tract-based spatial statistics, or TBSS, is an
alternative method [55]. It is based on the realignment of the
fractional anisotropy maps of all subjects onto a fractional
anisotropy map skeleton. All results from methods based on
spatial registration need to be attentively evaluated when used
in the presence of large focal lesions or areas of crossing fibers,
where voxel-wise comparisons can lead to erroneous results.

Connectomics [56, 57] has been recently developed
and used to report altered connectivity due to disease in
adolescent and adult subjects. In recent years, several
studies have proven the ability of connectomics to ex-
haustively map inter-regional connectivity within the
brain, building a structural connectivity matrix (or con-
nectomes), to identify regions with altered connectivity
(Fig. 3).

Results throughout brain development have shown
the core regions have higher anisotropy than the pe-
ripheral regions for all white matter tracts. Projection

fibers together with the corpus callosum are the most
prominent fibers identified in the newborn; limbic
fibers are present whereas association fibers, such as
the superior longitudinal fasciculus, are difficult to be
delineated with the current resolution in in vivo new-
born imaging.

In order to understand the underlying structural
changes for the rapid development of motor and cogni-
tive functions in the early months of postnatal life,
Dubois et al. [7] defined relative maturation phases of
different white matter fiber tracts. Corticospinal tracts
appear as the most mature bundle in the first 4 months
of life and the anterior limb of the internal capsule and
the cingulum as a limbic structure as the least mature
bundles. Furthermore, this study allowed the differenti-
ation of maturational stages within a functional system,
for example, with the fornix in the limbic system being
in an advanced maturational phase compared to the
cingulum, and the fornix being involved in associative learn-
ing, which is important in early functional development.

Tract specific changes occur rapidly during the first 3–
6 months and slower thereafter with stability after 24
months. From 6 years to 17 years, FA increases only slowly
and mean diffusivity decreases somewhat in most studied
association and projection tracts [58] (Fig. 4).

Tract-based spatial statistics analysis (TBSS) combined
with probabilistic tractography is a newer method of
defining changes in microstructure of the developing brain
[59, 60, 55]. Many perinatal conditions, such as prematurity,
perinatal asphyxia or chronic lung disease, have been shown
to lead to alteration of microstructural brain development
assessed by TBSS, and results have identified lower FA as a
structural biomarker for later neurodevelopmental deficits
[61–63]. Microstructural long-term brain changes as a result
of prematurity have been reviewed in detail by Ment et al.
[64].

Developmental changes in FA during adolescence were
mainly due to changes in axial diffusivity and more pro-
nounced between early adolescence and adulthood than
between late childhood and adolescence [65]. Factors that
might influence the changes in axial diffusivity at this age
are increased neurotubules, neurofilaments and glial cells
and increased fiber coherence as pruning comes to its end
[66]. These long-term changes fit with the assumption that
learning and experience are accompanied by structural
changes. Experience-related changes in diffusion character-
istics have been shown in piano players practicing [67] after
short intensive video game tasks [68] and provide evidence
in support of the experience-based structural plasticity in the
brain.

It is well accepted that DTI, in its current form, cannot
characterize small fiber systems; thus, one issue that should
be established is the extent to which the reconstructed fiber

Table 1 EPI DTI sequence parameters for newborn reproduced from [50]

1.5 T 3 T

b-value 1 0 s/mm2 0 s/mm2

b-value 2 700 s/mm2 700 s/mm2

Diffusion gradients 30–60 30

EPI factor 128 128

Slice thickness 2.0 mm 2.0 mm

TR 6,100 ms 8,100 ms

TE 90 ms 86 ms

FoV 192 mm 192 mm

Base resolution 128 128

Time 4.40 min 4 min

EPI echo-planar imaging, DTI diffusion tensor imaging, TR time to
repeat, TE echo time, FoV field of view
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systems reflect brain connectivity. New methodologies that
extract compartment specific, micro-structural information
from diffusion imaging are being evaluated. CHARMED
[69, 70] and AxCaliber [71] are such new diffusion imaging
schemes that provide unique abilities to assess axonal diam-
eter [72] in vivo and provide an extremely powerful tool to
investigate the underlying mechanism of myelination and
axonal diameter changes occurring during development. A
better understanding of these developmental cellular struc-
tural modifications can then directly be used to improve
human diffusion signal modeling.

Another MRI approach has recently been proposed to ex-
ploit subtle magnetic susceptibility differences between brain
tissues to improve anatomical contrast and resolution. These
susceptibility differences lead to resonance frequency shifts
that can be visualized by reconstructing the signal phase in
conventional gradient echo acquisition techniques [73]. With a
contrast based on the magnetic susceptibility differences be-
tween tissue type and tissue junctions, phase imaging offers a
new and unique type of contrast. Phase contrast has been
shown to be influenced by deoxyhemoglobin, vascularity, iron,
myelin, geometry and orientation of tissue, as well as

microstructure, chemical exchange and presence of macromo-
lecules such as in ECM [74]. We have recently explored these
new contrasts in the rodent developing brain [75]. A recent first
study on phase imaging in the newborn actually hypothesizes

Fig. 3 Generation of a brain connectom: In order to study neuronal
connections as a whole, the method generates a connectivity matrix
measuring the strength of connectivity (DTI-FA based) of all connec-
tions in the brain between a preset number of cortical regions defined
on conventional MRI. Each matrix is symmetrical and subdivided in
four quadrants, each of them representing the connections between
hemispheres. The top left quadrant represents the intrahemispherical

connections of the right hemisphere (right-right connections). The top
right quadrant shows the density of fibers’ connectivity between the
right hemisphere and the left one, thus the interhemispherical connec-
tions that are also shown in the bottom left quadrant. In the bottom
right and last quadrant, the intrahemispherical connections in the left
hemisphere are represented

Fig. 4 Typical example of a tract-based spatial statistics (TBSS)
analysis, where two groups of DTI (FA maps) images are compared.
Mean fractional anisotropy (FA) skeleton overlaid on the mean FA map
for comparison of the two groups. Regions of the mean FA skeleton in
green represent areas where there were no significant differences in FA
values between the two groups whereas areas in red are regions where
the FA is significantly different in one group
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that phase difference between the neonatal and adult brains
may be due to a different macromolecule concentration in the
unmyelinated brain of the neonates and thus a different fre-
quency due to water macromolecule exchange [76].

The human brain is organized into a collection of inter-
acting networks with specialized functions to support vari-
ous cognitive functions and therefore one can argue that
these networks are structurally present in some form.

Recent research has suggested that the brain manifests
small-world topology, which implicates both global and
local efficiency at minimal wiring costs, and also modular
organization, which indicates functional segregation and
specialization. Taking a graph theoretic approach, Yap et
al. [77] attempt to shed light on this matter by an in vivo
study, using DTI-based fiber tractography on children with
longitudinal data collected at average ages of 2 weeks,
1 year, and 2 years. Their results indicate that the small-
world architecture exists at birth with efficiency that
increases in later stages of development. The brain network
seems to evolve progressively from a local, predominantly
proximity-based, connectivity pattern to a more distributed,
predominantly functional based, connectivity pattern. These
observations suggest that the brain in the early years of life
has relatively efficient systems that may solve similar infor-
mation processing problems, but in divergent ways. Adverse
antenatal conditions might alter these networks and change
connectivity efficiency as measured by graph theory [78].

Functional connectivity (resting state fMRI)

FunctionalMRI connectivity (fcMRI) assesses baseline neural
processing [79–82] using the spontaneous Blood Oxygen
Level-Dependent (BOLD) signal intensity time course’s co-
herent oscillations within a neuronal network. Smyser et al.
[81] identified multiple networks, their regional growth and
their connections with homotopic counterparts during devel-
opment. They showed the presence of resting state networks
in the primary visual cortex, bilateral sensorimotor areas,
bilateral auditory cortex, a network including the precuneus
area, lateral parietal cortex, and the cerebellum as well as an
anterior network that incorporated the medial and dorsolateral
prefrontal cortex [81]. Similar to earlier structural DTI assess-
ments, the presence of interhemispheric functional connectiv-
ity was established as early as 26 weeks of gestation. The
comparison of prematurely born infants with newborn infants
born at term revealed a reduction of long-range network
connectivity. A recent fcMRI study on a large cohort of 2-
week-old to 2-year-old infants revealed regional develop-
ments of brain wiring efficiency and the evolution of func-
tional hubs, which suggests a differential developmental trend
for primary and higher-order cognitive functions during the
first two years of life [83].

Future

Even though high-resolution imaging has enabled research-
ers to study brain architecture during development in an
unprecedented way, the mechanisms by which the brain
establishes its complex structural and functional networks
are only starting to be understood. Wedeen et al. [84] re-
cently described the geometric structure of brain fiber path-
ways in several species including humans that indicate that
the fiber pathways are organized according to a grid, and
Clouchoux et al. [85] derived a spherical coordinate system
from the pattern of human cortical folding. Furthermore,
Chen et al. [86] recently studied human brains by surface
reconstruction, atlas mapping and added genetic analy-
sis. By doing this, the cortex could be parcellated in 12
regions according to genetic information. This new ap-
proach allowed comparison of genetic topography with
cytoarchitecture and striking similarities could be de-
fined [87].

Combining these methods in the future and modeling the
hierarchical organization of the brain might ultimately help
to understand the mechanisms underlying complex brain
structure function relationships.
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