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Abstract. Assessing the probability of rare and extreme events is an important issue in the risk
management of financial portfolios. Extreme value theory provides the solid fundamentals needed for
the statistical modelling of such events and the computation of extreme risk measures. The focus of
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intervals, applying it to several major stock market indices.

Key words: extreme value theory, generalized pareto distribution, generalized extreme value distribu-
tion, quantile estimation, risk measures, maximum likelihood estimation, profile likelihood confidence
intervals

1. Introduction

The last years have been characterized by significant instabilities in financial mar-
kets worldwide. This has led to numerous criticisms about the existing risk manage-
ment systems and motivated the search for more appropriate methodologies able
to cope with rare events that have heavy consequences.

The typical question one would like to answer is: “If things go wrong, how
wrong can they go?” The problem is then how to model the rare phenomena that lie
outside the range of available observations. In such a situation it seems essential to
rely on a well founded methodology. Extreme value theory (EVT) provides a firm
theoretical foundation on which we can build statistical models describing extreme
events.

In many fields of modern science, engineering and insurance, extreme value
theory is well established (see e.g. Embrechts et al. (1999), Reiss and Thomas
(1997)). Recently, numerous research studies have analyzed the extreme variations
that financial markets are subject to, mostly because of currency crises, stock market
crashes and large credit defaults. The tail behaviour of financial series has, among
others, been discussed in Koedijk et al. (1990), Dacorogna et al. (1995), Loretan and
Phillips (1994), Longin (1996), Danielsson and de Vries (2000), Kuan and Webber
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(1998), Straetmans (1998), McNeil (1999), Jondeau and Rockinger (1999), Rootzèn
and Klüppelberg (1999), Neftci (2000), McNeil and Frey (2000) and Gençay et al.
(2003b). An interesting discussion about the potential of extreme value theory in
risk management is given in Diebold et al. (1998).

This paper deals with the behavior of the tails of financial series. More specifi-
cally, the focus is on the use of extreme value theory to compute tail risk measures
and the related confidence intervals.

Section 2 presents the definitions of the risk measures we consider in this paper.
Section 3 reviews the fundamental results of extreme value theory used to model the
distributions underlying the risk measures. In Section 4, a practical application is
presented where six major developed market indices are analyzed. In particular,
point and interval estimates of the tail risk measures are computed. Section 5
concludes.

2. Risk Measures

Some of the most frequent questions concerning risk management in finance involve
extreme quantile estimation. This corresponds to the determination of the value a
given variable exceeds with a given (low) probability. A typical example of such
measures is the Value-at-Risk (VaR). Other less frequently used measures are the
expected short fall (ES) and the return level. Hereafter we define the risk measures
we focus on in the following chapters.

2.1. VALUE-AT-RISK

Value-at-Risk is generally defined as the capital sufficient to cover, in most in-
stances, losses from a portfolio over a holding period of a fixed number of days.
Suppose a random variable X with continuous distribution function F models losses
or negative returns on a certain financial instrument over a certain time horizon.
VaRp can then be defined as the p-th quantile of the distribution F

VaRp = F−1(1 − p), (1)

where F−1 is the so called quantile function1 defined as the inverse of the distribution
function F.

For internal risk control purposes, most of the financial firms compute a 5% VaR

over a one-day holding period. The Basle accord proposed that VaR for the next 10
days and p = 1%, based on a historical observation period of at least 1 year of
daily data, should be computed and then multiplied by the ‘safety factor’ 3. The
safety factor was introduced because the normal hypothesis for the profit and loss
distribution is widely recognized as unrealistic.
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2.2. EXPECTED SHORTFALL

Another informative measure of risk is the expected shortfall (ES) or the tail con-
ditional expectation which estimates the potential size of the loss exceeding VaR.
The expected shortfall is defined as the expected size of a loss that exceeds VaRp

ESp = E(X |X > VaRp). (2)

Artzner et al. (1999) argue that expected shortfall, as opposed to Value-at-Risk, is
a coherent risk measure.

2.3. RETURN LEVEL

If H is the distribution of the maxima observed over successive non overlapping
periods of equal length, the return level Rk

n = H−1(1 − 1
k ) is the level expected to

be exceeded in one out of k periods of length n. The return level can be used as
a measure of the maximum loss of a portolio, a rather more conservative measure
than the Value-at-Risk.

3. Extreme Value Theory

When modelling the maxima of a random variable, extreme value theory plays the
same fundamental role as the central limit theorem plays when modelling sums of
random variables. In both cases, the theory tells us what the limiting distributions
are.

Generally there are two related ways of identifying extremes in real data. Let us
consider a random variable representing daily losses or returns. The first approach
considers the maximum the variable takes in successive periods, for example months
or years. These selected observations constitute the extreme events, also called block
(or per period) maxima. In the left panel of Figure 1, the observations X2, X5, X7

and X11 represent the block maxima for four periods of three observations each.

Figure 1. Block-maxima (left panel) and excesses over a threshold u (right panel).
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The second approach focuses on the realizations exceeding a given (high) thresh-
old. The observations X1, X2, X7, X8, X9 and X11 in the right panel of Figure 1,
all exceed the threshold u and constitute extreme events.

The block maxima method is the traditional method used to analyze data with
seasonality as for instance hydrological data. However, the threshold method uses
data more efficiently and, for that reason, seems to become the method of choice
in recent applications.

In the following subsections, the fundamental theoretical results underlying the
block maxima and the threshold method are presented.

3.1. DISTRIBUTION OF MAXIMA

The limit law for the block maxima, which we denote by Mn , with n the size of the
subsample (block), is given by the following theorem:

Theorem 1 (Fisher and Tippett (1928), Gnedenko (1943)) Let (Xn) be a sequence
of i.i.d. random variables. If there exist constants cn > 0, dn ∈ R and some non-
degenerate distribution function H such that

Mn − dn

cn

d→ H,

then H belongs to one of the three standard extreme value distributions:

Fréchet : �α(x) =
{

0, x ≤ 0

e−x−α

, x > 0
α > 0,

Weibull : �α(x) =
{

e−(−x)α , x ≤ 0

1, x > 0
α > 0,

Gumbel : �(x) = e−e−x
, x ∈ R.

The shape of the probability density functions for the standard Fréchet, Weibull
and Gumbel distributions is given in Figure 2.

We observe that the Fréchet distribution has a polynomially decaying tail and
therefore suits well heavy tailed distributions. The exponentially decaying tails of
the Gumbel distribution characterize thin tailed distributions. Finally, the Weibull
distribution is the asymptotic distribution of finite endpoint distributions.

Jenkinson (1955) and von Mises (1954) suggested the following one-parameter
representation

Hξ (x) =
{

e−(1+ξ x)−1/ξ

if ξ �= 0

e−e−x
if ξ = 0

(3)
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Figure 2. Densities for the Fréchet, Weibull and Gumbel functions.

of these three standard distributions, with x such that 1 + ξ x > 0. This general-
ization, known as the generalized extreme value (GEV) distribution, is obtained by
setting ξ = α−1 for the Fréchet distribution, ξ = −α−1 for the Weibull distribution
and by interpreting the Gumbel distribution as the limit case for ξ = 0.

As in general we do not know in advance the type of limiting distribution
of the sample maxima, the generalized representation is particularly useful when
maximum likelihood estimates have to be computed. Moreover the standard GEV
defined in (3) is the limiting distribution of normalized extrema. Given that in
practice we do not know the true distribution of the returns and, as a result, we do
not have any idea about the norming constants cn and dn , we use the three parameter
specification

Hξ,σ,μ(x) = Hξ

(
x − μ

σ

)
x ∈ D, D =

⎧⎪⎨⎪⎩
] − ∞, μ − σ

ξ
[ ξ < 0

] − ∞, ∞[ ξ = 0

]μ − σ
ξ
, ∞[ ξ > 0

(4)

of the GEV, which is the limiting distribution of the unnormalized maxima. The two
additional parameters μ and σ are the location and the scale parameters representing
the unknown norming constants.

The quantities of interest are not the parameters themselves, but the quantiles,
also called return levels, of the estimated GEV:

Rk = H−1
ξ,σ,μ(1 − 1

k
).

Substituting the parameters ξ, σ and μ, by their estimates ξ̂ , σ̂ , and μ̂, we get

R̂k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ̂ − σ̂

ξ̂

(
1 −

(
− log

(
1 − 1

k

))−ξ̂)
ξ̂ �= 0

μ̂ − σ̂ log

(
− log

(
1 − 1

k

))
ξ̂ = 0

. (5)

A value of R̂10 of 7 means that the maximum loss observed during a period of one
year will exceed 7% once in ten years on average.
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Figure 3. Distribution function F and conditional distribution function Fu .

3.2. DISTRIBUTION OF EXCEEDANCES

An alternative approach, called the peak over threshold (POT) method, is to consider
the distribution of exceedances over a certain threshold. Our problem is illustrated
in Figure 3 where we consider an (unknown) distribution function F of a random
variable X. We are interested in estimating the distribution function Fu of values of
x above a certain threshold u.

The distribution function Fu is called the conditional excess distribution function
and is defined as

Fu(y) = P(X − u ≤ y|X > u), 0 ≤ y ≤ xF − u (6)

where X is a random variable, u is a given threshold, y = x − u are the excesses
and xF ≤ ∞ is the right endpoint of F. We verify that Fu can be written in terms
of F, i.e.

Fu(y) = F(u + y) − F(u)

1 − F(u)
= F(x) − F(u)

1 − F(u)
. (7)

The realizations of the random variable X lie mainly between 0 and u and therefore
the estimation of F in this interval generally poses no problems. The estimation
of the portion Fu however might be difficult as we have in general very little
observations in this area.

At this point EVT can prove very helpful as it provides us with a powerful result
about the conditional excess distribution function which is stated in the following
theorem:

Theorem 2 (Pickands (1975), Balkema and de Haan (1974)) For a large class
of underlying distribution functions F the conditional excess distribution function
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Fu(y), for u large, is well approximated by

Fu(y) ≈ Gξ,σ (y), u → ∞,

where

Gξ,σ (y) =
⎧⎨⎩1 −

(
1 + ξ

σ
y
)−1/ξ

if ξ �= 0

1 − e−y/σ if ξ = 0
(8)

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈ [0, −σ
ξ

] if ξ < 0. Gξ,σ is the so called
generalized Pareto distribution (GPD).

If x is defined as x = u + y, the GPD can also be expressed as a function of x, i.e.
Gξ,σ (x) = 1 − (1 + ξ (x − u)/σ )−1/ξ .

Figure 4 illustrates the shape of the generalized Pareto distribution Gξ,σ (x) when
ξ , called the shape parameter or tail index, takes a negative, a positive and a zero
value. The scaling parameter σ is kept equal to one.

The tail index ξ gives an indication of the heaviness of the tail, the larger ξ , the
heavier the tail. As, in general, one cannot fix an upper bound for financial losses,
only distributions with shape parameter ξ ≥ 0 are suited to model financial return
distributions.

Assuming a GPD function for the tail distribution, analytical expressions for
VaRp and ESP can be defined as a function of GPD parameters. Isolating F(x) from
(7)

F(x) = (1 − F(u))Fu(y) + F(u)

and replacing Fu by the GPD and F(u) by the estimate (n − Nu)/n, where n is
the total number of observations and Nu the number of observations above the

Figure 4. Shape of the generalized Pareto distribution Gξ,σ for σ = 1.
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threshold u, we obtain

F̂(x) = Nu

n

(
1 −

(
1 + ξ̂

σ̂
(x − u)

)−1/ξ̂)
+

(
1 − Nu

n

)
which simplifies to

F̂(x) = 1 − Nu

n

(
1 + ξ̂

σ̂
(x − u)

)−1/ξ̂

. (9)

Inverting (9) for a given probability p gives

V̂aRp = u + σ̂

ξ̂

((
n

Nu
p
)−ξ̂

− 1

)
. (10)

Let us rewrite the expected shortfall as

ÊSp = V̂aRp + E(X − V̂aRp|X > V̂aRp)

where the second term on the right is the expected value of the exceedances over
the threshold VaRp. It is known that the mean excess function for the GPD with
parameter ξ < 1 is

e(z) = E(X − z | X > z) = σ + ξ z
1 − ξ

, σ + ξ z > 0. (11)

This function gives the average of the excesses of X over varying values of a
threshold z. Another important result concerning the existence of moments is that
if X follows a GPD then, for all integers r such that r < 1/ξ , the r first moments
exist.2

Similarly, given the definition (2) for the expected shortfall and using expression
(11), for z = VaRp − u and X representing the excesses y over u we obtain

ÊSp = V̂aRp + σ̂ + ξ̂ (V̂aRp − u)

1 − ξ̂
= V̂aRp

1 − ξ̂
+ σ̂ − ξ̂u

1 − ξ̂
. (12)

4. Application

Our aim is to illustrate the tail distribution estimation of a set of financial series of
daily returns and use the results to quantify the market risk. Table I gives the list
of the financial series considered in our analysis. The illustration focuses mainly
on the S&P500 index, providing confidence intervals and graphical visualization
of the estimates, whereas for the other series only point estimates are reported.
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Table I. Data analyzed.

Symbol Index name Start End Observations

ES50 Dow Jones Euro Stoxx 50 2-01-87 17-08-04 4555

FTSE100 FTSE 100 5-01-84 17-08-04 5215

HS Hang Seng 9-01-81 17-08-04 5836

Nikkei Nikkei 225 7-01-70 17-08-04 8567

SMI Swiss Market Index 5-07-88 17-08-04 4050

S&P500 S&P 500 5-01-60 16-08-04 11270

Figure 5. Daily returns of the S&P500 index.

The application has been executed in a Matlab 7.x programming envi-
ronment.3 The files with the data and the code can be downloaded from
www.unige.ch/ses/metri/gilli/evtrm/. Figure 5 shows the plot of the n = 11270
observed daily returns of the S&P500 index.

We consider both the left and the right tail of the return distribution. The reason
is that the left tail represents losses for an investor with a long position on the index,
whereas the right tail represents losses for an investor being short on the index.

As it can be seen from Figure 5, returns exhibit dependence in the second mo-
ment. McNeil and Frey (2000) propose a two stage method consisting in modelling
the conditional distribution of asset returns against the current volatility and then
fitting the GPD on the tails of residuals. On the other side, Danielsson and de
Vries (2000) argue that for long time horizons an unconditional approach is better
suited. Indeed, as Christoffersen and Diebold (2000) notice, conditional volatility
forecasting is not indicated for multiple day predictions. For a detailed discussion
on these issues, including the i.i.d. assumptions, we refer the reader to the above
mentioned references, believing that the choice between conditional and uncondi-
tional approaches depends on the final use of the risk measures and the time horizon
considered. For short time horizons of the order of several hours or days, and if an
automatic updating of the parameters is feasible, a conditional approach may be
indicated. For longer horizons, a non conditional approach might be justified by the
fact that it provides stable estimates through time requiring less frequent updates.
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The methodology applying to right tails, in the left tail case we change the sign
of the returns so that positive values correspond to losses.

First, we consider the distribution of the block maxima, which allows the de-
termination of the return level. Second, we model the exceedances over a given
threshold which enables us to estimate high quantiles of the return distribution and
the corresponding expected shortfall.

In both cases we use maximum likelihood estimation, which is one of the most
common estimation procedures used in practice. We also compute likelihood-based
interval estimates of the parameters and the quantities of interest which provide
additional information related to the accuracy of the point estimates. These intervals,
contrarily to those based on standard errors, do not rely on asymptotic theory results
and restrictive assumptions. We expect them to be more accurate in the case of small
sample size. Another advantage of the likelihood-based approach is the possibility
to construct joint confidence intervals. The greater computational complexity of
the likelihood-based approach is nowadays no longer an obstacle for its use.

4.1. METHOD OF BLOCK MAXIMA

The application of the method of block maxima goes through the following steps:
divide the sample in n blocks of equal length, collect the maximum value in each
block, fit the GEV distribution to the set of maxima and, finally, compute point and
interval estimates for Rk

n .
The delicate point of this method is the appropriate choice of the periods defining

the blocks. The calendar naturally suggests periods like months, quarters, etc. In
order to avoid seasonal effects, we choose yearly periods which are likely to be
sufficiently large for Theorem 1 to hold. The S&P500 data sample has been divided
into 45 non-overlapping sub-samples, each of them containing the daily returns of
the successive calendar years. Therefore not all our blocks are of exactly the same
length. The maximum return in each of the blocks constitute the data points for
the sample of maxima M which is used to estimate the generalized extreme value
distribution (GEV). Figure 6 plots the yearly maxima for the left and right tails of
the S&P500.

Figure 6. Yearly minima and maxima of the daily returns of the S&P500.
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Figure 7. Sample distribution (dots) of yearly minima (left panel) and maxima (right panel)
and corresponding fitted GEV distribution for S&P500.

The log-likelihood function that we maximize with respect to the three unknown
parameters is

L(ξ, μ, σ ; x) =
∑

i

log(h(xi )), xi ∈ M (13)

where

h(ξ, μ, σ ; x) = 1

σ

(
1 + ξ

x − μ

σ

)−1/ξ−1

exp

(
−

(
1 + ξ

x − μ

σ

)−1/ξ)

is the probability density function if ξ �= 0 and 1+ξ
x−μ

σ
> 0. If ξ = 0 the function

h is

h(ξ, μ, σ ; x) = 1

σ
exp

(
− x − μ

σ

)
exp

(
− exp

(
− x − μ

σ

))
.

In Figure 7, we give the plot of the sample distribution function4 and the cor-
responding fitted GEV distribution. Point and interval estimates for the parameters
are given in Table II.

4.2. INTERVAL ESTIMATES

In order to be able to compute interval estimates,5 it is useful to approach the quantile
estimation problem by directly reparameterizing the GEV distribution as a function
of the unknown return level Rk . To achieve this, we isolate μ, from Equation (5)
and substitute it into Hξ,σ,μ defined in (4). The GEV distribution function then
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Table II. Point estimates and 95% maximum likelihood (ML) and bootstrap (BCa) confidence
intervals for the GEV method applied to S&P500.

Lower bound Upper bound
Point estimate

BCa ML ML ML BCa

Left tail
ξ̂ 0.217 0.256 0.530 0.771 0.849

σ̂ 0.802 0.815 0.964 1.213 1.188

R̂10 5.006 4.741 6.411 11.001 9.190

Right tail
ξ̂ −.288 −.076 0.100 0.341 0.392

σ̂ 0.815 0.836 1.024 1.302 1.312

R̂10 4.368 4.230 4.981 6.485 5.869

becomes

Hξ,σ,Rk (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(
−

(
ξ

σ
(x − Rk) +

(
− log

(
1 − 1

k

))−ξ)−1/ξ)
ξ �= 0(

1 − 1

k

)exp
(
− x−Rk

σ

)
ξ = 0

for x ∈ D defined as

D =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

] − ∞,

(
Rk − ξ

σ

(
− log

(
1 − 1

k

))−ξ
)

[ ξ < 0

] − ∞, ∞[ ξ = 0

]

(
Rk − ξ

σ

(
− log

(
1 − 1

k

))−ξ
)

, ∞[ ξ > 0

and we can directly obtain maximum likelihood estimates for Rk . The profile log-
likelihood function can then be used to compute separate or joint confidence inter-
vals for each of the parameters. For example, in the case where the parameter of
interest is Rk , the profile log-likelihood function will be defined as

L∗(Rk) = max
ξ,σ

L(ξ, σ, Rk).

The confidence interval we then derive includes all values of Rk satisfying the
condition

L∗(Rk) − L(ξ̂ , σ̂ , R̂k) > −1

2
χ2

α,1
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4.74 6.41 11

–1.92

0

R10 R10

ξ

5.01 6.41 9.19 11

0.217

0.53

0.849

ML

BCa

Figure 8. Left panel: Relative profile log-likelihood and 95% confidence interval for R̂10 of the
left tail. Right panel: Single and joint confidence regions for ξ̂ and R̂10 at level 95%. Maximum
likelihood estimates are marked with the symbol ∗.

where χ2
α,1 refers to the (1 − α) level quantile of the χ2 distribution with 1 degree

of freedom. The function L∗(Rk) − L∗(ξ̂ , σ̂ , R̂k) is called the relative profile log-
likelihood function and is plotted in the left panel of Figure 8. The point estimate
of 6.41% of R10 is included in the rather large interval (4.74, 11). As less observa-
tions are available for higher quantiles, the interval is asymmetric, indicating more
uncertainty for the upper bound of maximum losses.

Sometimes we are also interested in the value of ξ , which characterizes the tail
heaviness of the underlying distribution. In this case, a joint confidence region on
both ξ and R10 is needed. The profile log-likelihood function is then defined as

L∗(ξ, Rk) = max
σ

L(ξ, σ, Rk),

with the confidence region defined as the contour at the level − 1
2χ

2
α,2 of the relative

profile loglikelihood function

L∗(ξ, Rk) − L(ξ̂ , σ̂ , R̂k).

In the right panel of Figure 8, we reproduce single and joint confidence regions
at level 95% for ξ̂ and R̂10 of the S&P500. In the same graph we also plot the
pairs (R̂10, ξ̂ ) estimated on 1000 bootstrap samples. The joint confidence region
covers approximately 95% of the bootstrap pairs, indicating that computing the
joint interval region gives a good idea about the likely values of the parameters.
Moreover, we notice that the joint region is significantly different from the one
defined by the single confidence intervals.

In order to account for the small sample size, single confidence intervals are
also computed with a bias-corrected and accelerated (BCa) bootstrap method.6

As a result, for R̂10, the BCa interval narrows to (5.01, 9.19). Regarding the shape
parameter ξ , the difference is less pronounced. However, in both cases, the intervals
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Table III. Point estimates for the GEV method for six market indices.

ES50 FTSE100 HS Nikkei SMI S&P500

# maxima 18 21 24 35 17 45

Left tail
ξ̂ −.301 0.679 0.512 0.251 0.172 0.530

σ̂ 1.773 0.705 2.707 1.616 1.563 0.964

R̂10 7.217 6.323 16.950 8.243 8.341 6.411

Right tail
ξ̂ 0.185 0.309 0.179 0.096 −.032 0.100

σ̂ 1.252 0.919 1.754 1.518 1.773 1.024

R̂10 6.366 5.501 8.439 7.159 7.611 4.981

clearly indicate a positive value for ξ , which implies that the limiting distribution
of maxima belongs to the Fréchet family.

The point estimates and the single confidence intervals for the reparameterized
GEV distribution for S&P500 are summarized in Table II.

For k = 10, we obtain for our data R̂10 = 6.41, meaning that the maximum
loss observed during a period of one year exceeds 6.41% in one out of ten years on
average. In the same way we can derive that a loss of R100 = 21.27% is exceeded
on average only once in a century. Notice that this is very close to the 87 crash daily
loss of 22.90%.

Table III summarizes point estimates for GEV for all six indices. Because of the
low number of observations for ES50 and SMI the corresponding point estimates are
less reliable. We notice the high value of R10 for the left tail of Hang Seng (HS),
twice as big as the next riskiest index.

One way to better exploit information about extremes in the data sample is to
use the POT method. Coles (2001, p. 81) suggests the estimation of return levels
using GPD. However, if the data set is large enough, GEV may still prove useful as
it can avoid dealing with data clustering issues, provided that blocks are sufficiently
large. Furthermore, the estimation is simplified as the selection of a threshold u is
not needed.

4.3. THE PEAK OVER THRESHOLD METHOD

The implementation of the peak over threshold method involves the following steps:
select the threshold u, fit the GPD function to the exceedances over u and then
compute point and interval estimates for Value-at-Risk and the expected shortfall.

Selection of the Threshold u
Theory tells us that u should be high in order to satisfy Theorem 2, but the higher
the threshold the less observations are left for the estimation of the parameters of
the tail distribution function.
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Figure 9. Sample mean excess plot for the left and right tail determination for S&P500 data.

So far, no automatic algorithm with satisfactory performance for the selection of
the threshold u is available. The issue of determining the fraction of data belonging
to the tail is treated by Danielsson et al. (2001), Danielsson and de Vries (1997)
and Dupuis (1998) among others. However these references do not provide a clear
answer to the question of which method should be used.

A graphical tool that is very helpful for the selection of the threshold u is the
sample mean excess plot defined by the points

(u, en(u)) , xn
1 < u < xn

n , (14)

where en(u) is the sample mean excess function defined as

en(u) =
∑n

i=k

(
xn

i − u
)

n − k + 1
, k = min

{
i
∣∣xn

i > n
}
,

and n − k + 1 is the number of observations exceeding the threshold u.
The sample mean excess function, which is an estimate of the mean excess func-

tion e(u) defined in (11), should be linear. This property can be used as a criterion
for the selection of u. Figure 9 shows the sample mean excess plots corresponding
to the S&P500 data. From a closer inspection of the plots we suggest the values
u = 2.2 for the threshold of the left tail and u = 1.4 for the threshold of the right
tail. These values are located at the beginning of a portion of the sample mean
excess plot that is roughly linear, leaving respectively 158 and 614 observations in
the tails (see Figure 10).

Maximum Likelihood Estimation
Given the theoretical results presented in the previous section, we know that the
distribution of the observations above the threshold in the tail should be a generalized
Pareto distribution (GPD). Different methods can be used to estimate the parameters
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Figure 10. Exeedences of daily returns of the S&P500 index.

of the GPD.7 In the following we describe the maximum likelihood estimation
method.

For a sample y = {y1, . . . , yn} the log-likelihood function L(ξ, σ |y) for the
GPD is the logarithm of the joint density of the n observations

L(ξ, σ |y) =

⎧⎪⎨⎪⎩−n log σ −
(

1

ξ
+ 1

) n∑
i=1

log

(
1 + ξ

σ
yi

)
if ξ �= 0

−n log σ − 1
σ

∑n
i=1 yi if ξ = 0.

We compute the values ξ̂ and σ̂ that maximize the log-likelihood function for
the sample defined by the observations exceeding the threshold u. We obtain the
estimates ξ̂ = 0.388 and σ̂ = 0.545 for the left tail exceedances and ξ̂ = 0.137
and σ̂ = 0.579 for the right tail. Figure 11 shows how GPD fits to exceedances of
the left and right tails of the S&P500. Clearly the left tail is heavier than the right
one. This can also be seen from the estimated value of the shape parameter ξ which
is positive in both cases, but higher in the left tail case.

Figure 11. Left panel: GPD fitted to the 158 left tail exceedances above the threshold u = 2.2.
Right panel: GPD fitted to the 614 right tail exceedances above the threshold u = 1.4.
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High quantiles and expected shortfall may be directly read in the plot or com-
puted from equations (10) and (12) where we replace the parameters by their es-
timates. For instance, for p = 0.01 we can compute V̂aR0.01 = 2.397 and ÊS0.01

= 3.412 (V̂aR0.01 = 2.505, ÊS0.01 = 3.351 for the right tail). We observe that, with
respect to the right tail, the left tail has a lower VaR but a higher ES which illustrates
the importance to go beyond a simple VaR calculation.

Interval Estimates
Again, we consider single and joint confidence intervals, based on the profile log-
likelihood functions. Log-likelihood based confidence intervals for VaRp can be
obtained by using a reparameterized version of GPD defined as a function of ξ and
VaRp:

Gξ,VaRp (y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 −

(
1 +

(
n

Nu
p
)−ξ

−1

VaRp−u y

)− 1
ξ

ξ �= 0

1 − n
Nu

p exp

(
y

VaRp − u

)
ξ = 0

.

The corresponding probability density function is

gξ,VaRp (y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(

n
Nu

p
)−ξ

−1

ξ (VaRp−u)

(
1 +

(
n

Nu
p
)−ξ

−1

VaRp−u y

)− 1
ξ
−1

ξ �= 0

−
n

Nu
p exp

(
y

VaRp−u

)
VaRp−u ξ = 0

.

Similarly, using the following reparameterization for ξ �= 0

Gξ,ESp = 1 −
⎛⎝1 +

ξ + ( n
Nu

p
)−ξ − 1

(ESp − u)(1 − ξ )
y

⎞⎠− 1
ξ

,

gξ,ESp =
ξ + ( n

Nu
p
)−ξ − 1

ξ (1 − ξ )(ESp − u)

⎛⎝1 +
ξ + ( n

Nu
p
)−ξ − 1

(ESp − u)(1 − ξ )
y

⎞⎠− 1
ξ
−1

,

we compute a log-likelihood based confidence interval for the expected shortfall
ESp. Figures 12–13 show the likelihood based confidence regions for the left tail
VaR and ES of S&P500 obtained by using these reparameterized versions of GPD.

In the same figures we show the single bias-corrected and accelerated boot-
strap confidence intervals. We also plot the pairs (ξ̂i , V̂aR0.01,i ), (ξ̂i , ÊS0.01,i ), i =
1, . . . , 1000 estimated from 1000 resampled data sets. We observe that about 5%
lie outside the 95% joint confidence region based on likelihood (which is not the
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Figure 12. Left panel: Relative profile log-likelihood function and confidence interval for
VaR0.01. Right panel: Single and joint confidence intervals at level 95% for ξ̂ and VaR0.01.
Dots represent 1000 bootstrap estimates from S&P500 data.

3.147 3.412 4.017

–1.921

0

ES
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ξ

3.14 3.412 3.852

0.218

0.388

0.582
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Figure 13. Left panel: Relative profile log-likelihood function and confidence interval for
ES0.01. Right panel: Single and joint confidence intervals at level 95% for ξ̂ and ES0.01. Dots
represent 1000 bootstrap estimates from S&P500 data.

case for the single intervals). Again this shows the interest of considering joint
confidence intervals.

The maximum likelihood (ML) point estimates, the maximum likelihood and
the BCa bootstrap confidence intervals for ξ̂ , σ̂ , V̂aR0.01 and ÊS0.01 for both tails of
the S&P500 are summarized in Table IV.

The results in Table IV indicate that, with probability 0.01, the tomorrow’s
loss on a long position will exceed the value 2.397% and that the corresponding
expected loss, that is the average loss in situations where the losses exceed 2.397%,
is 3.412%.

It is interesting to note that the upper bound of the confidence interval for
the parameter ξ is such that the first order moment is finite (1/0.671 > 1). This
guarantees that the estimated expected shortfall, which is a conditional first moment,
exists for both tails.
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Table IV. Point estimates and 95% maximum likelihood (ML) and bootstrap (BCa) confi-
dence intervals for the S&P500.

Lower bound Upper bound
Point estimate

BCa ML ML ML BCa

Left tail
ξ̂ 0.221 0.245 0.388 0.585 0.588

σ̂ 0.442 0.444 0.545 0.671 0.651

V̂aR0.01 2.361 2.356 2.397 2.447 2.432

ÊS0.01 3.140 3.147 3.412 4.017 3.852

Right tail
ξ̂ 0.068 0.075 0.137 0.212 0.220

σ̂ 0.520 0.530 0.579 0.634 0.638

V̂aR0.01 2.427 2.411 2.505 2.609 2.591

ÊS0.01 3.182 3.151 3.351 3.634 3.569

Table V. Point estimates for the POT method for six market indices.

ES50 FTSE100 HS Nikkei SMI S&P500

Left tail
ξ̂ 0.045 0.232 0.298 0.181 0.264 0.388

σ̂ 1.102 0.656 1.395 0.810 0.772 0.545

V̂aR0.01 3.819 2.862 5.146 3.435 3.347 2.397

ÊS0.01 5.057 4.103 8.046 4.697 4.880 3.412

Right tail
ξ̂ 0.113 0.093 0.156 0.165 0.185 0.137

σ̂ 0.953 0.711 1.102 0.912 0.764 0.579

V̂aR0.01 3.517 2.707 4.581 3.316 3.078 2.505

ÊS0.01 4.785 3.562 6.258 4.470 4.259 3.351

The point estimates for all the six market indices are reported in Table V. Sim-
ilarly to the S&P500 case the left tail is heavier than the right one for all indices.
Looking at estimated VaR and ES values, we observe that Hang Seng (HS) and DJ
Euro Stoxx 50 (ES50) are the most exposed to extreme losses, followed by Nikkei
and the Swiss Market Index (SMI). The less exposed indices are S&P500 and FTSE
100.

Regarding the right tail Hang Seng is again the most exposed to daily extreme
moves and S&P500 and FTSE100 are the least exposed.
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5. Concluding Remark

We have illustrated how extreme value theory can be used to model tail-related risk
measures such as Value-at-Risk, expected shortfall and return level, applying it to
daily log-returns on six market indices.

Our conclusion is that EVT can be useful for assessing the size of extreme
events. From a practical point of view this problem can be approached in different
ways, depending on data availability and frequency, the desired time horizon and
the level of complexity one is willing to introduce in the model. One can choose to
use a conditional or an unconditional approach, the BMM or the POT method, and
finally rely on point or interval estimates.

In our application, the POT method proved superior as it better exploits the
information in the data sample. Being interested in long term behavior rather than
in short term forecasting, we favored an unconditional approach. Finally, we find it
is worthwhile computing interval estimates as they provide additional information
about the quality of the model fit.
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Notes

1More generally a quantile function is defined as the generalized inverse of F: F←(p) = inf{x ∈
R : F(x) ≥ p}, 0 < p < 1.

2See Embrechts et al. (1999), page 165.
3Other software for extreme value analysis can be found at www.math.ethz.ch/∼

mcneil/software.html or in Gençay et al. (2003a). Standard numerical or statistical software, like
for example Matlab, now also provide functions or routines that can be used for EVT applications.

4The sample distribution function F̂n(xn
i ), for a set of n observations given in increasing order

xn
1 ≤ · · · ≤ xn

n , is defined as F̂n(xn
i ) = i

n , i = 1, ..., n.
5For a good introduction to likelihood-based statistical inference, see Azzalini (1996).
6For an introduction to bootstrap methods see Efron and Tibshirani (1993) or Shao and Tu (1995).
7These are the maximum likelihood estimation, the method of moments, the method of probability-

weighted moments and the elemental percentile method. For comparisons and detailed discussions
about their use for fitting the GPD to data, see Hosking and Wallis (1987), Grimshaw (1993), Tajvidi
(1996a), Tajvidi (1996b) and Castillo and Hadi (1997).
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Embrechts, P., Klüppelberg, C., and Mikosch, T. (1999). Modelling Extremal Events for Insurance

and Finance. Applications of Mathematics. Springer. 2nd ed. (1st ed., 1997).
Fisher, R. and Tippett, L.H.C. (1928). Limiting forms of the frequency distribution of largest or smallest

member of a sample. Proceedings of the Cambridge Pthilosophical Society, 24, 180–190.
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