
Empir Software Eng (2012) 17:467–499
DOI 10.1007/s10664-010-9145-5

Refining code ownership with synchronous changes

Lile Palma Hattori · Michele Lanza · Romain Robbes

Published online: 16 September 2010
© Springer Science+Business Media, LLC 2010
Editors: Mike Godfrey and Jim Whitehead

Abstract When mining software repositories, two distinct sources of information are
usually explored: the history log and snapshots of the system. Results of analyses
derived from these two sources are biased by the frequency with which developers
commit their changes. We argue that the usage of mainstream SCM (software
configuration management) systems influences the way that developers work. For
example, since it is tedious to resolve conflicts due to parallel commits, developers
tend to minimize conflicts by not contemporarily modifying the same file. This
however defeats one of the purposes of such systems. We mine repositories created
by our tool Syde, which records changes in a central repository whenever a file is
compiled locally in the IDE (integrated development environment) by any developer
in a multi-developer project. This new source of information can augment the
accuracy of analyses and breaks new ground in terms of how such information can
assist developers. We illustrate how the information we mine provides a refined
notion of code ownership with respect to the one inferred by SCM system data. We
demonstrate our approach on three case studies, including an industrial one. Owner-
ship models suffer from the assumption that developers have a perfect memory. To
account for their imperfect memory, we integrate into our ownership measurement

We gratefully acknowledge the financial support of the Swiss National Science foundation for
the project “GSync” (SNF Project No. 129496).

L. P. Hattori (B) · M. Lanza
REVEAL @ Faculty of Informatics, University of Lugano,
Via G. Buffi 13, 6904 Lugano, Switzerland
e-mail: lile.hattori@usi.ch

M. Lanza
e-mail: michele.lanza@usi.ch

R. Robbes
PLEIAD Lab, Computer Science Department (DCC), University of Chile,
Blanco Encalada 2120, of. 308, Santiago, Chile
e-mail: rrobbes@dcc.uchile.cl

468 Empir Software Eng (2012) 17:467–499

a model of memory retention, to simulate the effect of memory loss over time. We
evaluate the characteristics of this model for several strengths of memory.

Keywords Code ownership · Mining software repositories · Fine-grained changes ·
Software visualization

1 Introduction

To manage the life-cycle of software systems, developers use a number of tools,
such as software configuration management (SCM) systems, bug trackers, discussion
boards, etc. These tools store a large amount of information that is exploited by
researchers to understand different aspects of software evolution. SCM repositories,
in particular, are a rich source of information because they contain both the history
of the source code and metadata describing who was responsible for which change.

A significant number of studies have mined SCM repositories to reveal the nature
of software changes (Tu and Godfrey 2001; Hassan and, Holt 2004; Ying et al. 2004),
and to understand the correlation between changes and developer roles (Baysal and
Malton 2007; Yu and Ramaswamy 2007). These studies are based on largely adopted
SCM systems, such as CVS and Subversion (SVN). However, any inference derived
from such systems is subject to the granularity of information encountered in their
repositories.

In their report on the impact of SCM systems, Estublier et al. (2005) stated
that one of the next steps for SCM systems was to break the assumption of
language independence. Contradicting this statement, largely adopted SCM systems
are still file-based and do not model the particularities of a programming language.
Hence the changes to software entities must be reconstructed from the text-level
changes stored in the SCM. Combined with the checkout/checkin commands, where
a developer checks out the code before an implementation session, and checks in
the changed files after an indefinite period of time, SCM systems lose precious
information about source code changes that cannot be recovered even with elaborate
mining and reverse engineering techniques (Robbes and Lanza 2005).

Since checking in source code is an intermittent action and development is a
continuous activity, knowledge derived from the history log may deviate from what
actually happened. For example, a technique that spots specialists for parts of a
system based on check-in frequency does not take into account the actual effort spent
by developers in terms of time and written code. Also, the frequency with which
developers check in their code is biased by the lack of language-oriented support for
merging parallel changes. Since a developer does not know whether someone else is
changing the same file, studies have shown that they tend to rush to check in their
code (Grinter 1996), and even check in partial changes (de Souza et al. 2003) to avoid
dealing with merge conflicts.

Modern decentralized software control management systems, such as Git,1 offer
additional support for parallel development. In Git the checkout/checkin model
is replaced by the clone/pull/push model, with which every developer maintains

1See http://git-scm.com/.

http://git-scm.com/

Empir Software Eng (2012) 17:467–499 469

his own repository by cloning someone else’s repository. Different from file-based
SCM systems, which track changed files by their names, Git is content-based, which
means it tracks changed files by the contents of their changes. One advantage of this
approach is that Git can track the rename of a file, contrary to CVS or SVN, for
example. However, some of the consequences of Git’s decentralized model are that
commits are not automatically visible to other developers; instead of one history log,
there are as many as the number of repositories created; the logs of privately owned
repositories are not accessible to everyone; and all the changes created in everyone’s
private repositories have to be occasionally merged, and conflicts resolved (Bird et al.
2009).

The nature of information found in software repositories determines what we can
infer from it (Robbes 2007). File- and content-based SCM systems store snapshots
that represent the system’s state at points in time, rather than a continuous evolution
of the changes made to the system to bring it from one state to the other. We believe
that studies derived from file- and content-based SCM systems are threatened by the
loss of information that comes with the underlying models.

We propose the use of a new software repository that is created by our Syde tool
to overcome the limitations of current SCM data. Syde is a collaborative tool that
extends Spyware’s (Robbes and Lanza 2008) change-centric approach to augment
the awareness of a team of developers by propagating changes as they happen
(Hattori and Lanza 2009). Syde offers to developers a collection of Eclipse plug-ins
to keep them aware of which source code artifacts are being changed (Lanza et al.
2010), and which are the source code changes that can impact on someone’s current
work (Hattori and Lanza 2010). It runs concurrently with the project’s SCM system
and does not obstruct or modify its usage. Syde’s repository stores every change
performed by every developer at the exact time it happens. We define a change
as every successfully compiled file that has undergone at least one character edit
since the last compilation (see Section 3). Hence, the once approximate data about
who changes what and when is now accurate and complete; leading to what we call
synchronous changes.

In this paper we describe how we use Syde’s change history together with the
history logs of these projects to understand the dynamics of the developers, and
to create a refined notion of ownership of the code. Further, we account for the
imperfect memory of developers by integrating in our model of ownership the notion
of forgetting: A developer who changed a file early on may have less actual knowl-
edge of it than another developer who changed it more recently, even if the latter
made less changes to the file than the former. To conduct this study, we used Syde
to record several development periods in three systems, including a commercial one.

We envision using the technique and findings of this study as a foundation to
integrate an expertise recommender to the set of plug-ins that Syde offers. The
recommender will assist developers to search for help when striving to understand
a piece of code. In such cases, the recommender will show a list of developers who
are knowledgeable about the code artifact, ranking them based on their current
knowledge. Thus, we aim at bringing a traditionally post mortem analysis to forward
engineering to help developers maintain team awareness.

Structure of the Paper In Section 2 we review related work. In Section 3 we detail
our change recording and broadcasting approach and its supporting implementation

470 Empir Software Eng (2012) 17:467–499

in the form of Syde. In Section 4 we describe the notion of ownership of file by
developers, and the effect of time in their ability to recall information. In Section 5,
we describe a visualization we use as support for interpreting the ownership data,
the Ownership Map. In Section 6 we then use Syde to analyze the history of three
software systems, before discussing threats to the validity of our study in Section 7.
Finally, we conclude in Section 8.

2 Related Work

With Syde, we essentially propose a chance-centric approach to promote team
collaboration. Thus it is related to:

1. tools that support collaboration, and
2. operation-based SCM solutions.

In this work we are primarily interested in the impact of the data captured by Syde
on code ownership; we review the literature on that domain as well.

2.1 Tool Support for Collaboration

The continuous adoption of language independent SCM systems in the context
of team-based development influenced the creation of solutions to overcome the
workspace isolation enforced by them (Sarma et al. 2008). Tool support for collabo-
ration ranges from full-fledged platforms, such as Jazz.net2 and CollabVS (Hegde
and Dewan 2008), to specific workspace awareness solutions (Sarma et al. 2007;
Schneider et al. 2004; Biehl et al. 2007).

Jazz.net is designed to be the central tool for planning, managing and performing
development activities. It enriches Eclipse and Visual Studio to create a new envi-
ronment to support intra and inter-team collaboration, automation, and traceability
of code, tasks and issues. Microsoft’s CollabVS extends Visual Studio by adding
communication channels, such as text and audio-video chat, browsing of remote
unchecked versions of files, and notification of developer presence in code elements
inside a file (Hegde and Dewan 2008).

There are a number of valuable efforts to solve some specific problems raised by
workspace isolation generated by SCM systems. More specifically, they recover and
broadcast information about changes that occur between a check out and a check in,
which tends to become more critical as the gap grows larger.

Lighthouse is an Eclipse plug-in that aim at avoiding conflicts by propagating
change events from Eclipse and SCM among workspaces, and showing them on
a view of the emerging design representation of the system (da Silva et al. 2006).
Lighthouse requires a side-by-side presentation of the design representation and the
code, which is only feasible if developers work with two screens.

Palantír is an Eclipse plug-in that addresses direct and indirect merge conflicts
(Sarma et al. 2007). Direct conflicts are caused by concurrent changes to the same
artifact. Indirect ones are caused by changes in one artifact that affect concurrent

2See http://jazz.net.

http://jazz.net

Empir Software Eng (2012) 17:467–499 471

changes in another artifact. Palantír informs the involved developers about the
existence of conflicts, and their severity (e.g., it is high if one of the conflicting
versions has already been checked in).

Schneider et al. use a shadow CVS repository to record changes every time that
someone edits a file. The shadow repository is then mined and information about
who is working with what is visually presented to developers to augment group
awareness (Schneider et al. 2004).

FASTDash offers to developers real-time information about changes: which team
members have checked out source files, which files are being viewed, and which
classes and methods are currently under change (Biehl et al. 2007).

The demand for workspace awareness is becoming urgent as intensive and glob-
ally distributed team collaboration becomes the state of the practice. Although the
solutions discussed above increase workspace awareness by working around some of
the limitations imposed by SCM systems, the root of the problem lies in the currently
used SCM models, which offer insufficient support for collaboration.

2.2 Operation-based SCM

The key characteristic of file-based SCM systems is that they are able to version any
type of document, since documents are represented as files in a computer. In the
context of software development, this rather strong feature comes with a tradeoff:
they are unable to model, and hence, properly version source code changes. Source
code is treated as plain text, which forces developers to deal with textual merging
of source code, with consequences that range from compilation errors to defects
generated from runtime errors.

On the other end of the spectrum there are language-dependent operation-based
SCM systems (Dig et al. 2007; Robbes and Lanza 2008; Omori and Maruyama 2008),
which have support for the language model, and version the system as a sequence
of change operations. Some advantages of this approach are that operations can
be replayed or rewound to bring the system from one state to another, and merge
conflicts can be resolved with operation-based merge algorithms (Lippe and van
Oosterom 1992). However, despite a few noteworthy efforts to provide operation-
based SCM solutions, there is still a list of issues to be addressed until they become
fully functional.

For example, MolhadoRef, proposed by Dig et al. (2007), is not a pure operation-
based SCM, but a mixture of state-based and operation-based, i.e., it does not
record every change made by every developer. Instead, it calculates the deltas before
changes are checked in; only refactoring operations are fully recorded. Consequently,
there is still loss of information, and not all states of a system can be recovered from
the MolhadoRef repository.

In previous work, we introduced Spyware, a change-centric solution that records
every change made by one developer. Spyware is able to recover any state of the
system (Robbes and Lanza 2008). Its main restriction is that it is a one-developer
solution, i.e., it does not support a multi-developer context. Our goal with Syde is
to port Spyware’s approach to a multi-developer context without losing information.
Like Spyware, we do not intend to replace file-based SCM systems, but to comple-
ment them by storing additional information.

472 Empir Software Eng (2012) 17:467–499

2.3 Ownership of Files and Expertise of Developers

There have been several works on determining which developer is the most expert
in a given area of a large software system. The rationale behind these approaches
is that since no one can be knowledgeable over the entire system, one can instead
identify who are the people to contact to get more information about a given part
of the system—the experts. People have used several data sources to determine the
expertise of developers.

Several approaches use SCM data to compute expertise and ownership. They
assume that people gain expertise on a part of the system when they change
its implementation. McDonald and Ackerman used SCM author information to
determine the expertise of developers. They also included technical support data that
was available in their particular case study (McDonald and Ackerman 2000). Mockus
and Herbsleb in contrast, used only change data from the SCM system as the data
source of their Expertise Browser (Mockus and Herbsleb 2002). Gîrba et al. focused
more particularly on ownership, where the owner of a file is the developer with the
most expertise on it. They also used SCM data to compute ownership (Gîrba et al.
2005).

Other approaches use different data sources. Anvik and Murphy (2007) used bug
archive data to determine implementation expertise, and found that it can serve as a
replacement for SCM data in the cases where the latter is not accurate. Matter et al.
determined the expertise of developers based on the vocabulary they use. They used
that expertise information to assign bugs to developers (Matter et al. 2009). Finally,
Ma et al. (2009) introduced the usage expertise, where the expertise of people using
a given piece of code is taken into account, as opposed to the expertise of the people
who implemented it.

3 Syde

Syde is a client-server application that manages and stores object-oriented software
systems implemented in Java. The client is a collection of Eclipse plug-ins that both
inspect the developer’s workspace and enrich Eclipse with visualizations that provide
awareness information to developers. Figure 1 shows some of the visualizations
provided by Syde, which are currently grouped into three plug-ins: Inspector Plug-
in—responsible for tracking changes—, Scamp Plug-in—delivers change awareness
information—, and Conflicts Plug-in—notifies developers of potential conflicts.

The Inspector plug-in listens to “build” operations, which are often linked to
“save” operations in Eclipse. Every time a developer compiles a changed file, the
Inspector’s listeners are triggered and send a new version of the file to the server. If
the file does not successfully compile, a notice of unsuccessful compilation together
with the changed file is sent to the server. The server saves the received information
and broadcasts information about the (successfully compiled) changes to all active
client instances. Finally, each client instance of the plug-in displays the broadcasted
change information on the views inside Eclipse’s workbench. We developed Syde
with a number of goals in mind:

– Complement SCM systems. As stated before, our goal is to complement file-
based SCM systems. A software project comprises not only source code, but also

Empir Software Eng (2012) 17:467–499 473

Fig. 1 Syde screenshots. 1 The Inspector Plug-in. 2 Scamp Plugin—decorations view. 3 Scamp
Plugin—WordCloud view. 4 Scamp Plugin—buckets view. 5 The Conflict Plug-in—conflicts view.
6 The Conflict Plug-in—Annotation on Java editor

requirements, specification, etc. For now, Syde focuses exclusively on the source
code of a project.

– Be non-intrusive and lightweight. Syde displays the activity of other developers
in views that the developer can simply close or minimize. Thus, Syde provides
extra information without disrupting or distracting a developer from work. As
opposed to holistic and complex approaches such as Jazz.net or CollabVS our
goal is to provide effective collaboration support with minimal, lightweight, and
complementary changes to the settings of the developers.

– Enhance awareness. Similar to other solutions to augment workspace awareness,
Syde informs developers about recent changes in the source code that may not

474 Empir Software Eng (2012) 17:467–499

have been checked into the SCM repository yet. A developer can request these
changes even before they become available through the SCM. We conducted a
qualitative evaluation of our tool set to provide awareness (Lanza et al. 2010),
where developers indicated that they appreciated the benefits of knowing what
others were doing in real-time.

– Enrich SCM history. Similar to the history logs of CVS or Subversion, Syde
provides the history of changes with the following information: changed file,
author, and timestamp. The fundamental difference is that Syde provides a
historic entry for every change performed on Eclipse, even if they were not
checked in lately.

3.1 Design & Implementation

Syde’s overall design and information flow is illustrated in Fig. 2.
Syde features the following components:

– The Inspector and the Collector. Syde’s inspector implements listeners to capture
from Eclipse’s workbench the changes performed by a developer. The inspector
collects the actual changes and the metadata. The metadata contains the author’s
name, a timestamp, and status of the change. Syde’s collector receives informa-
tion from the inspector and stores it in a centrally accessible repository.

– The Notif ier and the Viewer. Syde’s notifier maintains a list of client instances
that need to be notified of any change, and is responsible for broadcasting the
metadata to all members of the team. Syde’s client displays information about
the changing system in views and visual cues within Eclipse itself, thus providing
awareness of changes to all developers.

– The Distributor and the Requestor. Once a developer is aware that certain parts
of the system have changed, he can preempt the underlying classical SCM system
and request from the Syde server an update of specific parts of the code, which
are then sent by Syde’s distributor, and updated in the client’s source base.

We implemented Syde in Java for the Eclipse IDE, with the goal of complement-
ing the workspace awareness offered by SCM systems. However, its implementation
does not depend on a specific SCM system, and can also be used without one. To
explain Syde’s implementation, we follow the information flow illustrated in Fig. 2.

The Inspector is located in Syde’s plug-in and is responsible for monitor-
ing and sending source code changes to the server. To inspect source code
changes, it relies on the following strategy. If the project under inspection
uses the standard Java Builder for compilation, the Inspector implements the

Fig. 2 Syde architecture Eclipse
Syde (Client)

Inspector

Viewer

Requestor
(& Conflict Manager)

Syde (Server)

Collector

Notifier

Distributor

Repository
Change

Empir Software Eng (2012) 17:467–499 475

IResourceChangeListener interface to listen to POST_BUILD events. Before
it sends the changed file to the server, it checks for compilation errors inside the file,
and annotates the metadata with this information. Even though the changed file can
group more than one source code change, we argue that this is a reasonable approach
because a developer tends to save (and automatically compile) changes frequently
enough for differencing algorithms, such as the one proposed by Fluri et al. (2007),
to be able to precisely find all changes from two subsequent versions. If the project
does not use the Java Builder, the Inspector listens to POST_CHANGE events, and is
therefore unable to check for compilation errors in the file.

On the server side, the Collector (1) receives the file, (2) versions and saves it, (3)
saves the metadata, and (4) activates the Notif ier.

The Notif ier manages which developers are connected to Syde for a given project
by keeping a set of projects and, for each project, a set of developers. Immediately
after a new version of a file is available on the server, it broadcasts an alert to
all developers. To show the alerts on Eclipse, the Viewer is currently composed of
two plug-ins: Scamp and Conflicts. Finally, the Requestor adds the action “Get last
version” to one of Syde’s views, which requests from the Distributor the latest version
of the selected file in the view.

Data The history log of mainstream SCM systems usually describes which files have
been checked in, when and by whom. For example, CVS history logs show: file name,
revision, author, timestamp, author’s comment, and number of lines of code added
and removed. Subversion (SVN) gives the same information, except for the number
of lines of code added and removed. On the other hand, SVN automatically groups
file revisions committed together, whereas this must be reconstructed for CVS data.

Syde’s history log offers the same kind of information,3 but for every change
performed by a developer. It shows file name, revision, author, timestamp, and
whether the file has compilation errors or not.

4 Code Ownership

Code ownership quantifies the amount of knowledge each developer has and indi-
cates which developer owns which artifact of a software system by measuring who
has accumulated more knowledge of each artifact. The notion of code ownership
is important in large projects, where developers do not know each artifact of the
system. Code ownership can be used to answer questions such as “who should fix
this bug” (Anvik et al. 2006) or “who should I ask about artifact XY” (Zimmermann
et al. 2004).

We present the measurements that we use to compute code ownership. The
general assumption is that whoever performs the greater number of changes on a file,
is the one most knowledgeable in it. We use distinct measurements of code ownership
based on three different repository sources: CVS, SVN, and Syde. For CVS and SVN,
we adopt the measurement previously introduced by Gîrba et al. (2005), whereas for

3In the meantime, Syde records more and more fine-grained information, whose description is
outside the scope of this article.

476 Empir Software Eng (2012) 17:467–499

Syde, we present a lightweight approach to compute code ownership by mainly using
historical information contained in the Syde change logs.

4.1 Measuring Code Ownership with CVS/SVN Logs

The ownership definition based on CVS and SVN logs exclusively uses information
contained in their respective logs: file name, revision, author, and number of lines
added and deleted. Since SVN logs do not contain the number of lines added
and deleted for each revision of a file, we implemented a parser to extract this
information by comparing every subsequent revision of a file in the repository.

According to Gîrba et al. (2005), a developer owns a line of code in a file if he was
the one who committed that line. The overall owner of a file is the one who owns the
largest percentage of it. To compute the ownership, we need to first estimate the size
of a file. We only know the number of lines added and deleted, but do not know the
initial size of the file, because we only use information containing in the log history.4

Given a file f , let fn be a revision of f , α fn be the author of that revision, a fn be
the number of lines added, and r fn the number of lines removed. The size of a file
revision s fn is given by:

s′
f0

= 0

s′
fn

= s′
fn−1

+ a fn−1 − r fn

s f0 = | min
{
s′

x

} |
s fn = s fn−1 + a fn − r fn

To exemplify the size estimation of a file, suppose the following sequence of
changes:

f1: 8 lines added, 3 lines deleted;
f2: 7 lines deleted.

We apply the given formulae to estimate the sizes of the files:

s′
f0

= 0

s′
f1

= 0 + 8 − 3 = 5

s′
f2

= 5 + 0 − 7 = −2

Since there can not be more number of lines deleted than added in total, we need
to adjust the above values.

s f0 = | min{−2, 5}| = 2

s f1 = 7

s f2 = 0

4In our case study, we have an industrial system that uses CVS, and two academic systems that use
SVN. For the first, we only had access to the logs, but not to the source code. Thus, we decided to
consistently apply the same approach to all three projects, by estimating the size of a file.

Empir Software Eng (2012) 17:467–499 477

Given the size s fn of a file revision, the percentage ownα
fn

of lines in a revision
owned by a developer α is given by:

ownα
f0

=
{

1 if α = α f0

0 else

ownα
fn

= ownα
fn−1

s fn − a fn

s fn

+
{ a fn

s fn
if α = α f0

0 else

From the percentage ownα
fn

of lines owned by each developer, the owner of a file
revision is the one who owns the greatest percentage.

This measurement technique relies on the assumption that the number of lines
of a file owned by a developer reflects the amount of effort spent by him to write
these lines. However, the development of a code artifact is not a linear action that
can be summed up as the amount of lines added to a file. Developers do and undo
changes, try a couple of alternatives, refactor the code—which may reduce the size
of the file—, etc. The knowledge they retain from an artifact depends more on how
much effort they put to implement it, than on the final result. Thus, this technique
can be effective when developers check in their files frequently. However, if within
a team there are developers who frequently check in their changes and others who
work for long periods before checking in, this technique is prone to discrepancies.

4.2 Measuring Code Ownership with Syde Logs

We use the history logs provided by Syde to measure code ownership, therefore
basing the definition of ownership on every small change that is being performed on
a system. Every small change means every change performed between two save—and
consequently compilation—actions. One can argue that the definition of ownership
using Syde logs, analogous to what happens with CVS and SVN logs, is also biased
by the frequency with which developers save their code. However, the way Eclipse
works drives developers to maintain their code with no compilation errors and hence
to save and build files often. Eclipse constantly shows where compilation errors are,
discouraging developers to run or test code with errors, and in general incites them
to fix them as soon as possible.

Given Syde logs, let f be a file, fn a version of this file, α fn the author of that
version, the number ownα

fn
of changes owned by a developer α is given by:

ownα
f0

=
{

1 if α = α f0

0 else

ownα
fn

= ownα
fn−1

+
{

1 if α = α fn

0 else

The owner own fn of a file at a certain version is the one who has accumulated
the largest number of changes from the creation of the file until the date of the
considered version:

own fn = max{ownα1
fn
, ownα2

fn
, ..., ownαm

fn
}, where m is the total number of developers.

To exemplify how to compute the ownership of a file with Syde log, we show the
change history of a hypothetic file Foo in Fig. 3.

478 Empir Software Eng (2012) 17:467–499

Fig. 3 Change history of file
Foo. This file is currently in
version 5 and two developers
have changed it

In this example, we want to find the owner of Foo by the time version f5 is created.
The number of changes owned by each author at this point is:

ownα1 = 3

ownα2 = 2

The greater number own f5 of changes owned of file f at revision f5 is:

own f5 = max{ownα1 , ownα2} = ownα1

Hence, the owner of file f at revision f5 is developer α1.
This measurement assumes that developers accumulate knowledge about a class,

or file, but never forget it, even though months or years have passed. This is a
rather naïve assumption, since the content of files might change over time. Suppose
a developer creates a file and with 30 Syde changes he introduces ten lines of
code. Later, a second developer edits the same file and, with 15 Syde changes,
he completely changes the ten lines of code. The current ownership measurement
based on Syde changes still considers the first developer as most knowledgeable,
whereas the measurement based on CVS/SVN commits considers the second as most
knowledgeable because he currently owns the greater percentage of lines (assuming
that the total number of lines remains constant, the second developer is the owner of
100% of the lines).

In addition, there is a natural process of forgetting the content and functionality
of a class over time, even though they do not change. To address these issues, we
add the notion of forgetting on the code ownership measurement based on Syde
log. Although the measurement based on CVS/SVN logs also ignores the natural
process of forgetting, we focus exclusively on investigating the forgetting effects on
the ownership measurement based on Syde logs.

The Forgetting Ef fect on Code Ownership Forgetting is a natural process in which
old memories are unable to be recalled from a human’s memory. It has been exten-
sively studied by psychologists, since the pioneering work of Ebbinghaus (1913). The
curve that commonly describes forgetting is expressed as R = e−T/s, where R is the
memory retention, s is the relative strength of memory, and T is time. Although there
has been a continuous discussion on whether forgetting is best described by a power
or exponential function (John and Shana 2007; Murre and Chessa 2009; Carpenter
et al. 2008), the differences represented by each curve can be considered minimal for
the context of ownership measurement. Thus, we consider the exponential function
introduced above.

Figure 4 shows the plot of the forgetting function for three different values of s
(5, 25, and 125). In the context of code ownership, our time unit is the day. The s
parameter reflects how long a person might remember the contents of a certain file.
The smaller s is, the weaker the memory. For instance, for s = 5, there is around 30%

Empir Software Eng (2012) 17:467–499 479

Fig. 4 Forgetting function
R = e−T/s, where R is the
memory retention, s is the
relative strength of memory,
and t is time. The higher is the
value of S, the more likely the
person will remember an event
for a longer period

0.00
0 5 10 15 10 25 30 35 40 45 50

time (days)

Memory retention

s = 125
s = 25
s = 5

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

1.00

of probability that a person remembers the contents of a file edited 6 days ago (see
Table 4, for other figures). This situation could be true in a scenario where this person
is developing multiple systems at the same time, and only makes small changes, which
are not sufficient for him to absorb concrete knowledge of each class. Therefore, the
parameter s is influenced by a number of factors that are specific to each project, e.g.,
the complexity of the project or feature, the level of experience of each individual,
the accumulated experience of each individual in the context of the project, the total
number of developers, etc. Hence, it is not our goal to determine an ideal s value for
all projects, but to explain how it can be adjusted according to each scenario.

We include the notion of forgetting in the code ownership measurement by adding
the time factor in the calculation of the owner ownα

fn
of a revision. In the previous

formula, the value 1 was given to a developer for each change he made. With the
forgetting measurement, we use the formula R = e−T/s to weight this value, which
now has a range of (0, 1].

To formalize the new measurement, for each version fn of a file f , we consider
the time t fn of the creation of version fn. Given a point in time t, the argument T of
the forgetting function R = e−T/s is the amount of time elapsed between the creation
of version fn and the current time t:

�t fn = t − t fn

Hence, given a point in time t, the new ownership measurement is computed as
follows:

�t f0 = t − t f0

ownα
f0

=
{

e
−�t f0

s if α = α f0

0 else

�t f1 = t − t f1

ownα
f1

= ownα
f0

+
{

e
−�t f1

s if α = α f1

0 else

�t fn = t − t fn = 0

ownα
fn

= ownα
fn−1

+
{

e
−�t fn

s if α = α fn

0 else

480 Empir Software Eng (2012) 17:467–499

The owner own fn of a file at a certain version is the one who has accumulated the
greatest value of weighted knowledge from the creation of the file until the time t fn

of the considered version:

own fn = max{ownα1
fn
, ownα2

fn
, ..., ownαm

fn
}, where m is the total number of developers.

Recalling the example from Fig. 3, we added the notion of time in Fig. 5 to re-
compute the ownership considering the forgetting effect. Analogous to previous
example, we want to find the owner of Foo at the time t f5 of the creation of version f5.

Hence, the value of weighted knowledge accumulated by each developer, given
the strength of memory s = 2, is:

Let t f1 = 1, t f2 = 2, t f3 = 3, t f4 = 4, t f5 = 5,

ownα1
f5

= ownα1
f4

+ 0 = e
−�t f1

s + e
−�t f2

s + 0 + e
−�t f4

s + 0

= e
−4
2 + e

−3
2 + 0 + e

−1
2 + 0 � 0.96

ownα2
f5

= ownα2
f4

+ 1 = 0 + 0 + e
−�t f3

s + 0 + e0

= 0 + 0 + e
−2
2 + 0 + 1 � 1.37

The greater value own f5 of knowledge accumulation for file f at revision f5 is:

own f5 = max{ownα1 , ownα2} = ownα2

Even though developer α1 has the greater number of changes, if we consider the
forgetting effect on knowledge retention and the recency of changes, the owner of
file f at revision f5 is developer α2.

With this new measurement of code ownership, it is possible to adjust the strength
of memory s to prioritize recent changes over old ones. The range of s most suitable
for a project depends on a number of factors intrinsically related to its characteristics.
In Section 6 we apply and discuss the influence of the forgetting effect on ownership
maps of three projects.

Fig. 5 Change history of file
Foo with additional notion
of time

Empir Software Eng (2012) 17:467–499 481

5 Ownership Maps

To visually assess the differences in ownership between versioning system changes
and Syde changes, we display the data using ownership maps.

The Ownership Map visualization was first introduced by Gîrba et al. (2005)
with the aim of characterizing behavioral patterns of developers throughout the life-
cycle of a software system. Gîrba’s Ownership Map is inspired by the visualization
proposed by Van Rysselberghe and Demeyer (2004), where the horizontal axis
represents each file of the system, and the vertical axis represents the time of a
change.

In Gîrba’s ownership map, the vertical axis represents the files in the system and
time is represented on the horizontal axis. Every change to a file is shown as a colored
disc. The color of the disc represents the developer who made that change. Finally,
the line of the file is colored according to its current owner. A file can have multiple
owners throughout its history.

We use three distinct ownership maps: CVS/SVN Ownership Map, which presents
the ownership of files according to CVS/SVN commits; Syde Ownership Map, which
shows the ownership of each file according to Syde changes; and Delta Map, which
illustrates the differences in ownership classification of the previous two maps. In the
following, we detail each map, and explain how we order the files in the maps.

5.1 CVS/SVN Ownership Map

In the CVS/SVN ownership map, each rectangle represents a commit.5 Each devel-
oper is assigned a unique color, which is used to indicate who is the author of a
commit—coloring the rectangle—, and who is the owner of the file at a certain period
of time—coloring the corresponding part of the line.

Figure 6 illustrates an example of this map. Recall that the measurement used to
compute ownership for CVS/SVN is based on the number of lines added and deleted
from each version, and takes into account the entire history of the file.

5.2 Syde Ownership Map

In the Syde ownership map, a colored disc represents a Syde-level change, where the
color indicates the author of the change. The line of the file is painted with the color
of its owner at a certain period of time.

Figure 7 shows two Syde ownership maps. The first uses the original Syde
ownership measurement, while the second integrates the forgetting notion, using a
value of S = 5 to model the strength of memory. It is easy to spot the differences
in ownership between the two maps. Consider file Bar, which experiences a series of
changes from the blue author early on. In the first case, the yellow author remains the
owner of Bar, but in the second, the blue author takes over. We discuss in Section 6
the differences in ownership according to how fast a developer might forget the
contents of a file. When forgetting is considered, the ownership of a file might change
at any moment, not just after a file has changed.

5We use rectangles instead of circles for SCM logs so that one can differentiate between SCM
changes and Syde changes when both are overlapped on the same map.

482 Empir Software Eng (2012) 17:467–499

Foo
Bar

first commit from
yellow author

yellow author
becomes the owner

blue author takes
over the ownership

commits by the
blue author

yellow author commits but
does not take over the ownership

time

Fig. 6 Example of CVS/SVN ownership map

5.3 Delta Ownership Map

The Delta ownership map is a combination of the previous two, with rectangles
representing CVS/SVN commits, and circles representing Syde changes. Circles
and rectangles receive the color of the author of the change or commit. The lines
are either grey—when there is no difference in ownership classification between
Syde and CVS/SVN measurements–or red—when there is a difference between the
measurements.

Figure 8 shows an example of the delta map. In this example, the yellow author is
the sole owner of the first file, even though the blue author has one Syde change. For
the second and third files, the blue author is the owner according to Syde changes.
Yellow takes over the files according to CVS/SVN measurement after committing
changes on them. After a sequence of Syde changes, Yellow takes over the third file,
ending the differences in classification in it. Although not seen in this example, the
difference in ownership classification is oftentimes caused by the instant propagation
of changes in Syde against the latency in propagation caused by CVS/SVN commits.

5.4 Ordering of the Files

The order of the files in the ownership map has a large effect on its legibility. We
order the files by their similarity in their change history, instead of using the standard

time

Foo
Bar

Foo
Bar

s = 5

without forgetting, yellow author remains as owner of Bar,
while with forgetting, blue author takes over Bar

yellow author was the owner of
Foo and Bar in the past

blue author does a
series of changes

Fig. 7 Example of Syde ownership map

Empir Software Eng (2012) 17:467–499 483

time

blue author owns the files
according to both measures

yellow author takes over the ownership
 according to Subversion log

yellow author takes over the
ownership according to Syde log

Fig. 8 Example of delta ownership map

alphabetical order. Using this ordering, the relationships between the files stand out
much more, as files changing at similar times—inherently related to one another—
are grouped together.

To measure the similarity of the change histories of two files, we use a variant of
the Levenshtein distance (Levenshtein 1966), which measures the similarity between
two sequences by counting the number of edit operations necessary to transform
one into the other. There are three kinds of operations: Insertion, Deletion and
Modification of a sequence of elements. These operations are defined on abstract
sequences of items and are not related to SCM operations.

In our case, we use the Syde change histories of the files as sequences. The
CVS/SVN maps use the Syde clustering as well, so that the ordering is the same and
comparison between maps is easier. We split the change history in a series of time
intervals, and count the number of changes that affected the file during that interval.
This yields a sequence of change intensities ordered by time. We tried intervals of
1, 4, 12 and 24 h, inspected the clusters produced in each case, and concluded that a
12 h clustering produced the best results: clustering the greatest number of files that
were modified together (e.g., files that were modified together were put side by side
more often with 12 h intervals than with other values).

Each edit operation is associated with a cost. To account for the different nature
of our data, our definitions of the costs vary from the common definition. The
Levenshtein distance is often used to measure the distance between words—where
one can assume that the characters are independent—, whereas we are comparing
patterns of changes with an intensity of changes in a given interval. Intuitively, the
distance between two characters is constant, but this assumption does not carry over
to changes. Measuring the difference of intensity of changes allows us to use a more
precise distance metric.

We retain the standard costs of 1 for insertion and deletion operation of items in
the sequence. These operations are primarily used to switch the order of two time
intervals when items with the same values have nearly identical indices in the two
sequences (e.g., a burst of changes on file f 1 occurred just before a similar burst of
changes on file f 2).

We use a different definition of the cost for the modification operation. The
modification operation is used to alter the value of an item in the sequence so that it
corresponds to the value of the item at the same index in the second sequence (e.g.,
a burst of changes on file f 1 at time t1 is slightly smaller than the burst of changes

484 Empir Software Eng (2012) 17:467–499

of f 2 at the same time). We define the cost of a modification operation between two
change amounts a and b as:

Modif icationCosta,b =
⎧
⎨

⎩

1, if a = 0 and b > 0
1, if b = 0 and a > 0
|b−a|

10 , otherwise
(1)

The rationale behind our choice is that moderate variations in the intensity of
changes during an interval should result in a lower edit cost than larger ones. On the
other hand, a transition from no changes to any number of changes is always costly.

After computing the Levenshtein distance, we use a hierarchical clustering algo-
rithm to order the files with respect to their similarity according to the distance we
defined. All the maps we show in the remainder of the article are ordered using this
scheme.

6 Case Studies

In previous work we performed an initial analysis of the history of projects developed
by a single developer (Hattori and Lanza 2009). In the context of this article we use
the data provided by Syde to tackle the following research question: How can Syde’s
history log help to characterize code ownership? To discuss this question we analyze
three projects: Speed, jArk, and Pacman.

6.1 Presentation of the Projects

Speed6 is a commercial project that was under development at the software factory
of CPMBraxis.7 This software factory was chosen because of its professional charac-
teristics: it has a well defined production process certified by CMMI-DEV 5 and ISO
9001:2000 standards; its projects adopt metrics, software reuse, and new technologies
for delivering high quality products.

Pacman and jArk are group projects developed by students in the context of the
“Programming Fundamentals 2” course given at the University of Lugano. Contrary
to Speed, where we collected data for a brief period, the students used Syde for the
entire duration of their projects. Hence, we have the full history of development of
these projects.

Table 1 presents the data we gathered for the three projects we monitored in this
study.

The number of files with Syde changes is higher than the number of files commit-
ted to CVS or SVN. We examined the source code and observed that the main cause
of this disparity is when developers create a class, work on it for a while, but change
its location before checking it in the repository.

An immediate observation we can make is that the changes recorded by Syde
are much more fine-grained than the ones recorded by CVS or SVN: There are two
orders of magnitude more changes than there are CVS or SVN commits.

6We use pseudonyms to conform with the non-disclosure agreement.
7See http://www.cpmbraxis.com.

http://www.cpmbraxis.com

Empir Software Eng (2012) 17:467–499 485

Table 1 Projects studied, the period analyzed for each project, the number of java files that were
committed to the SCM repository, the number of files with changes captured by Syde, the number of
SCM commits, and the number of Syde changes

Project Period Developers Files in SCM Files in Syde Commits Syde changes

Speed 15 days 4 14 56 26 2,429
jArk 5 weeks 2 146 172 266 23,786
Pacman 5 weeks 2 140 223 149 14,460

Table 2 shows the summary statistics of the number of Syde changes and
CVS/SVN commits per day.

To compute the summary, we removed the days with no changes and no commits
(i.e., if there was at least one commit or one change, the day is included for both
measurements). For at least 75% of the days, the number of Syde changes is two
orders of magnitude higher than SVN commits for jArk and Pacman (2nd, 3rd, and
4th quartiles). For Speed, for at least 50% of the days the same assumption holds
(3rd and 4th quartiles).

Figure 9 shows an overall view of the Syde ownership maps of the three projects.
Since the full maps are large, we use magnified, readable parts of them for the
analyses that follow.

6.2 Characterizing Code Ownerships with Syde

Table 3 shows the comparison between the total number of Java files contained in
Syde’s log and the number of these files with differences in ownership classification
(deltas) between Syde and CVS/SVN. According to Table 1, the number of Syde
changes is two orders of magnitude higher than the number of commits. Therefore,
we expect Syde’s ownership measurement to give finer-grained information about
who is the current expert on a file, than the measurement based on CVS/SVN. Speed
has a low number of files committed—only 14 files—, which influences the low value
of files with deltas. Pacman and jArk, however, have a high number of files with
differences in classification. The significant number of commits and the longer period
of Syde usage justify the high number of files with deltas.

Speed Figure 10 shows Syde, CVS, and delta ownership maps for a set of files of
the Speed project. The Syde map suggests that developers dark blue (Bob) and pink
(John) are the owners of the majority of the files, whereas the CVS map shows that
John has not committed any file. Figure 11 reinforces this observation. While John
is responsible for 40% of Syde changes, he did not commit any change to CVS. The

Table 2 Summary statistics for Syde changes and CVS/SVN commits per day

Project Minimum 1st quartile Median Mean 3rd quartile Maximum

Speed CVS 2 4.00 6.00 6.00 8.00 10
Syde 1 48.75 143.50 242.90 367.50 668

jArk SVN 1 3.00 6.00 7.82 12.75 24
Syde 1 121.00 454.00 792.90 863.80 9,242

Pacman SVN 1 1.00 4.00 5.14 8.00 17
Syde 5 113.00 300.09 437.90 611.00 2,981

486 Empir Software Eng (2012) 17:467–499

jArk

Pacman

Speed

Fig. 9 Overview of Syde ownership maps of projects Speed, jArk, and Pacman. This picture aims at
providing an overview of the ownership maps of the three projects we studied. It is not meant to be
inspected in details by the reader

contrary happens with Alice, who is responsible for less than 20% of Syde changes,
but appears as the major contributor according to CVS.

We investigated why John did not commit any change to CVS, and this behavior
was influenced by two factors. The first one was the late adoption of CVS, which was
done four days after the project had started—towards the end of the first week. The
second factor was that John was actively involved in three other projects within the
company, and had higher priority on one of the other projects in the second week of
the experiment. Therefore, he was only able to commit his changes after the period
of the study.

It is evident from the differences between the Syde and CVS maps that the Speed
developers do not commit their code frequently, nor do they present a common
behavior. Figure 11 also leads us to conclusion: In the context of Speed, the definition
of code ownership according to Syde is more suitable than the one according to
CVS. Based on this, we suggest that the larger the difference between the effort of a
developer (measured as number of small changes) and the frequency of his commits,

Table 3 Comparison between total number of files and number of files with differences between
Syde and CVS/SVN ownership classifications

Speed jArk Pacman

Total files 56 172 223
Files with deltas 8 130 122

Empir Software Eng (2012) 17:467–499 487

S
yd

e
lo

g
C

V
S

 lo
g

D
el

ta
 01/22 01/23 01/24 01/25 01/26 01/27 01/28 01/29 01/30 01/31 02/01 02/02 02/03 02/04 02/05 02/06

Fig. 10 Characterization of ownership of a set of files of the Speed project

the more suitable our approach is in relation to the one of Gîrba et al. However, since
the developers of this project reported that they were developing multiple projects
at the same time, and that some of them occasionally forgot to use Syde, further
investigation was needed to support our suggestion. We hence performed the same
study on the two other projects at our disposal.

Pacman and jArk Looking at the distribution of changes/commits per developers
of Pacman and jArk, we observe that there is consistency between Syde changes and
SVN commits. The authors who performed the most changes are also the ones who
committed more, even though the percentage of Syde changes are higher than the
percentage of commits (e.g., in jArk, Stefano performed about 80% of Syde changes,
and about 55% of the commits). We know that the students were working together

Fig. 11 Distribution of changes per developer for Syde, and commits per developer for CVS/SVN
for the three projects. We include all files that had at least one Syde change, or at least one CVS/SVN
commit

488 Empir Software Eng (2012) 17:467–499

most of the time, or remotely, but frequently communicating through instant messag-
ing. Contrary to what happened with Speed, they were focusing on only one project,
and equally splitting the workload. We believe that these characteristics influenced
the consistent relation between Syde changes and SVN commits.

According to the characteristics of distribution of changes/commits per developers
of Pacman and jArk, the differences in ownership classification based on Syde and
SVN are influenced by the frequency with which the developers commit. In other
words, we expect to see differences in classification during the period between a set
of Syde changes and a commit—when the takeover happens. To investigate where
deltas appear, we take a close look at the maps of one day of work in Pacman.

Figure 12 shows the ownership maps of one day of work for Pacman. By carefully
analyzing the three maps, we notice that in most of the cases a developer works
on a couple of files for some time, and commits his changes later. This is the case
of files BoardView and GameFrame; Creature, Pacman, and Ghost; and Board
and Level.

The Syde and SVN maps show that both developers are often working on the same
files in parallel (e.g., BoardView, GameFrame, Creature, Pacman, Gost, Board,
and Level). In such cases, when differences between Syde and SVN ownership
appear, they are related to both the frequency of commits and the nature of the
measurements. While the measurement based on Syde logs relies on the actual
amount of work and time that one spent, the measurement based on CVS/SVN
commits relies on the number of lines changed, which does not reflect directly one’s
effort.

S
yd

e
lo

g
S

V
N

 lo
g

D
el

ta

Fig. 12 Characterization of ownership of a set of files of the Pacman project

Empir Software Eng (2012) 17:467–499 489

For example, imagine that a developer created and implemented a method, tested
it, fixed some tricky defects that took him a considerable time, and finally refactored
it. Syde records every edit step, reflecting how much effort this developer put on
implementing this method, while CVS/SVN only informs the number of lines added
on the file corresponding to this method. While the later can be a good effort
indicator, it is common sense that the more effort someone puts on a task, the more
likely it is that he will remember it.

Based on this, we reaffirm that the larger the difference between the effort of a
developer (measured as number of small changes) and the frequency of the commits,
the more suitable our approach is in relation to the one of Gîrba et al.

6.3 Evaluating Syde Ownership with Forgetting

In Section 4, we introduced the concept of forgetting, and incorporated it in Syde’s
measurement of ownership. In this section we evaluate the forgetting effect by
comparing the results of the measurement with different values of strength of
memory. The function we adopted to describe forgetting is R = e

−T
s , where R is the

memory retention, T is time, and s is the strength of memory. Ideally, the value
of s is empirically determined by comparing it to the opinions of the developers
themselves. However, we did not have that information at our disposal. We hence
rely on heuristics and compare the behavior of ownership for several values of s.
The values of s that we selected are 5, 25, and 125; we chose powers of 5 since the
forgetting function is exponential, and with these three values we cover a reasonable
variability of memory retention. According to Table 4, a value of s = 5 reaches a low
memory retention after ten days (0.14), while s = 25 reaches the same value after
nearly two months; a value of s = 125 yields a memory retention that is still higher
than 0.6 after two months.

To determine the best memory setting for each project, we use two heuristics:
minimizing the ratio of short-term switches among all the switches, and minimizing
the overall average number of switches per files. A switch happens when a developer
takes over the ownership of a file, but only when the file had a previous owner. A
short-term switch is a switch whose overall duration is four hours or less. Finding the
value of s that minimizes these two values leads to a better ownership description,
as it minimizes what can be seen as spurious changes of ownership. Table 5 reports
both these values for each project and each memory strength, including the default
ownership measurement having a full memory.

To have a finer-grained view of the ownership switches, we also show the distrib-
ution of short and long-term ownership switches among files and memory settings in
Fig. 13. This figure shows a series of histograms of ownership switches per file. The x

Table 4 Percentage of memory retention after a number of days for the values of strength of memory
chosen for this study: 5, 25, 125

Memory strength Days

1 5 10 20 30 40 50

s = 5 0.82 0.37 0.14 0.02 0.00 0.00 0.00
s = 25 0.96 0.82 0.67 0.45 0.30 0.20 0.14
s = 125 0.99 0.96 0.92 0.85 0.79 0.73 0.67

490 Empir Software Eng (2012) 17:467–499

Table 5 Percentage of short-term ownership switches among ownership switches, and average
number of switches per file, per project and memory strength

Memory strength Short switches Switches per file

Speed (%) jArk (%) Pacman (%) Speed jArk Pacman

s = 5 10.0 29.6 44.4 0.70 0.72 0.57
s = 25 32.2 31.1 40.5 1.05 1.08 0.83
s = 125 32.1 32.5 40.7 1.00 0.93 0.63
full memory 31.6 33.3 41.7 1.02 0.81 0.60

axis represents the number of switches, and the y axis shows the number of files which
had that exact number of switches throughout their lifetime. The first three columns
show the histogram considering the forgetting effect in order of increasing memory

Ownership switches per file Short ownership switches per file (within 4 hours)

Fig. 13 Histogram of ownership switches per file according to Syde changes. The first three columns
consider forgetting with s = {5, 25, 125}

Empir Software Eng (2012) 17:467–499 491

strength, whereas the last column does not consider forgetting. Black bars represent
short-term ownership switches, while gray bars represent all ownership switches.

For all three projects, the majority of the files did not have switches: 28 out of 56
files for Speed; 120 out of 172 files for jArk; and 159 out of 223 files for Pacman. We
removed them from the histogram in order to increase the resolution of the y axis
and hence the legibility.

Relationship Between Number of Switches and Memory If we analyze the files by
frequency of switches, the histograms indicate that, overall, a weak memory yields
the lowest number of switches. In other words, the number of files with less switches
is larger for smaller values of s, while the number of files with more switches is larger
for larger values of s. Table 5 confirms these observations: The lowest ratio of overall
switches per file is consistently obtained for s = 5, although larger values give a close
ratio for the Pacman project. The maximum is found for s = 25, and it decreases
lightly after that.

A high number of ownership switches on a file can be considered an indicator of
the existence of merge conflicts throughout its history. Speed has a very low number
of files with two switches or more for s = 5. A stronger s noticeably increases the
number of files with two switches. Pacman and jArk contain a greater number of
files with ownership switches, but have an overall smaller ratio of conflicts switches
per file. Speed is an overall smaller project (at least the package that we focused
on), with twice the number of developers; hence the potential for conflict increases.
On the other hand, jArk and Pacman both have several files with a high number of
switches, indicating that a small number of files receive the majority of the conflicts.

Relationship Between Memory and Short-term Switches Consulting Table 5, we
observe that for Speed and jArk, the proportion of short-term switches among
overall switches increases as the strength of the memory increases. For Pacman,
this trend is true for s = 25, s = 125, and no forgetting, but the value for s = 5
is surprisingly the highest. s = 5 gives the overall lowest number of switches, but
has a comparable number of short-term switches with s = 125 or the no forgetting
ownership measurement; this gives the impression that ownership switches are
increasing. With a closer look at the history, we found that all the 56 short-term
ownership switches happened in the first half of the project, on a restricted set of 33
files. The developers of Pacman worked together at the beginning on the model of
Pacman, and then split: One stayed on the model, while another developed the view.
This close collaboration early on caused a large number of unavoidable short-term
switches: On the 24/04/2009, 23 short-term switches occurred on ten files containing
unit tests; 13 short-term switches happened on seven files on 20/04/2009; and ten
other occurred on ten files on 06/05/09. This shows that the short-term switches are
clustered around specific dates and denote bursts of activity. As such, they are not
artifacts of the usage (or non-usage) of the forgetting effect. We can conclude that
the best setting is again the lower memory value (s = 5) as it diminishes the overall
quantity of switches, even if it is not possible to reduce short-term ones, which hence
increase in proportion.

A Detailed View on Ownership Switches With these observations in mind, we focus
on investigating the behavior of the switches for the different rates of forgetting.
To do so, we take a close look into a set of classes from jArk. Figure 14 shows a

492 Empir Software Eng (2012) 17:467–499

Syde ownership map where, for each class, there is one line per each s value, and
the last line for the original measurement (with no forgetting). The main pattern that
we observe is that the stronger the memory is, the longer it takes for an ownership
switch to happen. Furthermore, when s = 125, the behavior is extremely similar to
when developers have a perfect memory. In Fig. 14, they are in fact equal (not the
case in jArk overall). This might be an indication that s = 125 is too high, at least
for the context of jArk. Indeed, Fig. 4 shows us that developers would have 67%
probability to remember a file 50 days after they changed it. In the context of jArk,
which lasted for approximately 35 days, this value is already too high.

Conclusions As previously stated, the strength of memory is a subjective value that
depends on the various characteristics of each project. Therefore there is an optimal
range of values for each project, but there is no optimal value for all projects. In the
case of jArk a short strength of memory is more suitable, since it is a project with a
short duration, and two developers with no clear division of tasks, thus with dynamic
characteristics. In the case of Speed, even if there is a clear division of tasks, there
are more developers involved, which raises the number of conflicts; it is also more
suitable to consider a lower strength of memory, at least until the project grows in
size. In the case of Pacman, a low value of memory reduces the overall number of
conflicts, but keeps the number of short-term ownership switches nearly constant,
and is hence preferable as well. Even if the three projects tend to benefit from the
same memory settings, it is too early to generalize beyond them.

5
25
125

5
25
125

5
25
125

5
25
125

5
25
125

5
25
125

5
25
125

5
25
125

5
25
125

5
25
125

5
25
125

5
25
125

model/bonus/StickyBallBonus.java

model/bonus/TheBoxBonus.java

model/bonus/MissileVausBonus.java

model/bonus/LaserVausBonus.java

model/bonus/DoubleLaserVausBonus.java

model/bonus/RemoveLifeBonus.java

model/bonus/LongVausBonus.java

model/bonus/ShortVausBonus.java

model/bonus/AddLifeBonus.java

model/bonus/SlowBallBonus.java

model/bonus/DoubleBallBonus.java

model/bonus/UltraBallBonus.java

Fig. 14 Ownership map of jArk with forgetting notion

Empir Software Eng (2012) 17:467–499 493

7 Threats to Validity

7.1 Threats to Construct Validity

Construct validity refers to the extent with which our variables are correctly mea-
sured. We identified two potential threats to construct validity:

Syde Change Recording Although Syde checks for compilation errors when a
source code is changed, we do not compute the structural differences from two
subsequent versions. As consequence, any edit to a file is considered as a change,
including addition or deletion of comments and blank lines.

Syde records every change made by a developer as long as he is connected to the
Syde server. Speed was monitored with an early version of Syde with limitations. The
history log collected from Speed is not complete, because some of the developers
reported that they forgot to connect to Syde a couple of times. We minimized this
issue by offering the option to automatically connect to the server, however this
initial version of Syde did not enable automatic connection by default. This early
version was also missing a buffer in the plug-in to save the changes performed while
the developer is offline and to send them to the server when he connects. Thus a
number of changes may have been lost, which may have influenced the accuracy of
our measure.

The jArk and Pacman projects were monitored with a later version of Syde,
featuring both auto-connect enabled by default and a buffer to record offline
changes. This allowed us to record a large portion of the changes that would have
been lost with the previous one. There is however a slight probability that the offline
buffer was full, leading to the loss of a few changes.

SCM Usage Syde was used since the beginning of the implementation phase of
Speed, but CVS was only adopted four days later (01/26). This fact could have
influenced ownership in the beginning of the project. This was a decision taken by
the team and hence beyond our control. Pacman and jArk adopted Subversion at the
beginning of the project, so this threat does not apply for them.

7.2 Threats to Internal Validity

Internal Validity refers to the validity of our causal conclusions. We identified two
potential threats:

Developer Behavior Under Observation Since developers knew they were ob-
served, they may have altered their behavior in ways that we cannot predict. For
instance, they may have committed more—or less—often than usual. Since we
monitored our subjects for relatively long periods of time using non-intrusive tools
(SCM change logs and Syde), we think they had time to get used to it; hence that
effect should be weak.

Match of Ownership Measurements with Developers’ Opinion Ideally, we should
have collected the developers’ opinion on how much they know about a particular
file they edited. This collection should have been done at fixed intervals throughout
the data collection process, so we would have points in time to compare our findings

494 Empir Software Eng (2012) 17:467–499

with developers’ opinion. However, we did not collect this information, and showing
the map to developers several months after the data collection requires a perfect
memory from them to be able to check whether the map conforms to their notion of
ownership.

7.3 Threats to External Validity

External Validity refers to how much our results can be generalized to other
circumstances. We identified two potential threats to external validity:

Number of Systems We monitored three projects—one industrial and two acad-
emic projects—, featuring a total of eight developers over a combined time of 28
weeks. This is still a relatively low number of projects and a short period of time
(although two of the projects were monitored from start to completion). Moreover,
all the projects were implemented using the same toolset: the Java programming
language and the Eclipse IDE. These restrictions prevent us from deriving stronger
conclusions at this time.

Styles of Developers Another aspect to be considered is that developers might
present diverse patterns on saving and compiling, which could influence the results
of code ownership measurement, since it is based on the number of changes each
developer produced. We believe the usage of an IDE such as Eclipse, which outlines
the errors still present in the code, encourages one to compile more often, thus
mitigating this threat. In the same fashion, developers have different patterns of
SCM usage. These can be influenced by the development process adopted by the
team: Agile development encourages developers to check in their code frequently,
while more traditional processes encourage developers to maintain the repository
consistent, which may delay their check-ins.

Since we monitor eight developers, we do not know if we account for all the
variability, even though we did notice large differences in SCM usage behavior with
respect to the actual number of changes performed, which comforted our opinion
that our ownership metric is more resilient than the one based on SCM system
usage.

8 Conclusion

In this article we have used the logs of a novel type of software repository to
determine code ownership and to compare the result with the ownership computed
exclusively with SCM-level logs. The new repository stores every change performed
by every developer in a multi-developer project. The repository is managed by Syde,
a client-server application built with the goal of augmenting workspace awareness on
a multi-developer environment. The foundation of Syde is Spyware’s change-centric
approach (Robbes and Lanza 2008), in which each individual code edit is saved and
can be recovered in the future.

Similar to mainstream SCM systems, such as CVS, Syde produces history logs
containing useful information about changes, which can be mined in the same context

Empir Software Eng (2012) 17:467–499 495

as the widely mined CVS logs. The fundamental difference is that Syde’s logs are the
result of continuous edits performed by developers, who do not need to stop their
work to submit the changes. In contrast, CVS logs are the result of explicit check-
ins of changes, which can vary according to team culture, developer habits, and the
likelihood of merge conflicts. Hence, we argue that Syde’s logs reflect what happened
in the past more accurately than the ones provided by mainstream SCM systems.

We mined Syde’s log to determine code ownership and compared the result with
the one produced exclusively with CVS or SVN logs. We defined a new ownership
measurement based on the frequency with which developers edit each file; we
subsequently refined the new measurement to add the notion of memory loss on the
definition of code ownership. That is, a developer who has performed the majority of
code edits of a file, but has not touched it for a long period (when the file underwent
significant changes), starts to lose knowledge of it. In the meantime, the developer
who performs the recent changes becomes more knowledgeable, even though he may
not have performed as many edits as the first one.

To validate the Syde ownership measurement, we used the data collected by Syde,
and the CVS/SVN logs from the development of three distinct projects: Speed, for a
period of 15 days; jArk and Pacman for a period of five weeks. We monitored eight
developers for a total of 28 men/weeks, or 7 men/months.

We compared the results of the variants of ownership with the help of the
Ownership Map, a visualization introduced by Gîrba et al. (2005), that we extended
to fit our data. The results showed differences between the two classifications,
especially when active developers did not check in their changes frequently—in one
case, a developer did not commit any code for two weeks, significantly skewing the
measurement based on SCM data. Based on this finding, we suggest that our code
ownership classification is more accurate than the one proposed by Gîrba et al.
(2005), as it is less sensitive to the commit habits of developers.

In addition, we suggest that the use of the notion of memory loss when measuring
ownership reflects a more realistic scenario than assuming a developer remembers
everything regardless of the time passed. We found that models based on smaller
memory retention in general satisfied the two heuristics of minimizing the number of
ownership switches and of minimizing the number of short-term (possibly spurious)
ownership switches. However, it is important to emphasize the subjective nature of
forgetting, and thus, that the ideal rate of forgetting for each project is subject to its
characteristics.

The ownership maps are a means to investigate the variation of ownership at a
fine-grained level rather than a visualization to help developers to detect file owners.
The visualization has a number of scalability constraints, such as the number of
developers that can be distinguished by different colors, and the increasing difficulty
for the human eye to spot an ownership switch as the map is shrunk to show a longer
time span within a fixed size. Therefore, as future work on code ownership, we plan to
implement a recommender in the form of an Eclipse plug-in to help developers to lo-
cate those who are knowledgeable about an artifact of the system. The recommender
should allow a developer to query for experts of a file or a package, and provide a
rank of experts. We intend to use the ownership measurements investigated in this
work to compute the knowledge that each developer who changed an artifact has at
the moment another developer seeks for help. This recommender will be integrated
with the existing set of Syde plug-ins.

496 Empir Software Eng (2012) 17:467–499

We intend to investigate other subjective aspects that influence the knowledge
of an individual compared to a target group (in our case, a developer compared to
a team). Analogous to the notion of memory loss, there is the learning notion, i.e.,
how does one acquire knowledge of a part of the system. However, we believe that
the learning curve is more influenced by individual experience—in general and in
the context of a project–than the forgetting curve. That is, an expert is more likely
to understand what a feature does than a newcomer. We intend to study this notion
and model it in order to refine the ownership measurement.

We believe that the data made available by Syde opens new perspectives for
several analyses, such as the understanding of developers’ roles and activities, code
ownership, detection of unstable code, etc. We also believe that since the data
is being collected in real time, we can provide new types of “developer assis-
tance” (Zeller 2007), especially with respect to the collaborative aspects that Syde
supports.

Acknowledgements We would like to thank CPMBraxis and its professionals for using Syde and
providing useful feedback to us. We also thank the students who gently let us spy on them.

References

Anvik J, Hiew L, Murphy GC (2006) Who should fix this bug? In: Proceedings of ICSE 2006 (28th
international conference on software engineering). ACM Press, pp 361–370

Anvik J, Murphy GC (2007) Determining implementation expertise from bug reports. In: Proceed-
ings of MSR 2007 (4th international workshop on mining software repositories). IEEE Computer
Society, p 2

Biehl JT, Czerwinski M, Smith G, Robertson GG (2007) FASTDash: a visual dashboard for fostering
awareness in software teams. In: Proceedings of CHI 2007 (25th SIGCHI conference on human
factors in computing systems). ACM Press, pp 1313–1322

Baysal O, Malton AJ (2007) Correlating social interactions to release history during software evolu-
tion. In: Proceedings of MSR 2007 (4th international workshop on mining software repositories).
IEEE Computer Society, p 7

Bird C, Rigby PC, Barr ET, Hamilton DJ, German DM, Devanbu P (2009) The promises and
perils of mining git. In: Proceedings of MSR 2009 (6th working conference on mining software
repositories). IEEE Computer Society

Carpenter SK, Pashler H, Wixted JT, Vul E (2008) The effects of tests on learning and forgetting.
Mem Cogn 36(2):438–448

da Silva I, Chen P, Van der Westhuizen C, Ripley R, van der Hoek A (2006) Lighthouse: coordi-
nation through emerging design. In: Proceedings of ETX 2006 (OOPSLA Workshop on Eclipse
Technology eXchange). ACM Press, pp 11–15

de Souza CRB, Redmiles D, Dourish P (2003) Breaking the code, moving between private and public
work in collaborative software development. In: Proceedings of GROUP 2003 (International
ACM SIGGROUP conference on supporting group work). ACM Press, pp 105–114

Dig D, Manzoor K, Johnson R, Nguyen TN (2007) Refactoring-aware configuration management
for object-oriented programs. In: Proceedings of ICSE 2007 (29th international conference on
software engineering). IEEE Computer Society, pp 427–436

Ebbinghaus H (1913) Uber das Gedchtnis. Untersuchungen zur experimentellen Psychologie (Mem-
ory. A contribution to experimental psychology). Duncker and Humblot, Leipzig

Estublier J, Leblang D, van der Hoek A, Conradi R, Clemm G, Tichy W, Wiborg-Weber D (2005)
Impact of software engineering research on the practice of software configuration management.
ACM Trans Softw Eng Methodol 14(4):383–430

Fluri B, Würsch M, Pinzger M, Gall H (2007) Change distilling: tree differencing for fine-grained
source code change extraction. IEEE Trans Softw Eng (TSE) 33(11):725–743

Empir Software Eng (2012) 17:467–499 497

Gîrba T, Kuhn A, Seeberger M, Ducasse S (2005) How developers drive software evolution. In:
Proceedings of IWPSE 2005 (8th international workshop on principles of software evolution).
IEEE Computer Society, pp 113–122

Grinter RE (1996) Supporting articulation work using software configuration management systems.
Comput Support Coop Work 5(4):447–465

Hassan AE, Holt RC (2004) Predicting change propagation in software systems. In: Proceedings of
ICSM 2004 (20th IEEE international conference on software maintenance). IEEE Computer
Society, pp 284–293

Hattori L, Lanza M (2009) An environment for synchronous software development. In: Proceedings
of ICSE 2009 (31st ACM/IEEE international conference on software engineering—new ideas
and emerging results track). IEEE CS Press, pp 223–226

Hattori L, Lanza M (2010) Syde: a tool for collaborative software development. In: Proceed-
ings of ICSE 2010 (32nd ACM/IEEE international conference on software engineering),
pp 235–238

Hegde R, Dewan P (2008) Connecting programming environments to support ad-hoc collaboration.
In: Proceedings of ASE 2008 (23rd IEEE/ACM international conference on automated software
engineering). IEEE CS Press

John TW, Shana KC (2007) The wickelgren power law and the ebbinghaus savings function. Psycho-
logical Science 18(2):133–134

Lanza M, Hattori L, Guzzi A (2010) Supporting collaboration awareness with real-time visualization
of development activity. In: Proceedings of CSMR 2010 (14th IEEE European conference on
software maintenance and reengineering). IEEE CS Press, pp 207–216

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov
Phys Dokl 10:707–710

Lippe E, van Oosterom N (1992) Operation-based merging. SIGSOFT Softw Eng Notes 17(5):78–87
Ma D, Schuler D, Zimmermann T, Sillito J (2009) Expert recommendation with usage expertise.

In: Proceedings of ICSM 2009 (25th IEEE international conference on software maintenance).
IEEE Computer Society, pp 535–538

Matter S, Kuhn A, Nierstrasz O (2009) Assigning bug reports using a vocabulary-based expertise
model of developers. In: Proceedings of MSR 2009 (6th international working conference on
mining software repositories). IEEE Computer Society, pp 131–140

McDonald DW, Ackerman MS (2000) Expertise recommender: a flexible recommendation system
and architecture. In: Proceedings of CSCW 2000 (ACM conference on computer supported
cooperative work). ACM Press, pp 231–240

Mockus A, Herbsleb JD (2002) Expertise browser: a quantitative approach to identifying expertise.
In: Proceedings of ICSE 2002 (22nd international conference on software engineering). IEEE
Computer Society, pp 503–512

Murre J, Chessa A (2009) Spurious power laws of learning and forgetting: mathematical and compu-
tational analyses of averaging artifacts. In: Proceedings of CogSci 2009 (31st annual conference
of the Cognitive Science Society). Cognitive Science Society, pp 1175–1179

Omori T, Maruyama K (2008) A change-aware development environment by recording editing
operations of source code. In: Proceedings of MSR 2008 (5th international working conference
on mining software repositories). ACM Press, pp 31–34

Robbes R (2007) Mining a change-based software repository. In: Proceedings of the 4th international
workshop on mining software repositories (MSR 2007). ACM Press, p 15

Robbes R, Lanza M (2005) Versioning systems for evolution research. In: Proceedings of IWPSE
2005 (8th international workshop on principles of software evolution). IEEE CS Press,
pp 155–164

Robbes R, Lanza M (2008) Spyware: a change-aware development toolset. In: Proceedings of
ICSE 2008 (30th ACM/IEEE international conference in software engineering). ACM Press,
pp 847–850

Sarma A, Bortis G, van der Hoek A (2007) Towards supporting awareness of indirect conflicts
across software configuration management workspaces. In: Proceedings of ASE 2007 (22nd
IEEE/ACM international conference on automated software engineering). IEEE CS Press,
pp 94–103

Sarma A, Redmiles D, van der Hoek A (2008) Empirical evidence of the benefits of workspace
awareness in software configuration management. In: Proceedings of FSE 2008 (16th ACM
SIGSOFT international symposium on foundations of software engineering). ACM Press,
pp 113–123

498 Empir Software Eng (2012) 17:467–499

Schneider KA, Gutwin C, Penner R, Paquette D (2004) Mining a software developer’s local inter-
action history. In: Proceedings of MSR 2004 (1st international workshop on mining software
repositories), pp 106–110

Tu Q, Godfrey MW (2001) The build-time software architecture view. In: Proceedings of ICSM
2001(17th IEEE international conference on software maintenance). IEEE Computer Society,
p 398

Van Rysselberghe F, Demeyer S (2004) Studying software evolution information by visualizing the
change history. In: Proceedings of ICSM 2004 (20th IEEE international conference on software
maintenance). IEEE Computer Society, pp 328–337

Ying ATT, Ng R, Chu-Carroll MC, Murphy GC (2004) Predicting source code changes by mining
change history. IEEE Trans Softw Eng 30(9):574–586

Yu L, Ramaswamy S (2007) Mining cvs repositories to understand open-source project developer
roles. In: Proceedings of MSR 2007 (4th international workshop on mining software reposito-
ries). IEEE Computer Society, p 8

Zeller A (2007) The future of programming environments: integration, synergy, and assistance. In:
Proceedings of FOSE 2007 (2nd conference on the future of software engineering). IEEE CS
Press, pp 316–325

Zimmermann T, Weisgerber P, Diehl S, Zeller A (2004) Mining version histories to guide software
changes. In: Proceedings of ICSE 2004 (26th ACM international conference on software engi-
neering). IEEE CS Press, pp 563–572

Lile Palma Hattori is currently a PhD student and research assistant at the University of Lugano,
Switzerland. She received the M.S. in computer science from the Federal University of Campina
Grande, Brazil, and the B.S. in computer science from the Ruy Barbosa Computer Science College,
Brazil. She received from the Brazilian Society of Computation the Honor Student award for best
academic performance among graduates in 2005. Her research interests are in collaborative software
engineering and software evolution, focusing on tool and technique to help developers to collaborate.

Empir Software Eng (2012) 17:467–499 499

Michele Lanza is associate professor of the faculty of informatics, which he co-founded in 2004. His
doctoral dissertation, completed in 2003 at the University of Bern, received the prestigious European
Ernst Denert award for best thesis in software engineering of 2003. Prof. Lanza received the Credit
Suisse Award for best teaching in 2007 and 2009. At the University of Lugano Prof. Lanza leads
the REVEAL research group, working in the areas of software visualization, evolution, and reverse
engineering. He authored more than 100 technical papers and the book “Object-Oriented Metrics
in Practice”. Prof. Lanza is involved in a number of scientific communities, and has served on more
than 60 program committees. He is vice-president of CHOOSE (the Swiss Object-Oriented Software
Engineering society). He was program co-chair of ICSM (the IEEE International Conference on
Software Maintenance) in 2010, of MSR (the Working Conference on Mining Software Repositories)
in 2007 and 2008, of VISSOFT (the IEEE Workshop on Visualizing Software) in 2009, of IWPSE
(the International Workshop on Principles of Software Evolution) in 2007. He was General Chair of
ESUG 2007 (15th International Smalltalk Conference). He is steering committee member of MSR,
VISSOFT, Softvis, and IWPSE.

Romain Robbes is an assistant professor at the University of Chile in Santiago, Chile, where he
is a member of the PLEIAD research group. He earned his Ph.D. in 2008 at the University of
Lugano, Switzerland, with his dissertation entitled “Of Change and Software”. His Ph.D. thesis was
nominated for the GI-Dissertationspreis. He received his B.A. and M.S. degrees from the University
of Caen, in France. His work has been published in top-ranked software engineering venues such as
ICSE, ASE, J.ASE, SCP, EMSE, FASE, MoDELS, ICPC, MSR, and WCRE.

	Refining code ownership with synchronous changes
	Abstract
	Introduction
	Related Work
	Tool Support for Collaboration
	Operation-based SCM
	Ownership of Files and Expertise of Developers

	Syde
	Design & Implementation

	Code Ownership
	Measuring Code Ownership with CVS/SVN Logs
	Measuring Code Ownership with Syde Logs

	Ownership Maps
	CVS/SVN Ownership Map
	Syde Ownership Map
	Delta Ownership Map
	Ordering of the Files

	Case Studies
	Presentation of the Projects
	Characterizing Code Ownerships with Syde
	Evaluating Syde Ownership with Forgetting

	Threats to Validity
	Threats to Construct Validity
	Threats to Internal Validity
	Threats to External Validity

	Conclusion
	References

