
Introduction

In the absence of well-established diagnostic methods,
radiological confirmation of acute stroke has until
recently been difficult. Conventional methods such as
CT and T2-weighted MRI frequently cannot provide a
definitive diagnosis in the very acute stage. Diffusion-
weighted MRI (DWI), sensitive to water mobility [1,2],
is an established method for investigating acute cere-
bral ischaemia [3,4]. Since the advent of echoplanar
imaging (EPI), DWI can be used in clinical practice,
but is difficult to apply to the spine with standard EPI
techniques, since it is sensitive to changes in the local
magnetic field: bone and tissue interfaces cause sus-
ceptibility artefacts. Few studies have dealt with the use

of DWI for spinal cord ischaemia [5, 6, 7, 8, 9,10]. We
report five consecutive patients with acute spinal cord
ischaemia who underwent EPI DWI in the acute stage
with follow-up imaging. Our aim was to assess the
diagnostic value of DWI in the acute stage and clinical
correlations with follow-up T2-weighted imaging.

Materials and methods

We studied five consecutive patients, aged 54–75 years, with clini-
cally suspected acute spinal cord ischaemia, using conventional
MRI and DWI. We used a commercial 1.5 tesla imager capable of
EPI. The first study was performed 9, 38, 10, 46 and 12 h after the
onset of symptoms in patients 1–5, respectively. Follow-up imaging
was performed 2–9 days later using conventional sagittal and axial
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Abstract Acute spinal cord ischae-
mia is often undetectable with con-
ventional MRI. Diffusion-weighted
MRI (DWI) has been difficult to use
in the spine because of susceptibility
artefacts. We assessed the diagnostic
value of echoplanar DWI for early
confirmation of spinal cord ischae-
mia. We performed conventional
MRI and DWI in two men and three
women, aged 54–75 years with clin-
ically suspected acute spinal cord
ischaemia. Imaging was performed
9–46 h after the onset of symptoms,
and 2–9 days later to assess the
extent of ischaemic signal change.
Spatial resolution of DWI within the
spine using standard equipment was
poor, but in all patients, early DWI
revealed areas of high signal
indicating decreased diffusion,

confirmed by measurement of
apparent diffusion coefficients.
Follow-up MRI showed high signal
on T2-weighted images and contrast
enhancement at the expected levels.
Neurological deficits corresponded
with radiological findings in four
patients: various syndromes, includ-
ing isolated bilateral weakness or
sensory change and combined defi-
cits, were found. Echoplanar DWI
may be helpful for confirmation of
spinal cord ischaemia in the acute
stage, but follow-up T2-weighted
images have superior spatial resolu-
tion and correlation with clinical
findings and lesion extent.
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T1- and T2-weighted images with contrast enhancement to assess
the extent of ischaemic signal change. We used a spine coil, with a
standard head isotropic EPI single-shot spin-echo DWI sequence
(TR 5700, TE 139.0 ms, slice thickness 5 mm, one acquisition, field
of view 240·240 mm, 96·200 pixels, acquisition time 22 s) with b
values of 50, 500 and 1000 s/mm2. We also obtained T2-weighted
images in axial (TR 4888 TE 130 ms, slice thickness 4 mm, field

of view 130 · 260 mm, 180 · 512 pixels) and sagittal(TR 3500
TE 120 ms, slice thickness 4 mm, field of view 190 · 380,
130 · 512 pixels) planes. Precise localisation in the horizontal
plane was performed by overlaying a grid using the imager
console software. Apparent diffusion coefficient (ADC) maps
were generated from the DWI on a pixel-by-pixel basis with
software supplied by the manufacturer. Regions of interest were
defined in areas giving higher signal than unaffected portions
of the spinal cord, and ADC measured in them on the console.
All patients underwent lumbar puncture to exclude haemorrhagic
or inflammatory disorders, and had extensive blood analyses,
12-lead ECG, CT of thorax and abdomen, and transthoracic
echocardiography in addition to repeated neurological examina-
tion.

Results

On DWI and T2-weighted images the spinal cord le-
sion was thoracic in three patients and cervical in two
(Fig. 1). In all patients, the early DWI showed high
signal in the spinal cord (Figs. 2, 3) corresponding to
decreased diffusion as shown by the ADC. Because of
the EPI acquisition technique, severe susceptibility ar-
tefacts around the spinal cord caused loss of detail of
surrounding structures, especially the bones. The initial
ADC were: 0.70, 0.83, 0.87, 0.84 and 0.90·10-3 mm/s
in patients 1–5, respectively. Three patients had also
high signal on T2-weighted images at 9 (patient 1,
Fig. 2a), 38 (patient 2), and 12 h (patient 5, Fig. 3a)
after the onset of symptoms. We saw no abnormality
on DWI (Fig. 2b, 3b) or ADC maps (Fig. 3c, d)
adjacent to the ischaemic zones, in areas which proved
to be unaffected on follow-up imaging. For the latter,
we took care to positioned the slice at the same level
(Fig. 4). After 2–9 days, T2-weighted images (Fig. 2c)
showed high signal in all patients contrast enhance-
ment on T1-weighted images at the relevant sites
(Fig. 3d); signal changes were still present on DWI,
but less marked.

Detailed clinical information is presented in Table 1.
The spinal stroke was preceded by transient ischaemic
attacks in three patients, in the form of intermittent
attacks of thoracic belt-like pain in patient 1 and
intermittent painless leg weakness in patients 3 and 4.

Fig. 1a–e Diagrams of levels with maximum lesion extent as seen
on follow-up axial T2-weighted images in each patients. AST
anterior spinothalamic tract (light touch); LP lateral pyramidal
tract (motor); LST lateral spinothalamic tract (pain and temper-
ature); PF posterior funiculus, including gracile and cuneate
fasciculi (posture and vibration sense)

Fig. 2a–c Patient 1. a Axial T2-weighted image 9 h after onset of
symptoms shows slightly high signal posterocentrally in the spinal
cord (arrow). b Axial diffusion-weighted image (DWI) at the same
time and level, shows high signal in the area corresponding to the
spinal cord T12 (arrow). c Axial T2-weighted image 48 h later more
definite high signal at the same site (arrow)
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The symptoms of spinal stroke developed within from
a few minutes to 12 h. In patients 1, 2 and 4, the initial
symptom, before the development of sensory and mo-
tor deficits, was transient, lancinating, local or radicu-
lar back and/or neck pain. In patient 2, atrial
fibrillation was the presumed cause, while in patient 5,
the spinal stroke occurred after grafting of a thoraco-
abdominal aortic aneurysm. In patients 1, 3 and 4,
investigations revealed no specific cause; they all,
however, had vascular risk factors: patients 3 and 4
had arterial hypertension, patients 1 and 4 were heavy
smokers and patient 3 suffered from hypertriglycerida-
emia. Neither cerebrospinal fluid (CSF) and extensive
blood tests nor other radiological examinations showed
inflammatory, neoplastic or other metabolic distur-
bances other than the vascular risk factors.

Discussion

We have demonstrated the use of EPI DWI in acute
spinal cord ischaemia. While recent reports have shown
that DWI of the spinal cord is feasible and of potential
interest, few have addressed its utility in acute spinal
cord infarcts. We showed high signal on DWI in all five
patients admitted with acute myelopathy. The diagnosis
of spinal cord ischaemia could be confirmed on the basis
of the history, initial symptoms, CSF analysis and fol-
low-up MRI.

The ADC were reduced in the areas of high signal on
DWI. The time course of DWI changes was similar to
that reported in the brain [4], and the ADC seem to
correlate with those reported in animal experiments [11]
or those obtained with interleaved EPI DWI sequences
[12]. Murphy et al. [5] found ADC of 1.2±0.1lm2/ms in
preterm infants, which are higher than those in adults.
None of our patients had a vertebral body infarct
[13,14]. Despite the limited number of patients studied
so far, DWI appears to be a sensitive method for early
diagnosis of spinal cord ischaemia. However, clinical
entities mimicking spinal stroke, such as inflammatory
or neoplastic medullary lesions have not, to our
knowledge, been fully investigated with DWI. Thus, the
specificity of our findings remains to be confirmed. It is
probable that, as in the brain, spinal DWI will produce a
number of false positives and negatives. In a recent
study, Clark et al. [9] found higher diffusion in spinal
lesions of multiple sclerosis than in normal volunteers.

Fig. 3 a–e Patient 5. a Axial T2-weighted image at T11 12 h after
the onset of symptoms onset shows a large area of high signal
centrally in the spinal cord (arrows). b Axial DWI at the same time
and level shows high signal (arrow). Note strong chemical-shift
artefact above spinal cord (arrowheads). c Axial ADC (apparent
diffusion coefficient) map at the same time and level shows a
dark area in the spinal cord (arrow). Note susceptibility-related
artefactual signal loss (arrowheads). d Axial ADC map 5 days
later still shows still low ADC, but less marked. One can also see
contour of the left side of the vertebral body (large arrows)
and spinous process (open arrow) and the ventral contour of the
spinal canal (small arrows). e T1-weighted fat-saturated image after
5 days shows contrast enhancement of the central spinal cord,
predominantly in the ventral horns (the ‘‘snake bite’’ pattern)
(arrows)
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A drawback of the EPI technique is very strong sus-
ceptibility artefacts, which destroy most information
concerning neighboring structures such as the vertebrae.
In order to image stroke, it is necessary to use high values
of b, to retain sensitivity to ischaemia [15]. This can be
done using susceptibility-insensitive methods such as

line-scan or HASTE-based DWI [16]. We used a trace
image automatically generated by our imager [17]. This
has been validated for human cerebral stroke but is more
crucial in the spinal cord where tracts are oriented
strongly craniocaudally. Even in the brain orientation-
dependent ADC measurements can induce errors [18,19].

Fig. 4a–d Demonstration of
axial slice positioning for two
examinations. Left First exam-
ination right second. a, b Show
precise selection of axial slices
c, d which show the same
positioning on scout images and
relative to the kidneys and
aorta

Table 1 Patient characteristics and clinical findings

Patient, age
(years)/sex

Extent and site
of lesion on
axial T2-weighted
images

Weakness Grade Sensory
level

Sensory deficits Hyperreflexia Babinski
sign

Bladder
dysfunctionSite (right/left)

1. 60/M T12, bilateral
posterior

Legs T12 Bilateral loss of vibration,
pain and temperature;
loss of touch on the right

Right>left Right None
Proximal 3/4
Distal 4/4

2. 75/F C5, left anterior
and right
posterior

Arms T4 Loss of pain and
temperature on right

None Left None
Proximal 5/3
Distal 4/1
Legs
Proximal 5/4
Distal 5/4

3. 74/F T3, bilateral
intermediate

Legs T6 Bilateral loss of pain
and temperature

Bilateral Bilateral None
Proximal 2/2
Distal 2/2

4. 58/F C3, bilateral
intermediate

None C4 Bilateral loss of pain
and temperature;
loss of postural
sensation on left

None None Yes

5. 54/M T11, bilateral
central

Legs None None Bilateral None None
Proximal 0/0
Distal 4/4
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We confirmed that spinal cord ischaemia can
present with a variety of syndromes including isolated
bilateral motor or sensory or combined deficits (Ta-
ble 1). The clinical findings in four patients correlated
with maximum axial lesion extent on follow-up T2-
weighted images (Fig 1). In patient 1, deficits in
vibration sense were consistent with a posterior lesion
(Fig 1a) including the lateral pyramidal tract and
correlated with the motor deficits. In patients 2 and 4,
with atypical presentations, we found a good correla-
tion between clinical and radiological findings (Fig 1b,
d). Patient 3, presenting with an anterior spinal artery
syndrome showed an anterocentral lesion on axial
images (Fig 1c). Patient 5, however, had pure motor
deficits whereas MRI showed a central stroke includ-
ing both dorsal horns (Fig 1e). The lesion on T2-
weighted images was up to seven vertebrae longer than
indicated by the sensory levels, as has been reported
previously [20]. The lesions did not all fit with text-
book anterior or posterior spinal artery strokes but,
given the known extremely variation in individual
blood supply to the spinal cord, this is not surprising.

Early DWI may therefore be especially helpful in
clinically atypical syndromes.

Despite extensive investigation, we were unable to
determine the aetiology of spinal cord ischaemia in three
patients. Aetiological studies suggest that most cases of
spinal cord ischaemia are secondary to aortic disease
(rupture, dissection, aneurysms, malformations), surgery
to the aorta, or severe arterial hypotension [21].

DWI may become important for early diagnosis of
spinal cord ischaemia. Further studies of larger numbers
of patients are needed to determine its sensitivity and
DWI should be performed in other causes of myelopa-
thy, such as inflammation, to establish its specificity.
Development of sequences less subject to susceptibility
effects will increase image quality and thereby spatial
resolution. Perfusion imaging of the spine remains to be
implemented, but the demand imposed on MRI gradient
systems to obtain high-resolution fast multislice perfu-
sion imaging may render it difficult.
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3. Lövblad KO, Laubach HJ, Baird AE,
et al (1998) Clinical experience with
diffusion-weighted MR in patients with
acute stroke. AJNR 19: 1061–1066

4. Schlaug G, Siewert B, Benfield A,
Edelman RR, Warach S (1997) Time
course of the apparent diffusion coeffi-
cient (ADC) abnormality in human
stroke. Neurology 49: 113–119

5. Murphy BP, Zientara GP, Huppi PS,
et al (2001) Line scan diffusion tensor
MRI of the cervical spinal cord in
preterm infants. J Magn Reson Imaging
13: 949–953

6. Holder CA, Muthupillai R, Mukundan
S Jr, Eastwood JD, Hudgins PA (2000)
Diffusion-weighted MR imaging of the
normal human spinal cord in vivo.
AJNR 21: 1799–1806

7. Ries M, Jones RA, Dousset V, Moonen
CT (2000) Diffusion tensor MRI of the
spinal cord. Magn Reson Med 44: 884–
892

8. Clark CA, Barker GJ, Tofts PS (1999)
Magnetic resonance diffusion imaging
of the human cervical spinal cord in
vivo. Magn Reson Med 41: 1269–1273

9. Clark CA, Werring DJ, Miller DH
(2000) Diffusion imaging of the spinal
cord in vivo: estimation of the principal
diffusivities and application to multiple
sclerosis. Magn Reson Med 43: 133–138
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