
The VLDB Journal (2011) 20:867–892
DOI 10.1007/s00778-011-0229-7

REGULAR PAPER

UpStream: storage-centric load management for streaming
applications with update semantics

Alexandru Moga · Irina Botan · Nesime Tatbul

Received: 23 April 2010 / Revised: 17 March 2011 / Accepted: 22 March 2011 / Published online: 9 April 2011
© Springer-Verlag 2011

Abstract This paper addresses the problem of minimiz-
ing the staleness of query results for streaming applications
with update semantics under overload conditions. Staleness
is a measure of how out-of-date the results are compared
with the latest data arriving on the input. Real-time stream-
ing applications are subject to overload due to unpredictably
increasing data rates, while in many of them, we observe that
data streams and queries in fact exhibit “update semantics”
(i.e., the latest input data are all that really matters when
producing a query result). Under such semantics, overload
will cause staleness to build up. The key to avoid this is to
exploit the update semantics of applications as early as pos-
sible in the processing pipeline. In this paper, we propose
UpStream, a storage-centric framework for load manage-
ment over streaming applications with update semantics. We
first describe how we model streams and queries that possess
the update semantics, providing definitions for correctness
and staleness for the query results. Then, we show how stale-
ness can be minimized based on intelligent update key sched-
uling techniques applied at the queue level, while preserving
the correctness of the results, even for complex queries that
involve sliding windows. UpStream is based on the simple
idea of applying the updates in place, yet with great returns
in terms of lowering staleness and memory consumption, as
we also experimentally verify on the Borealis system.

A. Moga (B) · I. Botan · N. Tatbul
Systems Group, Department of Computer Science,
ETH Zurich, Universitatstrasse 6, 8092 Zurich, Switzerland
e-mail: amoga@inf.ethz.ch

I. Botan
e-mail: irina.botan@inf.ethz.ch

N. Tatbul
e-mail: tatbul@inf.ethz.ch

Keywords Data stream processing · Load management ·
Update streams · Staleness

1 Introduction

Processing high-rate data streams in real time has been a
challenge for many applications including financial services,
network traffic monitoring, and location tracking systems.
Stream Processing Engines (SPEs) have been built to run
continuous queries over such streams and to produce results
in near real time. A major challenge for these systems is to be
able to keep up with data rates and when this is not possible,
take the necessary actions to adapt to overloading situations.
This paper investigates ways to minimize the staleness of
query results for streaming applications with update seman-
tics under conditions of high load.

Although SPEs typically model data streams with append
semantics, after careful consideration of several streaming
domains such as the ones listed earlier, and not only, we were
able to find streams and queries that exhibit update seman-
tics. “The latest data are all that matters” can summarize this
property succinctly. Furthermore, during our analysis in the
streaming domain, we have observed that usually data are
aggregated and processed based on certain items of interest.
We refer to these as update keys and to the nature of queries
that preserve update key information as key-sensitive queries.

Let us consider an example taken from the financial ser-
vices domain. We have two data streams, one containing the
trades and the other the quotes registered during a trading
day in the stock market:

Trades(Time, Symbol, Price, Volume)
Quotes(Time, Symbol, Bid, BidVolume, Ask, AskVolume)

A trade tuple contains the price and volume of a stock
traded for a particular stock symbol at a particular time.

123

868 A. Moga et al.

The price is attributed to the current market price for stocks
belonging to that symbol. A quote tuple contains the highest
bid and the lowest ask for a symbol together with their cor-
responding volumes that are attributed to the current state of
buy and sell orders for the same symbol on the market at a
particular time. These streams clearly have update semantics,
and we call them update streams.

Streaming queries can also exhibit such update semantics.
For instance, consider the following query:

Q1: For each symbol, report the price and the change
in price relative to the beginning of the day.

Q1 is a key-sensitive query whose output stream is an
update stream as well, since the results are updates for the
same stock symbol, i.e., the key. The window of interest is
the time elapsed from the beginning of the day. The following
query would be another example:

Q2: For each symbol, report the total trade volume and
average trading price in the last 10 min.

Here, the window of interest consists of the last 10 min
worth of tuples and slides over the Trades stream.

An SPE running such queries must ensure that query
results are delivered in a timely fashion. We can identify
two situations:

• The current result reflects the latest data: In the context of
Q2, the average price is computed and delivered before
the window gets the chance to slide.

• The current result reflects obsolete data: While the cur-
rent average price was being computed, new trades were
registered that caused the window to slide. This happens
in situations of overload when the system cannot keep
up with data rates. In these cases, staleness is the metric
to measure the amount by which query results are super-
seded by newer input data. Therefore, when processing
streams with update semantics, the main goal is to pro-
vide the most up-to-date answers to the application with
the lowest possible staleness, as opposed to streams with
append semantics, where providing all answers with the
lowest latency is more important.

The staleness problem has been approached previously in
web databases, soft real-time databases, or streaming data
warehouses [2,7,10,15,16]. Basically, that research con-
sidered scheduling updates to base data or synchronizing
local copies of remote databases while analyzing the trade-
offs between data timeliness (i.e., staleness) and response
time of user queries. We approach the problem of min-
imizing staleness in the streaming context, which offers
a different setting: Updates and queries are part of the
same pipeline, data arrives as high-rate push-based streams,
while queries are persistent. In stream processing, various

load management techniques have been proposed ranging
from dynamic load balancing (e.g., [31]) to adaptive load
shedding (e.g., [28]). However, none of them have consid-
ered the special setting offered by applications with update
semantics.

Our key insight into minimizing staleness of stream-
ing applications with update semantics under overload
conditions is to push update semantics up the process-
ing pipeline, thereby reacting to load accordingly and as
early as possible. We propose UpStream, a storage-cen-
tric framework for load management based on update
queues. We exploit the fact that update streams naturally
lend themselves to load shedding. This allows for smarter
load management while preventing queues from growing
uncontrollably.

Our basic solution for load management is to perform key-
based in-place updates in the queue. We further enhance this
solution in two key directions: (i) leveraging stream charac-
teristics (such as non-uniform key update frequencies) for
intelligent key scheduling, and (ii) ensuring correct query
results and low memory usage while running sliding win-
dow queries.

More specifically, this paper presents the following con-
tributions:

• A model for update-based stream processing,
• A storage-centric load management framework based on

update queues,
• Two alternative policies for directly minimizing stale-

ness (IN-PLACE and LINECUTTING) based on heuris-
tics that exploit differences in update frequencies across
different keys,

• Techniques for correctly and efficiently processing
update streams across complex sliding window queries
in order to minimize staleness and memory consumption,
and

• Experimental performance analysis on a prototype
implementation that builds on the Borealis stream pro-
cessing system [1].

The rest of the paper is organized as follows: In Sect. 2, we
describe the basic models and definitions that set the stage
for the research problem we address in this paper. Section 3
introduces our storage-centric load management framework.
Section 4 describes the IN-PLACE and LINECUTTING
policies for minimizing staleness. Section 5 explains how
UpStream can process queries with sliding windows in a way
to ensure correctness and low staleness, while using the mem-
ory resources efficiently. In Sect. 6, we briefly summarize
the implementation of our techniques, putting all the pieces
together. The prototype-based experimental results are pre-
sented in Sect. 7. We summarize the related work in Sect. 8
before we conclude and discuss future directions in Sect. 9.

123

UpStream: storage-centric load management for streaming applications with update semantics 869

2 Models for processing update streams

In this section, we first present the general models for update-
based stream processing. We build on these models when
we later define staleness and contrast it to latency, arguing
that staleness is a more suitable metric for applications with
update semantics.

2.1 Streams and queries

Let us first define how we model data streams:

Definition 1 (Data stream) A data stream is a possibly infi-
nite sequence of data items containing relational tuples of
the form (T, K , V), where T is a timestamp for the time of
generation at the source, K is the “update key” field, and V
holds a payload value.

Our definition can be compared with the stream data mod-
els described in previous work [19], where a stream is con-
sidered to represent a signal, described by a one-dimensional
function A : [a1 . . . aN] → R. The stream is a sequence of
data items (ai , di), where ai is a domain value (1 ≤ i ≤ N)
and di is data associated with the domain value. Each new
data item generates a change in the state of the signal (A[ai]).
Three models were proposed based on how the change takes
place: (i) in the time series model, A[ai] ← di ; (ii) in the
cash-register model, data items are increments to the old
state, A[ai] ← A[ai] + di ; and (iii) in the turnstile model,
both increments and decrements are allowed. In our stream
definition, update key fields correspond to the domain val-
ues. Furthermore, time series change model is the one that
best suits the update semantics.

Let us next define how we model continuous queries over
streams. Depending on the mode of input and output data
delivery, there are four possible continuous query models in
general. Figure 1 illustrates these alternatives. We focus on
the push-push model in this paper. In our model, a continuous
query Q applies key-based computation on an input stream I
and produces results on the output stream O . Data elements
on I and O first need to conform to Definition 1 and then to a
relationship determined by the transformation applied by Q.

Definition 2 (Lineage mapping function) A key-wise line-
age mapping function l maps every output o ∈ O to a subset
of I from which o was derived (denoted by l(o)), as a result

output
stream

push
or

periodic pull

push
or

periodic pull

Source
Data End−point

Application
 input
stream

(O)(I)

Continuous
Query

(Q)

Fig. 1 Continuous query models

of the transformation applied by Q. If o = (to, ko, vo), then
∀i = (ti , ki , vi) ∈ l(o) : ki = ko.

The scope of the lineage mapping function [17] or the
“lineage set” is determined by the query operations. To the
query, the input stream appears as a concatenation of lineage
sets. Similar to [11], let us call this the concatenated stream
of lineage sets, denoted by Pl(I).1

For the rest of the definitions, we introduce two helper
functions that are overloaded to cover input and output tuples
as well as lineage sets. key maps elements to their key value:
∀o = (to, ko, vo) ∈ O : key(o) = key(l(o)) = ko.τ maps
elements to timestamps: ∀o = (to, ko, vo) ∈ O : τ(o) = to;
for the corresponding lineage set l(o), τ (l(o)) returns the
timestamp of the last item in the lineage set.

Here is how we model a stream with update semantics:

Definition 3 (Update mapping function) Given two output
tuples o, o′ ∈ O, o′ is the update of o over the output stream
O if and only if (i) key(o′) = key(o) and τ(o′) > τ(o), and
(ii) �o′′ such that (key(o′′) = key(o) andτ(o′) > τ(o′′) >

τ(o)). An update mapping function u is defined over the
output stream O such that u(o) = o′.

The update mapping function allows us to reason about
results with the same key value as a stream of time-based
updates (rather than value-based ones which would be caused
only by changes in the payload value). A new result effec-
tively invalidates the previous one. In fact, the result stream is
an update stream. Updates in the output stream map directly
and uniquely onto elements in the concatenated stream of
lineage sets. Thus, Pl(I) is also an update stream: Given
two results o, o′ ∈ O such that u(o) = o′, then l(o′) is the
update of l(o) over Pl(I).

In theory, we can model stream processing using the time-
less approach: Imagine having the entire output stream and
being able to immediately observe the lineage set of each
result. In practice, however, we may need to delimit the line-
age set in the input stream without having a corresponding
result (e.g., before the query gets the chance to produce it).
There are indeed situations when this can be done easily,
assuming the query can produce a result based on a finite
set of tuples delimited using query parameters. For instance,
the case of tuple-based operations is simple: Every tuple is
an update both in the input and in the output, and the query
must preserve the key values. On the other hand, window-
based operations (e.g., sliding window aggregations) logi-
cally group the input stream by group-by fields and construct
sliding windows on each substream based on a window size
(w) and a window slide (s). One or more aggregate functions
are applied on the window, producing an output tuple. The

1 The notation is inspired by the fact that the lineage sets are among
the elements of the power set of I, P(I).

123

870 A. Moga et al.

group-by fields must be a superset of the key fields to be able
to retain them in the output.2 If o2 is an update on o1 in the
output, then l(o2) = w2 is an update on l(o1) = w1. Thus,
the unit of update is a window of tuples. The difference in
operational units must be taken into account in managing the
updates in a real system. This is an important issue that we
will discuss again in detail in Sect. 5.

2.2 Order and correctness

In our model, we assume that both input and output update
streams are partially ordered, while elements with the same
key values are totally ordered with respect to τ values.
Despite these ordering assumptions, in a real stream process-
ing system, we can assume nothing about the order in which
processing takes place nor the order of result delivery. These
would affect the relative order between results and lineage
sets, which we consider a matter of correctness in runtime
operation. That is, given two outputs o1 and o2 (not neces-
sarily with the same key value), with τ(l(o2)) ≥ τ(l(o1)),
how are o1 and o2 ordered? We classify system models for
stream processing based on this correctness criteria, starting
with the definition of an ideal system:

Definition 4 (Instantaneous system (IS)) An instantaneous
system (IS) is an infinitely fast system capable of scheduling
any query, processing any stream tuples arriving at any rate,
and producing any query results in zero time once necessary
data are available.

An IS is a system in which if τ(l(o2)) is strictly greater
than τ(l(o1)), then τ(o2) > τ(o1) is always guaranteed. This
covers the case when key(o1) = key(o2) but not only. That
is, it can also happen that τ(l(o1)) = τ(l(o2)), which is only
the case when key(o1) 	= key(o2). Then, an IS would pro-
duce τ(o2) = τ(o1), which is correct based on the partial
ordering of the output stream.

The IS definition offers an idealistic view of the system.
In a real system, however, processing a tuple, scheduling a
query, or delivering a result take time. A real system may
employ various techniques to deal with load or the queries
may exhibit different execution semantics that can affect the
order in which results are produced.

Definition 5 (Strictly correct system (SCS)) A strictly cor-
rect system (SCS) is one in which a query’s outputs having
the same key value are the same and appear in the same order
as in an IS.

Definition 6 (Non-strictly correct system (nSCS)) A non-
strictly correct system (nSCS) is one in which a query’s

2 In the rest of the paper, for ease of presentation, we simply use que-
ries where the group-by fields are the same as the update key fields; our
techniques are general enough to handle the superset case.

outputs having the same key value are a subset of the ones
generated in an IS but appear in the same order.

Definition 7 (Incorrect system (ICS)) An incorrect system
(ICS) is one that does not guarantee the same order of a
query’s outputs as in an IS, nor does it guarantee the same
outputs.

Systems that are not strictly correct deliver approximate
results, making them less accurate. For instance, an nSCS can
cover subset-based approximation, while an ICS can cover
cases such as delivering nearly the same amount of results
that may be inaccurate by themselves (this distinction has
been made before when debating the correctness of window-
aware load shedding in [27]). In this paper, we focus on highly
loaded non-strictly correct systems (nSCS).

2.3 Staleness

In a SCS, all input tuples are expected to be processed com-
pletely (append semantics). The main focus is on minimizing
the time that each tuple spends in the system until it is pro-
cessed, and a corresponding result is appended to the output
stream. Therefore, end-to-end processing latency is the most
important QoS metric.

In a nSCS, the completeness requirement for the result set
is relaxed and a different set of challenges arises. That is:
How does a nSCS explain the results and/or lack thereof to
the Application? One way to report on QoS degradation is to
use latency and accuracy loss (e.g., number of results deliv-
ered per number of results that would have been produced
by a SCS) [5,25,27–30]. In this paper, we study applica-
tions with update semantics for which the significance of
a result is directly stated: It is more important to deliver
the most up-to-date result than all results with low-latency.
To capture this goal, we introduce a different QoS metric,
staleness.

Staleness metric was also used by previous work for
bringing multiple data copies up-to-date in various different
contexts, including cache synchronization and materialized
view maintenance [4,10,21,15]. The exact definition varies
depending on the problem context and is usually based on one
of the following: time difference, value difference, or number
of unapplied updates. In this work, we use a time-based def-
inition for staleness, since this captures the real-time aspect
of our target applications more directly. Furthermore, a time-
based staleness metric facilitates contrasting or integrating
update semantics with the traditional append semantics that
is typically based on latency, which is also a time-based
metric.

Staleness is a property we associate with each output sub-
stream that we deliver for each different update key value
through a continuous query. It shows how much a result tuple

123

UpStream: storage-centric load management for streaming applications with update semantics 871

with a certain update key value k falls behind in time with
respect to more recent input arrivals for k.

Next, we need to adapt the definitions of lineage and
updates for subset-based query approximation in a nSCS:

• In a nSCS, only a correct subset � of all the results in O
gets produced.

• For every output update o ∈ �, there exists a set of tuples
in I , denoted by λ(o), based on which o was produced
by Q and λ(o) = l(o).

• Given two results o, o′ ∈ �, o′ is the update of o, that
is, u(o) = o′ over �, if there exists a set of m tuples,
odi ∈ O, (i = 1 . . . m, m ≥ 0), such that u(o) = od(1)∧
· · · ∧ u(od(i)) = od(i+1) ∧ · · · ∧ u(od(m)) = o′ hold
over O .

Now, we can introduce the formal staleness definitions:

Definition 8 (Staleness of a result) For any output update
o ∈ �, we define its staleness as:

S(o) =
⎧
⎨

⎩

τ(o)− τ(l(od)), if ∃od ∈ Os.t. u(o) = od and
τ(l(od)) < τ(o) hold over O

0, otherwise.

The staleness of a result tuple indicates the amount of
time by which the result has been superseded by more recent
(fresher) input updates, at the instant in time when it was pro-
duced. We can view the staleness of a result as the penalty
the system has to pay for committing to processing an input
update while fresher updates await (either before the start
of processing or after). By contrast, latency of the result is
computed as (τ(o)− τ(l(o))), that is, the time elapsed since
necessary data arrived in the input.

Definition 9 (Staleness of a key) The staleness of an out-
put update stream for a key k is a function of time, Sk ,
characterized on time intervals between any o, o′ ∈ � with
u(o) = o′. The staleness of the key at any time t in the interval
[τ(o), τ (o′)) is given by the following formula:

Sk(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t − τ(o)+ S(o), if S(o) 	= 0
0, if S(o) = 0 and

t ∈ [τ(o), τ (λ(o′)))
t − τ(λ(o′)), if S(o) = 0 and

t ∈ [τ(λ(o′)), τ (o′)).

The staleness of a key evolves in time as follows:

– If the result is stale when it is produced (S(o) 	= 0), it
will become even more stale as time passes (as it ages in
the output) until new results are produced (o′) with lower
staleness values. Staleness of a key at time t can be inter-
preted as the staleness of the last result tuple (S(o)) plus
the age of the result, i.e., how much time it has spent in
the output without being updated (t − τ(o)).

.. e’ d’ b’ a’

e’d’b’a’

fedcba
input arrival timeline

output delivery timeline

rate = 1/2
cost = 3

.. f e d c b a

st
al

en
es

s

Fig. 2 Staleness

– If the result is not stale, i.e., it reflects the freshest input
data (S(o) = 0), it will stay fresh (zero staleness) until
new input updates arrive (λ(o′)), at which time the stale-
ness of the key starts to grow again.

Figure 2 illustrates our staleness definition. In this exam-
ple, there is one continuous query (simply with tuple-based
operators) and a single update key value observed in the input
stream. Update tuples (e.g., a) arrive at a rate of 1 update per
2 time units, while results are produced every 3 time units
(e.g., a′). Note that a = λ(a′), b = λ(b′), and so on. As
soon as a new input update arrives, staleness (of the key)
starts to increase linearly with time. For example, update
b arrived while update a was being processed. When a′ is
delivered, staleness goes down to (τ (a′) - τ(b)). The query
starts processing b, but staleness increases with time. When
b′ is finally delivered, staleness goes down to (τ (b′) - τ(c)).
At this point, both c and d have arrived. To lower staleness,
the system should skip c and pick d for processing, which
is more recent. When d ′ is delivered, staleness substantially
goes down, but does not become completely zero, since e
has arrived a short while ago. Here, we can see the differ-
ence between staleness and latency. Latency captures how
long it takes to produce an output (e.g., for d ′, the latency is
τ(d ′)−τ(d)), whereas staleness captures how out-of-date an
output (e.g., d ′) is because a newer tuple (e.g., e) has super-
seded it in the input (e.g., for d ′, the staleness is (τ (d ′) −
τ(e))).

Definition 10 (Staleness of a stream) Staleness of an output
update stream with n keys is a function of time, S , char-
acterized as follows: S (t) = F(Sk1(t), . . . ,Skn (t)), where
Ski (t) is the staleness of the key ki (i = 1..n) and F denotes
a generic user defined function of n parameters.

This definition offers a flexible framework for measur-
ing staleness of an entire stream at each moment in time.
However, staleness of the result tuple and staleness of the
key remain the invariants of our framework, as they express
the properties of applications with update semantics. We left
the door open for the application to define a specific way of

123

872 A. Moga et al.

aggregating staleness values at the stream level. In previous
work, we have seen several ways of doing so. Reporting
on the maximum staleness value, averaging over staleness
values of all keys or showing variability are among them. In
this work, we focus on aggregating staleness values using an
average function so that we can reason about the efficiency of
our techniques in a more concrete way. The average staleness
of a key S k and the average staleness of the entire stream S
of n updating keys for the interval [t1, t2] can be computed
as follows:

S k([t1, t2]) = 1

t2 − t1

t2∫

t1

Sk(t)dt ,

S ([t1, t2]) = 1

n

n∑

i=1

S ki ([t1, t2]).

3 Storage-centric approach

We take a storage-centric approach to load management for
streaming applications with update semantics. Our motiva-
tion for doing so is threefold. First of all, storage is the
first place that input tuples hit in the system before they get
processed by the query processing engine. Input tuples are
first pushed into a tuple queue, where they are temporar-
ily stored until they are consumed. The earlier the update
semantics can be pushed in the processing pipeline, the bet-
ter it is for taking the right measures for lowering staleness.
Second, it is easy and efficient to capture update seman-
tics as part of a tuple queue. Applying “in place updates”
in the queue is straightforward and also memory efficient.
Finally, a storage-based framework allows us to accommo-
date continuous queries with both append and update seman-
tics in the same system, by defining their storage mechanisms
accordingly. In other words, one can selectively specify cer-
tain tuple queues as “append queues” and others as “update
queues” without making any changes in the query pro-
cessing engine. This kind of model is also in agreement
with recently proposed streaming architectures that decou-
ple storage from query processing, such as the SMS frame-
work [8].

In what follows, we first introduce the concept of update
queues; then, we describe the design of our storage manager
architecture.

Traditional append-based query processing models tuple
queues as append-only data structures with FIFO semantics.
To support update semantics, we have extended the tradi-
tional model with update queues. The main property of an
update queue is that, for each distinct update key value, it only
keeps the most recent unit of update worth of tuples; older

Fig. 3 UpStream storage manager architecture

ones are discarded.3 An update queue has one data cell per
update key value, which holds tuples for that key value, i.e.,
the most recent update. Nevertheless, an update queue can
still be implemented in different flavors based on how update
keys are ordered, how the underlying in-memory data struc-
tures are managed, and how windowing semantics for sliding
window queries is taken into account at the queue level. We
separate these issues into three orthogonal dimensions in our
storage framework.

Figure 3 shows the architecture of our storage manager.
The UpStream Storage Manager interfaces with the Input
Sources, the Output Applications, and the Query Proces-
sor through its iterators. These iterators enable three basic
queue operations: enqueue, dequeue, and read. Input Sources
enqueue new tuples into a queue, whereas Output Appli-
cations dequeue tuples from a queue. The Query Processor
can enqueue intermediate results from operators, while it can
read or dequeue these back again to feed into the succeed-
ing operators in the query pipeline. The Storage Manager
also communicates with the Statistics Monitor in order to
get statistics to drive its optimization decisions. The under-
lying queue semantics can be either append or update. In this
paper, we focus on the latter.

The Update Queue Manager is divided into three main
components. The Key Scheduler (KS) decides when to
schedule different update keys for processing and can employ
various different policies for this purpose. The Window Man-
ager (WM) takes care of maintaining the window buffers
according to the desired sliding window semantics. Finally,
the Memory Manager (MM) component oversees the phys-
ical page allocation from the memory pool. In our design,
these three components are layered on top of each other and
handle three orthogonal issues: KS is responsible for mini-
mizing staleness, WM is responsible for correct window pro-
cessing, and MM is responsible for the efficient management

3 For ease of presentation, we will first focus on tuple-based queries
where the unit of update is a single tuple; extensions to window-based
queries will be provided later in Sect. 5.

123

UpStream: storage-centric load management for streaming applications with update semantics 873

de
q1

en
q2

de
l1

de
q2

en
q3

de
l2

de
q3

en
q4

de
l3

...

...

st
al

en
es

s

time

wait2

wait3

cost

cost

costwait1

en
q1

queue staleness
application staleness

(a)

1 key 10 keys

 0

 2

 4

 6

 8

 0

 10

 20

 30

 40

 50

 60

application staleness
queue staleness

 1 2 3 4 5 6 7 8 9 10

 10

 12

 14

Load Factor
 1 2 3 4 5 6 7 8 9 10

Load Factor

St
al

en
es

s

(b)

Fig. 4 Application staleness versus queue staleness. a Staleness for a single key. b Experimental verification on a simulator

of the available system memory where the actual data are
physically stored.

4 Minimizing staleness

In this section, we focus on the update key scheduling com-
ponent of the UpStream storage framework. This component
directly deals with minimizing the overall average output
staleness. We first introduce a system-level staleness met-
ric that can be more directly and easily used in our algo-
rithms. Then, we introduce our base key scheduling policy,
IN-PLACE, and show that it is the best policy for the case of
uniform update key frequencies. For the non-uniform case,
we propose the LINECUTTING policy. Finally, we exper-
imentally compare the two policies to reveal the staleness
improvement that can be achieved by the LINECUTTING
policy under various load scenarios.

4.1 Application staleness versus queue staleness

As shown in Sect. 2.3, computing application-perceived
staleness involves keeping track of several system events
including successive arrivals into an update queue, actual
deliveries to the end-point application, and the relative order
of the occurrence of these events. All run-time components
of a stream processing system can influence these events,
and therefore, the actual application-perceived staleness. In
UpStream, our goal is to be able to control staleness at the
storage level. In order to facilitate this, we introduce a new
staleness metric called queue staleness, which is simpler than
the application-perceived staleness (let us call it application
staleness hereafter), yet can capture the essence of stale-
ness while it can also be directly measured and controlled
at the storage level. This can greatly simplify our storage
optimization.

Queue staleness for an update key is determined based on
how long that key waits in the queue from the first enqueued

update until the next dequeue for that key. Next, we show that
one can control application staleness by controlling queue
staleness and vice-versa.

Figure 4a shows two staleness behaviors for a single
update key: (i) solid line for application staleness and (ii)
dashed line for queue staleness. The x-axis represents the
run time where we depict the arrival times of updates for a
single key (enq1, 2, 3, 4), the dequeue times to the Query
Processor (deq1, 2, 3), and the result delivery times to the
application (del1, 2, 3). Let us look at what happens between
del1 and del2. Based on Definition 9, staleness of the key at
any t between these points is (t − del1+ S(del1)). S(del1)

matches the waiting time of newer updates than that from
enq1(S(del1) = wait1 = del1− enq2). In order to reduce
staleness between del1 and del2, our system should deliver
the result for the key sooner, i.e., smaller del2. In our model,
we assume the cost of processing an update is fixed, i.e.,
del1 − deq1 = del2 − deq2 = del3 − deq3 = cost .
Therefore, reducing (application) staleness in our example
means to dequeue sooner, i.e., smaller deq2. This effectively
reduces the waiting time of a key in the queue (wait2 =
deq2− enq2) and hence its queue staleness.

We have also experimentally verified our above analysis
on a simulator. Figure 4b compares the two staleness met-
rics for a single key and a multiple key setup, respectively.
We show how overall average staleness measured in units
of number of updates (equally spaced in time) scales with
increasing load. In our simulator, load is modeled as the ratio
between the number of arrivals and number of dequeues and
equals to the cost of processing an update. This is captured by
the load factor that in the simulator is a controlled variable.
In both cases, staleness grows in a similar way, and the dif-
ference between the two staleness metrics is determined by
an amount, which is solely a linear function of the load fac-
tor. Please note that compared with the single key scenario,
multiple keys cause the queue staleness to be inflated by about
a factor of 10, since there are 10 distinct update keys that have
to wait for each other in the queue. This increases the queue

123

874 A. Moga et al.

34
IBM MSFT

49
INTC
57 32

IBM
59

INTC

3 time

input arrivals

51 2 4

(a)

t = 3 344957

344957

344957

32

3259

t = 4

t = 5

INTC MSFT IBM

IBM INTC MSFT IBM

INTC IBM INTC MSFT IBM

(b)

t = 3

t = 4

t = 5

344957
IBMMSFTINTC

MSFT IBMINTC
49 3257

IBMMSFTINTC
324959

(c)

Fig. 5 Append queue versus IN-PLACE update queue. a Stock update
stream. b Traditional append queue. c IN-PLACE update queue

waiting time by a factor of 10. However, the number of keys
does not affect the difference between application and queue
staleness, which agrees with our theoretical analysis.

This result motivates us into investigating various strat-
egies for scheduling keys to be processed with the goal of
directly reducing queue staleness.

4.2 IN-PLACE update queues

We now introduce the “IN-PLACE update queue”, our base
key scheduling policy. An IN-PLACE update queue is one
that stores only the most recent updates for each key group
and services them in FIFO enqueue order. In Fig. 5, we illus-
trate the behavior of the IN-PLACE update queue (Fig. 5c)
side by side with the traditional append queue (Fig. 5b), given
a stream of stock price updates (Fig. 5a).

When updates first arrive for a certain key, the update
queue allocates a place-holder to hold any subsequent
updates. The place-holder contains both a position for that
key in the list of currently updating keys and the neces-
sary memory locations to hold the latest updates (tuple- or
window-based). For instance, at time t = 4, the price 32
overwrites the previous 34 for an IBM stock in its original
place in the update queue, while the append queue would
have required a new location at the end. The same thing hap-
pens at time t = 5, when a new update for key INTC (59)
arrives and replaces the previous price (57). If processing
occurs right after time t = 5, the update queue has the most
recent values for all update keys. The next value to be pro-
cessed would be IBM with price 32, which is the latest arrival
for update key IBM. The next value to be processed in the
append case would be IBM with price 34, regardless of the
newer value 32 being already in the queue. We can see from
this example that a given key group in an IN-PLACE update
queue does not waste the time it has already spent waiting in
the queue if it gets superseded by a newer value. This way,
update queues can reduce staleness for key groups. Next, we
analyze the performance of IN-PLACE key scheduling.

Consider n update keys, each updating uniformly at the
same expected frequency. In other words, we assume that
the arrival of each update key ki simply follows a Bernoulli
probability distribution with parameter pi and that for all
keys ki , 1 ≤ i ≤ n, we are given that p1 = p2 = · · · = pn .
Thus, for a run of m updates, we expect pi × m = 1

n × m
of them to be for key ki . Let ei denotes the very first en-
queue time for ki (i.e., more than one updates for ki may
have arrived and overwritten that first update, but we only
care about the first dequeue time since that determines the
queue staleness). Without loss of generality, assume that e1 <

e2 < · · · < en . Then, at any time point t , the queue staleness
for these keys must be such that s1 > s2 > · · · > sn . When
we dequeue key ki for processing, the queue staleness of that
key si becomes 0 until the next enqueue on ki occurs. In the
mean time, while ki is being processed, for all j, 1 ≤ j ≤
n, j 	= i, s j will grow by an amount of cost (the average
cost of query processing), causing the queue staleness area

for that key to grow by an amount of
s j+(s j+cost)

2 × cost.
To minimize the total growth in area for all the undeque-
ued keys, ki with the highest si must be chosen for dequeue.
In other words, we must choose the key with the earliest
first enqueue time ei (i.e., in our scenario, k1 must be cho-
sen). This argument applies independently from how soon
the next enqueue for the chosen key occurs, since the update
probability across all keys is assumed to be uniform in the
first place.

The IN-PLACE update queue behaves exactly the way
described earlier. It is guaranteed that the first enqueue time
of any update key in the IN-PLACE queue is definitely ear-
lier than all the others behind that key in the queue. There-
fore, once a key gets to the head of the queue, it is the one
with the earliest first enqueue time as well as with the larg-
est waiting time among all keys. Thus, the IN-PLACE key
scheduling policy minimizes the maximum waiting time W
across all key groups. As a result, IN-PLACE key scheduling
ensures that the overall average staleness (application as well
as queue) is minimized for a uniform distribution of update
key frequencies.

4.3 LINECUTTING update queues

The previous section showed that IN-PLACE key schedul-
ing policy is the best if all keys update at the same frequency.
However, often times the update frequencies are not uniform.
Figure 6a illustrates such a situation for financial market data
taken from the NYSE Trade & Quote (TAQ) database for a
trading day in January 2006 [20]. More than 3000 different
stock symbols (i.e., update keys) were involved in trading. We
can see the update rates being very skewed. Some symbols
recorded intense activity throughout the day, while others
updated only once or twice in the same day.

123

UpStream: storage-centric load management for streaming applications with update semantics 875

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

U
pd

at
e

pr
ob

ab
ili

ty

Symbol ids (keys)

(a)

rs

rf

k1 knknf
kn +1f

nf

ns

1

0

U
pd

at
e

pr
ob

ab
ili

ty

FAST

SLOW

Update keys

(b)

Fig. 6 Non-uniform update frequencies. a NYSE TAQ data. b Proba-
bility distribution with two classes of keys

Based on these considerations, we raise the following
questions:

1. Is IN-PLACE policy still the best solution for such non-
uniform update frequencies?

2. If not, how can we exploit the differences in update fre-
quencies to find a better key scheduling policy?

4.3.1 Motivating example

Before we address the questions raised in the previous
section, we first present an example of a simplified update
frequency distribution containing only two keys: Key 1 is
fast updating, while key 2 is slow updating. The goal of this
example is to explore whether, for such distributions, it is

sometimes better to serve keys in an order different from
the IN-PLACE order. To this extent, we consider an alterna-
tive policy called PROMOTE-SLOW-UPDATER, which is
biased toward slow updaters. That is, in the scenario of our
simplified distribution, when key 2 enters the queue (the first
enqueue after a dequeue), the policy will promote it to the
front of the queue so that at the next scheduling point, key 2
will be processed.

Figure 7 shows a comparison between the behavior of the
IN-PLACE policy (Fig. 7a) and that of PROMOTE-SLOW-
UPDATER (Fig. 7b) in the following setting. The cost of
processing a key is C = 4 time units. The key update rate is
represented as the number of updates per C time units. Con-
sequently, key 1 updates at a rate r1 = 2, i.e., two updates
between adjacent scheduling points. Contrary to key 1, key
2 updates much more rarely, at r2 = 1/4. The dotted rectan-
gles mark the periods, called contention regions, when both
keys are competing to be served. Let us focus on the first
of these regions. While key 1 has already been updating at
a fast pace, key 2 first arrives between scheduling points 3
and 4. IN-PLACE positions key 2 at the back of the queue,
where the key waits to be served at scheduling point 5. PRO-
MOTE-SLOW-UPDATER, instead, promotes key 2 to the
front of the queue. This way, key 2 is scheduled at point
4, postponing key 1 for scheduling point 5. In Fig. 7, we
have also depicted the evolution of the queue staleness for
both keys. We can see that for the contention regions, PRO-
MOTE-SLOW-UPDATER achieves about the same staleness
area for key 1, while for key 2, it manages to reduce staleness
drastically.

Let us consider a key scheduling point Ts (such as 4 or 8
in Fig. 7b) when both keys are in the queue and let e2(Ts)

be the next update/enqueue time for key 2 with respect to Ts .
Then, in order for PROMOTE-SLOW-UPDATER to work as
it is, one needs to have:

e2(Ts)− Ts ≥ C × pos(k2, Q),

where pos(k2, Q) indicates the zero-offset position of key 2
in the update queue Q, i.e., the number of keys in front of

1 2 4 6

9

3

5

7 8 10 11
arrivals

dequeues

dequeues

key 2

key 1

(a)

1 3

4

5 6

8

97 10 11

dequeues

dequeues

arrivals

key 2

key 1

2

2
e (4)

(b)

Fig. 7 IN-PLACE versus PROMOTE-SLOW-UPDATER for a trace of updates for two keys (filled circles key 1 (fast), empty circles key 2 (slow))
a No promotion (IN-PLACE). b With promotion (PROMOTE-SLOW-UPDATER)

123

876 A. Moga et al.

it (in this case only one). From this simple example, we can
draw the conclusion that, unless the contention regions over-
lap, one can indeed benefit from promoting slow updaters.
Although simple in its setting, this example motivated us to
look further into a policy beyond our base IN-PLACE policy.
However, blindly promoting slow updaters may not always
pay off. We discuss this in more detail in the next section.

4.3.2 LINECUTTING heuristic

In order to generalize from the aforementioned example, let
us consider a probability distribution for update key frequen-
cies as the one in Fig. 6b. We have an update stream with n
updating keys split between two classes: n f are fast updaters
while ns are slow updaters. Just like in Sect. 4.2, we assume
that the arrival of each key follows a Bernoulli distribution
with parameter pi , 1 ≤ i ≤ n. In this case, we have p j = r f

for 1 ≤ j ≤ n f and pk = rs for n f + 1 ≤ k ≤ n. That
is, all fast keys update with the same probability r f and all
slow keys with the same probability rs . We also assume that
r f = σ×rs where the skew parameter σ indicates how much
more a fast key updates compared to a slow key. Given that
ns × rs + n f × r f = 1, we can obtain the update probability
of a slow key: rs = 1/(ns + σ × (n − ns)). Based on this,
our probability distribution can be fully captured with three
parameters: (n, ns, σ).

To improve on our base key scheduling policy (i.e.,
IN-PLACE) for the two-class probability distribution, we
introduce a key scheduling heuristic called LINECUTTING.
The heuristic is based on what we learned from the
PROMOTE-SLOW-UPDATER example of the previous sec-
tion. More specifically, we have designed our heuristic with
the following requirements in mind:

1. It should be able to identify the slow updaters with
respect to the current state of the queue.

2. Promoting keys to the front of the queue should not lead
to starvation of the keys already in front.

Based on these requirements, the goal of the LINECUTTING
heuristic is to minimize the maximum quantity (s+W) across
all key groups. Here, s is the “slowness” of a key computed
based on its update rate r and related to its current position
in the queue, and W is the time the key has waited in the
queue. Slowness of a key k can be defined more precisely as
follows:

s(k) =
{ 1

r − C × pos(k, Q), if 1
r > C × pos(k, Q)

0, otherwise.

The slowness part of the sum (s +W) was suggested by the
results of the PROMOTE-SLOW-UPDATER policy, and it
accounts for the first design requirement explained earlier.
That is, the LINECUTTING policy actively promotes keys

that ensure the greatest estimated time until they arrive again
in the queue (“the slowest of all the slow ones”). However,
as a safety measure against starvation of other keys (faster
ones), we also considered W to account for the second design
requirement. We would like to make a few notes here: (i) It
is highly unlikely to ever promote a fast updater in steady
state, while taking into account both slowness and waiting
time. For such keys, slowness is approximately zero, which
makes the s +W sum reduce to W . This is exactly the same
behavior as in the IN-PLACE case. (ii) If the distribution is
not skewed, the heuristic acts just like IN-PLACE (slowness
would be the same for all keys). (iii) Even though promoted
keys may be taken from the middle or the end of the queue,
the update queue would still be ordered by first enqueue time.

Let us make a note here about the scheduling process.
IN-PLACE key scheduling policy incurs a processing time
proportional to O(1) in terms of total number of keys that
exist in the queue (nq ≤ n) for both enqueue and dequeue
operations. LINECUTTING achieves the same time for an
enqueue, but O(nq) for dequeue due to the fact that a queue
traversal is needed to find the key with the maximum (s+W)

value.

4.3.3 IN-PLACE versus LINECUTTING

Next, we experimentally compared the two key scheduling
policies using the simulator. We wanted to observe the clear
benefits of LINECUTTING over IN-PLACE without worry-
ing the challenges offered by a real stream processing system.
These issues will be addressed later in Sect. 7.2.2. We varied
the following factors in our experiments:

• Number of slow updaters (ns) and the skew parameter
(σ) that characterize our probability distribution for n
keys.

• The load in the system (load factor L F) caused by a
higher input rate than the system can process. We obtain
different levels of L F by varying the cost C of processing
an update (represented by a single tuple).

We ran several experiments in the simulator that placed
LINECUTTING and IN-PLACE side by side. Figure 8 shows
results of the comparison based on two representative exper-
iments. In both experiments, we varied the parameters of
the distribution while observing the improvement (or lack
thereof) of the LINECUTTING heuristic over IN-PLACE
for three load levels: low (5), medium (15), and high (25).
The y-axis shows the ratio between the average queue stale-
ness achieved by our two heuristics. The horizontal line at
y = 1 in each graph shows the threshold above which the
improvement in staleness starts to be observed.

The first experiment (Fig. 8a) was conducted on a sym-
metric distribution of 20 keys, out of which 10 keys were

123

UpStream: storage-centric load management for streaming applications with update semantics 877

IN
−

PL
A

C
E

/L
IN

E
C

U
T

T
IN

G

 LF = 15 LF = 25LF = 5
 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 1 10 25 50 100 150
Skew

Q
ue

ue
 S

ta
le

ne
ss

 R
at

io

(a)

IN
−

PL
A

C
E

/L
IN

E
C

U
T

T
IN

G

 LF = 25
 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

2 4 6 8 10 12 14 16 18

 LF = 15LF = 5

of Slow Updaters

Q
ue

ue
 S

ta
le

ne
ss

 R
at

io

(b)

Fig. 8 IN-PLACE versus LINECUTTING. a Improvement for symmetric distribution (10 slow, 10 fast). b Improvement for asymmetric distribu-
tions at skew = 50

updating fast and 10 slowly. We varied the distribution of
the keys by varying the skew parameter σ (the x-axis) while
ns was kept fixed at 10. We used this symmetrical case to
isolate the uneven contributions of the two classes of keys in
the overall average staleness value. The experiment revealed
the following:

• Under constant load (e.g., LF=5), as the distribution
became more skewed, the number of updates for slow
keys decreased. In terms of the slowness formula, this
means that 1

r for slow updaters increased, causing them
to be promoted sooner after entering the queue and with
less penalties on the fast updaters. As LINECUTTING
benefits mainly from slow keys being promoted, we can
draw the conclusion that the heuristic performs better
and better with skew.

• When the load was increased (LF= 15,25) at constant
skew (e.g., 50), the 1

r part remained the same for the
slow keys while the second term of the slowness for-
mula increased, due to C = L F . This led to slowness
contributing less to slow updaters being promoted, caus-
ing them to wait more. Apparently, increasing the load
limits the benefits of the LINECUTTING heuristic.

Another point to note is the lack of improvement at σ = 1 (no
skew). That is, LINECUTTING makes no unnecessary pro-
motions, reverting to the baseline behavior, i.e., IN-PLACE,
when keys are uniformly distributed. This is primarily due
to taking the waiting time into consideration as well when
making decisions.

The second experiment (Fig. 8b) was set out to observe the
improvement that LINECUTTING may introduce when the
number of slow updaters (ns) is varied at a constant skew (50
in this case). We considered asymmetric distributions of 20
keys with 2,4,6,…,18 slow updaters. We can see that increas-
ing the load had the same effect as in the symmetric case. By
contrast, at constant load (e.g., 15), the improvement of the

ECALP−NIGNITTUCENIL

 2 4 6 8 10 12 14 16 18

 100

 120

 140

 20

 40

 60

 80

 0
 2 4 6 8 10 12 14 16 18

of Slow Updaters# of Slow Updaters

avg. staleness
fast contr.

slow contr.

Fig. 9 Slow keys versus fast keys when distribution is varied
through ns

LINECUTTING heuristic had a different trend. Although
present in all cases, the improvement picked up and then
declined when the ratio between slow and fast keys changed.
We can explain this by having a closer look at the contri-
butions that each class of keys had in the overall average
staleness. Figure 9 shows this by comparing the contribu-
tions of each class of keys plus the average staleness val-
ues between LINECUTTING (left graph) and IN-PLACE
(right graph). We considered only the case where LF=15.
The contributions for each class were computed as follows:
contribslow = ns

n ×S slow, contribfast = n−ns
n ×S fast, where

S slow and S fast are the average staleness values for the cor-
responding category of keys. This yields the final staleness
value to be S = contribslow + contribfast.

We can observe that the S value for LINECUTTING fol-
lowed closely contribfast for slow updaters up to about 10.
Then, between 10 and 14, S entered on a diverging slope
as contention regions became more frequent, thus making
slow updaters compete more and more for being promoted.
In the case of IN-PLACE, which makes all keys wait in
the queue for the same amount of time, we can observe

123

878 A. Moga et al.

a cross-point between the slow and fast contribution values
at exactly 10 (i.e., the symmetric distribution). Although the
fast keys contributed in a similar manner to the S value as in
the case of LINECUTTING, the slow ones had a bigger con-
tribution right from the beginning of the x-axis. This caused a
greater staleness value compared with LINECUTTING. We
have also considered the same analysis for other load factor
values and noticed a similar trend. However, the diverging
point for LINECUTTING was seen moving from right to
left for increasing levels of load, which would explain the
positions of the maximum values for the staleness ratio in
Fig. 8b.

Based on these results, we can draw the following conclu-
sions with respect to the LINECUTTING heuristic. First, the
higher the skew, the better the performance. Second, the heu-
ristic responded well to a variety of distribution parameters
(n, ns, σ), making it a great policy to handle the two-class
type of update probabilities. Third, the general trend induced
by load seemed to be orthogonal to the characteristics of
the distribution. However, even at high load, the staleness
ratio never went below the improvement threshold. Thus, our
experiments validate that LINECUTTING is a better policy
than IN-PLACE for non-uniform key frequency distributions
with two distinct classes, slow and fast. Based on this positive
result, we are planning to investigate a broader spectrum of
key frequency distributions as part of our future work, also
looking deeper into issues such as optimality guarantees.

5 Handling windows

In this section, we focus on window management in
UpStream. Window Manager is concerned with two issues:
(i) ensuring the correct way of applying update semantics for
sliding window-based query processing, (ii) managing win-
dow tuples accordingly. In what follows, we will focus on the
logical aspects of our solution for these issues. The physical
implementation aspects will be presented in the next section.

5.1 Correctness principles

Sliding window-based queries take as input a window that
consists of a finite collection of consecutive tuples and apply
an aggregate processing on this window, resulting in a sin-
gle output tuple for that window. Unlike the tuple-based case
where the unit of update is a single tuple both at the input and
at the output, for the window-based queries, the unit of update
is a window for the input and a single tuple for the output.
Due to this difference in operational units, our problem has
an additional challenge compared with the tuple-based sce-
nario: Besides worrying about the recency of our outputs,
we must also make sure that they correspond to the results
of “semantically valid” input windows.

We define semantic validity based on the “subset-based”
output model used by previous work on approximate query
processing and load shedding (e.g., [27]). This model dictates
that if we cannot deliver the full query result for some reason
(e.g., overload), then we are allowed to miss some of the
output tuples, but the ones we do deliver must correspond
to output values that would also be in the result otherwise
(i.e., the nSCS behavior defined in Sect. 2.2). This requires
that the original window boundaries are respected and the
integrity of the kept windows is preserved.

Based on the above, we adopt the following two design
principles that ensure correct subset-based approximation in
UpStream when handling windows:

• All or nothing: Windows should either be processed in
full, or not at all.

• No undo: If we decide to open a window and start pro-
cessing it, we must finish it all the way to the end. We say
that we “commit” to processing that window. Changing
the decision in the middle of a partially processed win-
dow is not allowed.

These two principles help us produce correct outputs. We
still need to determine which windows we should commit to,
but this decision affects staleness, not correctness. We come
back to this issue in Sect. 5.3.

5.2 Window-aware update queues

We satisfy the above correctness principles using the tuple-
marking scheme that was introduced in our previous work
on load shedding for aggregation queries [27]. In this work,
load shedding is achieved through a special Window Drop
operator that injects window keep/drop decisions into the
input tuples by marking them with window specification bits.
These marks are then interpreted by the downstream aggre-
gate operators, which can be arranged in arbitrary composi-
tions (pipeline, fan-out, or their combinations). As a result,
subset results are produced. Further details of the Window
Drop approach can be found in an earlier publication [27].
Here, we rather focus on how it is adopted in UpStream.

In UpStream, we essentially push the above tuple mark-
ing logic down to the storage level. Instead of a Window
Drop operator, UpStream uses the update queue to mark
stored tuples before the query can process them. As such, our
“window-aware” update queues have an advantage over the
Window Drop approach: windows that are redundant (if any)
can be identified, and their tuples can be immediately pruned
inside the update queue before they hit the query processor
(this is analogous to the in-place updates in the tuple-based
case). Our approach also differs in how we decide which
windows to mark for dropping. The Window Drop approach
does this in a probabilistic way, by setting a drop probability

123

UpStream: storage-centric load management for streaming applications with update semantics 879

to be applied on a batch of windows. In other words, which
windows are dropped does not matter as long as the drop
probability is set high enough to remove the excess load in
the system so that query latency is kept under control. In
UpStream, to lower staleness, we must keep the most recent
windows; therefore, the update queue marks the windows
accordingly. There are actually two variant implementations
of choosing which windows to commit to in UpStream, which
lead to two different window buffer management approaches,
as we explain next.

5.3 Window buffer management

In UpStream, window buffers maintain the data structures
needed to keep track of window updates. Since updates of dif-
ferent key values are handled independently, there is one win-
dow buffer for each update key value. Let us focus on one of
these buffers. It consists of two main data structures: Enqueue
Buffer (EB) and Dequeue Buffer (DB). EB holds information
regarding the most recently arrived window (either partial or
full) and DB holds information regarding the last “commit-
ted” window (i.e., its processing has started but not necessar-
ily ended). Please note that EB and DB do not contain actual
tuples, but only the intervals indicating window boundaries.

Over the course of system execution, the window manager
maintains these data structures so that our correctness prin-
ciples are met and update semantics is imposed. Two main
factors determine how this is maintained: (i) Scheduling fre-
quency which depends on the query processing cost and the
key scheduling policy (in case of multiple update keys), and
(ii) when we commit to a window, for which there are two
major alternatives: at window ends versus at window starts.
The first factor is beyond the control of the Window Man-
ager. However, the second factor can be directly controlled
by implementing the window buffers accordingly. For this,
we have designed two alternative window buffer manage-
ment policies based on whether the commit decision is taken
at the window ends (the “lazy buffer”) or at the window starts
(the “eager buffer”).

5.3.1 Lazy window buffer

The lazy approach is a direct adaptation of the tuple-based
update processing approach: The query only consumes a fully
arrived window at each scheduling time point, and it must be
the most recently arrived one. We call this approach “lazy”,
since the window commit decision is postponed until we are
sure that we have a full window.

Figure 10 shows a trace of the lazy window buffer in action
for a sliding window with size w = 5 and slide s = 2.
Assume that the integers correspond to tuple timestamps
which determine the window boundaries. [a, b] means that
a and b are the boundaries for a fully arrived window. [a, b)

1 2 3 4 5 6 7 8 9 10 11 12 13

DB

EB

WINS

[] [3,7]

[5,7)
[7)

[1,5]

[3,5)
[5)

[5,9]

[7,9)
[9)

[7,11]

[9,11)
[11)

[7,11]
[]

[1,5]

S2S1

Fig. 10 Lazy window buffer

means that the window has started at a and its elements have
arrived until b. Solid vertical lines marked with S1 and S2
show the scheduling points, and vertical dashed lines indi-
cate window ends. The bold intervals show the full windows
that are committed to by the lazy policy.

In order to keep track of all the incomplete windows, the
lazy buffer maintains an additional list (WINdowS list—
WINS). The top of the WINS list contains the oldest started
window (e.g., [3, 5)). When this window closes (e.g., [3, 7]),
it is popped out of the WINS list and placed in EB. If the
EB is not empty at this time, we say that the window that is
already in the EB is overwritten. This is what happens with
windows [3, 7] and [5, 9] in our example. At the schedul-
ing points, the DB will pop the interval in the EB (if any),
which represents the most recently arrived full window. For
instance, [1, 5] and [7, 11] are the windows that the buffer
manager commits to.

5.3.2 Eager window buffer

The eager approach can be seen as an adaptation of append-
based windowing to update-based semantics. As in the
append case, we commit to windows from their starting
points (but not necessarily to all the starting windows). We
only commit to the latest started ones at each scheduling time
point. We call this approach “eager”, since the window com-
mit decision is eagerly taken as soon as a fresh window is
seen (even if it has not fully arrived yet).

Figure 11 shows a trace of the eager window buffer in
action for a sliding window with size w = 5 and slide
s = 2. Again assume that the integers correspond to tuple
timestamps which determine the window boundaries. [a)

means that a marks the boundary of a recently started win-
dow. (a, b) means that elements of a previously committed
window between a and b are available for dequeue. Both
(a, b] and (a] have similar meanings, except that they also
show that the closing element of a previously committed win-
dow is also available for dequeue. As before, solid vertical
lines marked with S1 and S2 show the scheduling points, but
different from before, vertical dashed lines indicate window
starts. Finally, the bold intervals show the recently started
windows that are committed to by the eager policy.

123

880 A. Moga et al.

1 2 3 4 5 6 7 8 9 10 11 12 13

S2

DB

EB [][1) [3) [5)

[11)
[]

[1)
[11)[9)[7)

[](2,3) (3,5] (4,5] (5]

S1

Fig. 11 Eager window buffer

KeyCell KeyCellKeyCell

W
in

do
w

M
an

ag
er

DB EB

WTL

Pool
PageEmpty

Locations
Pool

Pj Pi

memalloc(), memfree()

System memory

M
an

ag
er

M
em

or
y

Sc
he

du
le

r
K

ey

on_enqueue(), on_update(), on_dequeue()

LINECUTTING

IN−PLACE

GOOG

IBM

MSFT

KHT
key

head

put(), pop(), read(), avail()

Fig. 12 Update queue manager implementation

The eager buffer does not need an additional WINS
list for incomplete windows, as it already keeps track of
all the incomplete windows that matter for its operation.
The EB holds the most recently started window. Window
updates happen on window starters. The EB is always emp-
tied when a new window starter arrives (e.g., 3,5,7,9,11).
At the scheduling points, the DB will pop the interval in the
EB (if any), which represents the most recently arrived par-
tial window. For instance, the windows starting at 1 ([1)) and
11 ([11)) are the windows that the buffer manager commits
to.

6 UpStream implementation

In this section, in order to put all the pieces together, we
briefly summarize how the UpStream Update Queue Man-
ager implements the techniques that we have presented in the
previous sections.

As shown in Fig. 12, the UpStream Update Queue
Manager consists of three main layers: Key Scheduler (KS),
Window Manager (WM), and Memory Manager (MM). KS
manages staleness by deciding the order in which update
keys are to be processed; WM manages the window buf-
fers as described in the previous section; and MM takes care

of physically storing and garbage collecting the actual data
tuples in the memory.

KS contains a Key Hash Table (KHT) that maps each dis-
tinct key value to its corresponding key cell. Key cells are
linked together to form a queue of keys, while the “head”
refers to the key cell that is to be dequeued next. KS is
designed to react to the main events related to the queue of
keys: Update for a key that is not in the queue (on_enqueue()),
update for a key that is waiting to be serviced (on_update())
and removing a key for processing (on_dequeue()). These
events are handled differently according to each key sched-
uling policy. For instance, IN-PLACE adds a new key at the
end of the queue, does nothing when keys in the queue update,
and simply removes the head at dequeue. In this case, keep-
ing the queue of keys sorted by waiting time comes for free.
LINECUTTING, on the other hand, would have to consider
update frequencies (retrieved from the Statistics Monitor) in
order to keep the queue of keys ordered using both slowness
and waiting time.

Each key cell holds a pointer to the lower-level data struc-
tures for a key. In the tuple-based processing case, we only
need to hold a direct pointer to the memory location where the
latest arrival is stored. In the window-based processing case,
each key cell has a separate window buffer, which is man-
aged by WM. Inside a window buffer, we have the DB and EB
data structures that hold references to the committed window
and the most recent window update, respectively. A Window
Tuple List (WTL) in turn holds pointers to the actual memory
locations where the tuples that belong to those windows are
physically stored. KS communicates with the window buffer
in WM through a typical sequential storage interface (pop(),
put(), read(), and avail()).

Finally, the physical memory locations are handled by the
MM layer. WM communicates with MM through the memal-
loc() and memfree() methods, in order to make sure that new
window tuples are allocated and expired window tuples are
garbage collected. In MM, a Page Pool contains a number
of pages allocated from the system memory. To avoid mem-
ory proliferation, we keep a Pool of Empty Locations (EPL)
indexed by pages. When all the memory locations within a
page are freed, the page is handed back to the Page Pool.
When EPL is empty, a new page needs to be allocated from
the Page Pool. For further details about our implementation,
we refer the readers to our technical report [18].

7 Performance

In this section, we provide an experimental evaluation of the
storage-based load management techniques that we have pro-
posed in this paper. The first goal of our experimental study
is to prove the efficiency of our storage-centric approach in
adapting to overloading conditions and lowering staleness.

123

UpStream: storage-centric load management for streaming applications with update semantics 881

Our second goal is to explore the performance space of stale-
ness by analyzing the effects of both different key scheduling
techniques and windowing semantics.

7.1 Experimental setup

System: We implemented our UpStream framework as part
of the Borealis stream processing system, expanding on its
storage manager component [1]. The QoS and statistics mon-
itoring components of Borealis were also extended in order
to compute staleness and memory usage. We configured the
Borealis scheduler to operate on an update-at-a-time basis,
using the “super-box” scheduling technique [9] for process-
ing latest updates through the query as a whole. The motiva-
tion was to minimize the per-key processing overhead due to
context switches. In all of our experiments, we used a single-
node setup for Borealis running on a Linux box with an Intel
Quad Core Intel Xeon 3360 2.8 GHz processor and 8 GB of
memory.

Workload: In our experiments, we used both synthetic and
realistic data sets. Synthetically generated streams contain
tuples of the form (time, update key, value). The input is
ordered by the time field. The number of distinct update key
values ranged between 1 and 100, depending on the exper-
iment. The actual values of the value field do not have any
significance in terms of what we measure in the experiments;
thus, they were randomly chosen from a numeric domain. We
also used data streams generated based on update rate distri-
butions taken from a real use case: the NYSE TAQ data from
2006 [20]. The input rates were set according to the desired
level of overload to be exerted on the system, given a query
workload with a specific estimated processing cost per tuple.

On this data, we have defined two main classes of que-
ries: tuple-based queries and sliding window-based queries.
In each experiment, we used a single query, whose operators
were scheduled “in one go”, with the input tuples available
for processing at that scheduling step. In order to be able to
control the processing cost of this query, we used the “delay”
operator of Borealis. A delay operator simply withholds its
input tuple for a specific amount of time (busy-waiting the
CPU) before releasing it to its successor operator. A delay
operator is essentially a convenient way of representing a
query plan with a certain CPU cost; its delay parameter pro-
vides a knob to easily adjust the query cost (measured in
milliseconds). In the tuple-based scenarios, using one delay
operator was sufficient for the purpose, whereas in window-
based scenarios, we also used a sliding window aggregate
operator that was placed either upstream or downstream from
a delay operator. This helped us explore whether the position
of the sliding window operator relative to the rest of the query
has any effect on performance. We will further describe the

details of these query scenarios when we present the corre-
sponding results for them in the following sections.

Performance metrics: We have primarily investigated two
performance aspects in our experiments:

• Staleness: As formulated in Sect. 2.3, per-key average
staleness was computed over individual staleness values
of all output tuples generated for each distinct update
key value across a given run period. Then, an overall
average was computed across all the keys. Staleness was
measured in seconds.

• Memory usage: Maximum memory allocated from the
UpStream Page Pool was recorded between consecutive
output deliveries. Then, we computed a maximum over
all these recordings to see the worst-case memory usage
for UpStream across a given run. Memory usage was
measured in the number of stored tuples.

We also report on the accuracy of the queries under subset-
based query approximation. Recall that in the simulator, the
load factor (LF) was a controlled variable that directly mod-
eled load to the system. In fact, LF also models the selectivity
of the query. For instance, a value of LF = 10 means that out
of 10 results that could have been produced, only 1 was deliv-
ered and 9 discarded. In a real stream processing system, LF
becomes an observed variable. We will report the accuracy
of the queries using exactly this measure of load.

Note that the results presented were obtained based on
averaging over repeated runs in order to eliminate the side
effects of: (i) certain probabilistic choices in our scenarios
(such as arrival times and orders of different update keys
in multi-key scenarios and drop probability in random drop
scenarios); (ii) the randomness in the order of certain sys-
tem events occurring beyond our control (such as how the
enqueue thread and the scheduler thread in Borealis are syn-
chronized by the operating system).

7.2 Key scheduling

The following set of results focuses on evaluating our key
scheduling strategies on tuple-based queries. First, we look at
the improvement brought by in-place updates versus random
drops when update keys update at the same rates (Sect. 7.2.1).
We then investigate the benefits of the LINECUTTING key
scheduling strategy when update rates are non-uniformly dis-
tributed (Sect. 7.2.2).

7.2.1 In-place updates versus random drops

We ran the scenarios in Table 1 with an input stream con-
sisting of multiple update key values. Scenario (a) represents
the state-of-the-art in terms of load shedding using random

123

882 A. Moga et al.

 INPLACE−Update

RD−Append
 RLS−Append

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 25 50 75 100

A
pp

lic
at

io
n

St
al

en
es

s
(s

ec
s)

of Keys

(a)

RD−Append
 RLS−Append

 INPLACE−Update

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 25 50 75 100

M
ax

. #
 o

f
St

or
ed

 T
up

le
s

of Keys

(b)

RD−Append
RLS−Append

 INPLACE−Update

 0

 1

 2

 3

 4

 5

 6

10 20 30 40 50 63 71 83 91 100

A
pp

lic
at

io
n

St
al

en
es

s
(s

ec
s)

Input Rate (#tuples/second)

(c)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

20 30 40 50 63 71 83 91 100

M
ax

. #
 o

f
St

or
ed

 T
up

le
s

RD−Append
RLS−Append

 INPLACE−Update

Input Rate (#tuples/second)
10

(d)

Fig. 13 Update queue versus random load shedding variants (multiple update keys) a Staleness versus # of keys. b Memory usage versus # of
keys. c Staleness versus input rate. d Memory usage versus input rate

drops, (b) is an adaptation of (a) to match a storage-centric
approach, and (c) is UpStream. We measured staleness and
memory usage for an increasing number of update keys as
well as increasing input rates in the system. Our results are
shown in Fig. 13.

First, we varied the number of keys between 1 and 100
(x-axis), while fixing the input rate to 40 tuples/s. In each
run, keys were set to update with the same average fre-
quency. For instance, for 10 keys and 1000 arrivals, each key
would be observed about 100 times. On the other hand, time
between consecutive arrivals of the same key was not neces-
sarily even (for a given run as well as across repeated runs),
since we used a ZipF distribution with skew parameter θ = 0
[14] and with a different seed value at every repeated run.
The results of this experiment are shown in Fig. 13a and b.
All three compared approaches exhibit increasing staleness
with increasing number of keys. Staleness grew for the IN-
PLACE-Update scenario, because the average length of the
update queue grows when more keys update uniformly at
the same time. In this case, all keys waited in the queue for
nearly the same amount of minimum possible time, which
was directly correlated with the number of distinct update
keys. The load shedding scenarios, however, did not exhibit
the same type of correlation. The reason for this is that

random load shedding approaches are not key-aware, i.e.,
drop decisions are made completely at random across dif-
ferent key values. The effect of this on staleness becomes
even more apparent when the number of keys increases. The
trend for memory usage, on the other hand, is somewhat the
opposite. As in the single-key experiment, the load shed-
ding approaches consumed fixed memory space, although
the storage-based variant was slightly more efficient than the
operator-based variant. However, the update queue’s mem-
ory usage was directly proportional to the number of distinct
update keys, since the queue maintains about one slot per
key at steady state when all keys are updating at uniform
frequency.

Second, we set the number of keys to 25 and varied the
input rates so as to obtain a corresponding load factor that var-
ied linearly between 1 and 9. The results of this experiment
are shown in Fig. 13c and d. The memory usage of our update
queue was correlated with the number of update keys (in this
case, 25), which required more memory slots to be allocated.
This was useful in order to keep the latest update for all keys
that were in the queue at any time and effectively lower-
ing staleness. On the other hand, the RLS-Append approach
shows lower memory consumption at the price of higher
staleness levels. This is because tuples are randomly dropped

123

UpStream: storage-centric load management for streaming applications with update semantics 883

Table 1 Tuple-based processing scenarios

Scenario Description Strategy

(a) Append queue + random LS with drop operator

AQ Random
Drop

p C=100

Delay

Input to Q is fed by a traditional append
queue. A Random Drop operator with a
proper drop probability p is inserted in
the query plan in order to shed the
excess load [28]

Random load shedding (RD-Append)

b) Append queue + random LS in storage Input to Q is fed by a traditional append
queue that is extended with the ability to
apply random drops inside the queue to
shed the excess load (i.e., the queue
plays the role of the Random Drop
operator in the previous scenario)

Random load shedding (RLS-Append)

Delay
AQ with RD

C=100

(c) IN-PLACE update queue Input to Q is fed by UpStream’s
IN-PLACE update queue

Update queues (INPLACE-Update)

Delay
UQ

C=100

as they arrive in the queue. For RD-Append, the penalty is
paid for postponing the drop process until the Random Drop
operator gets the chance to see the tuples. In this case, tuples
tend to accumulate more in the queue as load grows.

7.2.2 LINECUTTING versus IN-PLACE

Section 4.3 described the LINECUTTING key scheduling
strategy as a way to exploit non-uniform key update frequen-
cies. LINECUTTING showed good potential for reducing
staleness as we evaluated it against IN-PLACE in the simu-
lator using our study distribution with slow and fast updaters.
Here, we show the same comparison but in the experimental
setup offered by a real stream processing system. We present
the results of this comparison based on running three work-
loads: two synthetic ones and one taken from a real-life use
case. The data streams were run in the context of scenario (c)
in Table 1 with an input rate of 1000 tuples per second and
a delay in producing a result of 5 m s. Our goal is to observe
the effects of skew and number of updating keys.

Slow versus fast

We start with a verification of the LINECUTTING bene-
fits while running queries on a stream containing slow and
fast updaters. Similar to the setup described in Fig. 8a, we
observed the effect of different skew settings between the
two classes of updaters. In addition, the number of total
updating keys in the stream was varied as shown in Fig. 14.
We measured the percent improvement between LINECUT-
TING and IN-PLACE.

The first point to make is that these results confirm the
overall trend of increasing benefits with increasing skew.
Secondly, we expected LINECUTTING to improve more on

0 %

20 %

40 %

60 %

80 %

100 %

120 %

20 50 100 150 200

of Keys

Skew = 1
 Skew = 10
 Skew = 25
 Skew = 50

 Skew = 100

%
 I

m
pr

ov
em

en
t

L
IN

E
C

U
T

T
IN

G
 v

s.
 I

N
−

PL
A

C
E

Fig. 14 Comparison of LINECUTTING and IN-PLACE for update
rate distributions with fast and slow updaters

staleness as the number of keys increased. This trend should
have been caused by the number of slow updaters growing
proportionally. At high skew (e.g., 100), our expectations
were indeed met. However, the trend differed slightly with
a smaller skew. Our prime suspect is the overhead intro-
duced by LINECUTTING due to its decision process at
dequeue time. Although we argued in Sect. 4.3 that LINE-
CUTTING has a fail-safe mechanism that prevents degra-
dation compared with IN-PLACE by considering the wait
time W , we can observe some small degradation at skew=1,
i.e., no skew. Moreover, the improvement slightly degrades
with the number of keys for the same skew setting. At this
point, the fail-safe seems to have been slightly overrun by
LINECUTTING’s own overhead. However, overall, LINE-
CUTTING shows clear improvement over IN-PLACE at all
settings.

123

884 A. Moga et al.

−10 %

0 %

10 %

20 %

30 %

40 %

50 %

100 250 500 750 1000
of Keys

Theta = 0
 Theta = 0.33
 Theta = 0.66
 Theta = 0.90
 Theta = 0.99

L
IN

E
C

U
T

T
IN

G
 v

s.
 I

N
−

PL
A

C
E

%
 I

m
pr

ov
em

en
t

(a)

0 %

1 %

2 %

3 %

4 %

5 %

6 %

100 250 500 750 1000

L
IN

E
C

U
T

T
IN

G
 v

s.
 I

N
−

PL
A

C
E

of Keys

Theta = 0
 Theta = 0.33
 Theta = 0.66
 Theta = 0.90
 Theta = 0.99

%
 L

os
s

in
 T

hr
ou

gh
pu

t

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

100 250 500 750 1000

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h
(L

IN
E

C
U

T
T

IN
G

)

of Keys

Theta = 0
 Theta = 0.33
 Theta = 0.66
 Theta = 0.90
 Theta = 0.99

(c)

Fig. 15 Comparison of LINECUTTING and IN-PLACE when the
update keys follow a ZipF distribution of update rates. a Improve-
ment in staleness exhibited by LINECUTTING relative to IN-PLACE.

b Loss in throughput observed for LINECUTTING relative to the one
observed for IN-PLACE. c Average queue length achieved by LINE-
CUTTING

Generalized benefits and overhead analysis

Next, we expanded our analysis to a more generic update
distribution to show that the benefits of LINECUTTING are
not bound to our studied distribution. To that extent, we con-
sidered a stream of keys whose update rates followed a ZipF
distribution. This offered us a simple way to vary the work-
load with the help of the skew parameter θ , which takes values
from the [0,1) range: The value 0 indicates no skew between
the update keys, while approaching 1 increases the skew. We
varied our workload by considering both the θ parameter
and the number of keys, similar to our previous experiment
in Fig. 14. In this case, the x-axis contains the number of keys
used in the ZipF distributions (see Fig. 15b). On the skew-
ness front, LINECUTTING showed definite improvement
only toward the end of the θ range whereas degradation was
installed in the first part (0–0.66). With increasing numbers
of keys, higher skew caused better performance, whereas
lower skew caused increasing degradation. This trend was
also confirmed in the case of the study distribution.

Figure 15c and d help us explain the source of degra-
dation. Using the same x-axis as in Fig. 15b, we show the
loss in throughput exhibited by LINECUTTING relative to
IN-PLACE. Given the same runtime, we compute throughput
as the number of results per total duration of the experiment
(i.e., number of results per second). Normally, under load
shedding conditions, the throughput indicates the capacity of
the system. However, any kind of overhead added to the pro-
cessing time can decrease the capacity. As seen in Fig. 15c,
LINECUTTING does show loss in throughput which, as
expected, grows with the number of keys, and is reduced by
higher skew. The correlation to the graph in Fig. 15d suggests
the cause. The graph shows the average queue length regis-
tered by LINECUTTING. By traversing the entire queue to
reach a decision, LINECUTTING introduces overhead that
grows with the queue length.

Case study: monitoring financial data

Finally, let us have a look at a realistic distribution. We con-
sidered the data set containing the trades and quotes from
a day in January 2006 registered at NYSE [20]. Given the
observed update rates for stock symbols, we extracted their
update probabilities. Based on the entire range of symbols,
we devised several workloads as follows. Imagine the user
of a financial application monitoring market data. The user is
interested in a certain amount of stock symbols that form his
or her stock portfolio. Our workloads consisted of stock port-
folios with different numbers of monitored symbols selected
uniformly across the entire range, that is, to make up a diver-
sified portfolio.

We ran the streams made up of symbols for each portfo-
lio through our system first configured with an IN-PLACE
update queue and then with a LINECUTTING one. The
results are shown in Fig. 16 where the x-axis represents
the size of the portfolios and the y-axis measures the appli-
cation staleness. For all considered workloads, LINECUT-
TING improved on IN-PLACE, indicating that all portfolios

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

19 50 100 248 490 860

A
pp

lic
at

io
n

St
al

en
es

s
(s

ec
s)

Stock Portfolio Size (# of Symbols)

IN−PLACE
 LINECUTTING

Fig. 16 Staleness for LINECUTTING and IN-PLACE for distribu-
tions taken from NYSE financial data

123

UpStream: storage-centric load management for streaming applications with update semantics 885

exhibited substantial skew. For instance, the last measure-
ment yielded a value of 0.8 s in staleness for IN-PLACE,
whereas LINECUTTING managed to reduce it to almost half
of that. We did also observe loss in throughput with a max-
imum of 3% for the last point. However, the skew seems to
have been high enough that the benefits of LINECUTTING
exceeded its overhead by far: the improvement in staleness
was reported earlier 70% for all points.

7.3 Window-based processing

In the next set of experiments, we used different configu-
ration scenarios (see Table 2) of a window-based query Q,
consisting of a sliding window aggregate operator with win-
dow size w and slide s and a delay operator with cost C .

We first wanted to observe the benefit of using a window-
aware update queue (Sect. 7.3.1), in terms of both stale-
ness and memory usage over the state-of-the-art. Then, we
focused on the window buffer management aspect of our
window-aware update queues (Sect. 7.3.2) and performed an
in-depth evaluation of how the eager and lazy techniques per-
form under different settings, first in terms of staleness and
then memory usage. Hereinafter, our windowing techniques
will be denoted by EAGER-WB and LAZY-WB.

7.3.1 Using a window-aware update queue

We ran scenarios (a), (b), and (d) in Table 2 with an input
stream consisting of a single update key value. We set the
window buffer management to LAZY-WB and window pro-
cessing mode to CPW. These settings created a similar load
management scenario as in the Window Drop-based scenario
making the results more directly comparable. Window drop
decisions are made for the whole window, which is similar
to the lazy approach. In this experiment, we used a simple
tumbling window with w = s = 10 and set Window Drop’s
batch size B = 10. These settings created an ideal scenario
for the window drop to be the most effective. This way, we
could observe the improvement (if any) of our techniques,
even in such an ideal setting for the state-of-the-art.

Our results are shown in Fig. 17. As in the case of tuple-
based processing, we can clearly see that, if no measure
is taken, staleness can go through the roof with increasing
load, as illustrated by the behavior of the append queue (note
the log-scale on the y-axis). Using a Window Drop operator
(WDrop scenario) certainly relieved the problem by dropping
batches of windows and hence at least keeping the queue sizes
and tuple latencies under control. However, again the drop
decision was made without considering the recency of the
windows. Therefore, as in the tuple-based processing case,
staleness was still higher compared with our window-aware
update queue. An additional interesting result we see on the
graph of Fig. 17a is that, for WDrop, the staleness seems to

slightly decrease as the load grows. This is due to the fact
that at excessive load levels, the drop probability gets higher,
gradually reducing the need for making the right choice about
keeping the more recent windows. This is also confirmed by
the Load Factor levels (Table 17c) achieved in the WDrop
scenario, which get increasingly higher than those in the
case of W-Append and LAZY-WB. Finally, on the memory
usage front, the result that we depict in Fig. 17b shows once
again that doing random drops using an operator has negative
effects on memory consumption in the input queues.

7.3.2 Window buffer management: eager versus lazy

In this section, we focus on comparing the eager and lazy
window buffer management strategies for our update queues.

Single update key

We ran the scenarios (c) and (d) from Table 2 with EAGER-
WB or LAZY-WB, respectively, and measured how their
staleness changed with increasing load. The window size
w was set to 10, but the window slide s was varied as 1, 5,
and 10. Please note that the window slide introduces an addi-
tional way to increase load (Fig. 18c–e shows that for the
same input rate, the accuracy loss varies with window slide
as load increases).

The results are shown in Fig. 18a and b. We present two
pairs of graphs: the one in Fig. 18a focuses on CPT-style pro-
cessing on the scenario (c) and the one in Fig. 18b focuses
on CPW-style processing on the scenario (d). Overall, we
see that in both pairs of graphs, staleness seems to stabilize
with increasing load, which shows how our window-aware
update queues in general scale with load. Of course, the win-
dow slide value and the window buffer management strategy
both created variations in staleness behavior, which we will
further explain later. However, it is important to note at this
point that, by looking at these two graphs side-by-side, we
can immediately observe that EAGER-WB performed bet-
ter than LAZY-WB when the delay operator was in front of
the windowing operator (CPT) and vice versa when the delay
was applied after the windowing operator (CPW). Therefore,
we will explain our results around a detailed analysis of the
CPT and CPW scenarios.

The CPT Case: In Fig. 18a, the staleness achieved by
EAGER-WB and LAZY-WB stabilizes toward the same level
with increasing load. We will further explain this matter using
Table 3 that shows how EAGER-WB and LAZY-WB should
behave in time in the CPT and CPW scenarios. Let us focus
on the first row. At the top of the figures, we depicted the
time spent by the query producing an output after commit-
ting to one window. At the bottom, one can see window

123

886 A. Moga et al.

Table 2 Window-based processing scenarios

Scenario Description Strategy

(a) Append queue

AQ Aggregate Delay

w,s C=100

Input to Q is fed by a traditional append
queue with FIFO ordering (i.e., no load
is shed)

None (WAppend)

(b) Append queue + random LS with
Window Drop operator

AQ Window
Drop

Aggregate Delay

w,s C=100

Input to Q is fed by a traditional append
queue. A Window Drop operator with a
proper drop probability p and batch size
B is inserted in the query plan in order
to shed the excess load [27]

Window drop (WDrop)

(c) IN-PLACE update queue + downstream
windowing (CPT)

Aggregate

w,s

UQ
w

Delay

C=50

Input to Q is fed by UpStream’s
window-aware IN-PLACE update
queue. This scenario represents a “Cost
Per-Tuple” (CPT) case, where the
window is constructed, and its result is
produced after the rest of the query
operations are first applied on the input.
In this scenario, we assume an
“incremental” window processing
mode, in which the aggregate function is
applied incrementally as each tuple of a
given window arrives.

Window-aware update queues
(EAGER-WB/LAZY-WB)

(d) IN-PLACE update queue + upstream
windowing (CPW)

UQ
Delay

C=100

w

Aggregate

w,s

The input to Q is fed by UpStream’s
window-aware IN-PLACE update
queue. The order of the aggregate and
delay operators is switched. This
scenario represents a “Cost
Per-Window” (CPW) case, where the
window is constructed, and its result is
produced before the rest of the query
operations are applied on that result. In
this scenario, we assume a
“non-incremental” window processing
mode, in which the aggregate function is
applied when the aggregate operator has
the full window (i.e., all window tuples
are consumed as a batch rather than
individually)

Window-aware update queues
(EAGER-WB/LAZY-WB)

formation over the input stream as considered by the win-
dow buffer. A window should take w × T B A time units
to arrive and w × C PT to be processed by the query. x
denotes the time elapsed between the closing of the com-
mitted window (depicted as a thick line) and the delivery
time for that window, and it forms the basis for the stale-
ness growth. However, x has different values depending on
the window buffer type. For instance, LAZY-WB does not
let the query start processing until it has a fully formed
window, yielding x = w × C PT . EAGER-WB, on the
other hand, exhibits a wider variation for x . The general
formula would be x = w × C PT − (w − 1) × T B A.
The lower bound for x is found when load is at system
capacity (C PT = T B A) and is equal to C PT . That is,
after a window has closed, the query needs another C PT

time units to update the window state and deliver the result.
When load increases beyond the system capacity, x grows.
We can rewrite the formula by considering the load factor
(L F = C PT

T B A) : x = T B A+w×C PT × (1− 1
L F). For very

high L F values, the upper bound for x tends to approach
w × C PT , which is also the value achieved by LAZY-WB.
This is confirmed by the results shown in Fig. 18a, where
we can see that for the first half of the x-axis, EAGER-WB
achieved lower staleness than LAZY-WB.

The CPW Case: In the CPW scenario (see Table 3, second
row), a window result waits C PW time units until it is deliv-
ered to the output stream. This means that x = C PW for both
window buffers. Despite this, the results of our experiment

123

UpStream: storage-centric load management for streaming applications with update semantics 887

 LAZY−WB
 WDrop

WAppend

 0.01

 0.1

 1

 10

 100

50 100 143 200 250

A
pp

lic
at

io
n

St
al

en
es

s
(l

og
−

sc
al

e)
 (

se
cs

)

Input Rate (#tuples/second)

WAppend
 WDrop

 LAZY−WB

 10

 100

 1000

 10000

 100000

50 100 143 200 250

M
ax

. #
 o

f
St

or
ed

 T
up

le
s

(l
og

−
sc

al
e)

Input Rate (#tuples/second)

(a) (b)

Input Rate 50 100 143 200 250

Load Factor
W-Append 1.0 1.8 2.5 3.3 5.0
WDrop 1.0 2.1 3.3 4.6 7.5
LAZY-WB 1.0 1.8 2.5 3.3 5.0

(c)

Fig. 17 Window-aware update queue versus append queue variants (CPW, LAZY-WB, single update key). a Staleness versus input rate. b Memory
usage versus input rate. c Observed load factor

EAGER−WB LAZY−WB

Input Rate (#tuples/second)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

slide = 1
slide = 5

slide = 10

10005002001004020
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

A
pp

lic
at

io
n

St
al

en
es

s
(s

ec
s)

20 40 100 200 500 1000

Input Rate (#tuples/second)

(a)

5001005020 00201 50020010 20 50 100

slide = 1
slide = 5

slide = 10

Input Rate (#tuples/second)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

A
pp

lic
at

io
n

St
al

en
es

s
(s

ec
s)

EAGER−WB LAZY−WB

Input Rate (#tuples/second)

(b)

 1

 10

 100

 1000

 100 1000

L
oa

d
Fa

ct
or

Input Rate (#tuples/second)

slide = 1
 slide = 5

 slide = 10

(c)

 1

 10

 100

 10 100

L
oa

d
Fa

ct
or

Input Rate (#tuples/second)

slide = 1
 slide = 5

 slide = 10

(d)

 1

 10

 100

 10 100

L
oa

d
Fa

ct
or

Input Rate (#tuples/second)

slide = 1
 slide = 5

 slide = 10

(e)

Fig. 18 Eager versus lazy window buffer management on window-aware update queues (single update key). a CPT on delay + windowing. b CPW
on windowing + delay. c Observed load factor for CPT. d Observed load factor for CPW, EAGER-WB. e Observed load factor for CPW, LAZY-WB

show that EAGER-WB behaved worse than LAZY-WB for
the first half of the considered load spectrum. For the second
half, where the load was very high, the two techniques stabi-

lized staleness around the same level. This can be explained
if we consider y, the time spent by the aggregate operator to
dequeue and compute the aggregated result. For LAZY-WB,

123

888 A. Moga et al.

Table 3 Window Buffer behavior for CPT and CPW (TBA = Time Between Updates, CPT = Cost Per Tuple, CPW = Cost Per Window)

EAGER-WB LAZY-WB

CPT

Query w*CPTw*CPT

x

xw*TBA
Window
Buffer

Window
Buffer

Query

w*TBA

x

x

w*CPTw*CPT

CPW

Query

w*TBA

yy

x

x

WPCWPC

Window
Buffer

Query

w*TBA

y y

x

x

CPW CPW

Window
Buffer

On the Window Buffer side, the black rectangles are the most recent window updates while the empty ones represent ignored windows. On the
Query side, the gray-filled rectangles represent the time spent by the query to dequeue/process a window and report a result. The latter is marked
by an arrow pointing up

7 10531
 0

 1

 2

 3

 0.5

 1.5

 2.5

 3.5

101 3 5 7

1000 tuples/sec
40 tuples/sec

Window Slide

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

A
pp

lic
at

io
n

St
al

en
es

s
(s

ec
s)

Window Slide

LAZY−WBEAGER−WB

(a)

 0

 1

1000 tuples/sec
100 tuples/sec

Window Slide

 0.2

 0.4

 0.6

 0.8

 1.2

 1.4

EAGER−WB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

A
pp

lic
at

io
n

St
al

en
es

s
(s

ec
s)

Window Slide

LAZY−WB

017531017531

(b)

Fig. 19 Staleness for eager versus lazy window buffer management on window-aware update queues (multiple update keys). a CPT. b CPW

y is negligible compared with the cost of the downstream
query (i.e., C PW), since the window is already in the stor-
age and the operator can consume it very fast. By contrast,
in the case of EAGER-WB, the aggregate operator dequeues
and computes window tuples as they arrive. In this case, y can
get to the maximum of w× T B A = w× C PW

L F . This is only
reached in the non-overload scenario, explaining the strange
maximum that was achieved by EAGER-WB at L F = 1.
As L F increased, y became smaller and smaller, causing the
staleness achieved by EAGER-WB approach that achieved
by LAZY-WB for high load levels.

Multiple update keys

Next, we repeated the previous experiment for multiple
update keys. For this experiment, we set the number of update
keys to 10, the window size as w = 10 and varied the win-
dow slide between 1 and 10. Smaller window slide means
higher load as it corresponds to fast sliding windows that
highly overlap and lead to a higher number of windows to

be constructed and processed. We took measurements for
EAGER-WB and LAZY-WB for two types of input rates,
low (40 or 100 tuples/s) and high (1000 tuples/s).

Figure 19 shows our results, again with a separate graph
for CPT and CPW. In both graphs, we observe a similar trend:
staleness decreases almost linearly with increasing window
slide. This is natural, since a greater window slide incurs less
load. A special situation we expected to observe in the multi-
key scenario is that windows of a given key may experience
time gaps due to tuple arrivals for other keys. We expected
LAZY-WB not to exhibit any sensitivity to such gaps since it
only processes fully formed windows. EAGER-WB, on the
other hand, can be sensitive to gaps. We will further explain
the results of these experiments through a detailed analysis
around the CPT and CPW scenarios.

The CPT Case: In Fig. 19a, at very high load, EAGER-WB
and LAZY-WB are closer in terms of staleness. We also mea-
sured the average length of the queue for the entire run time;
for the high load setting (1000 tuples/s), the reported values

123

UpStream: storage-centric load management for streaming applications with update semantics 889

 0

 5

 10

 15

 20

 25

 30

 35

 100 1000

M
ax

. #
 o

f
St

or
ed

 T
up

le
s

Input Rate (#tuples/second)

slide = 1
 slide = 5

 slide = 10

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 100 1000

M
ax

. #
 o

f
St

or
ed

 T
up

le
s

Input Rate (#tuples/second)

slide = 1
 slide = 5

 slide = 10

(b)

EAGER−WB
 LAZY−WB

 20

 40

 60

 80

 100

10 20 30 40 50

M
ax

. #
 o

f
St

or
ed

 T
up

le
s

Window Size

(c)

Fig. 20 Memory usage for eager versus lazy window buffer management on window-aware update queues. a Memory usage versus input rate
(EAGER-WB). b Memory usage versus input rate (LAZY-WB). c Memory usage versus window size

for both EAGER-WB and LAZY-WB indicated that, on aver-
age, the queue contained all the keys. Despite this, EAGER-
WB seems to be doing slightly better than LAZY-WB. The
reason is that it takes advantage of gaps in the windows by
immediately starting to serve other keys when a gap is hit. In
this case, referring to Table 3, x is equal to nc×C PT , where
nc is the number of keys that have closed their committed
windows before this key closed its own committed window.
For high load levels, gaps closed faster compared with CPT,
making nc smaller as load increased. In this case, staleness
for EAGER-WB was mostly affected by the number of keys
in the queue. LAZY-WB exhibits the same trend for x as in
the single-key scenario (w×C PT), and hence, staleness for
LAZY-WB was mostly due to the average queue length. It
appears that for high load, both buffers tend to level stale-
ness off. By contrast, we can observe EAGER-WB doing
better than LAZY-WB for lower load levels. This is because
EAGER-WB was able to benefit more from gaps and inter-
leaving the processing of keys, yielding lower values for nc.

The CPW Case: In Fig. 19b, we see EAGER-WB being
affected by gaps in a rather negative way. If we place Table 3
(second row) in the current context, the only thing that
changes is y. This is where gaps came into play. y is the
time spent by the aggregate to dequeue and compute a win-
dow for a key. In this case, since window tuples took longer
to arrive, y also included the accumulated length of the gaps,
disfavoring EAGER-WB at smaller window slide values.

Memory usage

In this last experiment, we wanted to contrast the memory
requirements of our two window buffer management strate-
gies. We only include our results on the CPT-style process-
ing, as we observed that it has more influence on memory
usage than CPW. We expected EAGER-WB and LAZY-WB
to exhibit different memory usage patterns due to the differ-
ence in the way windows are overwritten. We expected that

the amount of consumed memory would also depend on the
window size, window slide, and the system load.

The first two graphs (Fig. 20a, b) show memory usage
for different load factors and window slide values. The the-
oretical worst case bounds for EAGER-WB and LAZY-WB
approaches are w + s and 2 × w + s, respectively. We can
see from the graphs that these bounds were reached at very
high system loads, where memory usage stabilized. Our tech-
niques achieve bounded memory usage.

The third graph (Fig. 20c) shows memory usage for differ-
ent window sizes. The input rate was set to 1000 tuples/s and
the window slide was set to s = 1 (i.e., high load, extreme
degree of window overlap). It is clear to see that the mem-
ory requirements for both buffering techniques grow line-
arly with window size, which shows that UpStream does
not add much overhead beyond the normal expected require-
ments. The results of this experiment indicate once again that
EAGER-WB requires less memory than LAZY-WB.

7.4 Summary

We conclude this performance evaluation section with a sum-
mary of our findings.

Our experiments confirmed that our storage-centric
approach is efficient in adapting to overload, lowering
staleness, and controlling memory consumption, when we
compared UpStream against state-of-the-art in terms of load
shedding using random drops (for both tuple-based and win-
dow-based operations). Moreover, UpStream can directly
minimize and control staleness via efficient key schedul-
ing. We also verified that the IN-PLACE strategy can min-
imize staleness when keys update uniformly both in theory
and in practice. The LINECUTTING scheduling strategy on
the other hand showed definite improvement compared with
IN-PLACE, when considering non-uniform key update rate
distributions (both synthetic and realistic), although in some
cases the overhead of the decision making process slightly
degraded the benefits.

123

890 A. Moga et al.

We also observed the performance benefits and trade-offs
of using two different window management strategies for our
update queues: eager and lazy. Although they both showed
similar staleness levels at very high system load, we saw
cases where eager performed better, i.e., incremental win-
dow processing, and others where lazy was more suitable,
i.e., non-incremental window processing. In terms of memory
consumption, both strategies were able to achieve bounded
memory usage.

8 Related work

Our work on update streams mainly relates to previous work
in the following research areas:

Stream load management. The existing work in stream
load management treats streams as append-only sequences
and therefore focuses mainly on minimizing latency. Two
classes of approaches exist. The first class focuses on load
distribution and balancing, while the second class focuses
on load shedding. Load distribution and balancing involves
both coming up with a good initial operator placement (e.g.,
[32]) and dynamically changing this placement as data arrival
rates change (e.g., [6,22,31]). In general, moving load is a
heavy-weight operation whose cost can only be amortized
for sufficiently long duration bursts in load. For short-term
bursts leading to temporary overload, load shedding is pro-
posed. In load shedding, the distribution of operators onto
the processing nodes is kept fixed, but other load reduction
methods (e.g., drop operators, data summaries) are applied
on the query plans that result in approximate answers (e.g.,
[5,25,27–30]). All of these techniques focused on reducing
latency for applications with append semantics, and none of
them provided storage-based solutions.

Synchronization and freshness in web databases. Cho and
Garcia-Molina [10] study the problem of update synchroni-
zation of local copies of remote database sources in a web
environment. The synchronization is achieved by the local
database polling the remote one, and the main issue is to
determine how often and in which order to issue poll requests
to each data item in order to maximize the time-averaged
freshness of the local copy. In our problem, updates from
streaming data sources are pushed through continuous que-
ries to proactively synchronize the query results. Since the
exact update arrival times are known, this gives our algo-
rithms direct control for synchronization. More recent work
by Qu et al. [23,24] considered two types of transactions for
web databases: query transactions and update transactions.
To provide timeliness for the former and freshness for the lat-
ter, an adaptive load control scheme has been proposed. The
update transactions in this line of work have a very similar

semantics to our update streams. However, a major differ-
ence is represented by our push-based processing model: We
do not separate query and update transactions, but rather con-
sider updates and queries as part of a single process due to
the continuous query semantics. Finally, Sharaf et al. [26]
propose a scheduling policy for multiple continuous queries
so as to maximize the freshness of the output streams dis-
seminated by a web server. This work only focuses on filter
queries. Furthermore, it is assumed that occasional bursts in
data rates are short-term and all input updates are eventually
delivered (i.e., append semantics). In our work, we focus on
update semantics, where delivering the most recent result in
overload scenarios is the main requirement.

Materialized view maintenance. Previous work on mate-
rialized view maintenance is relevant to our work as well.
The STanford Real-time Information Processor (STRIP) sep-
arates view imports from view exports. In this model, both the
base data and the derived data materialized as views must be
refreshed as updates are received (view import). Also, read
transactions on both the base data and materialized views
must be executed, with specific deadlines (view export). As in
web databases, this creates a trade-off between response time
for read transactions and freshness for update transactions.
Adelberg et al. propose scheduling algorithms for efficient
updates on base data [2], as well as on derived data [3]. Kao
et al. [15] further extend these works by proposing sched-
uling policies for ensuring temporal consistency. A more
recent and closely related work to UpStream is the DataDe-
pot Project from AT&T Labs [13,12,7]. DataDepot is a tool
for generating data warehouses from streaming data feeds,
and therefore, it has many data warehousing features. For us,
the part on real-time update scheduling is directly relevant.
We see two basic similarities between UpStream and Data-
Depot: both accept push-based data and both worry about
staleness. On the other hand, in DataDepot, updates corre-
spond to appending new data to warehouse tables. Therefore,
all updates must be applied. Furthermore, DataDepot focuses
on scheduling the update jobs, but does not consider continu-
ous operations on streams (e.g., sliding window queries). The
two projects are complementary since UpStream can poten-
tially serve as a preprocessor for a real-time data warehouse
system such as DataDepot.

9 Conclusions and future work

In this paper, we have argued that we need new load man-
agement techniques for streaming applications with update
semantics, since these applications care more about stale-
ness than latency. We proposed a novel storage-centric load
management framework based on update queues. We further
devised a detailed analysis and a set of new techniques for

123

UpStream: storage-centric load management for streaming applications with update semantics 891

update-key scheduling and space-efficient window process-
ing techniques that ensure correct and low-staleness results
for sliding window queries. We would like to address the
following issues as part of our future work:

• We showed in this paper that the update queue can mini-
mize staleness when using the IN-PLACE policy, and the
update keys are uniformly distributed in terms of their
frequencies. Furthermore, based on our LINECUTTING
heuristic, we have shown that better key scheduling algo-
rithms can be devised for the non-uniform case. As part
of our future work, we would like to extend our UpStream
framework to include additional key scheduling policies
that may be a better fit for a broader set of update key
frequency distributions.

• In this paper, we focused on minimizing staleness for a
single continuous query on streaming data with multiple
update keys. We would like to extend our techniques to
scheduling multiple continuous queries, possibly with
sharing.

• Currently, we assume continuous access frequencies for
all update keys at the end point application. However, the
application may also want to access the results at differ-
ent rates (e.g., GOOG stocks to refresh every minute and
GM stocks to refresh every hour). Therefore, we intend
to integrate application-specific access frequencies into
our QoS model.

• Lastly, our storage framework allows append and update
queues to coexist in the system at the same time. We
will explore how we can optimize our storage frame-
work under such scenarios. One interesting idea is to
investigate adaptive schemes that allow the system to
automatically switch between the two queuing modes
based on changing load.

Acknowledgments We would like to thank Gustavo Alonso, Don-
ald Kossmann, and Timothy Roscoe for their valuable feedback on
earlier versions of this paper and Simonetta Zysset for proofreading
the final manuscript. The work presented in this paper has been sup-
ported in part by the National Competence Center in Research on Mobile
Information and Communication Systems NCCR-MICS, a center sup-
ported by the Swiss National Science Foundation under grant number
51NF40-130758/1.

References

1. Abadi, D., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack,
M., Hwang, J., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E.,
Tatbul, N., Xing, Y., Zdonik, S.: The design of the Borealis stream
processing engine. In: CIDR Conference, Asilomar, CA (2005)

2. Adelberg, B., Garcia-Molina, H., Kao, B.: Applying update streams
in a soft real-time database system. In: ACM SIGMOD Conference.
San Jose, CA (1995)

3. Adelberg, B., Kao, B., Garcia-Molina, H.: Database support
for efficiently maintaining derived data. In: EDBT Conference.
Avignon, France (1996)

4. Alonso, R., Barbara, D., Garcia-Molina, H.: Data caching issues
in an information retrieval system. ACM Trans. Database Syst.
15(3), 359–384 (1990)

5. Babcock, B., Datar, M., Motwani, R.: Load shedding for aggrega-
tion queries over data streams. In: IEEE ICDE Conference. Boston,
MA (2004)

6. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Contract-based
load management in federated distributed systems. In: NSDI Con-
ference. San Fransisco, CA (2004)

7. Bateni, M.H., Golab, L., Hajiaghayi, M.T., Karloff, H.: Scheduling
to Minimize Staleness and Stretch in Real-Time Data Warehouses.
In: ACM SPAA Conference. Calgary, Canada (2009)

8. Botan, I., Alonso, G., Fischer, P.M., Kossmann, D., Tatbul, N.:
Flexible and scalable storage management for data-intensive
stream processing. In: EDBT Conference. Saint Petersburg, Russia
(2009)

9. Carney, D., Çetintemel, U., Rasin, A., Zdonik, S.B., Cherniack, M.,
Stonebraker, M.: Operator scheduling in a data stream manager.
In: VLDB Conference. Berlin, Germany (2003)

10. Cho, J., Garcia-Molina, H.: Synchronizing a database to improve
freshness. In: ACM SIGMOD Conference. Dallas, TX (2000)

11. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Surfing
wavelets on streams: one-pass summaries for approximate aggre-
gate queries. In: VLDB Conference. Rome, Italy (2001)

12. Golab, L., Johnson, T., Seidel, J.S., Shkapenyuk, V.: Stream ware-
housing with DataDepot. In: ACM SIGMOD Conference. Provi-
dence, RI (2009a)

13. Golab, L., Johnson, T., Shkapenyuk, V.: Scheduling updates in a
real-time stream warehouse. In: IEEE ICDE Conference. Shanghai,
China (2009b)

14. Gray, J., Sundaresan, P., Englert, S., Baclawski, K., Weinberger,
P.J.: Quickly generating billion-record synthetic databases.
In: ACM SIGMOD Conference. Minneapolis, MN (1994)

15. Kao, B., yiu Lam, K., Adelberg, B., Cheng, R., Lee, T.S.H.: Updates
and view maintenance in soft real-time database systems. In: CIKM
Conference. Kansas City, MO (1999)

16. Labrinidis, A., Roussopoulos, N.: Exploring the tradeoff between
performance and data freshness in database-driven web serv-
ers. VLDB J. 13(3), 240–255 (2004)

17. Maskey, A., Cherniack, M.: Replay-based approaches to revision
processing in stream query engines. In: SSPS Workshop. Nantes,
France (2008)

18. Moga, A., Botan, I., Tatbul, N.: UpStream: storage-centric load
management for data streams with update semantics. Tech. Rep.
Technical Report TR-620, ETH Zurich Department of Computer
Science (2009) ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/
6xx/620.pdf

19. Muthukrishnan, S.: Data streams: Algorithms and applications.
Foundations and Trends in Theoretical Computer Science 1(2)
(2005)

20. NYSE (2006) NYSE Data Solutions. http://www.nyxdata.com/
nysedata/

21. Olston, C., Widom, J.: Best-Effort Cache Synchronization with
Source Cooperation. In: ACM SIGMOD Conference. Madison,
WI (2002)

22. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh,
M., Seltzer, M.: Network-aware operator placement for stream-
processing systems. In: IEEE ICDE Conference. Atlanta, GA
(2006)

23. Qu, H., Labrinidis, A.: Preference-aware query and update schedul-
ing in web-databases. In: IEEE ICDE Conference. Istanbul, Turkey
(2007)

123

ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/6xx/620.pdf
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/6xx/620.pdf
http://www.nyxdata.com/nysedata/
http://www.nyxdata.com/nysedata/

892 A. Moga et al.

24. Qu, H., Labrinidis, A., Mosse, D.: UNIT: user-centric transaction
management in web-database systems. In: IEEE ICDE Conference.
Atlanta, GA (2006)

25. Reiss, F., Hellerstein, J.M.: Data triage: an adaptive architecture
for load shedding in TelegraphCQ. In: IEEE ICDE Conference.
Tokyo, Japan (2005)

26. Sharaf, M.A., Labrinidis, A., Chrysanthis, P.K., Pruhs, K.: Fresh-
ness-aware scheduling of continuous queries in the dynamic web.
In: WebDB Workshop. Baltimore, MD (2005)

27. Tatbul, N., Zdonik, S.: Window-aware load shedding for aggrega-
tion queries over data streams. In: VLDB Conference. Seoul, Korea
(2006)

28. Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M., Stonebraker,
M.: Load shedding in a data stream manager. In: VLDB Confer-
ence. Berlin, Germany (2003)

29. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying FIT: efficient load
shedding techniques for distributed stream processing. In: VLDB
Conference. Vienna, Austria (2007)

30. Tu, Y., Liu, S., Prabhakar, S., Yao, B.: Load shedding in stream
databases: a control-based approach. In: VLDB Conference. Seoul,
Korea (2006)

31. Xing, Y., Zdonik, S., Hwang, J.H.: Dynamic load distribution in
the Borealis stream processor. In: IEEE ICDE Conference. Tokyo,
Japan (2005)

32. Xing, Y., Hwang, J.H., Çetintemel, U., Zdonik, S.: Providing resil-
iency to load variations in distributed stream processing. In: VLDB
Conference. Seoul, Korea (2006)

123

	UpStream: storage-centric load management for streaming applications with update semantics
	Abstract
	1 Introduction
	2 Models for processing update streams
	2.1 Streams and queries
	2.2 Order and correctness
	2.3 Staleness

	3 Storage-centric approach
	4 Minimizing staleness
	4.1 Application staleness versus queue staleness
	4.2 IN-PLACE update queues
	4.3 LINECUTTING update queues
	4.3.1 Motivating example
	4.3.2 LINECUTTING heuristic
	4.3.3 IN-PLACE versus LINECUTTING

	5 Handling windows
	5.1 Correctness principles
	5.2 Window-aware update queues
	5.3 Window buffer management
	5.3.1 Lazy window buffer
	5.3.2 Eager window buffer

	6 UpStream implementation
	7 Performance
	7.1 Experimental setup
	7.2 Key scheduling
	7.2.1 In-place updates versus random drops
	7.2.2 LINECUTTING versus IN-PLACE

	7.3 Window-based processing
	7.3.1 Using a window-aware update queue
	7.3.2 Window buffer management: eager versus lazy

	7.4 Summary

	8 Related work
	9 Conclusions and future work
	Acknowledgments
	References

