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Abstract This article presents an enhanced methodology
for cutting torque prediction from the spindle motor current,
readily available in modern machine tool controllers. This
methodology includes the development of the spindle power
model which takes into account all mechanical and electrical
power losses in a spindle motor for high-speed milling. The
predicted cutting torque is further used to identify tangential
cutting force coefficients in order to predict accurately the
cutting forces and chatter-free regions for milling process
planning purposes. The developed model is compared with
other studies available in the literature, and it demonstrates
significant improvements in terms of the completeness and
accuracy achieved. The developed model is also validated
experimentally, and the obtained results show good compli-
ance between the predicted and the measured cutting torque.
The developed enhanced procedure is very appealing for
industrial implementation for cutting torque/force monitor-
ing and tangential cutting force coefficient identification.

Keywords Cutting torque . Spindle power modeling .

Spindle motor current . Cutting force coefficients . High-
speed milling

1 Introduction

In the highly competitive economic environment, modern
manufacturing industries face many challenges in order to
achieve high productivity. To meet these challenges, many
studies are conducted to predict the cutting forces and chatter-
free regions during the milling process by mathematical mod-
eling [1, 2]. High cutting forces and unstable milling lead to
high vibration, poor surface quality, and reduction in spindle
and cutting tool life, thus affecting the overall productivity.

Cutting force coefficients are needed for accurate predic-
tion of the cutting forces and chatter-free regions during the
milling process [3]. They must be experimentally deter-
mined from cutting force measurements for a given combi-
nation of cutting tool geometry and workpiece material [4].

In the standard procedure, the cutting force coefficients
are identified from average values of the cutting force com-
ponents measured by a cutting force dynamometer in slot
cutting experiments at different feed rates [5, 6]. This ex-
perimental setup is impractical in modern shop floors due to
its high cost and hardware setup complexity. Therefore,
there is a constant need in industry for simple and efficient
procedures for cutting force coefficient identification.

Tangential cutting force coefficients, which are the most
significant for cutting force and chatter-free region prediction,
can be obtained from the cutting torque measured directly on a
spindle by using piezoelectric torque dynamometers or capac-
itance spindle displacement sensors [7]. However, these
approaches are also plagued with practical problems, such as
heat generated by the spindle motor (in the case of the built-in
torque sensor), variable sensitivity throughout themachine tool
power range, complicated assembly and, again, high costs.

To overcome these problems in cutting force/torque deter-
mination, a simple and cost-effective solution is found in
using built-in current sensors for motion control in servo
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motors. When a change of the mechanical load on the motor
occurs, the motor current is modified by the servo controller to
overcome it. In modern CNCmachine tools, the motor current
can be digitally output to external signal acquisition systems.

Current sensors of feed-axis servo motors can be used for
the calculation of force components normal to the machined
surface [8]. However, due to the high influence of friction
forces in feed-axis servo drives, the application of this
method for cutting force component determination is limited
to discrete monitoring in specific locations where friction
influence can be predicted sufficiently accurately.

On the other hand, cutting torque can be calculated
relatively easily from the spindle current due to the smaller
magnitude of friction forces and constant operational speed
[7]. Dunwoody [9] has proposed a procedure for the indirect
identification of tangential cutting force coefficients (Ktc and
Kte) from the cutting torque. Instead of being measured
directly, the cutting torque is obtained from a difference in
spindle power consumption in material cutting and air cut-
ting. The spindle motor current, measured by a built-in load
meter, is proportional to the total power spent by the spindle,
which is expressed as:

I ¼ KlmPACeff ð1:1Þ
where I is the spindle current proportional to the total
spindle power (useful power, spent on cutting plus losses
measured by a built-in load meter and obtained from the
controller), Klm is the load meter constant, and PAceff is the
effective power from the electrical network.

In Dunwoody's model, the total power spent by the
spindle is calculated as the product of the spindle angular
speed (wM) and the sum of torques that the spindle has to
overcome as

I ¼ KlmwM ðTcut þ bwM þ Tcf Þ ð1:2Þ
where Tcut is the cutting torque, bwM is the torque needed to
overcome viscous friction, and Tcf is the torque needed to
overcome Coulomb friction.

For air cutting (Tcut00), the measured spindle motor
current accounts only for power losses. It is derived from
Eq. 1.2

If ¼ Klmbw
2
M þ KlmTcfwM ð1:3Þ

where If is the spindle current proportional to the power loss.
This model is simple and efficient, but does not take into
account the dependency of Coulomb friction losses on spindle
speed, which is especially important in the case of high-speed
machining [10]. Furthermore, this model does not include, at
least explicitly, the electric losses in the spindle motor.

In the present work, the model for total spindle power
estimation is improved in terms of including all mechanical
and electrical sources of power loss in the spindle drive.

Figure 1 illustrates a typical modern motorized spindle with
a simplified presentation of all mechanical torques that it has to
overcome while rotating: friction in bearings, TfBi (i01, 2…);
cutting torque, Tcut; and windage friction torque, Tνw.

The Coulomb friction is generally dependent on mate-
rial characteristics and normal forces in the friction con-
tact, while the viscous friction is dependent on the speed
of relative motion of bodies in contact and the properties
of the fluid film that separates them. In order to sustain
the combined radial and axial load, the bearings in mo-
torized spindles are typically featured as pairs of angular
contact ball bearings. The first general load deflection
analysis of angular contact bearings, including the influ-
ence of centrifugal forces on balls and gyroscopic effects,
was developed by Jones [11]. Palmgren [12] has provided
empirical expressions for viscous friction torque in the
bearings. The study performed by Houpert [13] included
elements of Hertzian theory to determine the geometrical
properties of the contact zone and pressure distribution in
the fluid, but did not take into account the centrifugal and
gyroscopic effects on rolling elements. The most compre-
hensive analytical study of Coulomb and viscous friction
in bearings is given by Harris [14].

The low-friction properties of angular contact bearings
are of special importance in high-speed machining. The
value of contact angles between the balls and the rings in
such a design is a function of dynamic variables in opera-
tional conditions. Antoine et al. [15] have developed a
procedure for the explicit angle calculation in angular con-
tact ball bearings.

The windage friction torque originates in the air gap
between the rotor and stator due to the dynamic viscosity
of the air. This problem has been analyzed by Bossmanns
and Tu [16]. Besides the mechanical losses, the power flow
in motorized spindles also includes different types of losses
due to electrical phenomena in the spindle motor. This
power flow is illustrated in Fig. 2.

Although extensive research has been conducted in the
last three decades, the electrical power losses are still not
completely explained by theoretical models in a comprehen-
sive manner. Jordan [17] and Hughes [18], among others,
explain the phenomena that cause different types of electri-
cal losses. Bossmans [19] provides some semi-empirical
expressions to calculate motor core and copper losses, while
Köfler [20] and Agamloh [21] report some experimental and
empirical results of stray loss estimation.

In this paper, a holistic model for total spindle power
calculation is presented. This model is inspired by the afore-
mentioned research results and features some enhancements
in terms of the generality and derivation of all geometric,
kinematic, and dynamic variables that appear in the devel-
oped model. Furthermore, it expresses all sources of power
loss as a function of spindle angular speed and mechanical
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load on the spindle shaft, which allows for easy experimen-
tal validation and practical implementation.

The enhanced procedure for cutting torque and tangential
cutting force coefficients identification from spindle motor
current consists of four steps:

1. Development of a holistic theoretical model for total
spindle power calculation that includes the power loss
due to the spin-related friction torque in the spindle
bearings, the power loss due to the windage friction
torque, and electrical losses in the spindle motor

2. Air cutting tests at different spindle speeds (spindle
motor current measurement) and slot cutting tests at
different spindle speeds (spindle motor current and cut-
ting torque measurement)

3. Development of an empirical model for cutting torque
prediction as a function of the spindle rotational speed
and spindle current

4. Slot cutting tests at different feed rates for validation of
the cutting torque prediction model and the identifica-
tion of tangential cutting torque coefficients:

(a) Spindle current measurement (for cutting torque
prediction),

(b) Direct cutting torque measurement with a torque
dynamometer (for comparison and validation of
the procedure)

The content of the article is organized as follows. In
Section 2, the detailed model of the total power spent by
the spindle motor is presented. The mathematical expres-
sions for all modeled mechanical and electrical losses are
presented in this section, while some more detailed deriva-
tions are provided in the Appendix. The experiments per-
formed to identify the parameters in the empirical model are

demonstrated in Section 3, along with the results and accuracy
obtained. An industrial implementation of the model, for
tangential cutting force coefficient identification, is presented
in Section 4. This section is followed by conclusions on the
important contributions of the presented research work.

2 Theoretical model for the total spindle power
calculation

Motorized spindles of modern machine tools typically use
alternate current (AC) inductionmotors. Therefore, the expres-
sions for mechanical and electrical losses estimation presented
in the further text will correspond only to AC inductionmotors.

The total power, PAC (in watts), drawn by a symmetrical
three-phase induction motor from the electrical network is
calculated by the following expression:

PAC ¼
ffiffiffi
3

p
UI ð2:1Þ

where U is the voltage and I is the current. Only a portion of
the total power, termed as effective electric input power,
PACeff (in watts), is actually used for overcoming mechani-
cal losses or dissipated as heat. It is expressed as:

PACeff ¼
ffiffiffi
3

p
UI cosφj j ð2:2Þ

In Eq. 2.2, cosφ represents the power factor (φ is the phase
angle between the vectors of voltage and the current). In
modern electric motor designs, automatic power factor correc-
tion units are implemented to achieve cosφj j ¼ 1, thus reduc-
ing transmission losses and improving voltage regulation.

The total power (in watts) used by a motorized spindle to
overcome the mechanical load and compensate for

Fig. 1 Free body diagram of a
motorized spindle

Fig. 2 Power flow in a
motorized spindle
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mechanical and electrical losses in the system is expressed by
summing up the following components:

PACeff ¼ Pcut þ Pml þ Pel ð2:3Þ
where

– Pcut ¼ TcutwM is the power providing the cutting torque,
Tcut, needed to overcome tangential cutting force in the tool/
part contact at a spindle rotational speed, wM (per second)

– Pm1 and Pe1 represent the total mechanical and electrical
power losses, respectively, in the spindle drive system.

2.1 Mechanical losses in a motorized spindle

Total mechanical losses in the motorized spindle are the conse-
quence of the Coulomb and viscous friction phenomena in
contact areas due to the relative motions of the members of
kinematic pairs. The total torque required to overcome all sources
of mechanical power loss in a motorized spindle is expressed as

Tml ¼ Pml

wM
¼ Tμ þ Tn ð2:4Þ

where Tμ is the torque to overcome the Coulomb friction forces
and Tv is the torque to overcome the viscous friction forces. This
equation is further decomposed according to the physical sources
of friction loss into

Tml ¼ TBμl þ TBμs þ TBn þ Tnw ð2:5Þ
where Tμl is the load-related friction torque in spindle bearings,
Tμs is the spin-related friction torque in spindle bearings, TBn is
the viscous friction torque in spindle bearings, and Tnw is the
windage friction torque in the air gap between the stator and the
rotor.

2.1.1 Load-related friction torque in spindle bearings, TBμl

The dependency of friction losses in bearings on both load
and velocity is of great importance in high-speed machining
analyses. Angular contact ball bearings are commonly used
in motorized spindles. The most comprehensive theoretical
bearing friction model is given by Harris [14].

Bearing friction torque due to the applied load is calcu-
lated as

TBμl ¼ flFadBb ð2:6Þ
where fl is a unitless factor depending upon the bearing
design and relative bearing load, Fa is contact angle-
related load (newton), and dBb is the diameter of a bearing
that corresponds to the centers of the balls (in millimeters).

Bearing friction torque due to the applied load can be
calculated analytically/numerically. It does not depend on
spindle speed, but it is strongly dependent on the bearing

geometry and type. The power needed to overcome the bear-
ing friction torque due to the applied load is expressed as

PBμl ¼ TBμlwM ¼ flFadBbwM ð2:7Þ
Equation 2.7 is simplified to describe the power needed to

overcome the bearing friction torque due to the applied load.

PBμl ¼ KBμlwM ð2:8Þ
where KBμl is an applied load constant.

For ball bearings, the factor fl can be calculated by using
the following expression [14]:

fl ¼ z
Fs

Cs

� �y

ð2:9Þ

where z and y are constants depending on the ball bearing contact
angles. For nominal contact angles between 30° and 40° in
angular contact ball bearings, the values of these coefficients
are z00.001 and y00.33 [14]. Fs and Cs are the static equivalent
load and the basic static load (both in newton), respectively.

The basic static load, Cs, is approximated by using

Cs ¼ ϕsiZd
2
b cos a ð2:10Þ

where

– φs is a unitless parameter depending on the following
ratio, gb:

gb ¼
db cos a
dBb

ð2:11Þ

– i is the number of rows of rolling elements,
– Z is the number of balls per bearing,
– db is the ball diameter (in millimeters),
– a is the ball bearing contact angle (radian)

Static equivalent load is equal to the radial load at radial
bearings and to the axial load at thrust bearings. For angular
contact ball bearings, it is calculated by using

Fs ¼ max XsFr þ YsFa;Frð Þ ð2:12Þ
where Xs and Ys are constants depending on the ball bearing
contact angle, Fr is the radial load (in newton), and Fa the is
axial load (in newton).

Values of Cs are generally given in manufacturers’ cata-
logues along with the data to enable the calculation of Fs

[14]. Contact angle-related load can be calculated by using
the following expression:

Fa ¼ max 0:9Facota � 0:1Fr;Frð Þ ð2:13Þ
The notion of the bearing contact angle needs to be

explained in detail because its value depends on the work
conditions of the bearing. The derivations of expressions for
the calculation of the dynamic values of the bearing contact
angle are given in the Appendix.
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2.1.2 The spin-related friction torque, TBμs

When a rolling element rotates relative to a deformed surface
in the contact areas with raceways, instead of a simple rolling
motion, a combination of rolling and sliding motions of the
rolling element is generated. Additionally, in the case of
angular contact ball bearings, due to the gyroscopic effect,
the rolling motion does not occur exactly on a line parallel to
the raceway. As a consequence, an additional motion occurs:
the “spinning” rotation of the ball. It represents the pure
sliding in the contact area, thus contributing significantly to
the overall bearing friction power loss.

Detailed analysis of this problem is given byHarris [14]; here,
the main conclusions from [14] are applied to the case of spindle
bearings. Two variables, the angular speed of ball spinning and
the corresponding friction torque, are determined in order to
calculate the power loss due to the ball spinning phenomenon.

Figure 3 illustrates the speed vector for a single ball in a
bearing. The pitch angle β is a consequence of the angular
contact bearing design, whereas the yaw angle β′ is a con-
sequence of the existence of the gyroscopic motion. The
other variables are represented in Fig. 3:

– wb is the vector of the resultant angular velocity of the
ball (composed of the rolling, sliding, and spinning
motion components)

– x is the axis of the bearing rotation
– y is the current angular position of the ball in the bearing

The angular speed of spinning for a ball in the bearing
wspin can be calculated using the following expression [14]:

wspin ¼ wM
1� g

0
b cos ai

g 0
b

tan ai � bð Þ þ sin ai

� �
ð2:14Þ

where

– wM is the angular speed of the motor (spindle) shaft
– αi and αo are the dynamic values of the bearing contact

angle corresponding to the inner and outer raceways,
respectively (see Fig. 11b)

– g
0
b is a geometric parameter that defines the ratio

between the ball diameter, db, and the bearing diameter
corresponding to ball centers, dBb,

g
0
b ¼

db
dBb

ð2:15Þ

– β is the pitch angle (see Fig. 3) defined as

b ¼ arctan
sin ao

cos ao þ g 0
b

� �
ð2:16Þ

Assuming that the gyroscopic motion can be neglected
and that the spinning occurs in the center of the contact
surface between the ball and the inner raceway, Harris [14]

derives the following expression for the spinning torque on
the inner/outer (i/o) raceway:

TBμs i=oð Þ ¼ 3

8
μbW i=oð Þa i=oð Þ" i=oð Þ ð2:17Þ

The variables in Eq. 2.17, except the friction coefficient,
μb, between the ball and the raceway (steel/steel contact), are
explained in detail in the subsequent text. Normal loads, Wo

andWi, on the contact surfaces between the ball and the outer
and inner raceways, respectively, are calculated using the
following expression (see Fig. 12 for more details):

W i=oð Þ ¼ FSa

Nb sin a i=oð Þ
ð2:18Þ

where FSa is the axial force that acts on a bearing (see
Fig. 11b) and Nb is the number of the balls in the bearing.

The semi-major axis of the projected contact ellipse, a(i/o), in
ball/inner and ball/outer raceway contact zones, respectively, is
calculated as [14]

a i=oð Þ ¼ 0:0236a*i=oð Þ
W i=oð Þ
@ρ i=oð Þ

 !1
3

ð2:19Þ

In order to complete the explanation of all variables that
occur in Eqs. 2.17 and 2.19, we need to define the following
set of geometrical parameters [14]:

– radii of the inner and the outer raceway groove curva-
tures, respectively: R(i/o)

– raceway curvature sum:

X
ρ i=oð Þ ¼

1

db
4� db

R i=oð Þ
þ 2gb i=oð Þ

1� gb i=oð Þ

 !
ð2:20Þ

Fig. 3 Ball angular speed vector in a non-zero ball–raceway contact.
Redrawn from [14]
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– raceway curvature difference:

FðρÞi=o ¼
db

R i=oð Þ
þ 2g i=o

1�g i=o

4� db
R i=oð Þ

þ 2g i=o
1�g i=o

ð2:21Þ

– geometrical parameter that defines the ratio between the
ball diameter, db, and the bearing diameter corresponding
to the ball centers, dBb, projected in the direction of
normal load W(i/o):

gb i=oð Þ ¼
db
dBb

cos a i=oð Þ ð2:22Þ

– complete elliptic integral of the second kind on the
elliptic contact zones between a ball and inner and outer
raceways, respectively:

" i=oð Þ ¼
pa*i=oð Þ b*i=oð Þ

� �2
2

ð2:23Þ

– dimensionless contact parameters a*i=oð Þ and b*i=oð Þ that
can be obtained as a function of the raceway curvature
difference FðρÞi=o (Eq. 2.21) by interpolating pre-

calculated tabular values [14].

Finally, from Eqs. 2.14 and 2.17, we obtain the total
power required to overcome the spin-related friction torque
for all Nb balls as

PBμs ¼ Nb TBμsi þ TBμso
� �

wspin ð2:24Þ
Equations 2.14–2.23 demonstrate that all variables

contributing the power lost due to the ball spinning are
dependent either on the spindle speed or on the dynamic
contact angles, which are in turn also spindle speed-
dependent. Therefore, a numerical simulation is per-
formed to determine a possible model describing the
dependency of the power required to overcome the
spin-related friction torque on the spindle speed. Power
loss due to the spin relation friction in bearings, accord-
ing to Eq. 2.24, is calculated for spindle speeds up to
20,000 rpm. The calculation is done using a program
written in C++. The input parameters for the calculation
are taken from the case study given in [22].

Based on the results presented in Fig. 4, the following
polynomial model is assumed for the power loss due to the
spin-related friction in bearings as a function of the angular
speed of the spindle:

PBμs ¼ K0BμswM þ K1Bμsw
3
M þ K2Bμsw

5
M ð2:25Þ

where K0Bμs and K2Bμs are constants. The fifth degree term
in the polynomial function ensures a better prediction of the
power spent due to the spin-related friction during high-
speed machining conditions.

2.1.3 Friction torque due to lubricant viscosity, TBn

The torque due to lubricant viscous friction is given by the
following expression [12]:

TBn ¼ 10�7fn nnMð Þ23d3Bb; if nnM � 2; 000
160� 10�7fnd3Bb; if nnM < 2; 000

	
ð2:26Þ

where n is kinematic viscosity (centistokes), nM is a spindle
(motor shaft) rotational speed (revolutions per minute), and
fn is a factor depending on the type of bearing and method of
lubrication (Table 1).

If we limit the domain of application of this model to
spindle rotational speeds higher than 2,000 rpm (which
should correspond to the kinematic viscosity of the fluid
on all working temperatures), we can express the power
needed to overcome the torque due to lubricant viscous
friction as

PBn ¼ 10�7fn nnMð Þ23d3BbwM ¼ 10�7fn n
30wM

p

� �2
3

d3BbwM

)

PBn ¼ 4:5� 10�7fnd
3
Bb nð Þ23w5

3
M ð2:27Þ

or, in a simplified way,

PBn ¼ KBnw
5
3
M ð2:28Þ

where KBn is the lubricant viscous friction constant.

2.1.4 Windage friction torque, Tnw

Another friction source is the air gap between the rotor and
stator, i.e., the dynamic viscosity of the air. This problem has
been analyzed by Bossmanns and Tu [16]. The rotor and the
stator have different surface velocities (the stator has zero
surface velocity), and the circumferential velocity profile of

Fig. 4 Power loss due to the spin relation friction in bearings vs.
spindle speed
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air is assumed to be linear between the two boundaries. The
velocity gradient and shear stress are therefore assumed to
be constant. Shear stress can be computed as [16]

t ¼ μAir
@u

@y
¼ μAir

wM
dRot
2

hGap
ð2:29Þ

where μAir018.5×10
26 Ns/m2 is the dynamic viscosity of

air, u is the velocity of air in the circumferential direction (in
meters per second), y is the radial coordinate in the gap (in
meters), wM is the spindle (motor shaft) angular velocity
(radian per second), dRot is the rotor diameter (in milli-
meters), and hGap is the gap between the rotor and stator
(in millimeters).

The additional (windage friction) torque, Tnw, required
for rotation at a given speed is [16]

Tnw ¼ dRot
2

ZlRot
0

tdArot ¼ pd3RotlRotμAirwM

4hGap
ð2:30Þ

where:

– ARot is the cylindrical surface area around the rotor, with
a differential:

– dARot ¼ pdRotdl ð2:31Þ
– lRot is the length of the rotor.

Based on Eq. 2.30, the power loss due to the windage
friction can be expressed as

Pnw ¼ TnwwM ¼ p � d3Rot � lRot � μAir

4 � hGap � w2
M ð2:32Þ

or, in a simplified manner:

Pnw ¼ Knww
2
M ð2:33Þ

where Kvw is the windage friction constant.

2.2 Electrical losses in a motorized spindle

The losses in electric motors originate in several motor
components. They are due to very complex phenomena
and are dependent on the type, characteristics, and the
application of an electric motor. Consequently, in spite of

numerous research efforts resulting in various methodolo-
gies for analytical or experimental determination of these
losses, they still represent a domain where many questions
are left unanswered.

According to their sources, electrical losses can be divid-
ed into four groups [17]: copper losses in the stator, PSCu;
copper losses in the rotor, PRCu; iron losses, PMFe; and stray
losses, Pstray. Hence, the total losses due to electrical phe-
nomena are calculated as

Pel ¼ PSCu þ PRCu þ PMFe þ Pstray ð2:34Þ

2.2.1 Copper losses

Copper losses are a function of the current flowing through
the stator winding, IS (amperes), and the rotor cage, IR
(amperes). They can be calculated using the following
expressions:

PSCu ¼ RSI
2
S ð2:35Þ

PRCu ¼ RRI
2
R ð2:36Þ

where RS and RR (both in ohm) are, respectively, the electric
resistances of stator and rotor materials (copper).

An illustration of a typical current–speed curve for a cage
induction motor is given in Fig. 5. The form of the curve is
similar for both stator and rotor current dependency on
speed. From Fig. 5, the following mathematical model
corresponding to the current–speed curve (AR/S and BR/S

are constants depending on the motor type) is defined:

IR=S ¼ AR=S � BR=Sw
�1
M ð2:37Þ

By introducing Eq. 2.37 into Eqs. 2.35 and 2.36, we get

P R=Sð ÞCu ¼ RR=S AR=S � BR=Sw
�1
M

� �2
¼ RR=S A2

R=S � 2AR=SBR=Sw
�1
M þ B2

R=Sw
�2
M

� �
)

PRCu ¼ K0RCu þ K1RCuw
�1
M þ K2RCuw

�2
M ð2:38Þ

PSCu ¼ K0SCu þ K1SCuw
�1
M þ K2SCuw

�2
M ð2:39Þ

where K0RCu, K1RCu, K2RCu, K0SCu, K1SCu, and K2SCu are
constants.

2.2.2 Iron losses

Iron losses are the result of hysteresis and eddy currents
induced in the stator and rotor by the rotating magnetic field.

Table 1 Values of fn depending on ball bearing type and method of
lubrication [14]

Type of
lubrication

Grease Oil
mist

Oil
bath

Oil bath (vertical shaft)
or oil jet

fn 2 1.7 3.3 6.6
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They can be described as a function of the modulating
frequency, f, as [19]

PMFe ¼ KEf 3frated þ fð Þ ð2:40Þ
where frated is the rated frequency (corresponding to the
rated voltage of the electromotor) and KE is the eddy
current-related constant.

Taking into account that

f ¼ nM
Np

60
¼ 30wM

p
Np

60
¼ wMNp

2p
ð2:41Þ

where Np is the number of magnetic pole pairs and nM (in
revolutions per minute) is the rotational speed of the motor
shaft. Equation 2.40 yields

PMFe ¼ KE3frated
wMNp

2p
þ KE

wMNp

2p

� �2

)

PMFe ¼ K1MFewM þ K2MFew
2
M ð2:42Þ

where K1MFe and K2MFe are the constants.

2.2.3 Stray losses

Stray losses represent the same phenomenon as iron losses,
but due to the spindle parts outside the motor that are located
in the area reached by the magnetic field. These losses are also
frequency-dependent, but they are difficult to calculate. There
are several methodologies to determine them experimentally
or estimate them by performing a finite element analysis [20].

An experimental analysis by Agamloh [21], conducted on
about a thousand 60-Hz induction motors, has determined an
average stray power loss at 1.2 % of useful power, Pcut

(invested in overcoming the cutting torque)

Pstray ¼ 0:012Pcut ð2:43Þ

2.3 Model synthesis

Table 2 gives a review of the expressions presented in
Sections 2.1 and 2.2 which provide the dependency of

different sources of power loss in a motorized spindle
drive.

The total spindle power is given by Eq. 2.3, which is
expressed in detail as

PACeff ¼ KBμlwM þ K0BμswM þ K1Bμsw
3
M þ K2Bμsw

5
M þ KBnw

5
3
Mþ

þKnww
2
M þ K0RCu þ K1RCuw

�1
M þ K2RCuw

�2
M þ K0SCu

þK1SCuw
�1
M þ

þK2SCuw
�2
M þ K1MFewM þ K2MFew

2
M þ 0:012Pcut þ Pcut

ð2:44Þ
and spindle current proportional to the total spindle power,
from Eqs. 1.1 and 2.44, is given as

I ¼ KlmK2Bμsw
5
M þ KlmK1Bμsw

3
M þ KlmðKnw þ K2MFeÞw2

M

þ KlmKBnw
5
3
M þ KlmðKBμl þ K0Bμs þ K1MFeÞwM

þ KlmðK1RCu þ K1SCuÞw�1
M þ KlmðK2RCu þ K2SCuÞw�2

M

þ KlmðK0RCu þ K0SCuÞ þ Klm1:012TcutwM

ð2:45Þ

For air cutting (Tcut00), the measured spindle motor
current accounts only for the losses in the spindle drive.
Hence, Eq. 2.45 becomes

If ¼ KlmK2Bμsw
5
M þ KlmK1Bμsw

3
M þ KlmðKnw þ K2MFeÞw2

M

þ KlmKBnw
5
3
M þþKlmðKBμl þ K0Bμs þ K1MFeÞwM

þ KlmðK1RCu þ K1SCuÞw�1
M þþKlmðK2RCu þ K2SCuÞw�2

M

þ KlmðK0RCu þ K0SCuÞ
ð2:46Þ

The different constants in Eq. 2.46 are combined and the
resulting expression is given by

If ¼ a1w5
M þ a2w3

M þ a3w2
M þ a4w

5
3
Mþ

þa5wM þ a6w�1
M þ a7w�2

M þ a8
ð2:47Þ

Equation 2.45 is rewritten as

I ¼ If þ Klm � 1:012TcutwM ð2:48Þ

3 Development of an empirical model for cutting torque
prediction

MIKRON HPM 600U, a five-axis milling machine equipped
with the controller iTNC530, is used for experimentation
purposes. A flat end mill of 20 mm diameter with two flutes
is used as cutting tool. The material of the workpiece is Certal

Fig. 5 Current–speed curve for a cage induction motor. Redrawn from [18]
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(AlZnMgCu 0.5). The data acquisition platform is developed
in LabVIEW 2010. The cutting torque dynamometer (Kistler
9125A) and the measurement platform are shown in Fig. 6.
The constants, ai (i01, 2…8), in Eq. 2.47, are identified with
air cutting experiments performed at different spindle speeds.
The spindle speed is varied from 500 to 20,000 rpm, with an
increment of 500 rpm. Spindle motor current is acquired
directly from the machine controller. By using MATLAB
2010a as the programming environment, the developed model
is fitted to the measured spindle motor current and the values
of ai are calculated.

The obtained values of constants ai, corresponding to the
model given in Eq. 2.47, are:

a1 ¼ 4:98 � 10�22 A
rpm5

h i
a5 ¼ �1:21 � 10�12 A

rpm

h i
a2 ¼ �1:73 � 10�13 A

rpm3

h i
a6 ¼ 2:76 � 10�08 A � rpm½ �

a3 ¼ 5:11 � 10�9 A
rpm2

h i
a7 ¼ �6:33 � 10�05 A � rpm2½ �

a4 ¼ 3:25 � 10�10 A
rpm5=3

h i
a8 ¼ 0:1410

9>>>>>>=
>>>>>>;

ð3:1Þ
Although ai has a very small value, its combined effect

with wM (in revolutions per minute) at a high spindle speed
cannot be ignored. It helps ensure the accurate prediction of
the developed model at higher spindle speeds.

After introducing the values of constants ai, Eq. 2.46 becomes

If ¼ 4:98� 10�22w5
M � 1:73� 10�13w3

M þ 5:11� 10�9w2
M

þ3:25� 10�10w5=3
M �1:21� 10�12wM þ 2:76� 10�8w�1

M

�6:33� 10�5w�2
M þ 0:1410

ð3:2Þ
The comparison of results, presented in Fig. 7, clearly

shows better compliance of the developed model to the exper-
imental data than Dunwoody's model [9], presented in Eq. 1.3.

The load meter constant, Klm, is identified with slot cutting
experiments performed at different spindle speeds. Spindle
speed is varied from 1,000 to 20,000 rpm, with an increment
of 1,000 rpm. The stable axial depth of cut (2 mm) and feed

(0.1 mm/flute) are kept constant during the experiments. Cut-
ting torque (Tcut) is measured with a cutting torque dynamom-
eter (Kistler 9125A), while the spindle current corresponding
to the total spindle power (I) is acquired directly from the
machine controller. On the other hand, the spindle current
proportional to the power loss (If) is calculated from Eq. 3.2.

The measured values of the total spindle motor current (I)
and the calculated spindle motor current corresponding to
the power spent for cutting (I−If) are presented in Fig. 8a.
The percentage of total losses, If � 100

� �
I= , is presented in

Fig. 8b. The plots demonstrate that the total losses are quite
significant, especially at high spindle speeds.

Subsequently, from Eq. 2.48, we get

I � If
1:012Tcut

¼ KlmwM ð3:3Þ

The load meter constant, Klm, is estimated by linear

regression of the I�If
1:012Tcut

values, and the fitted line is

presented as a solid line, as shown in Fig. 9.
The values of the spindle motor current at lower spindle

speeds are not reliable, as can be seen in Fig. 8a, because
they are too small to be accurately measured by the load
meter. After excluding the data corresponding to spindle
speeds smaller than 4,000 rpm (see Fig. 9), the obtained
value of Klm is 1.9973×10−4 A/W.

By rewriting the complete model (Eq. 2.45) as

I ¼ 4:98 � 10�22w5
M � 1:73� 10�13w3

M þ 5:11� 10�9w2
M

þ3:25� 10�10w5=3
M � 1:21� 10�12wM þ 2:76� 10�8w�1

M
�6:33� 10�5w�2

M þ 0:1410þ 1:012 � 1:9973� 10�4TcutwM

ð3:4Þ
From Eq. 3.4, the developed model to estimate the cut-

ting torque from the spindle motor current obtains its final
expression as

Tcut ¼
I�4:98�10�22w5

Mþ1:73�10�13w3
M�5:11�10�9w2

M�3:25�10�10w5=3
M

1:012�1:9973�10�4wM
þ

1:21�10�12wM�2:76�10�8w�1
M þ6:33�10�5w�2

M �0:1410

1:012�1:9973�10�4wM

ð3:5Þ

Table 2 Power loss components in a motorized spindle drive

Power loss component Expression Equation no.

Power needed to overcome the bearing friction torque due to applied load PBμl ¼ KBμlwM 2.8

Power needed to overcome the spin-related friction torque PBμs ¼ K0BμswM þ K1Bμsw3
M þ K2Bμsw5

M 2.25

Power needed to overcome the torque due to lubricant viscous friction PBn ¼ KBnw
5
3
M 2.28

Power loss due to windage friction torque Pnw ¼ Knww2
M 2.33

Rotor copper loss PRCu ¼ K0RCu þ K1RCuw�1
M þ K2RCuw�2

M 2.38

Stator copper loss PSCu ¼ K0SCu þ K1SCuw�1
M þ K2SCuw�2

M 2.39

Iron loss PMFe ¼ K1MFewM þ K2MFew2
M 2.42

Stray losses Pstray ¼ 0:012Pcut 2.43
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Cutting torque (Eq. 3.5) is defined as a function of spindle
speed (revolutions per minute) and spindle motor current
(ampere), which in turn is load-dependent. It is probable that
the load meter constant depends on the given combination of
workpiece material and tool geometry. It is, however, still to
be determined how significant this influence is.

4 Validation and implementation of the developed
cutting torque model

In the previous section, it has been demonstrated that the
developed model of the spindle power predicts the total
power losses accurately. The next objective is to validate
experimentally the developed cutting torque prediction
model (Eq. 3.5) and propose its industrial application for
tangential cutting force coefficient identification.

Cutting force coefficients are identified by performing slot
cutting experiments at different feed rates. The feed rate is
varied from 0.04 to 0.18 mm/flute, with an increment of

0.02 mm/flute. Stable axial depth of cut (4 mm) and spindle
speed (7000 rpm) are kept constant during the slot cutting
experiments. Spindle motor current is acquired from the con-
troller, and then the cutting torque is estimated with the devel-
oped model (Eq. 3.5). For validation of the developed cutting
torque prediction model, the cutting torque is also measured
directly with the cutting torque dynamometer. The results
presented in Fig. 10 validate that the cutting torque predicted
with the developed model is in good compliance with the
measured cutting torque values. The same data will also be
used to identify the tangential cutting force coefficients.

The tangential cutting force per unit depth of cut along
the cutting edge j of an end mill is given by Altintas [23]

dFt;jðfÞ ¼ KtchðfÞ þ Kte ð4:1Þ
Here, f is the immersion angle, Ktc is the tangential

cutting force coefficient contributed by shearing action, Kte

is the tangential edge force coefficient, and h(f) is the chip
thickness which is given by

hðfÞ ¼ ft sinðfÞ ð4:2Þ
where ft is the feed rate in (millimeters per flute). The
instantaneous cutting torque can be calculated as

dTc;jðfÞ ¼ RðKtchðfÞ þ KteÞgðfÞ ð4:3Þ

Fig. 6 Experimental setup. a
Cutting torque dynamometer
mounting. b Data acquisition
platform

Fig. 7 Air cutting experimental results

a b

Fig. 8 Illustration of the total power loss dependency. a Spindle speed
vs. current. b Spindle speed vs. total losses
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where R is the radius of the milling tool and g(f) is a
function which is unity while the tooth is in the cutting zone
and zero when the tooth is out of the cutting zone.

The average torque per unit depth of cut is given by

dT c;j ¼ R

2p

Z2p
0

gðfÞ½ðKtcft sinðfÞ þ KteÞ� ð4:4Þ

For slot cutting tests

gðfÞ ¼ 1 if 0 � f < p
0 if p � f < 2p

	
ð4:5Þ

The average torque per unit depth of cut, for a single
flute, is expressed as [9]

dT c;j ¼ RKtc

p
ft þ RKte

2
ð4:6Þ

Total average torque, for all cutting flutes and given
depth of cut (a), is given by

Tc ¼ RNaKtc

p
ft þ RNaKte

2
ð4:7Þ

The cutting and edge components ( RNaKtc
p , RNaKte

2 ) are
estimated by a linear regression of the cutting torque values
as presented in Fig. 10. Tangential force coefficients are
identified from the direct measurement of cutting torque
by a torque dynamometer and also from the estimated val-
ues of cutting torque from the developed model. The com-
parison of the results is presented in Table 3.

Edge force coefficient (Kte) has a negligible effect on the
cutting forces and has no effect on chatter-free region pre-
diction [23]; therefore, 16.56 % error in its determination is
quite acceptable. On the other hand, precise identification of
the tangential cutting coefficient, Ktc, is indispensable for an
accurate prediction of cutting forces and chatter-free
regions. The difference between the tangential cutting coef-
ficients identified from the predicted and experimentally
measured cutting torque is only 2.34 %, which represents
another validation of the accuracy of the developed model
for industrial application.

5 Conclusion

In this paper, an enhanced procedure for cutting torque
determination and tangential cutting force coefficient iden-
tification from the spindle motor current is presented. The
spindle motor current, obtained from the integrated load
meter, is proportional to the total spindle power. The cutting
torque is obtained from the difference of spindle power
consumption in material and air cutting by using a method-
ology that required the development of a mathematical
spindle power model. Finally, the tangential cutting coeffi-
cients are identified from such obtained cutting torque. This
procedure demonstrates several salient features compared to
previous approaches.

The developed model of spindle power considers all
mechanical and electrical sources of power losses in the
spindle motor. Mechanical losses (load-related friction in
spindle bearings, spin-related friction, friction due to lubri-
cant viscosity, and windage friction) and electrical losses
(rotor and stator copper loss, iron loss, and stray losses) are

Fig. 9 Slot cutting experimental results

Fig. 10 Average cutting torque values

Table 3 Tangential force coefficients identified from the measured
and the predicted cutting torque

Coefficient Measured Predicted % Error

Ktc (N/mm2) 726 743 2.34

Kte (N/mm) 33.2 27.8 16.26
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all taken into account during the model development and
expressed as a function of spindle rotational speed and load.

Furthermore, an empirical model for cutting torque pre-
diction has been developed from the results of air cutting
and slot cutting experiments at different spindle speeds. It
has been demonstrated that the developed model predicts
the spindle power losses accurately. The predicted values of
the cutting torque using the developed empirical model are
additionally validated by the simultaneous direct measure-
ment of cutting torque from a cutting torque dynamometer.
The results have demonstrated good compliance of the
predicted cutting torque with the one obtained in the direct
measurement, thus proving the accurate identification of
tangential cutting force coefficients.

The developed procedure is very suitable for shop floor
implementation. It eliminates the need for a costly and
complex external hardware setup as it uses the data already
available in CNC units. Machine tool manufacturers can
implement the developed model in CNC units and make
the cutting torque available to the end user in the form of a
built-in database of load meter constants for different work-
piece material/tool geometry combinations. This would rep-
resent a substantial step toward accomplishing the idea of
smart machining. Optimally selected cutting conditions,
based on the results of the predicted chatter-free regions
and cutting force, will ensure enhancement in the overall
productivity of the milling process.
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Appendix

Calculation of dynamic values of bearing contact angles

In Fig. 11a, free-state (nominal) value of the bearing contact
angle (af) is illustrated. This condition refers to when the
bearing is immobile and there is no preload. The outer (inner)
contact angle is the one that the line connecting the contact
point A on the outer ring (B on the inner ring) and the center of
the ball forms with the normal direction to the bearing axis.

In free-state conditions, both inner and outer contact
angles have the same value, equal to αf. The free-state angle
of the bearing, af, is defined by the following trigonometric
expression:

cos af ¼
t � Pd

2

t
ð5Þ

where:

– t is the distance between the centers of the curvature of the
inner and the outer raceway grooves, which is equal to:

t ¼ Ro þ Ri � db ð6Þ
– Ro and Ri are, respectively, the radii of the outer and the

inner raceway groove curvatures.
– Pd is the diametric clearance, which is, by definition

[14]

Pd ¼ dBo � dBi � 2db ¼ 2 b1 þ b2ð Þ ð7Þ

a

b

Fig. 11 Free-state, static (a) and dynamic (b) values of the bearing
contact angle. Redrawn from [15]
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– dBo and dBi are the outer and inner ring raceway contact
diameters (in millimeters), respectively

– db is the ball diameter (in millimeters)
– b1 and b2 are clearances between the ball and the race-

ways (in millimeters)

Figure 11a also depicts the condition where the bearing is
still immobile, but there is a static preload, FBp, in the axial
direction. An assumption is made that this load is equally
distributed on each of the balls, where Nb stands for their
number. Under the preload, the inner ring moves with re-
spect to the outer ring in the direction of the bearing axis, X.
Both contact points and the center of the ball are still
collinear, but the angle (ast) that this line forms with the
direction normal to the bearing axis (Y) is greater than the
free-state angle, af.

The static value of the bearing contact angle, ast, can be
calculated using the following expression [14]:

FBp

NbKad2n�1
b

¼ sinast
cos af

cos ast
� 1

� �n

ð8Þ

where Ka is the axial deflection constant (in megapascals) that
can be obtained from the corresponding experimentally deter-
mined diagrams [14] as a function of the total curvature B

B ¼ Ro

db
þ Ri

db
� 1 ð9Þ

Equation 8 can be solved numerically by the Newton–Raphson
method. The equation to be satisfied iteratively is

a
0
st ¼ ast

þ
FBp

NbKad2n�1
b

� sin ast
cos af
cos ast

� 1
� �n

cos ast
cos af
cos ast

� 1
� �n

þ ntan2ast
cos af

cos ast
� 1

� �n�1
cos af

ð10Þ
which is satisfied when a

0
st � ast is zero.

The main case that we are interested in is related to the
dynamic state, when the bearing rotates under the load. The
load on a bearing consists of an axial force, FSa, equally
distributed on each of Nb balls and radial forces, Fro and Fri,
that act on a ball through the outer and inner rings, respec-
tively (Fig. 11b). The assumptions made are that the bearing
has a constant rotational speed around the X-axis, the motion
is without vibrations, and no sliding motion is supposed to
appear at points A and B [15].

Balls follow the cage orbital motion around the X-axis.
Due to friction forces in contact points, each ball also rotates
around its own axis. This leads to the occurrence of the
gyroscopic moments on the balls (Fig. 12a). Because of the
inertial force (centrifugal force, FC, in Fig. 12a), the outer
and inner contact angles have now two different values, ao
and ai.

In order to calculate the bearing contact angles, a free
body diagram is constructed in Fig. 12a. At the contact
points A and B, the outer and inner contact actions are

a

b

Fig. 12 Free body diagram of an angular contact ball bearing.
Redrawn from [14]
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supposed to be reduced to the resultant forces Fo and Fi

(acting on each ball). These forces are decomposed, respec-
tively, into normal loads,Wo andWi, and tangential loads, To
and Ti. The result of the centrifugal force, FC, is directed
along the Y-axis and is applied at point C (center of the ball).

The assumption that the tangential forces compensate the
gyroscopic moment allows for a simplification of the free
body diagram [15]. Thus, we get the system of forces
represented in Fig. 12b, which will help us determine the
set of equations necessary for the calculation of contact
angles.The sum of force projections in direction Y′ is

Fri � Fro þ FC ¼ 0 ð11Þ
From Fig. 12b, we also get

tan ai ¼
FSa
Nb

Fri
) Fri ¼ FSa

Nb tan ai
ð12Þ

tan ao ¼
FSa
Nb

Fro
) Fro ¼ FSa

Nb tan ao
ð13Þ

By introducing Eqs. 12 and 13 into Eq. 11, we get

Fri � Fro þ FC ¼ FSa

Nb tan ai
� FSa

Nb tan ao
þ FC ¼ 0 )

1

tan ao
� 1

tan ai
¼ FC � Nb

FSa
ð14Þ

where:

– FC is the centrifugal force (in newton) which can be
calculated as [19] (p. 175)

FC ¼ pρbd
3
bw

2
CdBm

12
ð15Þ

– ρb is the mass density of balls/rollers (in kilograms per
cubic meter)

– wC is the angular velocity of the cage (radian per second)

wC ¼ 2pnC
60

¼ pnC
30

ð16Þ

– nC (1/s) is the rotational speed of the cage (orbital ball/
roller speed) [14]

nC ¼ 1

2
ni 1� gbð Þ þ no 1þ gbð Þ½ � ð17Þ

– no and ni are the rotational speeds of the outer and inner
rings, respectively

– gb is a geometrical parameter

gb ¼
db cos ast

dBm
ð18Þ

For machine tools, no00 and Eq. 17 becomes

nC ¼ ni
2

1� gbð Þ ¼ nC ¼ nM
2

1� gbð Þ ð19Þ

where nM is the number of rotations of the spindle shaft.
Bossmanns [19] makes an assumption that the changes of

the contact angles in the outer and inner contact points
follow the rules:

ao ¼ ast þΔao ð20Þ

ai ¼ ast þΔai ð21Þ

Δao ¼ �Δai ð22Þ
which leads to the conclusion

ao þ ai ¼ 2ast ð23Þ
Equations 10 and 23 constitute a sufficient system for the

calculation of the dynamic load contact angles, which can be
solved by numerical iteration.

References

1. Altintas Y, Weck M (2004) Chatter stability of metal cutting and
grinding. CIRP Ann Manuf Technol 53(2):619–642

2. Quintana G, Ciurana J (2011) Chatter in machining processes: a
review. Int J Mach Tool Manuf 51(5):363–376

3. Altintas Y, Budak E (1995) Analytical prediction of stability lobes
in milling. CIRP Ann Manuf Technol 44(1):357–362

4. Zhang Z, Zheng L, Zhang L, Li Z, Liu D, Zhang B (2005) A study
on calibration of coefficients in end milling forces model. Int J Adv
Manuf Technol 25(7–8):652–662

5. Wang H, Qin X, Ren C, Wang Q (2012) Prediction of cutting forces
in helical milling process. Int J Adv Manuf Technol 58:849–859

6. Budak E, Altintas Y (1994) Peripheral milling conditions for
improved dimensional accuracy. Int J Mach Tool Manuf 34
(7):907–918

7. Matsubara A, Ibaraki I (2009) Monitoring and control of cutting
forces in machining processes: a review. International Journal of
Automation Technology 3(4):445–456

8. Cho DW, Jeong YH (2002) Estimating cutting force from rotating
and stationary feed motor currents on a milling machine. Int J
Mach Tool Manuf 42(14):1559–1566

9. Dunwoody K (2010) Automated identification of cutting force
coefficients and tool dynamics on CNC machines. University of
British Columbia, Vancouver

10. Cao YZ, Altintas Y (2004) A general method for the modeling of
spindle-bearing systems. J Mech Des 126(6):1089–1104.
doi:10.1115/1.1802311

11. Jones AB (1960) A general theory for elastically constrained ball
and radial roller bearings under arbitrary load and speed condi-
tions. ASME J Basic Eng 82:309–320

12. Palmgren A (1964) Grundlagen der Wälzlagertechnik, 3rd edn.
Franckische Verlagshandlung, Stuttgart

13. Houpert L (1997) A uniform analytical approach for ball and roller
bearings calculations. J Tribol—T Asme 119(4):851–858

94 Int J Adv Manuf Technol (2013) 65:81–95

http://dx.doi.org/10.1115/1.1802311


14. Harris TA (2001) Rolling bearing analysis, 4th edn. Wiley-
Interscience, New York

15. Antoine JF, Abba G, Molinari A (2006) A new proposal for
explicit angle calculation in angular contact ball bearing. J Mech
Des 128(2):468–478. doi:10.1115/1.2168467

16. Bossmanns B, Tu JF (2001) A power flow model for high speed
motorized spindles—heat generation characterization. J Manuf Sci
Eng—Trans ASME 123(3):494–505

17. Jordan HE (1994) Energy-efficient electric motors and their appli-
cations, 2nd edn. Plenum, New York

18. Hughes A (2006) Electric motors and drives: fundamentals, types
and applications, 3rd edn. Elsevier, Amsterdam

19. Bossmanns B (1997) Thermo mechanical modeling of motorized spin-
dle systems for high speed milling. Purdue University, West Lafayette

20. Köfler H (2003) Stray load losses in induction machines. A
review of experimental measuring methods and a critical
performance evaluation. Paper presented at the International
Conference on Renewable Energy and Power Quality
(ICREPQ)

21. Agamloh EB (2010) An evaluation of induction machine stray
load loss from collated test results. IEEE Transactions on Industry
Applications 46(6):2311–2318

22. Avram IO (2010) Machine tool use phase: modeling and analysis
with environmental considerations. Swiss Federal Institute of
Technology Lausanne, Lausanne

23. Altintas Y (2000) Manufacturing automation: metal cutting me-
chanics, machine tool vibrations and CNC design. Cambridge
University Press, Cambridge

Int J Adv Manuf Technol (2013) 65:81–95 95

http://dx.doi.org/10.1115/1.2168467

	Cutting torque and tangential cutting force coefficient identification from spindle motor current
	Abstract
	Introduction
	Theoretical model for the total spindle power calculation
	Mechanical losses in a motorized spindle
	Load-related friction torque in spindle bearings, TBμl
	The spin-related friction torque, TBμs
	Friction torque due to lubricant viscosity, TB
	Windage friction torque, Tw

	Electrical losses in a motorized spindle
	Copper losses
	Iron losses
	Stray losses

	Model synthesis

	Development of an empirical model for cutting torque prediction
	Validation and implementation of the developed cutting torque model
	Conclusion
	Appendix
	Calculation of dynamic values of bearing contact angles

	References


