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Abstract. Multiple mating (i.e. , polyandry) by queens in
social Hymenoptera is expected to weaken social cohe-
sion since it lowers within-colony relatedness, and hence,
indirect fitness benefits from kin selection. Yet, there are
many species where queens mate multiply. Several
hypotheses have been put forward to explain the evolu-
tion and maintenance of polyandry. Here, we investigated
the �sperm limitation� and the �diploid male load�
hypotheses in the ant Cataglyphis cursor. Genetic anal-
yses of mother-offspring combinations showed that
queens mate with up to 8 males, with an effective mating
frequency of 3.79. Significant paternity skew (unequal
contribution of the fathers) was detected in 1 out of 5
colonies. The amount of sperm stored in the spermatheca
was not correlated with the queen mating frequency, and
males carry on average enough sperm in their seminal
vesicles to fill one queen�s spermatheca. Analyses of the
nuclear DNA-content of males also revealed that all were
haploid. These results suggest that the �sperm limitation�
and the �diploid male load� hypotheses are unlikely to
account for the queen mating frequency reported in this
ant. In light of our results and the life-history traits of C.
cursor, we discuss alternative hypotheses to account for
the adaptive significance of multiple mating by queens in
this species.

Keywords: Ants, flow cytometry, microsatellites, polyan-
dry, sperm.

Introduction

A key challenge in evolutionary biology is to understand
the adaptive significance of multiple mating by females
(polyandry). Mating is generally assumed to be associated
with costs to females in terms of energy expenditure,
exposure to predation, and sexually transmitted parasites
and pathogens (Daly, 1978; Chapman et al., 1995, 2003).
Yet, females of many animal species mate with several
males (Birkhead and Moller, 1998; Arnqvist and Nilsson,
2000; Eberhard, 1996). Social Hymenoptera are no
exception to this rule. Obligate multiple mating by
queens has evolved repeatedly in bees, wasps and ants
(Crozier and Pamilo, 1996; Crozier and Fjerdingstad,
2001; Brown and Schmid-Hempel, 2003; Boomsma et al.,
2005). For instance in ants, where effective queen mating
frequency (Me,p) is usually lower than 2 (Boomsma and
Ratnieks, 1996; Strassmann, 2001; Crozier and Fjerding-
stad, 2001), high polyandry levels have been reported in
the genera Atta (Me,p= 3.1, Murakami et al. , 2000),
Cardiocondyla (Me,p= 3.3, Lenoir et al 2007), Acromyr-
mex (Me,p= 3.9, Boomsma et al. 1999), Pogonomyrmex
(Me,p= 6.8, Cole and Wiernasz, 2000), Neivamyrmex
(Me,p= 12.8, Kronauer et al. , 2007), Eciton (Me,p= 12.9,
Kronauer et al. , 2006), Dorylus (Me,p= 17.5, Kronauer et
al. , 2004), and Aenictus (Me,p= 18.8, Kronauer et al. ,
2007).

Several genetic and non-genetic benefits have been
proposed to explain the evolution and maintenance of
multiple mating in social Hymenoptera. A first set of
hypotheses stresses the benefits of increased genetic
diversity in the offspring, e.g. , by enhancing colony
resistance to parasites and pathogens (Hamilton, 1987;
Sherman et al., 1988), raising the efficiency of the colony
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and its overall productivity through a more efficient
division of labor among workers (Crozier and Page, 1985;
Robinson and Page, 1995; Mattila and Seeley, 2007), or
reducing worker-queen conflict over the sex ratio and
male parentage (Trivers and Hare, 1976; Moritz, 1985;
Ratnieks, 1988; Ratnieks and Boomsma, 1995; Sund-
strçm and Ratnieks, 1998). Empirical tests of these
hypotheses have yielded support in some species but
not in others (reviewed in Crozier and Fjerdingstad, 2001;
Brown and Schmid-Hempel, 2003; Boomsma et al.,
2005).

One proposal for the evolution of multiple mating
directly connected to the advantages of genetic diversity
is that polyandry would have been selected for to reduce
the variance in the production of diploid males (�diploid
male load� hypothesis, Crozier and Page, 1985; Pamilo et
al. , 1994). Hymenoptera are characterized by haplodi-
ploid sex determination, whereby the composition of
alleles at a single locus is the primary signal of sex
determination (single-locus complementary sex determi-
nation or sl-CSD; Whiting, 1943; Cook and Crozier,
1995). Diploid individuals heterozygous at the sex locus
develop into females, whereas haploid individuals hemi-
zygous at the sex locus develop into males. Diploid males
arise when there is homozygosity at the sex locus, that is,
when both parents transmit identical alleles at the locus to
the offpring (i.e. , matched mating; Cook and Crozier,
1995). Production of diploid males potentially imposes a
high cost on colony survival, because queens mated with a
single male carrying the same sex allele will produce 50 %
diploid males instead of workers, which may be detri-
mental for colony foundation (Ross and Fletcher, 1986;
Duchateau and Mari�n, 1995). Furthermore, diploid
males constitute particularly high fitness costs to the
colony since they are usually sterile or they father sterile,
triploid female progeny (Krieger et al. , 1999; Liebert et
al. , 2004; de Boer et al. , 2007; but see Cowan and
Stahlhut, 2004). Therefore, multiple mating also reduces
the costs associated with mating with diploid males. In the
honeybee, workers remove diploid males before matura-
tion (Woyke, 1963, 1980; Ratnieks, 1990; Santomauro et
al. , 2004), which greatly reduces the probability of young
queens mating with such males. By contrast, there is no
direct empirical evidence for the selective removal of
diploid male brood in wasps, bumble bees, or ants, where
adult diploid males are indeed produced in several species
(e.g., wasps: Tsuchida et al. , 2002; Liebert et al. , 2004;
bumble bees: Ayabe et al. , 2004; ants: Pamilo et al. , 1994;
Ross and Fletcher, 1986; Krieger et al. , 1999; Yamauchi et
al. , 2001).

The second set of hypotheses suggests that females
may derive direct benefits from mating multiply, e.g. by
receiving a sufficient sperm reserve. Ant queens usually
mate on a single nuptial flight (Hçlldobler and Wilson,
1990). The amount of sperm received during the limited
time window of mating flight will directly affect the
queen�s lifetime output of fertilised eggs, and hence, the
number of workers and female sexuals produced. There-

fore, multiple mating by queens during the nuptial flight
may have been selected for to achieve a greater supply of
sperm to maintain large and long-lived colonies (�sperm-
limitation� hypothesis, Cole, 1983). To date, the �sperm-
limitation� hypothesis remains poorly studied. In the leaf-
cutting ant Atta colombica, which constitutes huge
colonies of several thousands of workers, multiple-mating
effectively increases the queen�s sperm store (Fjerding-
stad and Boomsma, 1998). Similarly, the sperm content of
queens� spermatheca increases almost linearly with
queen mating frequency in Formica aquilonia (Fortelius,
2005). Indirect support for this hypothesis also comes
from the positive association between paternity rate and
colony size for monogynous (single-queen) ants (Booms-
ma and Ratnieks, 1996), and from increased queen mating
frequency with decreasing sperm supply of drones in
honeybees (Kraus et al. , 2004).

In this study, we investigated the �sperm limitation�
and the �diploid male load� hypotheses as possible causes
for the evolution of polyandry in the ant Cataglyphis
cursor. Colonies are headed by single, multiple-mated
queens showing natural variations in their mating fre-
quency (Pearcy et al. , 2004a). They are relatively small,
never exceeding 2800 workers per colony (Pearcy and
Aron, 2006). A remarkable feature of this species is that
queens use alternate modes of reproduction for the
production of reproductive and non-reproductive daugh-
ters. Workers are produced by sexual reproduction from
fertilized eggs, while new queens are almost exclusively
produced by automictic thelytokous parthenogenesis
with central fusion of the polar nuclei (Pearcy et al. ,
2006). This mode of parthenogenesis augments the rate of
homozygosity of reproductive daughters, and hence, the
probability of homozygosity at the sex determining locus.
Consequently, production of sterile diploid males in C.
cursor may stem from two different sources : matched
mating, resulting in fertilized eggs developing into diploid
males rather than workers and, more importantly, from
thelytokous parthenogenesis resulting in production of
diploid males rather than queens (Fig. 1).

We first determined the queen-mating frequency and
the level of skewness in paternity by genetic analyses of
mother-offspring combinations. From this data, we tested
for a possible relationship between the absolute queen
mating frequency and colony size. Second, we compared
the sperm content between the queen spermatheca and
the males� seminal vesicles, to determine whether the
amount of sperm cells stored in the spermatheca was
associated with the number of mates per queen. Finally,
we estimated the proportion of adult diploid males reared
in the study population.
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Material and methods

Field collection and sampling

Twenty-three colonies of Cataglyphis cursor were excavated at the end
of April/early May, before the emergence of the first sexuals, at St-
Hyppolite (southern France; 42.828 North, 2.998 East) between 2001
and 2004 (see Pearcy et al. (2004a) and Pearcy and Aron (2006) for
details). All adults (queens and workers) as well as brood at various
stages (eggs, larvae, and sexual pupae) were collected and brought into
the laboratory. The number of adult workers per colony was counted for
N= 12 colonies (mean colony size � SD= 832.1 � 610.1; range: 123–
2495). Colonies were maintained under laboratory conditions (26 �
28C; 12 h:12 h L:D) and fed on cockroaches, sugar water, and grapes.
They were censused twice a week and all sexuals emerging from the
pupae were collected; males were kept apart with a sample of workers

for subsequent sperm and ploidy level analyses (see below), whereas
young sexual females were deep-frozen for subsequent genetic
analyses.

Queen mating frequency and paternity skew

New queens of C. cursor are produced parthenogenetically (Pearcy et
al., 2004b), and both queen turnover and colony fission events can
result in the coexistence of workers with different yet genetically
similar mother queens. Therefore, determining the number of worker
patrilines in a colony on the basis of individuals collected in the field
(e.g., Fournier et al., 2008) greatly increases the risk of overestimating
the actual queen mating frequency. The number of matings per queen
was thus estimated from mother-offspring combinations genetic
analyses. For this purpose, all the brood was carefully removed from
the 23 laboratory nests after the production of sexuals. After 4 months,
the queen and the callow workers produced in each nest were taken for
subsequent genetic analyses. Since development from the egg to the
adult stage lasts up to 40 days, all callows originated from eggs laid by
the colony queen in the laboratory.

A sample of 673 callow workers (mean� SD= 28.0� 11.5; n= 23)
and their mother queen were genotyped at four polymorphic micro-
satellite loci (Ccur11, Ccur46, Ccur58, and Ccur63b; Pearcy et al.,
2004b). Individual ant DNA was extracted by homogenization in a
digestive solution (100mM NaCl, 50mM Tris, 1mM EDTA, 0.5 % SDS,
and 200 mg/ml proteinase K (BIOGENE)) and incubated for 2 hours at
558C. Genomic DNA was purified by phenol/chloroform and precipi-
tated with ethanol following standard protocols (Sambrock et al.,
1989), and then resuspended in 100 ml. Amplifications were carried out
in a 10 ml volume using the standard 10x Buffer and Taq from the
QIAGEN Polymerase kit (Pearcy et al., 2004a). Amplified fluorescent
fragments were visualized using an automated ABI Prism 3100
sequencer.

The absolute number of matings per queen (Mp) was determined
from pedigree analysis of mother-offspring combinations. This is
straightforward due to the haploidy of males since, for each locus, a
male gives the same allele to all his offspring. The number of distinct
male genotypes inferred per colony provides the minimal number of
mates of each queen. The effective number of matings per queen (Me,p)
was calculated following Nielsen et al. (2003; eq. 16),

Me,p =
ðn� 1Þ2

Pk

i¼1
pi

2ðnþ 1Þðn� 2Þ þ 3� n

where n is the sample size and pi is the proportional contribution to the
brood of the ith mate.

Because two males could share the same alleles at the 4 loci studied,
we estimated this non-detection error for each colony by calculating the
probability that two mates bear the same alleles according to Boomsma
and Ratnieks (1996),

Pnon-detect =
X

j

Y

i

fij

where fij is the frequency at the population level of the allele carried by
the jth male at the ith locus. On the other hand, there is always the
possibility that an additional patriline was not sampled but still present
among the brood, because of the limited sample size. This non-sampling
error was estimated following Foster et al. (1999),

Pnonsampling = (1-f)n

where n is the number of offspring analyzed and f is the proportional
representation of a father among the brood.

Skewness in paternity (the unequal contribution of each father to
the brood) of a given colony was quantified according to Pamilo and
Crozier (1996),

Figure 1. In Hymenoptera, diploid males arise when a diploid
individual carries two identical alleles at the complementary sex
determining (CSD) locus. In C. cursor, both sexual and asexual
reproduction may potentially induce homozygosity at the CSD-locus,
when the queen mates with a male carrying one shared allele or when
heterozygosity at the CSD-locus is lost through automictic partheno-
genesis.
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S ¼
Mp �Me;p

Mp � 1

where Mp is the total number of male mates and Me,p is the effective
number of male mates, both estimated from the mother-offspring
pedigrees. For each colony, we determined the statistical significance of
the male skew using a G-test for goodness-of-fit under the null
hypothesis that all males contributed equally to progeny production.
Because unequal paternity could arise from sampling effect even when
the fathers have equal numbers of offspring (Foster and Ratnieks,
2001), we also compared the paternity skew in each sample with the
skew from 10000 random samples taken from a virtual colony with
equal father contribution. A sample was considered skewed when S was
greater than at least 95 % of the simulated unskewed samples.

Sperm count

Estimating the effect of multiple mating on sperm storage was
performed on a sub-sample of n= 11 colonies for which the queen
mating frequency was previously determined. The queens were
dissected and the number of sperm stored in their spermatheca was
counted. The age of queens from field colonies was unknown and can
represent a source of variation in our data because we expect sperm
storage to decrease with age. However, because C. cursor queens have a
short life expectancy and queen productivity is low (Pearcy et al., 2006),
the influence should be limited. The seminal vesicles of a sample of n=
33 mature males at the time of nuptial flight (i.e. one or two weeks after
their emergence) were also dissected and the sperm content was
counted. Testes were always found degenerated (as compared to newly-
emerged males), which confirms that males were mature at the time of
dissection. We averaged sperm content whenever males originated
from the same colony, to avoid a potential bias in the data. Queens and
males were dissected in Ringer solution. Both spermathecae and
seminal vesicles were emptied in a staining solution of DAPI
fluorochrome (4�, 6-diamidino-2-phenylindole). The number of sperm
was then counted by flow cytometry (Ploidy Analyser PAI, Partec), a
method that gives reliable and repeatable counts of sperm samples
(Aron et al., 2003; Cournault and Aron, 2008).

Diploid males

To test for the production of adult diploid males, we sampled n= 179
males from N= 8 colonies. The potential homozygosity excess in the
queens� parthenogenetic lineages was estimated for these colonies
through F-statistics using the program Relatedness 4.2c (Queller and
Goodnight, 1989). The ploidy level (haploid or diploid) of males was
determined by using only cells from the head rather than from the
whole body, because haploid Hymenopteran males have diploid muscle
cells (Aron et al., 2005). DNA of cell nuclei was stained with DAPI
fluorochrome, and the nuclear DNA-content of each male�s cells was
determined by flow cytometry.

Results

Queen mating frequency and paternity skew

The distribution of genotypes in parent-offspring com-
binations was consistent with queens being multiply-
mated. In the 23 colonies sampled, we found that queens
were mated with 2 to 8 different males. The harmonic
mean number (� SD) of fathers detected per colony was
Mp= 4.91 � 1. 40, and the average effective number of
matings per queen was Me,p= 3.79 � 1.48. Both the
population-wide non-detection error due to two males
bearing the same alleles at all loci (Pnon-detect= 0.003 �

0.003) and the non-sampling error due to limited sample
sizes (Pnon-sampling= 0.073 � 0.049) were very low. It is
therefore unlikely that our data were affected by these
potential sources of errors. The absolute queen mating
frequency (Mp) was not significantly associated with
colony size at the time of colony collection (Spearman
rank correlation, rs= 0.29, n= 12, P= 0.35).

Pedigree analysis showed that the respective contri-
bution of the male mates varied across colonies, with the
majority male siring 0.25 to 0.83 of the offspring (Fig. 2).
The paternity skew over all colonies ranged from 0.03 to
0.74 and was on average S � SD = 0.22 � 0.23. We
detected a significant deviation from equal father con-
tribution in 10 colonies, but these deviations remained
significant only in 5 colonies (22 %) after Bonferroni
correction (G-test for goodness-of-fit, P= 0.003, P= 0.001
(twice), and P< 0.001 (twice)). Our simulations con-
firmed that paternity skew was significantly higher than
expected from sampling effect in those 5 colonies (also
corrected for repeated analyses). In the remaining
colonies, there was no evidence for unequal contribution
of fathers.

Sperm count

For the 11 C. cursor queens analysed, the mean sperma-
thecal content ranged from 37.8 �103 to 165.8 �103 sperm
and was on average n= 109.7 � 37.9 �103 sperm. This
value was lower, but not significantly so, than the sperm
number found in male seminal vesicles, which ranged
from 76.9 �103 to 800.6 �103 with an overall mean of 235.1
� 254.9 �103 sperm (Student t-test, P= 0.18).

In this sample, the average queen had mated with Mp

= 4.4 males (SD: 1.26, range: 2 to 7). The relationship
between the number of sperm stored per queen and the

Figure 2. The frequency distributions of patrilines (offspring sired by
different males) as estimated from parent-offspring combinations.
Patrilines are shown by alternate shading patterns, with the total
number of matings (Mp) and the sample size indicated above the bars
for each colony. Colonies were ordered by decreasing proportion of the
largest patriline.
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number of mates (Mp) was not significant (rs = 0.11,
n = 11, P = 0.87; Fig. 3a). There was also no correlation
between the number of sperm stored and the effective
mating frequency (Me,p) of queens (rs = -0.08, n = 11,
P = 0.82; Fig. 3b). The very low slope of the least square
regression suggests that queens acquire most of the sperm
during one mating (> 90 �103 sperm, on average), while
each additional mating merely adds 1.6 �103 sperm, on
average. There was no association between the detected
number of mates and the sample size (rs = –0.10, n = 11, P
= 0.77), indicating that the slight variation in the sample
size had no effect on our estimates of the queen mating
frequency.

To test whether the variability in sperm content of
male seminal vesicles may explain the observed paternity
skew among workers, we estimated the expected skew for
each colony under the assumptions that males deliver
their full package and that the probability of a male
fathering a given offspring is equal to its sperm contribu-
tion in the queen spermatheca. Our simulations showed
that the observed paternity skew falls within the range of
the expected skew resulting from different sperm con-
tribution in 15 colonies out of 23 (Fig. 4).

Diploid males

As expected from the parthenogenetic production of new
queens (Pearcy et al. , 2004a), there was a significant
excess of homozygosity in queens and their reproductive
daughters (Fis = 0.218 � 0.088, P= 0.008) but not in
workers (Fis = 0.034 � 0.041, P= 0.20), in the 8 colonies
sampled for diploid male production. Despite the high
level of inbreeding in reproductive females, flow cyto-
metric analyses showed that none of the 179 males
sampled were diploid.

Discussion

Our data show that queens of Cataglyphis cursor are
strictly polyandrous, mating with up to 8 males. Consis-
tent with these results, field observations indicate that
queens repeatedly leave the mother nest to mate with the
surrounding males, then re-enter the nest (Lenoir et al. ,
1988; pers. obs.). The fact that queens actively seek to
mate several times strongly suggests that polyandry
represents a valuable increase in their fitness. However,
our results support neither the �sperm limitation� hypoth-
esis, nor the �diploid male load� hypothesis as the evolu-
tionary causes for polyandry in this species. Overall, we
found no association between colony size and mating
frequency of the queen. The quantity of sperm carried by
males was highly variable, and certain males carry
relatively few sperm. However, the average (= 110 �103

sperm) or the maximum (= 166 �103 sperm) quantity of
sperm stored in one queen spermatheca can be reached
with a probability higher than 0.99 with 2 or 3 matings,

Figure 3. Number of sperm stored per Cataglyphis cursor queen as a
function of the absolute number of mates Mp (a), and effective number
of mates Me,p (b).

Figure 4. Observed paternity skew (black dots) and expected level of
skew stemming from differential male sperm contribution (grey boxes)
for each colony. The boxes represent average (line) � standard
deviation for simulation, with the number of matings (Mp) and sample
size as parameters for each colony. Colonies were ordered by increasing
average skew values.
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respectively. The variation in the quantity of sperm
carried by C. cursor males can therefore not account for
up to 8 matings detected in this study. Furthermore, our
analyses show that the number of sperm stored by each
queen does not increase with additional mating. Two non-
mutually-exclusive hypotheses may explain this result.
First, the size of the spermatheca may limit the amount of
sperm stored. Second, if males can detect whether
females are already mated, they might restrain the
amount of sperm transferred to save some sperm for a
potential subsequent mating (Boomsma, 1996; Boomsma
et al., 2005). Whatever hypothesis prevails, both suggest
that remating is not a strategy for queens to acquire more
sperm.

Across ants, Boomsma and Ratnieks (1996) showed
that the number of matings is associated with colony size
when polygynous species are excluded from the analysis,
as predicted by the �sperm-limitation� hypothesis (Cole,
1983). In Atta colombica, multiple mating allows queens
to effectively increase their sperm store, suggesting that
polyandry could be an adaptive strategy to avoid sperm
depletion (Fjerdingstad and Boomsma, 1998). It should
be noted, however, that colonies of this leaf-cutter ant
may contain several millions of workers and that queens
are long-lived (10 to 16 years). Large colony size is also
typical of other polyandrous species such as Acromyrmex
octospinosus (up to 15000 workers; Dijkstra and Booms-
ma, in press), Pogonomyrmex occidentalis (up to 8800
workers; Lavigne, 1969), Neivamyrmex nigrescens and
Aenictus laeviceps (ca. 100 000 workers, Schneirla, 1971),
Dorylus molestus (millions of workers; Raignier and van
Boven, 1955) and Eciton burchellii (up to half a million
workers; Franks, 1985 – but see Kronauer and Boomsma,
2007 for arguments against the sperm limitation hypoth-
esis in army ants). By contrast, in C. cursor, colonies are
quite small, usually comprising hundreds of workers
(range: 78– 2658; N= 57 colonies; Pearcy and Aron,
2006), and queens have a short life expectancy (Pearcy et
al. , 2006). Overall, these results suggest that, in this
species, sperm amount is not a limiting factor for queen
fitness and that multiple mating is not selected for to
avoid sperm depletion.

In species such as C. cursor where new colonies are
produced by fission, a huge amount of resources is
invested in each young queen. Under these circum-
stances, polyandry should be particularly adaptive be-
cause it considerably reduces the proportion of young
queens with high (and potentially lethal) levels of diploid
male load (Kronauer et al. , 2007). Importantly, in this
species diploid males can arise either from sexual or
asexual reproduction by the queens. Production of
diploid males through sexual reproduction is expected
to be negligible, because queens and her mates are
unrelated (Pearcy et al. , 2004a). By contrast, automictic
parthenogenesis greatly increases inbreeding (Pearcy et
al. , 2006). Consistent with these expectations, our data
show a significant excess of homozygosity in queen
lineages, but not in workers. Thus, in C. cursor, polyandry

should not significantly influence the production of
diploid males; rather, diploid males (if any) are expected
to be primarily parthenogenetically-produced. However,
polyandry could still be selected for by the queens to
lower the variance of the fitness costs associated with the
risk of mating with a sterile diploid male. Interestingly,
not a single mature diploid male was found in the study
population, indicating that such males are rare or even
absent. Two proximate mechanisms may explain the
absence of adult diploid males. First, genetic mechanisms
may prevent homozygosity at the CSD loci, such as
multiple-loci complementary sex determination (ml-
CSD) (Crozier, 1971) or genomic imprinting (Beuke-
boom, 1995). To date, ml-CSD has not been directly
shown in a social Hymenoptera, but good evidence
against single-locus complementary sex determination
has recently been published for Cardiocondyla elegans
(Schrempf et al. , 2006). Genomic imprinting cannot be
tested without appropriate cytogenetic markers, such as
the paternal sex-ratio chromosome (PSR) in Nasonia
vitripennis (Dobson and Tanouye, 1998; Beukeboom and
Werren, 2000), which are not available for any ant species.
The proximity of the CSD locus with the centromere of
the chromosome could be another genetic mechanism to
account for the lack of diploid males in species with
parthenogenesis-driven homozygosity. Automictic par-
thenogenesis increases homozygosity for loci where
recombination occurs during meiosis. If the CSD locus
is located near a chromosomal centromere, where very
few recombination events occur, one should expect few
transitions to homozygosity for this locus. The second
proximate mechanism accounting for the absence of
diploid males in C. cursor is that such males are produced
but selectively eliminated before pupation by workers.
Whatever mechanism is involved, the complete absence
of mature diploid males in our sample suggests that
polyandry was not selected for by the queens to circum-
vent the costs of mating with sterile diploid males. So far,
the influence of the �diploid male load� on queen mating
frequency in social insects has not been demonstrated.
Mathematical models indicate that, in the honeybee Apis
mellifera, low mating frequency would increase the risks
of high mortality among the brood due to diploid males
(Tarpy and Page, 2001). However, the authors admitted
that diploid load could hardly account for more than 10
mating, which often occurs in this species.

This work, together with the unusual life history of C.
cursor, allows further consideration of the possible
evolutionary causes of multiple mating in this ant species.
If multiple mating by queens increased their fitness
through post-copulatory sperm competition, one would
expect a significant bias in male contribution to the brood,
with the fittest male(s) fathering a larger fraction of
workers (�polyandry for sperm competition� hypothesis,
Parker, 1970; Simmons, 2001). Our data show a signifi-
cant unequal contribution of fathers in only 5 colonies out
of 23 (22 %). That sperm competition – if any – has no
obvious effect in most colonies gives weak support for the
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hypothesis that polyandry effectively increases queen
fitness through sperm competition. However, one may
not completely exclude this hypothesis since our experi-
ments were not designed to test the existence of potential
competition between the sperm of different fathers.
Actually, the high variance in the sperm content found
in male seminal vesicles alone may explain most of the
paternity bias detected in the colonies, as suggested by
our simulations. According to the �mating by conven-
ience� hypothesis (Thornhill and Alcock, 1983), sexual
coercion was also evoked as a cause of multiple mating.
The sexual coercion hypothesis is unlikely in C. cursor,
where new queens leave the nest repeatedly to copulate
with several males close to the nest entrance (Lenoir et
al. , 1988; pers. obs.). Rather, multiple mating is an active
strategy by queens and not a mere consequence of male
willingness to mate in this species. Genetic variability
acquired through multiple mating has been assumed to
enhance colony task efficiency (Crozier and Page, 1985;
Robinson and Page, 1995; Mattila and Seeley, 2007).
However, a recent test of this hypothesis in C. cursor
showed that increased genetic diversity within colonies
does not result in more polymorphic workers, and task
performance is not correlated with patriline (Fournier et
al. , 2008). Within-colony genetic diversity has also been
shown to effectively lower the parasite pressure in social
insects (Hughes and Boomsma, 2004; Baer and Schmid-
Hempel, 1999). That parasite pressure favours multiple
mating by queens may prove particularly relevant for a
scavenger ant such as C. cursor, where workers are
potentially exposed to pathogens developing on dead
arthropods. Queens might also exploit multiple mating to
reduce the conflict that opposes them to the workers
regarding the maternity of males (Ratnieks, 1988). Work-
ers of C. cursor have retained ovaries and can produce
males through arrhenotokous parthenogenesis and fe-
males through thelytokous parthenogenesis (Cagniant,
1980). Polyandry lowers within-colony relatedness and
results in that workers are more related to their repro-
ductive sisters and brothers (r= 0.62 and r= 0.32,
respectively; Pearcy and Aron, 2006) than to the parthe-
nogenetic daughters and sons produced by their worker
nestmates (r= 0.42 and r= 0.21, respectively; estimated
from within-colony relatedness). Multiple mating may
therefore have been selected for by queens to force
workers to rear their sibs instead of their own offspring.

In conclusion, our data show that neither the �sperm-
limitation� hypothesis nor the �diploid male load� hypoth-
esis can account for multiple mating in the ant Catagly-
phis cursor. Moreover, we did not detect the presumed
effects of post-copulatory sperm competition, and the
observations of female mating behaviour are direct
evidence against the �mating by convenience� hypothesis.
Interestingly, two biological traits of C. cursor consider-
ably reduce the costs of mating multiply. First, the
absence of a nuptial flight lowers the energetic costs
and the risks of predation associated with multiple mating
(Boomsma and Ratnieks, 1996). Second, in this species,

reproductives of both sexes are produced asexually, so
that multiple mating does not affect worker inclusive
fitness (Pearcy and Aron, 2006). In light of our results and
the natural history traits of this species, future work
should focus on tests of the �genetic diversity� and the
�conflict� hypotheses, as relevant explanations to account
for the evolution of polyandry in this species.
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