
Introduction

The insertion of interbody cages into the intervertebral
disc space aims at providing mechanical stability through
an implant made from a strong material, and at promoting
fusion through the autogenous bone graft included in the
cage. To enable fusion, a sufficient amount of potentially
osteogenic cells is necessary [4]; therefore, bleeding bone
has to be present next to the graft. Today, different cage
designs require different endplate preparations. Basically,

two techniques can be distinguished: one includes deliber-
ate endplate cavitation to provide a host bed of bleeding
cancellous bone; the second technique involves excision
of the cartilage endplate down to the preserved, bleeding
subchondral bone.

To evaluate the importance of the endplate–cage inter-
face, the way the endplate affects the behaviour of a func-
tional spinal unit (FSU) must be known. The shape, den-
sity and the strength of the endplate have been shown to
vary across its surface, with the centre being the thinnest
and weakest area [8, 11, 31, 39]. During compression test-
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ing of cages in the lumbar spine [15], the observed failure
mode was fracture of the endplates. The large range of
measured failure loads overlapped the potential in vivo
loads, implying that failure of the endplate–implant inter-
face may occur clinically. Questions regarding whether
preservation of the bony endplate is necessary, or if partial
conservation may be sufficient, or if it may not be re-
quired at all remain unanswered. Hollowell et al. [12], for
instance, assessed the importance of the endplate in resist-
ing subsidence of various constructs and reported that the
endplate did not increase the resistance significantly when
tested until failure. However, most of the tested constructs
were made from bone, and the only metal cage investi-
gated was evaluated exclusively on an intact endplate.
Closkey et al. [6] performed destructive and non-destruc-
tive tests compressing a polymethylmethacrylate block on
thoracic vertebral bodies. The bony endplate had been re-
moved and a necessary minimum contact area to prevent
subsidence at moderate loads was suggested. Steffen et al.
[35] assessed the axial compressive strength of a mono-
bloc implant with peripheral endplate contact as opposed
to full surface contact. Peripheral endplate support was
found to provide similar axial mechanical strength to that
of a cage with full support.

However, the influence of the endplate quality on the
load transfer in the lumbar spine has not been investigated
previously, as has been done for cancellous bone density
[29]. The aim of this study, therefore, was to evaluate the
importance of endplate properties and their distribution for
stresses in an FSU with and without an intervertebral cage.

Materials and methods

A previously developed [29], physiological finite-element model
of a ligamentous L2-L3 FSU and a model with cage were used for
this study (Fig. 1). Details of the model development have been
given elsewhere [29], and are briefly summarised here. The geom-
etry of the model was based on computed tomographic (CT) scans
from a healthy young cadaver specimen. Details that were not
clearly visible on the CT scans were modelled according to addi-
tional data [29]. The assigned material properties were adapted
from previous finite-element studies and assumed to be linear, ho-
mogeneous and isotropic [10, 20, 32, 33, 34]. Seven different liga-

ments were included, being active in tension only, and the intact fi-
nite-element model consisted of 31,714 elements. An anterior ap-
proach for a monobloc, box-shaped cage, based on the Syncage
(Mathys Medical Ltd., Bettlach), was modelled. The cage size was
chosen according to the space between the vertebrae, as proposed
by the manufacturer to restore lordosis and disc height. The origi-
nal convex shape of the implant was not included in the model, as
the fit between the curved endplates and a flat implant would rep-
resent the severe loading case of edge contact, and is realistic for
quite a number of existing cages. To fit the cage, the anterior lon-
gitudinal ligament, the nucleus pulposus and the necessary amount
of fibre and annular elements were removed.

To investigate the influence of the endplate on the load trans-
fer, the inferior endplate of the L2 vertebra and the superior one of
L3 were altered. No cartilaginous endplates were defined on the
bony ones, as their effect on the load transfer was assumed to be
negligible; furthermore, the cartilaginous endplate is usually re-
moved prior to cage insertion. The shape of the bony endplates was
in accordance with the reported observations [8, 31]. According to
the published mean values, the endplate was modelled thicker ad-
jacent to the annulus (0.85 mm) than in the central region (0.45 mm).
The endplate material properties were varied in both models to
represent a wide spectrum of bone qualities, ranging from the stiff-
ness of the underlying cancellous bone up to that of cortical bone,
i.e. 100, 600, 1000, 6000 and 12,000 MPa. Furthermore, alterations
to the properties of the endplate correspond indirectly to the differ-
ent techniques of endplate preparation. For example, setting the
endplate modulus equal to that of the underlying cancellous bone
(100 MPa) would be mechanically equivalent to surgical removal
of the endplate. As, additionally, the strength has been shown to
vary across the endplate [11], two non-homogeneous distributions
of endplate properties were modelled: a rough distribution with
four different moduli defined across the surface (Fig. 2), and a fine
distribution for which the outer three “rings” of the rough distribu-
tion were further divided such that each ring of elements had a dif-
ferent property assigned.

Failure load and strength of endplates have been determined
experimentally [11], but their relation to the elastic modulus of the
structure is unknown. Therefore, two different variations were
modelled, using the values of the moduli assigned in the homoge-
neous cases. For the “soft endplate”, the modulus in the middle
area (darkly shaded in Fig. 2) was the same as for cancellous bone
– 100 MPa – and roughly or finely increased to 1000 MPa – the
endplate property of the “normal” model – in the outermost ring.
This model may be considered equivalent to the case of partial
endplate excision in the middle of the vertebra. In the model with
a “hard endplate” a modulus of 1000 MPa was assigned to the mid-
dle area, and increased up to 12,000 MPa – similar to the cortical
shell modulus – in the outermost ring. This model would probably
represent the physiological situation most precisely. Nine different
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Fig. 1 The intact finite-element model (left) and the model with
cage (right)

Fig. 2 Rough distribution of endplate properties; each grey shade
indicates another elastic modulus



definitions of endplate properties were thus evaluated in the intact
finite-element model and nine in the model with cage.

Gap elements were used for the contact interfaces between the
cage and the endplate, with the contact direction being perpendic-
ular to the cage surfaces. As most intervertebral implants have
small teeth or serrations on the contact surfaces, a friction coeffi-
cient of 0.8 was defined between the cage and the adjacent end-
plates. The three possible translation components of the inferior
surface of the L3 vertebra were fixed in space. As the loading con-
ditions and the cage material were shown to have a minor influ-
ence on the load transfer compared to a cage insertion [29], a tita-
nium implant was modelled and exclusively pure compression of
1000 N was applied to all models.

Results

Increasing the endplate modulus changed the von Mises
stress distribution in the adjacent structures. The altered
stress distribution in the cancellous bone of L3 for the in-
tact models is shown in Fig. 3. Stress alterations mainly
occurred in the regions directly adjacent to the endplate.
The harder the endplate, the smaller the maximum stress
in the trabecular bone was, as can be seen in the decreas-
ing amount and size of black areas in Fig. 3 and in Fig. 4.
Whether the elastic moduli were varied roughly or finely
across the endplate had a negligible influence on the stress
distribution in the cancellous bone; a similar result was

seen. With a stiffer endplate, load is shifted from the can-
cellous core to the vertebral cortex.

Due to the above-described findings, a representative
subset of all solved models for the comparison of the in-
tact case to the model with cage is presented to facilitate
understanding. The results of models with a uniform end-
plate modulus of 100 MPa, i.e. similar to cancellous bone,
1000 MPa, the “normal” one, and 12,000 MPa, similar to
cortical bone, are therefore presented along with the re-
sults of models with soft and hard endplates derived from
the fine distribution of the moduli.

The maximum von Mises stress in the cancellous bone
of L3 decreased with increasing endplate stiffness (Fig. 4).
That was true in the intact cases as well as in the models
with cage, but to a different degree. It is also clearly visi-
ble that the magnitude of the stress following cage inser-
tion exceeded the stress in the intact case.

Inserting a cage altered the stress distribution in the
FSU more than did the variation of the endplate modulus
(Fig. 5, Fig. 6). The harder the endplate, the more the
stress was concentrated in the contact areas between cage
and bone. Whereas in the intact models the stress was
slightly concentrated in the centre if the modulus was in-
creased, it progressed deeper into the bodies in the pe-
ripheral areas if a cage was inserted.
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Fig. 3 Von Mises stress distri-
butions for intact models under
axial compression. A sagittal
cut through the cancellous core
of L3 is shown, anterior is to
the left. The assigned endplate
modulus is given in the bottom
row

Fig. 4 Maximum von Mises stress in the cancellous core of L3: on
the left side in the intact case, on the right side in the models with
cage. The corresponding endplate modulus is given in the legend

Fig. 5 Von Mises stress distributions for intact cases (upper row)
and models with a titanium cage (bottom row). A sagittal cut
through the cancellous core of L3 is shown, anterior is to the left.
The corresponding endplate modulus is given in the middle



This finding was confirmed when the stress magni-
tudes were considered. Examples for the percentile differ-
ences of the stress maxima in the L3 vertebral body be-
tween an intact and a cage model due to varied endplate
properties are depicted in Table 1. Results from discrete
element subsets are presented. These element subsets A
(anterior), B (middle), C (posterior) were lying in the
sagittal plane of the vertebral body of L3. The locations
below the central slot of the modelled implant, two ele-
ment layers away from the endplate, were chosen to min-
imize possible artefacts resulting from contact force
peaks. The redistribution of stresses towards the periph-
eral regions after cage insertion is apparent for all cases.

The stress distribution in the endplate itself was altered
due to the definition of a non-homogeneous material dis-
tribution, but these differences did not propagate further.
Comparing the resulting stress distribution in the cancel-
lous bone (Fig. 5, 6), for example, only minor differences
could be detected that might be caused by this variation of
the endplate properties. In all cases, increasing the end-

plate modulus led to more prominent changes in the stress
values and distribution after cage insertion as compared to
the intact case.

Discussion

The introduction of intervertebral cages for spinal fusion
has been a promising innovation [1, 5, 18, 19, 28, 30];
nevertheless, there is ongoing debate regarding the neces-
sary conditions as well as the criteria for successful fusion
[21, 25, 36]. The presented work evaluated the influence
of endplate material properties on the stress distribution in
a lumbar FSU. Inserting a cage increased the stress and
markedly altered the overall load transfer under all cir-
cumstances investigated. A harder endplate led to increased
concentration of the stress peaks, and high stresses were
propagated further into the vertebral body, into areas that
would usually not experience similar stresses.

Although the presented finite-element models were
based on physiological material properties and accurate
spinal geometry, including ligaments, there were some
limitations. For most materials, the corresponding prop-
erty definitions were homogeneous. A more physiological
material distribution in all structures may have produced
different stress distributions. Nevertheless, non-uniform
material distribution in finite-element models may also in-
troduce numerical uncertainties.

The vertebral endplate and the underlying cancellous
bone are known as preferential fracture locations in the
vertebral body [8, 13, 14, 37], and subsidence of inter-
body fusion constructs in adjacent endplates is a frequent
mode of failure [7, 11, 15, 16, 21, 35]. Nevertheless,
whereas the cancellous bone of the vertebra has been the
subject of numerous studies [17, 22, 23, 24, 26, 27], the
literature concerning the vertebral endplate is compara-
tively sparse. Wenger et al. [38] evaluated the mechanical
properties of the osseous endplate in bending and tension,
reporting differences in material properties between nor-
mal and diseased specimens. This variation could not be
attributed to differences in bone mineral density (BMD)
[39]. In the frontal plane the BMD was described to be
higher at the periphery and lowest in the middle of the
endplate. Variation of endplate thickness has been re-
ported, with the anterior and the posterior regions being
thicker than the central part [8, 31]. Grant et al. [11] de-
termined highly significant regional strength and stiffness
differences in the lumbar and sacral endplates, with the
centre of the endplate being the weakest region. These
variations were included in some of the presented models,
but the varied endplate properties only altered the stress
distribution in the endplate itself. It did not cause observ-
able changes in the adjacent structures. Therefore, the de-
finition of a single elastic modulus for the entire endplate
seems to be justified for general analyses concerning the
behaviour of a complete FSU. Investigations of fracture
patterns in the endplate and the vertebral body, for exam-
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Table 1 Percentages of the maximum von Mises stress in the sub-
sets A (anterior), B (middle), C (posterior) in the sagittal plane of
the lower vertebra due to varied endplate properties. The corre-
sponding intact models were set to 100%

Model with: A B C

Endplate elastic modulus 100 MPa 155 36 90
Endplate elastic modulus 1000 MPa 207 32 134
Endplate elastic modulus 12,000 MPa 212 36 165
Soft endplate (100–1000 MPa) 203 29 116
Hard endplate (1000–12,000 MPa) 214 33 150

Fig. 6 Von Mises stress distributions for intact cases (upper row)
and models with a titanium cage (bottom row). A sagittal cut
through the cancellous core of L3 is shown; anterior is to the left.
The corresponding endplate definition is denoted in the middle,
obtained with a fine distribution of the moduli
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ple, would in contrast require a more detailed and appro-
priate definition.

The consequences of complete and partial endplate ex-
cision, as well as endplate preservation, can be inferred from
these finite-element models. For the flat-interface mono-
bloc cage type investigated, contact pressure was found to
be concentrated around the edges of the implant, producing
stress concentrations that could probably be tolerated by
this strong part of the endplate. In contrast, reliance of this
implant on cancellous bone, after endplate removal, may
present an increased risk of cage subsidence. The strength
of the vertebra–cage interface is not influenced by the end-
plate alone, but also by the properties of the underlying
bone. It has been assumed that the centre of the vertebral
body is weaker than the periphery, which is supported by
the fact that the distance between trabeculae increases in
the vertebral centre [11]. Nevertheless, only a few biome-
chanical studies have been conducted to evaluate the re-
gional differences in the vertebral body and their influence
on its strength. Antonacci et al. [2] showed the bone den-
sity in the anterior region of the vertebral body to be higher
than in other regions, regardless of overall density. In con-
trast, Banse et al. [3] reported the cancellous bone density
to be higher in core samples from the posterior region than
in those obtained anteriorly or laterally. The central area of
the vertebral body was not explicitly evaluated in either
study; however, Edwards et al. have reported the centre of
the endplate to be more porous [8]. In this study, a second
continuous layer of dense bone was observed adjacent to
the endplate in many lumbar vertebrae examined in the
midsagittal plane. It is unclear why this structural feature
was not seen in all vertebrae, or how it might affect stiff-
ness and strength. In general, more literature concerning
structural variations can be found than studies assessing the
regional differences of strength and stiffness. This makes it
difficult if not impossible to provide a complete picture of
the dangers and failure probabilities due to cage insertions.
Nevertheless, it can be concluded that placement of im-
plants in the central area of the vertebral body could cause
early failure. For the investigated implant shape, in con-
trast, contact between the cage and the endplates was con-
centrated at the periphery of the cage.

Using physiological finite-element models of an FSU
enabled the assessment of the influence of endplate mate-
rial and its distribution on the stresses in the vertebrae. By
calculating the stress distribution for the entire motion seg-
ment, it was demonstrated how much the overall stresses
are affected by cage insertion. These changes cannot be
assessed with experimental methods except at discrete lo-
cations [9]. In addition, the variability resulting from dif-
ferent cadaver specimens used in experimental studies
was removed. The alteration of the load transfer is likely
to cause structural changes in the adjacent bone. These
changes may offer an explanation for the damage occur-
ring to the underlying bone, as well as for the subsequent
subsidence of the cage. Nevertheless, they also offer the
possibility of adaptation to the new loading pattern.

Conclusion

The distinction between failure and success of fusion is
influenced by a number of different parameters. Cage in-
sertion was shown to change the overall load transfer un-
der static loads, whereby the material properties of the
cancellous bone and the endplate were found to be more
important factors for the resulting stress than the cage ma-
terial or the loading conditions [29]. Summarising our
previous work in this area, it can be concluded that cages
should be designed such that they rely on the strong pe-
ripheral part of the endplate to reduce the risk of subsi-
dence, and additionally offer a large volume for the bone
graft and a big area for the interface between the graft and
the bleeding bone in the middle. Furthermore, care should
be taken to confirm that the neighbouring vertebral bodies
show sufficient bone density in the peripheral regions, so
that the altered load transfer following cage insertion can
be supported until the remodelling process produces an
adequate adaptation to the new loading situation.
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