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Abstract 

Goal, Scope, Background. To improve the environmental per- 
formance of chemical products or services, especially via com- 
parisons of chemical products, LCA is a suitable evaluation 
method. However, no procedure to obtain comprehensive LCI- 
data on the production of fine and speciality chemicals is avail- 
able to date, and information on such production processes is 
scarce. Thus, a procedure was developed for the estimation of 
LCIs of chemical production process-steps, which relies on only 
a small amount of input data. 

Methods. A generic input-output scheme of chemical production 
process-steps was set up, and equations to calculate inputs and 
outputs were established. For most parameters in the resulting esti- 
mation procedure, default values were derived from on-site data 
on chemical production processes and from heuristics. Uncertain- 
ties in the estimated default values were reflected as best-case and 
worst-case scenarios. The procedure was applied to a case study 
comparing the production of two active ingredients used for crop 
protection. Verification and a sensitivity analysis were carried out. 

Results and Discussion. It was found that the impacts from the 
mass and energy flows estimated by the procedure represent a 
significant share of the impacts assessed in the case study. In a 
verification, LCI-data from existing processes yielded results 
within the range of the estimated best-case and worst-case sce- 
narios. Note that verification data could not be obtained for all 
process steps. From the verification results, it was inferred that 
mass and energy flows of existing processes for the production 
of fine and speciality chemicals correspond more frequently to 
the estimated best-case than to the worst-case scenario. In the 
sensitivity analysis, solvent demand was found to be the most 
crucial parameter in the environmental performance of the 
chemical production processes assessed. 

Conclusion. Mass and energy flows in LCIs of production proc- 
esses for fine and speciality chemicals should not be neglected, 
even if only little information on a process is available. The 
estimation procedure described here helps to overcome lacking 
information in a transparent, consistent way. 

Recommendations and Outlook. Additional verifications and a 
more detailed estimation of the default parameters are desirable 
to learn more about the accuracy of the estimation procedure. 
The procedure should also be applied to case studies to gain 
insight into the usefulness of the estimation results in different 
decision-making contexts. 

Keywords: Chemical production process; estimation; fine chemi- 
cals; life cycle inventory analysis (LCI); product comparison; 
speciality chemicals 

Introduction 

To improve the overall environmental performance of chemi- 
cal products and services, an environmental assessment of 
chemical substances with a life cycle perspective is useful. 
LCA is a suitable assessment method for this purpose. How- 
ever, there is a lack of LCI-data on the production of chemi- 
cals. While some LCI-databases provide data on the pro- 
duction of basic chemicals, plastics and detergents [1-4], 
hardly any data are available for fine and speciality chemi- 
cals. This lack of data is especially pressing for ecological 
product comparisons among active substances, e.g. for crop 
protection, or among such speciality chemicals as dyestuffs. 
The production of modern chemical products generally fol- 
lows a multistep synthesis with dozens of products from sev- 
eral suppliers involved. Mass and energy flows gathered in 
existing LCIs of chemical production processes comprise 
inputs of substrates, auxiliary materials, solvents, utilities 
including energy carriers, cooling water, and inert gas, as 
well as outputs of wastes, energy, valuable side or coupled 
products, and emissions to air and water. J6dicke et al. [5] 
found catalyst production to contribute significantly to the 
environmental impacts, while impacts from catalyst use were 
not assessed in other studies [6,7]. Infrastructure is com- 
monly neglected as well [1,2,5]. Due to the confidentiality 
of mass and energy balances, it is often impossible to ac- 
quire data for chemical production processes directly from 
chemical producers. If on-site data for the production of 
fine and speciality chemicals can be obtained, uncertainty is 
still high for the following reasons: (1) To achieve minimum 
procurement costs, chemical producers frequently change 
the supplier of a substrate. This leads to variabilities in the 
LCI because different suppliers may use different processes 
for chemical production or may achieve different process 
efficiencies. (2) Fine and speciality chemicals are normally 
manufactured campaign-wise in multipurpouse batch plants, 
where tens of different products are produced at different 
times in one building. Material and energy flows in these 
plants are measured only on a building level. Accordingly, 
the allocation of the flows to a specific product is often highly 
uncertain [8]. (3) Up to half of the energy demands in batch 
production are infrastructure-dependent and thus site-spe- 
cific [8,9]. This again leads to uncertainties due to the lack 
of site-dependent data. The uncertainties mentioned above 
do not apply for basic chemicals, because basic chemicals 
are produced continuously in mono-product plants. For the 
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production of basic chemicals, LCIs may be derived from the 
literature. However, information on production processes of 
fine and speciality chemicals is scarce. These processes are 
normally not even published in patents, as total secrecy is con- 
sidered the safest manner of know-how protection. In the most 
important public data source remaining, Ullmann's encyclo- 
pedia of industrial chemistry [10], reaction stoichiometry is in 
most cases accompanied by only a few comments on process 
operations, while energy or solvent demands as well as gen- 
eration of wastes and emissions are not discussed. 

Existing frameworks for the modelling of inventory data 
use a range of methods from rules of thumb to process simu- 
lation. Bretz and Frankhauser [11] take into account all flows 
mentioned above. They use process databases and expert 
knowledge and estimate default mass and energy flows as- 
sociated with end-of-pipe services, combustion of energy 
carriers, and standard operations in chemical industry. For 
processes with no information available at all, only the mass 
flows of starting materials according to reaction stoichiom- 
etry are taken into account. Unfortunately, this comprehen- 
sive methodology is not generally applicable to LCA-stud- 
ies, as it relies on confidential data for most process databases 
and default values. Furthermore, estimations rely rather on 
expertise than on transparent rules. Jimenez-Gonzales et al. 
[7] proposed a method to model inventories based on proc- 
ess flowsheets, thermodynamical calculations for energy 
balancing, and rules of thumb. Auxiliary materials are not 
discussed. Authors evaluating single production processes 
or end-of-pipe technologies in chemical industry frequently 
resort to process simulation to estimate material and energy 
flows [6,12,13]. Emission estimation based on specific unit 
operations and process flowsheets was used for LCA by 
Shonnard and Hiew [12]. All of the above-mentioned meth- 
ods are highly process-specific and require comprehensive 
process descriptions as input. Such information may be found 
in literature for the production of basic chemicals, but is 
generally not available concerning fine and speciality chemi- 
cals. Therefore, no applicable method is available to model 
LCIs of fine and speciality chemical production. 

In this study, we developed a procedure for the estimation of 
comprehensive LCIs of fine and speciality chemicals' produc- 
tion. In order to be operational, the procedure relies on the 
information obtainable from literature, i.e. the reaction equa- 
tions and only few, important process characteristics. To be com- 
prehensive, it yields approximations for the relevant mass and 
energy flows involved in the production processes. These flows 
include inputs of substrates, auxiliary materials, solvents, utili- 
ties including energy carriers, cooling water; and inert gas, as 
well as outputs of wastes, energy, side or coupled products, and 
emissions to ak. Default estimates of all parameters, mass and 
energy flows are suggested to compensate for missing informa- 
tion. The uncertaInties of these estimations are assessed in a 
best-case and a worst-case scenario for each production proc- 
ess. No most probable value is given, because there is no basis 
for such an interpolation at the current state of research. The 
procedure set up enables the use of LCA in the environmental 
assessment of chemical products. Especially, it allows product 
comparisons of chemicals with mulfistep synthesis on a coher- 
ent basis. In this article, the structure and parameterisation of 
such an estimation procedure is described. The procedures' ap- 

plicability is illustrated by a case study comparing the produc- 
tion of two active ingredients used for crop protection. 

1 Structure of the Estimation Procedure 

In order to estimate LCIs of processes for fine and speciality 
chemicals' production, a generic input-output scheme for single 
process steps in such LCIs was developed. Methods to calculate 
the input and output masses per kg of product output from 
such process steps were established. Input parameters were di- 
vided into those that can be obtained from literature and those 
that need to be provided by default estimates, taking into ac- 
count the lack of process-specific data (see Introduction). 

The system boundary for the LCI of a generic chemical pro- 
duction process-step was established following Heinzle et 
al. [14], adapted for the aims of this work. The resulting 
input-output scheme (Fig. 1) shows two separate groups of 
unit operations within the system boundary, as well as basic 
process characteristics influencing the inputs and outputs. 
In the reaction and workup unit operations, the substrates 
are converted partially to products, coupled and side prod- 
ucts, while a fraction of the substrates remains due to in- 
complete conversion. The product  is recovered and purified 
and leaves the generic production process step ready for use 
in the next process step. For the final product, further op- 
erations are necessary, such as formulation. These are not 
considered in this procedure. The sum of the output masses 
of side products and unreacted substrates is taken into ac- 
count as yield losses. These yield losses as well as coupled 
products are considered as waste, because their recovery is 
scarcely economically feasible in the campaign-wise and 
batch-wise production of fine and speciality chemicals. Re- 
garding the scarce number of cases where allocation between 
multiple valuable products may be necessary, we propose 
allocating on the basis of mass flows or stoichiometry, as 
discussed by Boustead [1]. Coupled products and yield losses 
may be dissolved in organic or aqueous phases depending 
on the solvents and workup operations used in the process 
step. In this estimation procedure, coupled products and yield 
losses are assumed to leave the process step with the solvent 
used in the reaction. In the case of an aqueous reaction me- 
dium, water is used as a solvent and no solvent recycling is 
assumed. Water and the dissolved coupled products and yield 
losses are assumed to be disposed of in the wastewater treat- 
ment plant. In chemical industry, only wastewater streams 
loaded with contaminants of low toxicity and sufficient bio- 
degradability are sent directly to the wastewater treatment 
plant [15]. If wastewater does not fulfil these conditions, it 
is treated by processes assuring the complete destruction of 
contaminants, such as waste incineration. Hence, emissions 
from wastewater treatment are sufficiently inventoried with 
sum parameters such as Total Organic Carbon (TOC) and 
Total Nitrogen (Ntot). Calculation of pollutant loads of 
wastewater, expressed in these sum parameters, is necessary 
to assess the environmental impacts of the treatment of aque- 
ous wastes in a wastewater treatment plant module. To cal- 
culate such loads for the unspecified yield losses, the sum 
formulas of the substrates can be used for extrapolation of 
the elementary composition. Hischier et al. [16] give further 
guidelines for the calculation of wastewater pollutant loads. 
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Fig. 1: Input-output scheme for the LCI of a generic process step for the production of fine and speciality chemicals. Groups of unit operations are 
indicated with light grey shading, the region of mass balance determined by stoichiometry and yield with dark grey shading 

In the case of an organic reaction medium, organic solvents 
are used, and these solvents may be regenerated. All regen- 
erated solvent is assumed to be recycled to the same process 
step. Wastes from solvent regeneration comprise waste sol- 
vent, coupled products and yield losses, and they are dis- 
posed of in the waste incineration unit. 

The LCI of any chemical product comprises a sequence of 
reactions used to synthesise the final product. In the estima- 
tion procedure lined out  here, each reaction is assumed to 
be carried out in its own process step as long as no other 
information is available from the literature. This is a simpli- 
fication. In reality, consecutive reactions may be carried out 
in the same process step, depending on the implementation 

of a reaction sequence in the chemical industry. In such cases, 
utility inputs for workup may decrease because the product 
does not need to be isolated. In highly efficient processes, 
the same solvent may be used for consecutive process steps. 
These increases of efficiency may lead to an overestimation 
of the environmental impacts of process steps by the estima- 
tion procedure described here (see also Section 3). 

The following equations enable the calculation of all input 
and output masses shown in Fig. 1 per kg of product out- 
put. Inputs and outputs of substrates, product, coupled prod- 
ucts and yield losses are calculated from the stoichiometric 
mass balance of the reaction and an overall yield of the proc- 
ess step. Symbols and indices are listed in Table 1. 

Table 1: Symbols and indices used in the equations 

Symbol  
m 
n 
V 

M 
X 
ksolvent 
frecycle 
femission 
Ntot 
TOC 
I n d e x  
i 
J 
Product 
Substrate 
Coupled 
Yield loss 
Fresh solvent 
Total solvent 
Waste solvent 
Total waste 
Emission 

Description 
Mass 
Number of moles 
Stoichiometric coefficient 
Molar mass 
Yield 
Number of solvents used in the process step 
Solvent recycle factor (mass fraction of total solvent mass that is recycled) 
Emission factor (fraction of any substances' mass in the process step that is emitted to air) 
Total Nitrogen content of aquatic phases 
Total Organic Carbon content of aquatic phases 

: :Unit  

Description, ...... 
Substance i 
Solvent j 
Reaction product, output of the process step 
Starting materials are used according to stoichiometry and yield 
Coupled products are formed according to stoichiometry and yield 
Substrates not converted, as well as side products, both unspecified 
Fresh input of a single solvent to the process step 
Total amount of a single solvent in the process step 
Output of used solvent from the process step to the waste treatment 
Total waste output from the process step 
Air emissions originating directly from the process step 

kg 
kmol 

kg/kmol 

kgN/kgproduct 
kgc/kgproduct 
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Stoichiometric coefficients are chosen so that v-~oauct = 1 
and the number of moles of product  generatedVis set to 
1 kmol. The number of moles (ni) for any substrate or cou- 
pled product is then obtained from 

rl i = V i �9 rlproduc t (1) 

where v i is the stoichiometric coefficient of substrate or cou- 
pled product. The input masses of all substrates, normalised 
on the product output, are calculated as: 

msubstrate,i _ nsubstrate,i" Msubstrate,i 

mproduci nproduc t �9 Mproduc t �9 X (2) 

w h e r e  msubstrate, i is the input mass of substrate i in kg, M is 
the molar mass of substrate or product in kg/kmole and X is 
the overall yield of the reaction and workup (dimensionless). 
In the same group of unit operations, products are recov- 
ered and purified and any waste pre-treatment is carried 
out. The product is then ready for further use. The normal- 
ised output mass of coupled products is 

mcoupted,i ncoupled,i " Mcoupled,i 
mproduc i - nproduct �9 Mproduc t 

(3) 

The normalised output mass of yield losses comprises the 
mass of substrates not converted and the mass of side prod- 
ucts formed in the reaction: 

myie ld  loss 1 
D 

mproduct  mproduct  

" ( ~'T/ msubstrate,, -- mproduct -- ~L'i mcoupled,i ) 

(4) 

Solvent demand is independent of reaction stoichiometry. 
Concerning organic solvents, high solvent recycling rates are 
normally realised for economic reasons. Hence, the demand 
of fresh solvent per product  output depends strongly on the 
recycling rate and less on desired concentrations of substrates 
or products in the solvent. For instance, quality requirements 
can cause low or even zero recycling rates. The fresh input 
of a single solvent per product  output is calculated as: 

mfresh solvent,j 
mproduct -- mtotal solvent,j " (1 - frecycle) (.5) 

where n~o~l solvent,j, is the total mass of the single solvent j in 
the process step, in kg/kgprodu~, and fre~ycle is the fraction of 
total solvent mass that is recycled (solvent recycle factor, 
dimensionless). More than one solvent may be used in a proc- 
ess step, and this is taken into account by defining the number 
of solvents used in the process step (k~olve,t) in Section 2. 

Air emissions from batch production are dominantly influ- 
enced by the effectiveness of the installed emission abate- 
ment equipment. Standard installations are absorbers for 

water-soluble emissions and condensers for organic emis- 
sions, mostly VOC [17]. If this equipment is not efficient 
enough or the emission of highly toxic substances is expected, 
waste gas incineration may be used. In this estimation pro- 
cedure, emission factors calculated as fraction of the mass 
of each substance in the process step are applied. Substance 
properties like vapour pressure are not taken into account, 
because it is assumed that emitted masses depend mostly on 
the effectiveness of emission abatement installations. The 
option of waste gas incineration is not modelled in this esti- 
mation procedure. The emission mass per kg of product 
output  (memission , i )  of any substance in the reaction and 
workup unit operations, as well as in the solvent regenera- 
tion, is calculated as 

memission,i = mi,process " femission (6 )  

where mi, process is the mass of substance i in the process step, 
which corresponds to the input mass for substrates, to the 
total mass in the process for solvents (mto ta  I solvent) and to the 
output mass for products or coupled products; remission is the 
emission factor (dimensionless)�9 Emission masses of yield 
losses (see Eq. 4) are neglected because they are small com- 
pared to emission masses of substrates, products and cou- 
pled products. For substances which obviously pose no harm 
to the environment (e.g. water) or which have a very low 
vapour pressure (e.g. salts), zero emission to air is assumed�9 
For substances that display high reactivity with air or water 
(e.g. anhydrides), the product of this reaction should be con- 
sidered as emitted substance. 

The mass of waste solvent generated (mw~st e solvent, j) is equal 
to the mass of fresh solvent input. The total mass of waste 
output per mass of product produced is calculated as 

mtotal  waste 1 
m 

m product rn prod uct 

�9 ( ~ i  mcoup led, `+ 1 ~ "  m waste solvent,j4" myie ld  loss) (7) 

- ~ memission,i- ,52 memission,j 

where index i denotes coupled products and index j solvents. 

Utilities include steam, electricity, cooling water, and nitro- 
gen. In theory, thermodynamic calculation of heating and 
cooling demands for reaction and workup is possible via 
enthalpy [7]. However, in processes for the production of 
fine and speciality chemicals, up to 60% of the total energy 
demand is independent of product  output [8,9]. This share 
of the energy demand depends rather on the level of utilisa- 
tion of production site infrastructure. Thermodynamic cal- 
culations would therefore underestimate energy demands. 
Instead, default utility demands per kg of product output or 
per kg of used solvent regenerated are used here. 

The following input data needs to be known to apply the 
equations above for estimation of the LCI of a process step: 
stoichiometric coefficients and molar masses of all sub- 
stances, as well as the reaction medium (aqueous or organic). 

104 Int J LCA 9 (2) 2004 



LCA Me thodo logy  wi th Case Study Specia l i ty  Chemica ls  

As is shown below, knowledge on two more process charac- 
teristics is necessary: the reaction phase (gas or liquid) and 
the occurrence of major  side products. This information can 
be ob ta ined  f rom genera l  chemical  process l i terature 
[10,18,19], specific encyclopedias [20] and synthesis litera- 
ture [21]. For the remaining unknown input data, the esti- 
mation of default values is described in Section 3. These data 
include: overall yield, number  of solvents and total mass of 
each single solvent used in the process step, solvent recycle 
factor, emission factor, inputs of steam, electricity, water, 
and nitrogen in reaction and workup as well as in solvent 
regeneration, and finally the type of organic solvent used, in 
case of an organic reaction medium. If additional informa- 
tion on a production process step can be obtained from lit- 
erature (e.g. yields, solvent types used), this information 
should be used instead of the estimated default values. 

2 Default Values for Parameters in the Estimation 
Procedure 

Default values were established for all unknown input data 
in Eq. 1-7. The uncertainty of the estimated default values 
was reflected in a best-case and a worst-case scenario. To 
this end, minimum and m a x i m u m  values for a given param- 
eter were identified f rom the on-site data. Minimum and 
max imum values were then assigned to the best-case or the 
worst-case according to the effects on the environmental 
performance of the process step. Heuristics were used, espe- 
cially where only little on-site data was available. Default 
values were chosen such that  the results of the best-case and 
worst-case scenario enclosed 90% of the possible values, 
according to the authors '  judgement. All default values were 
discussed with experts f rom the chemical industry. 

Three sources of on-site data were available from which the 
default parameter  values were derived. Firstly, on-site data 
were available on the last two process steps in the produc- 
tion of active substance A [22], which is a crop protection 
agent. This substance was also used as a LCA case study 
(see Section 3). Source [22] comprises mass flows of prod- 
uct, substrates, reactants, auxiliary chemicals, catalysts, sol- 
vents, and wastes, as well as utility demands. Secondly, his- 
torical  data  f rom the p i lo t  p lant  p roduc t ion  of active 
substance A [23] were used to reflect less optimised proc- 
esses. In the latter source, only mass balances are docu- 
mented. Thirdly, utility demands were available from multi- 
purpose batch product ion  processes of a Swiss chemical 
producer, for the time f rom 1998 to 2001, on a monthly 
basis [24]. These data had been measured on a production- 
building level and not specifically for any product. Of the 
three buildings for which data were available, one features 
aqueous-phase reactions and the two others organic-phase 
processes, each for a large range of fine and speciality chemi- 
cals (around 20 products  per building). Data from source 
[24] were normalised on the total product  output mass. For 
all sources, monthly averages were calculated. 

Data from source [22] depict two relatively complex proc- 
ess steps, involving many  unit operations and featuring a 
low yield. It is therefore reasonable to regard these process 
steps as a worst-case of environmental  performance regard- 

ing fine and speciality chemical production. Likewise, data 
f rom source [23] represent a worst-case, because pilot proc- 
esses are not fully optimised routinely. Data from source 
[24] are representative for one of the largest sites for fine 
and speciality chemical production in Switzerland, which is 
also of a relevant size considering the European level. 

Table 2 shows the best-case and worst-case default values 
that were established for all parameters in Eq. 1-7, using 
the on-site data described above and heuristics. For the esti- 
mat ion of the overall yield of a process step (Eq. 2), it is 
taken into account whether the reaction assessed generates 
major  side products. The occurrence of side products low- 
ers the yield of a process step. Thus, for process steps with 
known major  side products, lower default yields were cho- 
sen than for cases where no major side product is known. 
Default values for the yield in the worst-case scenario were 
taken f rom references [22,23]. Best-case yields were estab- 
lished by the authors '  knowledge in collaboration with ex- 
perts f rom the chemical industry. 

Often, the type of organic solvent used in a process may not 
be found in the literature. Rather than neglecting this input, 
a theoretical solvent was defined. The production-LCI of 
the theoretical  solvent consists of an LCI of equimolar  
amounts of toluene, acetone [1], and dichloromethane [25]. 
These solvents resemble the substance classes of aromatic, 
oxygenated, and chlorinated hydrocarbons, which are three 
important  solvent groups. Processes were classified as aque- 
ous and organic processes according to the reaction medium. 
It was taken into account that organic solvents may also be 
used in aqueous processes (e.g. for extractions). Regarding 
processes in organic phases, potential inputs of process water 
were neglected, because the water input as solvent is small 
against the amount of cooling water used. To derive the mass 
of fresh solvent input and waste solvent output (Eq. 5 and 7), 
the number  of solvents used in the process step (ksolvent), the 
total mass of a single solvent in the process step (ITltota I solvent,j) 
and the solvent recycle factor (frecycte) were estimated (see 
Table 2). The number of solvents used in a process step is 
determined considering the reaction phase (gaseous or liq- 
uid) and the reaction medium (organic or aqueous) of the 
process step. In process steps with a gas-phase reaction, no 
solvent is used for the reaction, but a solvent may be used 
for workup  (e.g. stripping). In this case, a solvent-free proc- 
ess step was assumed in the best-case, while the use of one 
solvent for workup was considered in the worst-case sce- 
nario. In processes with a liquid-phase reaction, solvent-free 
process steps are known, but were not considered because 
they are scarce and thus assumed outside the 90% of possi- 
ble values that  are supposed to be enclosed by a best-case 
and worst-case scenario. For the best-case scenario in liq- 
uid-phase reactions, the use of one solvent for the reaction 
was assumed, without further solvent use for workup. Con- 
cerning the worst-case, a second solvent was assumed to be 
used in workup  (e.g. for extraction). For process steps with 
aqueous reaction medium, an additional input of organic 
solvent was estimated for workup in the worst-case. The 
total solvent mass in the process step for any type of solvent 
(aqueous or organic) was derived from typical concentra- 
tions reported in [22,23] and from an estimation factor for 

Int J LCA 9 (2) 2004 105 



Speciality Chemicals LCA Methodology with Case Study 

Table  2: Estimated best-case and worst-case default values of the yield (Eq. 2), the solvent recycling factor (Eq. 5), other solvent parameters (Eq. 5), the 
emission factor (Eq. 6), and utility inputs 

Paramete r  

Yield (X) 

React ion  phase  

J 

React ion  med ium Solvent type Parameter  s u b g r o u p  

No major side product 

Major side product 

Defaul t  va !ues  : 

B e s t - c u e  

0.97 

0.87 

W o r s t - c a s e  

0.87 

0.77 

Solvent recycle factor 0.95 0 I - 
(frecyc{e) 

number of solvents used 
in a process step (kso~,ent) 

Any 

Organic 

Aqueous 

Aqueous 

Any 

Aqueous 

O~anic  

Aqueous 

Aqueous 

Total mass of a single 
solvent j in a process 
step (mtotal solvent.j) 

Any 

Organic 

Water 

Organic 

Organic 

Water 

Organic 

Water 

Organic 

Emission factor (remission) 
Steam 

Electricity 

Cooling water 

Na 

Steam 

Electricity 

Cooling water 

N2 

Utility inputs for reaction 
and workup 

Utility inputs for solvent 
regeneration 

Gas phase 

Liquid phase 

0 

0 

0.2 

2 

0 

1 x 10 -7 

1.2 

0.7 

70 

0.06 

1.5 

0.2 

80 

0.01 

Gas phase 

Liquid phase 

0.001 

7.7 

5.0 

730 

0.4 

n.a. a 

n.a. a 

n.a. a 

n.a. a 

i U n i t  : 

kgso~ent/ 
kgproduct 

kgwater/ 
kgproduct 

kg~o,vent/ 
kgproduct 

kgwater/ 
kgproduct 

kgso,,ent/ 
kgproduct 

kg/kgprodu~ 

M J/kgproduct 

kg/kgprodu~ 

Nm3/kgproduct 

kg/kgused solvent 

M J/ 
kguseO sol,ent 

kg/kgused so~,e.t 

Nm3/ 
kgused solvent 

a n.a. - not applicable because no solvent regeneration assumed 

solvent demand used in process development in the chemi- 
cal industry [26]. Solvent regeneration is assumed to take 
place in the best-case scenario only, and thus a good regen- 
eration yield of 95%, which occurs in [22], was estimated. 

Emission factors (Eq. 6) were derived comparing such fac- 
tors relevant for chemical production processes as listed in 
the EU-Technical Guidance Document  (EU-TGD [27]; Ta- 
ble A1.1, which is valid for Industrial Category 2, Main 
Category lc ,  Use Category not 33, product ion processes) 
and emission factors calculated from measured air emission 
mass flows from source [22]. The m a x i m u m  emission fac- 
tor from the on-site data was used here as a worst-case value. 
This factor is one order of magnitude below that of the EU- 
TGD. This is reasonable, because the EU-TGD aims at worst- 
case estimates for Risk Assessment, which should be higher 
than the realistic worst-case estimates aimed at in this esti- 
mat ion procedure. The best-case emission factor was cho- 
sen two orders of magnitude smaller than the minimum 

emission factor in the EU-TGD, to take into account the 
worst-case nature of the latter source. 

Utility demands for the reaction and workup unit operations 
were derived from [22-24] with minimum and maximum value 
representing best-case and worst-case scenario, respectively. 
Utility demands for solvent regeneration were derived from 
references [22,28]. Because solvent regeneration is assumed 
only in the best-case scenario, average values were used. 

Demands for catalysts and auxiliary materials were not esti- 
mated in this procedure, due to lack of data. The possible 
significance of these mass flows is discussed in Section 5. 

3 Methods of Analysis of the Estimation Procedure 

The applicability of the estimation procedure was shown with 
a LCA case study. The contribution of the estimation proce- 
dure to the total LCI of the case study was evaluated. Finally, 
the LCIA results of the case study were partially verified. 
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All evaluations were carried out on the level of LCIA. The 
human toxicity potential of  the CML-baseline method [29] 
was used to assess emissions potentially toxic to humans. 
Primary energy demand [3] was assessed because it reflects 
the consumption of fossil fuels, which is the most important 
resource consumption in the case study. Because the pur- 
pose of the assessment in this paper was to evaluate the esti- 
mation procedure and not to compare products, we focused 
on these two impact  categories. In a preliminary analysis 
not shown here, other impact  categories were not found to 
add any relevant information to the analysis of the estima- 
tion procedure: ecotoxicity impacts according to the CML- 
baseline method were dominated by metal emissions from 
background processes, global warming potential, acidifica- 
tion potential and eutrophication potential were dominated 
by emissions f rom the consumption of fossil fuels. A char- 
acterisation factor for the human toxicity potential of emis- 
sions of the theoretical solvent to air was obtained by calcu- 
lating the geometric mean of the characterisation factors of 
all solvents characterised in the human toxicity potential. 
The geometric mean was applied because it is commonly 
used to describe sets of non-negative values [30]. 

Two active ingredients for crop protection with the same 
use pattern were compared,  entitled A and B. The functional 
unit was the product ion of 1 kg each of active substance A 
and B 1. This functional unit reflects best the production- 
LCI of the case study, which is the goal of the estimation 
procedure presented above. In Fig. 2, all chemical produc- 
tion processes in the LCIs of the two active substances are 
displayed. One box represents one process step as shown in 

1 This functional unit is relevant only for the analysis of the LCI-estimation 
procedure lined out above. Regarding the environmental performance of 
the active ingredients, the functional unit should at least consider the 
applied dose, which is about ten times lower for active substance A. 

Fig. 1. LCI-data sources are indicated for each process step. 
Neither on-site nor published LCI-data were available for 
22 and four process steps in the life cycle of active substance 
A and B, respectively. In these cases, the estimation proce- 
dure described above was applied to complete the overall 
LCI of the case study. The necessary input for the estima- 
tion procedure (stoichiometry and process characteristics) 
was obtained from Ullmann's encyclopedia [10] and from 
interviews with industry experts. Information on solvent 
types and yields were found for three and nine processes, 
respectively. This information was used instead of the esti- 
mation procedures'  defaults. For background processes in 
the LCI of the case study, the following data sources were 
used: LCI data on electricity production in Switzerland and 
Europe (UCPTE), as well as on transport, were taken from 
Frischknecht et al. [3]. As a default, UCPTE-electricity mix 
was used. For basic chemical production, inventories data 
from APME [1] were used. Internal data from our workgroup 
were used alternatively as well as the IVAM 1.01 database 
included in the Simapro 4.0 software [4], where no data 
from APME were available. For these alternative sources, 
background processes of energy and transport were replaced 
by data from Frischknecht et al. [3]. Average transport  re- 
quirements of 200 km rail- and 600 km road-transport were 
estimated for chemical transport  after every third process 
step. The LCIs used for the wastewater treatment plant and 
the incinerator for organic waste are based on data from 
existing installations at a chemical production site in Swit- 
zerland [31]. LCI-data for the foreground processes in the 
p roduc t ion  of active substance A were obta ined f rom 
Syngenta Crop Protection [22]. 

For a partial verification of the estimated LCI of active sub- 
stance A, on-site data on eleven process steps were obtained 
from several chemical producers (see process steps marked 
with a 'V' in Fig. 2). These constitute a distinct set of on-site 

Fig. 2: Production life cycle of active substances A and B. Each box represents one process step, and LCI-data sources used are indicated by shading (see box) 
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data that were not used in the estimation of the default val- 
ues in Section 3. Verification datasets include on-site data 
for four process steps in the production of substrate s3 [32- 
34] (see Fig. 2). Source [34] features data from a standard 
operation procedure in pilot scale, which are less representa- 
tive in terms of technical correlation with the actual process 
than any of the other on-site data used. Further, seven datasets 
from a process database were used [35]. As these data were 
acquired in the 1990ies, they may not reflect latest techno- 
logical developments. All data sources used for the verifica- 
tion contain yields, mass flows of substrates, reactants, sol- 
vents and auxiliary materials. Utility demands are documented 
in all sources but source [34]. Explicit waste flows are in- 
cluded only in the datasets from sources [32-34]. None of 
the data sources comprises emission mass flows. To carry 
out the partial verification of the LCI estimated for active 
substance A, values in the initially estimated LCIs of proc- 
ess steps were replaced by values from the on-site data sources 
described above. The resulting LCI for active substance A 
has a higher data quality than the initial LCI due to a lower 
number of mass and energy flows being estimated by the 
estimation procedure. The on-site data used for verification 
did not include all mass and energy flows required. There- 
fore, missing data were again estimated using the default 
values described in Section 2. Further, on-site data were avail- 
able only for 11 of the 22 process steps with initially esti- 
mated LCIs in the production of active substance A. Thus, 
the verification is only partial. 

To analyse whether the process steps with estimated LCIs make 
a relevant contribution to the impacts of the production of 1 kg 

of active substance A, LCI-modules were sorted into the groups 
on-site LCIs, basic chemical LCIs, estimated LCIs and trans- 
port LCIs (Table 3). The fraction of the impact of each LCI 
group in the production of I kg of active substance A was cal- 
culated. Further insight into the relevance of specific param- 
eters of the estimation procedure was gained by calculating the 
parameters' sensitivities following Morgan and Henrion [30]. 
Changes in the LCIA-scores due to changes in single input pa- 
rameters were monitored. LCIA-scores and input values were 
normalised on their respective base-case values. A single 
decremental change of 10% was applied for this analysis. 

4 Results and Discussion 

The LCIs of the production of active substances A and B 
were calculated with the LCIs for 26 process steps estimated 
by the procedure lined out above. For the process steps with 
estimated LCIs, process characteristics as well as the esti- 
mated inputs and outputs are available in the supporting 
information 1. The estimated LCI for the production of I kg 
of substrate s2 (see Fig. 2) is shown as an illustrative exam- 
ple in Table 4. This is a gate-to-gate LCI for the process step 
to produce substrate s2. The process step features a liquid 
phase reaction in organic medium with no major side prod- 
ucts. As Table 4 shows, solvent input is distinctly higher for 

1 Can be requested from the author (geisler@tech.chem.ethz.ch) or 
accessed via the following DOI <http://dx.doi.ore/10.1065/Ica2003. 
10.139.1> 

Table 3: LCI groups, the LCI-modules included, and corresponding data sources 

LCIgroup:  :: , LCl-modulesincluded " : ~ : i :.= i : Data source" .... 

On-site LCIs All process steps on the site of the production of the active substance A, including utility On-site data 
supply, wastewater treatment plant, and waste incineration. 

Basic chemical LCIs Processes of basic chemicals' production. The basic chemicals are used as substrates in Published LCI-databases 
the estimated processes and as solvents in the processes with on-site data; cumulated 
inventories. 

Estimated LCIs All estimated process steps with cumulated background-LCI except substrate production; Estimation procedure 
subgroups used here are energy supply (cumulated LCIs of steam and electricity 
production), solvent production (cumulated LCIs), process emissions (directly from 
estimated process steps), and waste incineration (cumulated LCIs). 

Transport LCIs Published LCI-databases 

a For literature references 

Estimated road and rail transport demands for the estimated products and for the 
substrates of the on-site process steps. 

see text. 

Table 4: Estimated gate-to-gate LCI for the process step to produce 1 kg of substrate s2 (see Fig. 2) - inputs of substrates (Eq. 2), input of fresh solvent 
(Eq. 5), air emissions (Eq. 6), utility inputs, (see Table 2), and output of organic wastes (Eq. 7) 

Flow group Scenario Substrate s2,1 Sodium-ethoxylate Product (substrate s2) Couplod product I ~ e ~  S~ 

Substrate and 
solvent inputs 

Air emissions 

Utility inputs 
and waste 
output 

Best-case 
Wor~-case 
Best-case 

Worst-case 

Best-case 

Worst-case 

0.70 
0.78 

7.0E-08 
7.8E-04 

Steam 

kg/kgproduct 
5.5 
7.7 

0.61 
0.68 

Not emitted 

Not emitted 

Electricity 

MJ/kgproduct 
1.3 

5.0 

n.a. a 
n.a. a 

1.0E-07 
0.001 

Water 
(solvent and cooling) 

kg/kgpmdu~ 
298 

730 

n.a. a 
n.a. a 

1.7E-08 

1.7E-04 

Nitrogen 

m3/kgproduct 
0.09 
0.4 

0.15 
8 

5.9E-7 

8.0E-3 

Organic wastes to 
incineration 
kg/kgproauct 

0.46 

8.5 

a n.a. - not applicable. 
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the worst-case than for the best-case, mainly because the 
solvent recycle factor was assumed to be zero in the worst- 
case scenario (see Table 2). The mass of organic phases sent 
to waste incineration comprises waste solvent, yield losses 
and the coupled product (Eq. 7), and is thus also distinctly 
higher in the worst-case. Steam generation of only 0.9 MJ/ 
kgwaste solvent is credited in the incineration of organic wastes, 
because the incinerator module resembles an installation 
where aqueous and organic wastes are combusted together. 
Incinerators that are used only for the incineration of or- 
ganic wastes generate more steam, e.g. 17 MJ/kgwastesolvent 
[28]. When an incinerator only for organic wastes is used, it 
is assumed here that aqueous wastes otherwise incinerated 
would have to be treated in equally energy-intensive instal- 
lations, such as wet oxidation. Because such wastewater 
treatment options are not modelled here, using the incinera- 
tor  module with little energy credits prevents an underesti- 
mation of the environmental impacts. Demands of substrates 
(Table 4) are higher in the worst-case than in the best-case, 
because the default yield is lower in the worst-case. Emis- 
sions increase from best-case to worst-case scenario mainly 
due to the increasing emission factor (Eq. 6). 

To demonstrate the use of the estimation procedure in prod- 
uct comparisons, the LCIA results for the production of 1 kg 
of active substance A were compared with those of active sub- 
stance B. Results are displayed as ranges, with best-case and 
worst-case estimates as lowest and highest value, respectively 
(Fig. 3). The production of 1 kg of active substance A clearly 
shows higher impacts than B in both LCIA-categories assessed. 
The quotient of worst-case and best-case impact scores for 
each active substance ranges between values of 4 to 7. All 
further analyses are carried out considering active substance 
A only, because the goal is to describe the role of the estima- 
tion procedure within one substances' life cycle. 

To evaluate the contribution of the LCI group 'estimated 
LCIs' (see Table 3) to the total impact of the production of 
active substance A, the contributions of each LCI group listed 
in Table 3 to the LCIA result were calculated (Fig. 4). Re- 

Fig. 3: Comparison of the production of 1 kg each of active substance A 
and B, in the impact categories primary energy demand and human toxic- 
ity potential 

garding the best-case scenario in both impact categories, the 
estimated LCIs share 35-45 % of the total impact score, giv- 
ing the second highest contribution. The LCIs of the pro- 
duction of basic chemicals ('basic chemical LCIs', see Ta- 
ble 3) contribute most to the total impact. In the worst-case 
scenario in both impact categories, the estimated LCIs con- 
tribute 80-90% to the total impact score. Hence, the con- 
tribution of the estimated LCIs to the total impact is high 
for both human toxicity potential and primary energy de- 
mand. The LCIs of on-site data and transport each contrib- 
ute below 10% of the total impacts, in both scenarios and 
impact categories. 

Focusing on contributions of the subgroups of the estimated 
LCIs (see Table 3), differences between the two impact cat- 
egories become obvious. LCIs of solvent production cause 
the highest primary energy demand, followed by the LCIs 
of energy supply processes, concerning both scenarios. As 
noted above, only little steam is generated in the waste in- 
cinerator. Hence, credits for steam production are insignifi- 
cant, even in the worst-case scenario where all solvent is 
assumed to be incinerated. Toxic emissions to air contribute 
most to the human toxicity potential. With regard to the 
best-case scenario, emissions from energy-supply processes 
dominate the human toxicity impact score. In the worst- 
case scenario, as the emission factor and solvent demand in 

Fig. 4: Contributions of the LCI groups and subgroups (see Table 3) to the human toxicity potential and the primary energy demand, regarding the 
production of I kg of active substance A. Best-case scores (left columns) and worst-case scores (right columns) add up to 100 %, respectively. Note that 
in terms of the absolute values only the impacts from the LCI group 'estimated LCIs' change between best-case and worst-case scenario 
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Fig. 5: Sensitivities of the default parameter values on human toxicity impact scores and primary energy demand in the best-case and the worst-case 
scenario. Only parameters with sensitivity > 0.05 are shown. Names for solvent parameters are given in the format: parameter (reaction phase, solvent type). 
For reaction phase, g = gas-phase, I = liquid-phase; for solvent type, org = any organic solvent (see also Table 2) 

the estimation procedure increase, the corresponding LCI 
subgroups become equally important as the energy supply 
processes. The difference between best-case and worst-case 
results in the primary energy demand is due to the increas- 
ing demand of fresh solvent in the worst-case scenario. Con- 
cerning the human toxicity potential, increasing fresh sol- 
vent demands, solvent emissions and energy demands cause 
the difference between best-case and worst-case results. 
Contributions of LCI groups and subgroups are not shown 
here concerning the life cycle of active substance B, because 
similar contributions are observed as for active substance 
A. This is attributable to the relation of the numbers of esti- 
mated to published process-step LCIs being similar in the 
production life cycles of both active substances. 

To analyse further, which parameters of the estimation pro- 
cedure exhibit important  influences on the LCIA results, the 
sensitivity of each parameter was calculated (Fig. 5). Gener- 
ally, yields have negative sensitivities, as a higher yield leads 
to lower mass and energy flows due to lower substrate de- 
mands. All other parameters are directly linked to utility 
demands or emissions and thus produce positive sensitivi- 
ties. The ranking of parameters according to the sensitivi- 

ties is almost identical in both scenarios and impact catego- 
ries. The yield features by far the highest sensitivity. It should 
be noted that the sensitivities to some extent depend on in- 
dividual characteristics of processes occurring in the life cy- 
cle of the case study. The different sensitivities of the yield 
depending on the classification of processes as 'major side 
product'  or 'no major side product '  can be attributed to this 
fact. Parameters describing the demand for organic solvents 
in liquid-phase process steps show the second highest sensi- 
tivity. These parameters are the number of solvents (ksolven t 
(1, org)) and the total mass of each single solvent in the proc- 
ess step (m~ota I solvent, j(l, org)). Relating to the primary energy 
demand, the solvent recycle factor shows the third highest sen- 
sitivity. Concerning the human toxicity potential, due to the 
toxicity of air emissions, the emission factor displays the third 
highest sensitivity. In the best-case, this emission factor is very 
low. Hence, its sensitivity is insignificant. Utilities used in the 
process steps display little influence on the results in any cat- 
egory or scenario. Solvent regeneration is assumed only in the 
best-case scenario, and thus utilities for solvent regeneration 
show some sensitivity only in this scenario. Parameters esti- 
mating water demand for cooling or as a solvent have insig- 
nificant sensitivities below 0.05. 
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A partial verification of the LCIs estimated in the produc- 
tion of active substance A was carried out. To this end, the 
LCIs of 11 of 22 process steps in the production of active 
substance A (see Fig. 2, process steps marked with a 'V'), 
which were initially estimated with the procedure lined out 
in this article, were replaced by LCIs derived from on-site 
data (see Section 2). The LCI obtained is further called veri- 
fication LCI. In Fig. 6, the LCIA results from this verifica- 
tion LCI are compared to those from the initial LCI (see 
Fig. 3). The distance between best-case and worst-case re- 
sults in both impact categories is smaller regarding the re- 
suits from the verification LCI, because, in that dataset, a 
number of formerly estimated mass and energy flows were 
replaced by point values from the on-site data used for veri- 
fication. Relating to the best-case scenario in both impact 
categories, the initial LCI results in a lower primary energy 
demand and human toxicity potential than the verified LCI. 
This complies with the intention in the development of the 
two scenarios: LCIs estimated in the best-case scenario should 
reflect processes with environmental performances above the 
average, while the worst-case estimations should resemble 
process steps with high environmental impacts. Concerning 
the worst-case scenario, impact scores of the initial LCI in 
both impact categories are roughly double as high as those 
of the verification LCI, due to three factors: (1) In four cases, 
two consecutive reactions, which were assumed to be car- 
ried out in two separate process steps in the initial LCI, were 
found to be carried out together in one single process step in 
the verification LCI. In these cases, the intermediate prod- 
uct was not fully isolated, and, thus, utility and solvent de- 
mands for workup were reduced. (2) Many process steps 
display lower solvent or utility demands than estimated by 
the worst-case default values. In three process steps that ini- 
tially were judged to use organic solvents, no solvent is used 
at all in the verification LCI. (3) Higher yields lead to lower 
substrate demands from background process steps, thus re- 
ducing all impacts from these process steps. Altogether, LCIs 
estimated in the worst-case scenario resemble process steps 
with considerably lower ecological efficiencies than the ex- 
isting process steps that the verification LCI is based on. It is 
thus suggested that chemical production processes that show 
mass and energy flows resembling the worst-case estimates 
occur less frequently than chemical production processes 
whose mass and energy flows correspond to the estimated 
best-case LCIs. While no further evidence can be given yet 
for this interpretation, it is supported by two arguments. 

Fig. 6: Comparison of impact scores from the initial LCI and the verifica- 
tion LCI of active substance A. Best-case and worst-case result are given 
as high and low value, respectively, of ranges of possible values 

Firstly, all worst-case default values were derived from on- 
site data, implying that processes with corresponding mass 
and energy flows exist and the values are not unrealistic. 
Secondly, process optimisation is an important objective in 
chemical industry. Therefore, only process steps where en- 
vironmental efficiency competes with other targets like prod- 
uct quality display mass and energy flows as reflected in the 
worst-case LCI estimates. The partial verification is a first 
step towards the derivation of default values for a 'most 
probable' scenario. However, it is judged that at the current 
stage of research, too little information is available for such 
an interpolation. 

Several sources of uncertainty are considered out of the scope 
of this work and are discussed qualitatively in the follow- 
ing. The sequence of reactions used to synthesise the final 
product as acquired from the literature is considered a user 
input. If several alternative reaction sequences exist, they 
should all be assessed. Experts should be consulted to verify 
the reaction sequences established. Further uncertainties stem 
from the concept of the theoretical solvent, namely from the 
production LCI of the theoretical solvent and the charac- 
terisation factor in the human toxicity potential. Few LCIs 
of solvent production were found in literature, and thus vari- 
ations in the production of different solvents could not be 
assessed in detail in this work. The characterisation factor 
for emissions of the theoretical solvent to air in the human 
toxicity potential is calculated as an average value of several 
typical solvent types (see Section 2), which carries a param- 
eter uncertainty. Whenever uncertainty propagation is car- 
ried out in case studies, this uncertainty should be included. 
The use of auxiliary materials and catalysts as well as the 
possible overstoichiometrical dosage of substrates are not 
assessed in the estimation procedure. Auxiliary materials are 
mostly acids and bases. Stoichiometric inputs of acids and 
bases are taken into account. However, for processes includ- 
ing pH-changes (e.g. for extraction), additional inputs of 
acids or bases are necessary. Demands of individual acids 
and bases in terms of mass flows were found to be 30-50% 
higher in the estimated best-case LCI than in the verifica- 
tion LCI of active substance A. In the estimated worst-case 
LCI, acid and base demands were 30-80% higher than in 
the verification LCI. However, the contribution of the pro- 
duction of all acid and base inputs to the total environmen- 
tal impacts in the verification LCI was only around 1%. 
Thus, neglecting non-stoichiometric inputs of acids and bases 
appears to be of minor importance. Still, specific processes 
exist, where non-stoichiometric acid and base inputs may 
contribute significantly to an LCA, e.g. sulfonation reac- 
tions using sulfuric acid as solvent. In such reactions, sulfuric 
acid needs to be neutralised with NaOH,  producing gyp- 
sum. Alternatively, an energy-intensive regeneration of the 
acid is necessary [10]. Acid and base input should be inven- 
toried individually for such reactions. 

Overstoichiometrical dosage of substrates is used to force 
the thermodynamical equilibrium of reactions with second 
or higher order kinetics towards the products and to increase 
the reaction rate. An overdosage of about 5 wt% of the 
cheapest substrate involved may be applied. The remaining 
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unreacted substrate is commonly treated as waste. The result- 
ing additional waste mass is low compared to solvent waste 
and can thus be neglected. Neglecting the additional substrate 
input, however, may lead to an underestimation of the LCIA 
results. Inputs of catalysts and mass and energy flows due to 
catalyst recycling or disposal are also not assessed in the esti- 
mation procedure, following [6,7]. In another study, the pro- 
duction of a heterogeneous catalyst containing a precious metal 
was found to be significant [5], and this was due to a high 
catalyst concentration in the reaction medium. In the analysis 
of the LCI of active substance A, the homogeneous, organic 
catalyst employed in the last process step was found to con- 
tribute around 1% to the total impacts. The underestimation 
of impacts due to the neglected mass and energy flows con- 
nected with catalyst use is thus assumed to be low. Still, the 
consumption of precious metals for catalysts may contribute 
significantly to impacts of abiotic depletion. Precious metal 
use is not assessed in our estimation procedure, due to lack 
of data. Lastly, many  chemical intermediates can be pro- 
cured from commodi ty  suppliers. These suppliers may  pro- 
duce in countries with lower environmental management  
standards and incentives than Switzerland. The environmen- 
tal performance of chemical production processes of such 
suppliers may  be worse than reflected in the on-site data 
from Swiss product ion sites, which the default parameter  
values of this study are based on. For instance, a lower level 
of emission abatement  in countries with less strict regula- 
tion than Switzerland may lead to higher air emissions. 
However, efforts of the chemical industry to reach high stand- 
ards in environmental  issues are ongoing worldwide, e.g. 
according to the Responsible Care initiative [36]. 

5 Conclus ions  

A procedure for the estimation of LCIs for process steps in 
the production of fine and speciality chemicals was devel- 
oped and applied to a case study comparing two active in- 
gredients for crop protection. The impact of the process steps, 
whose LCIs were estimated with the procedure proposed 
here, was significant compared to the total impact of the 
case study. Hence, the estimation procedure adds important  
information to the environmental assessment of fine and 
speciality chemicals. As an input to estimate LCIs of process 
steps in chemical production, only a minimum of informa- 
tion is required: the reaction stoichiometry and some basic 
characteristics of  the process steps. These low data require- 
ments are a prerequisite to enable the comparative environ- 
mental assessment of fine and speciality chemicals by LCA, 
because of the low data availability that governs any at- 
tempt at creating LCIs for the production of these chemi- 
cals. Default estimates of most  parameters in the estimation 
procedure were provided to compensate for missing infor- 
mation. The uncertainty of these estimations was reflected 
by providing results in a best-case and a worst-case scenario. 
Evaluating the partial verification of the estimation results 
of the case study, it was suggested that the LCIs estimated in 
the worst-case scenario may correspond to a small number  
of existing process steps in chemical production only. It w a s  

indicated that  the majori ty of  existing process steps is likely 
to feature mass and energy flows corresponding rather to 
the best-case than the worst-case scenario. 

6 Recommendat ions  and Out look  

More accurately estimated LCIs could be achieved by a more 
detailed estimation of the default parameters, especially for 
the solvent demands and solvent types used. Additional verifi- 
cations would be desirable to learn more about the accuracy 
of the estimation procedure. In LCAs of the use of chemical 
products, other parameters besides the production-LCI influ- 
ence the results, e.g. such as those concerning the functional 
unit. Thus, the estimation procedure should be applied to more 
case studies to gain insight into the usefulness of the estima- 
tion results in different decision-making contexts. 
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CIBA's Textile Dyes and Chemicals divisions use screening LCAs 
for their 1700 sales products to improve portfolio management and 
ecological process development. Material flow, energy, and waste 
data for in-house manufacturing processes are extracted from our 
company databases into our LCA system ECOSYS. For meaningful 
comparisons of whole life cycles, we must include LCA estimates 
for over 4000 raw materials from other suppliers. Even crude esti- 
mates are preferable to the frequently practised omission of unknown 
process steps since they allow worst-case or sensitivity analyses. 
Sources for mass flows are (decreasing order of reliability): process 
literature (SRI-PEP Yearbook, UIImann, Kirk-Othmer, patents), yields 
of analogous processes, theoretical stiochiometry. Energy demands 
come from literature, or from a set of standard operation estimates 
developed by our process engineers. Wastes/emissions, if not pub- 

lished, are derived from yields and elemental balances, estimated 
emissions of energy carriers (BUWAL-132), and typical end-of-pipe 
measures in CIBA. These data sets are kept as 'added-burden mod- 
ules', which are transformed to step-pacific burden estimates by a 
'propagation' program, before the overall burdens of the whole proc- 
ess tree are cumulated. This program checks every process for ac- 
tually measured burdens, before applying the attached ABM esti- 
mates to fill the gaps. Centralization of estimates as ABM with inherent 
burdens facilitates maintenance and adaptation. At present, well over 
250 important intermediates were estimated and used in our product 
trees; many more follow rapidly. 

This article is an example of how industry is using LCA to address 
environmental issues. 
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