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Abstract Cardiac magnetic
resonance imaging (MRI) on small
animals is possible but remains
challenging and not well
standardized. This publication aims
to provide an overview of the current
techniques, applications and
challenges of cardiac MRI in small
animals for researchers interested in
moving into this field. Solutions have
been developed to obtain a reliable
cardiac trigger in both the rat and
the mouse. Techniques to measure
ventricular function and mass have
been well validated and are used by
several research groups. More
advanced techniques like perfusion
imaging, delayed enhancement or tag
imaging are emerging. Regarding
cardiac applications, not only
coronary ischemic disease but several
other pathologies or conditions
including cardiopathies in transgenic
animals have already benefited from

these new developments. Therefore,
cardiac MRI has a bright future for
research in small animals.
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Introduction

Magnetic resonance imaging (MRI) is a powerful tech-
nique used both in clinical practice and in research. In
routine cardiac imaging, MRI is recognized as a robust
and accurate method to measure cardiac function, perfu-
sion and viability. The ease of transferring new methods
developed on experimental models to clinical imaging is
another stimulus to perform research on cardiac MRI. Re-
search on small animals has numerous advantages such as
realistic physiologic in vivo models, knockout animals as

well as reduced team and cost to handle the experiments.
Several imaging methods have been developed for the phe-
notypic analysis of small animals, amongst which MRI
has been proposed [1]. Still, cardiac imaging on a small
animal using MRI remains challenging and not well stan-
dardized. Therefore, this work aims to provide an overview
of the current techniques, applications and challenges of
cardiac MRI in small animals for researchers interested in
moving into this field. First, the methodology will be dis-
cussed followed by the applications and results obtained
so far.
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Cardiac MRI acquisition

Optimal magnetic field strength

Usually, cardiac MRI research is performed on high-field
magnets with a small bore specially designed for small
animals. The advantage of using high fields relies on the in-
creased signal that allows higher resolution to be achieved.
Fields of 4.7 and 7 T are commonly used [2]. Experiences
on 11 T and above have also been reported for applica-
tions like coronary angiography and phosphorus spec-
troscopy [2]. The position of the magnet (horizontal vs.
vertical as encountered in high-field systems) does not
seem to be relevant as prolonged upright body position
exerts no significant changes in murine left ventricle he-
modynamics [3]. However, high field is not mandatory as
successful experiments have also be performed at 1.5 T on
a clinical system [4,5]. The loss of signal is compensated
to some extent by dedicated coils that improve the signal
reception.

Trigger systems and animal monitoring

For structural studies like myocardial mass quantification,
high-quality predominantly diastolic MR images may be
obtained by signal averaging without any trigger (6). How-
ever, for all other techniques including a fast determina-
tion of the myocardial mass, an ECG trigger is absolutely
required for cardiac MRI. Considering the high heart rate
encountered in small animals (between 200 and 600 bpm)
and the small voltage recorded for the ECG, the cardiac
synchronization can be really challenging. Commercial
trigger systems are available that can amplify the ECG
signal recorded in small animals. However, the ECG may
be corrupted during image acquisition by the imaging
process, as for example in cardiac microscopy when short
repetition time and high gradient-slew rate are used.
Therefore other types of trigger devices have been devel-
oped [7]. The fiber-optic stethoscope system for example
is inserted in the esophagus and optically detects pulsate
compression of the esophageal wall [8]. As another type
of device, the «lever-coil» is a coil mechanically coupled
to the animal but not located within the resonator or gra-
dient coil that is sensitive to both cardiac and respiratory
motion [9]. Finally, the arterial pressure can also be used
to trigger the MRI acquisition instead of the ECG [10].

Regarding the need for a respiratory gating, the posi-
tion of the animal seems important as respiratory com-
pensation is needed in vertical high-field magnets but not
in horizontal magnets [11].

In addition to image triggering, cardiac and respira-
tory monitoring permits the display of vital signs. In con-
junction with general anesthesia under isoflurane [12] and
body temperature control [13], exam durations of around
2 h have been achieved.

MR sequences and protocols

Various sequences are used for cardiac imaging in rats (10).
There are no systematic studies comparing the different
MR sequences. The choice of the MR sequences seems
to depend more on both the investigators and the MR
systems used. The most frequently used are T1 gradient
echo cine sequences, yielding a typical in-plane resolution
of 200–300 µm in less than a minute for a single slice on
high-field magnets [14].

Myocardial mass

Due to its ability to offer high spatial resolution, myocar-
dial mass can be accurately quantified in vivo by MRI,
as it has been demonstrated in the mouse [15–17]. The
method relies on a complete coverage of the heart using
cine images, followed by a delineation of the epicardial
and endocardial contours of the left ventricle, as shown
on Fig. 1. By considering the cardiac tissue density as con-
stant, the segmented volume yields the mass.

This method has been validated by left-ventricle gra-
vimetry [16]. Additional parameters like the volume of the
cavities or the slice thickness can also be measured from
the images.

On an isolated beating heart and high-field MR sys-
tems, the spatial resolution can be increased to observe
the myocardial fiber structure [18–20]. Diffusion imaging
has also been performed on isolated beating [19] and fixed
hearts [21].

Myocardial function

One of the strengths of cardiac MRI is the accuracy of
measuring myocardial function in small animals. Several
protocols have been proposed according to the type of
measurements needed.

Global and regional function

Global and regional functions are obtained using bright
blood cine-imaging MR sequences [11,22]. Parameters
like ejection fraction, or wall thickness and wall thicken-
ing are reproducibly extracted from these data based on
the high contrast between the blood and the myocardium.
Stress cine-MRI of cardiac function have been performed
using dobutamine in mice with an intravenous infusion
at 4 or 40 µg/minute/kg [23], or an intra-peritoneal bolus
injection of 1.5 µg/g body weight [24,25].

Strain and velocity imaging

Intra-myocardial wall motion, like radial and circumfer-
ential shortening or strains, torsion angle, can be measured
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on strain imaging but not on cine imaging. The basic prin-
ciple is to tag the myocardium physically using spatially

Fig. 1 a and b: long-axis view of a rat heart 8 wk after large myocar-
dial infarction (MI) in diastole (a) and systole (b). c and d: long-axis
views of the RV 8 week after large MI in diastole (c) and systole (d). e
and f: diastolic (e) and systolic (f) short-axis slices at the level of the
tricuspid valve in a rat 8 wk after MI. g and h: diastolic short-axis
slices at the level of the papillary muscles in a rat 8 wk after MI (g)
and a sham-operated rat (h). Note the high spatial resolution that
allows a clear delineation of the cardiac anatomy and to differen-
tial the normal and infarcted heart.(reprinted with permission form
reference [65])

selective saturation pulses and to track the displacement
of the tagged myocardium. The feasibility of such an ap-
proach has already been demonstrated in the mouse using
either SPAMM or DENSE imaging, as shown in Fig. 2
[26–30]. Another variant of these approaches uses phase-
contrast imaging with bipolar gradients to encode the mo-
tion of the mouse myocardium [31]. The different merits
and respective indications of these three techniques are yet
to be determined in small animals.

Myocardial perfusion and blood volume

Quantification of coronary blood flow using phase-
contrast techniques in small animals has only been
achieved on isolated hearts [32]. Research has been more
focused on measuring perfusion at the tissue level. Spin-
labeling perfusion techniques [33] have been used in
small animals [34–38] as an endogenous alternative to
the myocardial perfusion measurement with exogenous
contrast media used in humans. Indeed, in humans car-
diac frequency is low enough to allow the acquisition of
images with sufficient SNR and resolution within one
heart beat to follow bolus. In small rodents, however,
cardiac cycle duration is much shorter, of the order of
100–200 ms. This precludes acquisition of images with
sufficient resolution and SNR within one heart beat.
Therefore, MRI bolus tracking is less reliable in small
animals. Also, reproducible bolus injections, required for
perfusion quantification, are difficult to achieve in small
animals [39].

The principle of spin-labeling perfusion quantification
is based on inflowing, non-inverted spins into a selec-
tively inverted slice. The mixing of non-inverted flowing
and inverted spins in the imaging slice modifies the appar-
ent relaxation time and thus creates flow-related contrast.
Since T1 increases with higher magnetic fields, and higher
T1 values allow longer inflow observation times, high
magnetic fields are particularly useful for spin-labeling
imaging.

Fig. 2 Typical images from an 11-phase (time points) tag MRI study
in mouse are depicted shortly after end diastole (a) and at end systole
(b). The analysis of the tag displacement is used to measure myocar-
dial strains. (adapted with permission from reference [29])
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Myocardial perfusion values at rest in rats from 3.5±
0.1 mg g−1 min−1 [35] to 5.5±0.7 mg g−1 min−1 [34] have
been reported in the literature and validated using a col-
ored microspheres technique [35].

In addition to perfusion measurement by spin tagging,
the injection of a T1 intravascular contrast media allows
the determination of the myocardial blood volume [35,40].
Other methods to measure regional myocardial blood vol-
ume is based on the accepted linear relationship between
the regional blood volume and the transverse relaxation
rate increase, � R2*, following iron oxide particle injection
[41].

Delayed enhancement MRI

Delayed imaging after contrast media injection is an estab-
lished MR technique to reveal acute or chronic infarct
in patients. This technique has been well validated in
the mouse with an occlusion/reperfusion model and an
extravascular contrast media (Gd-DTPA at a dose of
0.3–0.6 mmol/kg) by comparison to TTC staining [42].
In the rat with the occlusion/reperfusion model, however,
the situation is less clear with more debated results. Both
intravascular [43] and extravascular contrast media over-
estimated the infarct size whereas necrosis-avid gadolin-
ium-based contrast media gave a correct measure [44].
In another rat study with a similar model, the enhanced
region overestimated the infarct size immediately after the
injection of Gd-DTPA, although it gradually decreased to
match the size of the infarct [45]. Such a variation of the
hyperenhanced region is not found in patients or other
models and needs to be further studied [46].

Manganese-based contrast media have also been used
to delineate myocardial infarct in rats as they accumulate
inside normal myocytes but not in infarcted cells [47,48].
However, the practical use of such contrast media that
may also indicate the rate of calcium influx into the heart
[25] remains to be defined.

Metabolism and spectroscopy

The feasibility of 31 P MR spectroscopy has already been
demonstrated in mice on isolated hearts [49,50] and in vivo
[51]. Using this technique, the myocardial phosphocrea-
tine (PCr)-to-ATP (PCr/ATP) ratio remained unchanged
in mice after dobutamine stress [49]. A report on sodium
MR imaging in isolated rat hearts demonstrated an in-
crease of the intracellular sodium during global ischemia
[52]. However, these techniques remain difficult to master
and are not widely used.

Angiography and vessel wall imaging

Coronary MR angiography has been successfully per-
formed on isolated rat hearts to demonstrate a coronary

occlusion [2] but remains technically difficult, although
possible, in mice in vivo [53]. Wall imaging of mice artery
is a rapidly growing field due to the numerous knockout
models that are available. With this technique, high MRI
resolution of a limited vessel segment has been acquired
in vivo in the aorta and carotid arteries of mice [54–59].
There are currently no reports on wall imaging of coro-
nary arteries in small animals.

Cardiac MRI applications

Using the previously described protocols on small ani-
mals, significant results have already been obtained in the
cardiovascular field. These will be briefly reviewed to dem-
onstrate the potential of cardiac MRI in small animals.

Persistent coronary occlusion

This model is characterized by a permanent occlusion
of a coronary artery, yielding an infarct of variable size
depending on the site of the ligation (distal or proximal)
[60]. The remodeling following myocardial infarct in the
left ventricle has been well described using MRI [61]: the
injured myocardium evolves toward scar tissue and the
remote myocardium develops a hypertrophy of the wall
as well as an increase of the intracapillary blood volume
[62]. Ultimately, a cardiac failure may result [63]. MRI also
demonstrated a right ventricle hypertrophy as in the left
ventricle but no increase of the wall stress [64,65].

The effect of transmyocardial laser revascularization
[66], angiotensin converting enzyme inhibitors [67], tes-
tosterone [68] or statin [69] in this model of myocardial
infarction have also been investigated.

Occlusion/reperfusion model

This model is characterized by a transitory occlusion of a
coronary artery, usually at its origin, followed by a release
of the occlusion insuring a reperfusion of the injured myo-
cardium. This results in an ischemia or an infarct of var-
iable size depending of the duration of the occlusion. It
allows also to study the no-reflow phenomenon character-
ized by obstructed intramyocardial micro-vessels despite
reopened epicardial arteries [70].

MRI has been used to assess both infarct size and car-
diac function in intact mice early after a large, reperfused
myocardial infarction, revealing the existence of contrac-
tile dysfunction in non-infarcted regions of the heart [30,
70]. Nicorandil, a K-ATP channel opener with a nitrate-
like effect attenuates left-ventricular dilatation and im-
proves cardiac function in rats with reperfused myocardial
infarction, as demonstrated by MRI [71–73]. In transgenic
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mice with the occlusion/reperfusion model, MRI demon-
strated the beneficial effect of over-expression of A1-aden-
osine receptors [74] and Angiotensin II type 2 receptors
[75] on both systolic function and infarct size.

Partial coronary occlusion (chronic ischemia)

In this model, a subtotal occlusion of the coronary artery
results in impaired cardiac function and anatomy with
multiple sites of injury including myocyte loss and hyper-
trophy and reparative fibrosis [76]. The effect of partial
coronary occlusion on the residual myocardial blood flow
at rest is controversial as it was found normal when mea-
sured by microspheres [77] but decreased in a recent study
using MRI [78]. Perfusion, function and energy metabo-
lism as assayed by 31 P spectroscopy in this model have
been successfully obtained by MRI [2]. Although less of-
ten studied than the two previous models, the partial cor-
onary occlusion technique has a strong potential as it can
mimic the ischemic cardiopathy encountered in man.

Other models

As the MRI technique to measure the cardiac function and
mass is now validated for mice, numerous MR studies have
been performed using transgenic animals such as myoglo-
bin knockout mice [79], VEGF knockout mice [23], apo-
lipoprotein E-deficient mice [80], caveoline-deficient mice
[81] and transgenic mice expressing tumor necrosis factor
alpha (TNF-alpha) [4].

Hyperthyroid and hypertensive cardiomyopathies
have been studied by MRI. It was observed that the contin-
uous blockade of calcium channels suppresses activation
of calcineurin and the development of cardiac hypertrophy
in spontaneously hypertensive rats [82,83]. Mice with car-
diomyocyte-specific disruption of the endothelin-1 gene
were resistant to hyperthyroid cardiac hypertrophy [5].

MRI demonstrated the reduction of the myocardial
mass and the amelioration of cardiac function induced by
the angiotensin-converting enzyme (ACE) inhibitor cap-
topril in streptozotocin (STZ)-diabetic male Wistar rats
[84,85].

MRI has also been used to study the cardiac graft rejec-
tion [86] with the accumulation of macrophages inside the
transplant [87].

Finally, a series of experiments has been conducted to
study the treatment and consequences of chagasic heart
disease in mice [88–91,91].

Conclusions

This review illustrates the strong potential of MRI for
cardiac imaging of small animals. Solutions have been
found to obtain a reliable cardiac trigger in both the rat
and the mouse. Techniques to measure ventricular func-
tion and mass have been well validated and are used by
several research groups. More advanced techniques like
perfusion imaging, delayed enhancement or tag imaging
are emerging. However, an effort is still needed to stan-
dardize the acquisition protocols and data analysis. In
this respect, better gold standards of cardiac parame-
ters are required. For example, an atlas of normal and
pathological cardiac strains as measured by tag MRI
would be particularly useful. Regarding the cardiac appli-
cation, not only coronary ischemic disease but several
other pathologies including transgenic animals have al-
ready benefited from these new developments. Therefore,
cardiac MRI has a bright future for research in small
animals.
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