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Abstract If the force field acting on an artificial Earth
satellite is not known a priori with sufficient accuracy to rep-
resent its observations on their accuracy level, one may intro-
duce so-called pseudo-stochastic parameters into an orbit
determination process, e.g. instantaneous velocity changes
at user-defined epochs or piecewise constant accelerations in
user-defined adjacent time subintervals or piecewise linear
and continuous accelerations in adjacent time subintervals.
The procedures, based on standard least-squares, associated
with such parameterizations are well established, but they
become inefficient (slow) if the number of pseudo-stochastic
parameters becomes large. We develop two efficient methods
to solve the orbit determination problem in the presence of
pseudo-stochastic parameters. The results of the methods are
identical to those obtained with conventional least-squares
algorithms. The first efficient algorithm also provides the full
variance–covariance matrix; the second, even more efficient
algorithm, only parts of it.

Keywords Orbit modelling · Efficient orbit determination ·
Pseudo-stochastic parameters

1 Introduction

In satellite geodesy, one often has to cope with the prob-
lem that the force field acting on a satellite is not known with
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sufficient accuracy when invoking an orbit determination pro-
cedure. A problem of this type is, e.g. encountered when anal-
ysing the orbits of GPS satellites. It is virtually impossible to
predict the effect of solar (and possibly albedo) radiation pres-
sure on the satellite orbits with sufficient accuracy to model
the GPS observations (the so-called pseudoranges, based on
the GPS code or the carrier-phase observable) to an appro-
priate accuracy level (mm for the GPS phase observable).
Another even more demanding problem is encountered when
modelling the orbits of low-Earth orbiting satellites (LEOs)
equipped with spaceborne GPS receivers. In addition to radi-
ation pressure, atmospheric drag and possibly an insufficient
knowledge of the Earth’s gravity field aggravate the problem.

The problem of an insufficiently known force field may
be dealt with in several ways:

1. One may replace the deterministic equations of motion by
stochastic differential equations. This approach replaces
the classical least-squares parameter estimation theory by
Kalman or Bayesian filter techniques (Strang and Borre
1997).

2. One may represent the unknown forces by Fourier series
using the revolution period of the satellites as fundamen-
tal period (Colombo 1989). The coefficients of the Fourier
series are parameters of the orbit determination process.

3. One may introduce empirical parameters into a classi-
cal least-squares (LSQ) orbit determination scheme. This
was, e.g. proposed by Beutler et al. (1994), where so-called
pseudo-stochastic pulses, instantaneous velocity changes
in pre-defined directions and at pre-defined epochs, are
introduced, or by Visser and van den IJssel (2003), where
piecewise constant accelerations, also called empirical
accelerations, are proposed.

The advantage of the first approach resides in the fact that
each orbit is modelled in the entire time interval considered
by a constant, small number of active parameters. The dis-
advantage is that rather laborious matrix operations have to
be performed at each observation epoch (which is why often
only a small sample of all observations, e.g. one observation
epoch per 5 min, is actually processed).
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The second approach exploits the orbital characteristics.
Many, if not most, of the unknown forces have once-per-revo-
lution characteristics. It is therefore usually possible to obtain
a good orbit representation with a modest number of param-
eters (truncating the Fourier series after low-order terms).
The method is, on the other hand, not well suited when try-
ing to absorb effects due to momentum dumps or a slightly
wrong attitude, which are not (or only marginally) corre-
lated with the satellite’s revolution period. In addition, and
this is an important argument from the point of view of effi-
ciency, one has to set up and solve one variational equation
(see Sect. 2) for each of the parameters. This option of coping
with unknown forces is also described in Beutler et al. (1994).
It is used by the Center for Orbit Determination in Europe
(CODE) (together with the third method) with a decomposi-
tion, which is particularly well suited for absorbing the effects
due to radiation pressure (Hugentobler et al. 2003).

The third approach is attractive if many parameters have
to be solved for (of the order of hundred or more per revo-
lution). The method is thus particularly well suited for LEO
orbit determination. If pseudo-stochastic parameters are
used, the partial derivatives associated with them may all be
represented as linear combinations of a small set of numer-
ically integrated partial derivatives (Jäggi et al. 2006). The
problem of this approach is, however, its inefficiency if
the number of parameters (and therefore the dimension of
the resulting normal equation system) becomes large (com-
parable to three times the number of observation epochs).

In this article, we uniquely deal with the third approach
and we use LEO orbits as examples. More specifically, we
address the problem of efficiency when introducing pseudo-
stochastic parameters. Such parameters are introduced to re-
duce the effect of an insufficiently known force field. It is
intuitively clear that these effects may (and in general will)
be absorbed by frequently introduced velocity changes or by
piecewise constant accelerations. The success of the proce-
dure may be judged by the RMS a posteriori of the original
observations, which should be of the same order as the (hope-
fully known) a priori RMS.

Let us point out, however, that a small RMS error a pos-
teriori does not necessarily mean that the resulting orbits are
of better quality. The danger of over-parameterization always
exists (although it may be attenuated by applying appropri-
ate constraints on the parameters). Let us also point out that
our methods allow it in principle to study the correlation
between the pseudo-stochastic parameters and the “normal”
orbit parameters, provided that we decide to generate the
full variance–covariance matrix (see the subsequent discus-
sion). Our approach will be explained in detail for the case
of pseudo-stochastic pulses and only outlined for piecewise
constant accelerations (the corresponding modifications are
minor in nature). For results achieved with different param-
eterizations, we refer to Jäggi et al. (2006).

In Sect. 2, we introduce the notation and briefly review
equations of motion, associated variational equations, the
observation equations, and the normal equation system asso-
ciated with the simplest orbit determination problem, where

only six orbit parameters (corresponding to the initial
position and velocity vector) are set up. In Sect. 3, we will
introduce pseudo-stochastic pulses in addition to the six
parameters mentioned above. In Sect. 4, we will discuss the
structure of the resulting normal equation system in detail and
show how it may be set up efficiently. Its solution will, by
definition, not only provide the solution consisting of the six
initial osculating elements and all pseudo-stochastic pulses,
but also the full variance–covariance matrix associated with
the entire parameter set.

In Sect. 5, we develop an even more efficient method,
where the number of active parameters is always “small” (i.e.
when setting up and solving the parameter estimation prob-
lem). The resulting method is closely related to a Bayesian fil-
ter, but may be used in a much more general environment. The
only drawback of the method is that the full variance–covari-
ance matrix is not available. However, the variance–covari-
ance matrix associated with the initial osculating elements is
available, as well as the variance–covariance matrices asso-
ciated with each set of pseudo-stochastic pulses referring to
one and the same epoch.

In both Sects. 4 and 5, we generalize the problem to a
parameter estimation environment, where not only determin-
istic and pseudo-stochastic orbit parameters, but also other
parameters (e.g. ambiguity parameters) have to be consid-
ered. Whether or not the resulting parameter estimation pro-
cedures are (still) efficient depends almost uniquely on the
number of simultaneously active parameters.

In Sects. 6–8, we develop the methods related to piece-
wise constant accelerations, where we proceed in analogy to
the case of pulses: in Sect. 6, we introduce the equations
of motion and the observation equations related to the case
of piecewise constant accelerations. In Sect. 7, we analyze
the structure of the full normal equation system. We show
that the full system is closely related to the corresponding
system associated with pseudo-stochastic pulses. There are
important differences, which do, however, still allow for an
efficient setup of the normal equation system. In Sect. 8, we
develop a filter-type approach that avoids the setup of the full
normal equation system. Sect. 9 briefly addresses the case
of piecewise linear accelerations.

In Sect. 10, the implementation of the methods into the
Bernese GPS software (Hugentobler et al. 2005) is outlined
and the algorithms are applied to several LEO orbit determi-
nation problems. The efficiency of the three types of solutions
(conventional, efficient solution using the structure of the full
normal equation system, filter-like approach) and of different
parameterizations is studied.

2 Equations of motion, variational equations
and observations

Let us assume that the trajectory r(t) of a satellite may be
described approximately by the following deterministic or-
dinary differential equation system; the satellite’s equation
of motion:
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r̈ = f (r, ṙ, t) , (1)

where ṙ is the first and r̈ the second time-derivative of the
geocentric position vector of the satellite’s center of mass
and f (r, ṙ, t) is the force per mass unit acting on the satellite.
Gravitational and surface forces (drag and radiation pressure)
may be contained in the latter term.

Let us now consider a particular solution r0(t) of Eq. 1,
which is characterized by the initial osculating elements E0

i ,
i = 1, 2, . . . , 6 (e.g. Beutler 2005):

r0(t0)
def= r0(t0; E0

1 , E0
2 , . . . , E0

6) ;
ṙ0(t0)

def= v0(t0; E0
1 , E0

2 , . . . , E0
6). (2)

The particular choice of orbital elements is not important for
our purpose. It is only important that the set chosen actually
defines the initial values. Subsequently, we will refer to the
solution r0(t) as the reference orbit.

Let us now consider a second particular solution r(t) of
Eq. 1, which is defined by a set of initial osculating elements
Ek , k = 1, 2, . . . , 6:

r(t0)
def= r(t0; E1, E2, . . . , E6) ;

ṙ(t0)
def= v(t0; E1, E2, . . . , E6) , (3)

where we put

Ek
def= E0

k + �Ek , k = 1, 2, . . . , 6 . (4)

From now on, we will assume that the differences �Ek
are small quantities (as is usually done when dealing with
non-linear LSQ problems), allowing us to neglect terms of
higher than first-order. Under these assumptions, we are al-
lowed to write:

r(t) = r0(t) +
6∑

k=1

zk(t) · �Ek , (5)

where

zk(t)
def= ∂r0(t)

∂ Ek
, k = 1, 2, . . . , 6 . (6)

The function zk(t) solves the so-called variational equa-
tion w.r.t. parameter Ek (e.g. Beutler 2005), which is obtained
by taking the partial derivative of Eq. 1 for the reference orbit
r0(t) w.r.t. the initial osculating elements Ek :

z̈k = A0(t) zk + A1(t) żk , k = 1, 2, . . . , 6 , (7)

where the 3 × 3 matrices Ai (t) are the Jacobian matrices of
the deterministic function f(t) def= f(r, ṙ, t) w.r.t. the compo-
nents of the geocentric position and velocity vectors of the
satellite’s reference orbit at time t .

Each function zk(t), k = 1, 2, . . . , 6, solves the same
linear and homogeneous variational equation in Eq. 7. The
initial values corresponding to different osculating elements
Ek are, however, different. They are obtained by taking the
partial derivatives of the initial values in Eq. 2 of the equation
of motion w.r.t. the initial osculating elements:

zk(t0)
def= ∂r0

∂ Ek
; żk(t0)

def= ∂v0

∂ Ek
, k = 1, 2, . . . , 6. (8)

The ensemble of the six functions zk(t), k = 1, 2, . . . , 6,
forms a complete system of solutions of Eq. 7. Any solution
of the variational equation may thus be written as a linear
combination (with constant coefficients) of these six func-
tions. Subsequently, we will make use of this property.

Several parameter estimation problems, all of which may
be called orbit determination problems, will be solved subse-
quently. For this purpose, one needs observations o′

l , which
are in the simplest case—apart from observation errors—
the values of an observed function o(r(tl)) of the geocentric
position vectors at the observation times tl :

o′
l + εl = o(r(tl)) ; l = 1, 2, . . . , no , (9)

where εl is the observation error of observation o′
l and no

the number of observations. If the observation errors have
the expectation value of zero, we may use LSQ to determine
the unbiased estimate of the unknown parameters and of the
observation errors (called residuals in this context). Below,
we will use the symbol ρl for the residuals (i.e. LSQ estimate
of the observation error εl ).

More complicated functions might be considered as ob-
served functions (also involving, e.g. the velocities, or even
positions and velocities referring to more than one epoch).
The complications associated with such generalizations do
not matter for our purpose; they would merely affect the
actual form of the linearized relationship between observed
functions and unknown parameters, which, according to
Strang and Borre (1997) or any textbook on LSQ, just read
as follows in the case of the observations of the type in Eq. 9:

6∑

k=1

∂o(r0(tl))

∂ Ek
· �Ek − �φl = ρl ; l = 1, 2, . . . , no ,

(10)

where no is the number of observations, and the term

�φl
def= o′

l − o(r0(tl)) (11)

is also referred to as “observed minus computed”.
The partial derivatives in the linearized Eqs. 10 may be

expressed with the functions zk(t) defined by Eqs. 6:

∂o(r0(tl))

∂ Ek
= [∇o(r0(tl))]

T · zk(tl) , (12)

where the gradient is defined by

[∇o(r0(tl))]
T =

=
(

∂o(r0)

∂r0,1
(tl)

∂o(r0)

∂r0,2
(tl)

∂o(r0)

∂r0,3
(tl)

)
.

(13)

The gradient depends on the actual type of function observed
(distances, angles, etc.), whereas the functions zk(t), defined
by Eqs. 7 and 8, do not depend on the observation type.

Orbit determination in its simplest form consists of the
estimation of the six osculating elements in Eq. 3 using no ≥
6 observations o′

l in a LSQ process. In matrix form, the fol-
lowing normal equation system of dimension six solves the
problem:



356 G. Beutler et al.

ATPA · �E = ATP�φ , (14)

or, in abbreviated form:

N · �E = b , (15)

where A is the first design matrix with no lines and six col-
umns (with Alk

def= ∂o(r0(tl))/∂ Ek), �E the vector contain-
ing the six increments of the orbital elements and �φ the
vector containing the terms “observed minus computed”. P is
the weight matrix. We will always assume a diagonal weight
matrix in this article, in which case the diagonal elements of
P are inversely proportional to the variances of the observa-
tions.

3 Conventional estimation of pseudo-stochastic pulses

Pseudo-stochastic pulses are meant to absorb the effects of an
insufficiently known force field or events like thruster firings,
or any other model deficiency. They represent instantaneous
velocity changes of size �vi j , j = 1, 2, 3 at the epochs ti ,
i = 1, 2, . . . , n − 1 in the pre-determined directions defined
by the unit vectors ei j (e.g. in radial, along-track and out-
of-plane [cross-track] directions). A maximum of three
pseudo-stochastic pulses may be set up at an epoch ti (indi-
cated by the index j). The complete time interval consid-
ered (integration interval or arc length) is assumed to be
I = [t0, tn].

The orbit determination problem making use of pseudo-
stochastic pulses models a trajectory r(t) in the interval I by
one set of initial conditions referring to the initial epoch t0
and (at maximum) 3(n − 1) pseudo-stochastic pulses �vi j ,
j = 1, 2, 3 set up at the epochs ti , i = 1, 2, . . . , n − 1. The
resulting orbit r(t) is continuous in the entire interval, but the
velocities ṙ(t) are discontinuous at the epochs ti (i.e. “jumps”
of size |�vi j | in the directions ei j at times ti ).

For t ≥ ti , the partial derivative zi j (t) of the reference
orbit r0(t) w.r.t. the parameter �vi j is also a solution of Eq. 7.
In view of the fact that each solution of Eq. 7 may be writ-
ten as a linear combination (with constant coefficients) of
the six solutions zk(t), k = 1, 2, . . . , 6, referring to the six
initial osculating elements, the partial derivatives w.r.t. the
pseudo-stochastic pulses may be brought into the form

zi j (t) =





0 t < ti
6∑

k=1
βi j,k · zk(t) t ≥ ti

. (16)

The above result is important: independent of the num-
ber of pseudo-stochastic pulses, we need only the six partial
derivatives corresponding to the six initial osculating ele-
ments for the computation of the partial derivatives zi j (t)
w.r.t. all the pulses �vi j , i = 1, 2, . . . , n − 1, j = 1, 2, 3.
The coefficients βi j,k are obtained from the condition equa-
tions

zi j (ti ) = 0 ; żi j (ti ) = ei j . (17)

tn-1t0 t1 t2 t3 tn-2

Fig. 1 Activity intervals of pseudo-stochastic pulses set up at epochs
ti , i = 1, 2, . . . , n − 1

From the construction of Eq. 16, we may conclude that
the coefficients have the following meaning:

βi j,k = ∂ Ek

∂�vi j
. (18)

Let us also note, for later use, that the change of the initial
osculating elements induced by the velocity change �vi j at
ti may be calculated as

�Ek,i j = ∂ Ek

∂�vi j
· �vi j = βi j,k · �vi j . (19)

Equation 16 says that the partial derivatives of the orbit
w.r.t. �vi j are in general non-zero for t > ti . This implies that
the number of active parameters (i.e. with coefficients differ-
ent from zero) in the observation equations (and the resulting
normal equations) grows roughly linearly with time |t − t0|.
Figure 1 illustrates this growth of active parameters: The time
intervals for which the stochastic parameters set up at a partic-
ular epoch ti are active, i.e. the time interval where the partial
derivatives zi j (t), j = 1, 2, 3, assume values different from
zero, are shown in grey. From originally zero active pseudo-
stochastic parameters in the subinterval [t0, t1), this number
grows to 3(n − 1) in the last subinterval [tn−1, tn]. This cir-
cumstance implies that the storage requirements grow with
|tn − t0|2 and the CPU requirements with |tn − t0|3 (because
of the dimension of the matrix to be inverted).

4 Pseudo-stochastic pulses: efficient method 1

In order to streamline the parameter estimation process, we
have to study the structure of the observation equations. They
contain the same terms related to the osculating elements as
those in Eq. 10 and, in addition, the terms corresponding to
the pseudo-stochastic pulses:

6∑

k=1

∂o(r0(tl))

∂ Ek
· �Ek +

i∑

m=1

3∑

j=1

∂o(r0(tl))

∂�vmj
·

�vmj − �φl = ρl , (20)

where the assumption was made that tl ∈ [ti , ti+1) and that
three pulses were set up per epoch. The partial derivatives
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associated with the initial osculating elements may be repre-
sented by the scalar products in Eq. 12.

In an analogous way, the partial derivatives associated
with the pseudo-stochastic pulses may be written as the fol-
lowing scalar products:

∂o(r0(tl))

∂�vmj
= ∇ (o(r0(tl)))

T · zmj (tl)

= ∇ (o(r0(tl)))
T ·

6∑

k=1

βmj,k · zk(tl). (21)

The latter equality results when using Eq. 16 for the partial
derivatives. Using Eqs. 12 and 21, the observation equation
(Eq. 20) pertaining to observation l may thus be written:

6∑

k=1

∇ (o(r0(tl)))
T · zk(tl) ·

{
�Ek

+
i∑

m=1

3∑

j=1

βmj,k · �vmj

}
− �φl = ρl . (22)

Let us now write all observation equations of the subin-
terval [ti , ti+1) in matrix notation:

Ai · �E + Ai ·
i∑

m=1

Bm · �vm − �φi = ρi , (23)

where all matrices may be understood from comparing
Eqs. 22 and 23. Let us note in particular:

Bm =





βm1,1 βm2,1 βm3,1
βm1,2 βm2,2 βm3,2
. . . . . . . . .
. . . . . . . . .

βm1,6 βm2,6 βm3,6



 ; �vm =



�vm1
�vm2
�vm3



 . (24)

Using Eq. 23 for the observation equations pertaining to
the subintervals [ti , ti+1), i = 0, 1, 2, . . . , n − 1, of the com-
plete resulting normal equation system may be written as




ATPA
n−1∑
i=1

Ni B1 . . .
n−1∑

i=n−1
Ni Bn−1

. . . BT
1

n−1∑
i=1

Ni B1 . . . BT
1

n−1∑
i=n−1

Ni Bn−1

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . BT
n−1

n−1∑
i=n−1

Ni Bn−1





·





�E
�v1

�v2

. . .

. . .

�vn−1




=





ATP�φ

BT
1

n−1∑
i=1

AT
i Pi · �φi

BT
2

n−1∑
i=2

AT
i Pi · �φi

. . .

. . .

BT
n−1

n−1∑
i=n−1

AT
i Pi · �φi





, (25)

where Ni = AT
i Pi Ai and ATPA def=

n−1∑
l=0

AT
l PlAl is the

normal equation matrix of the underlying deterministic

problem, ATP�φ
def=

n−1∑
i=0

AT
i Pi · �φi , Pi is the weight

matrix associated with the observations in interval [ti , ti+1),
AT

i Pi Ai is that part of the normal equation matrix related
to the six orbit parameters and same interval and AT

i Pi ·
�φi is the right-hand side of the normal equation matrix
(related to the six osculating elements and the corresponding
subinterval).

The complete normal equation system may thus be set up
easily and efficiently:

– The full normal equation system may be constructed with
matrices Bi , i = 1, 2, . . . , n − 1, and the contributions
AT

i Pi Ai , AT
i Pi · �φi to the normal equation system (of

dimension six) related to the six initial osculating elements
and the subintervals [ti , ti+1), i = 0, 1, . . . , n − 1.

– There are no matrices of large dimensions involved when
setting up these matrices. The time saving effect—when
compared to the conventional method—is enormous; see
Sect. 10 for an illustration.

– The basic building blocks of the resulting full normal
equation matrix on the left-hand side of Eq. 25 are the

partial sums
n−1∑
l=i

AT
l PlAl , i = n − 1, n − 2, . . . , 1, 0. As

indicated by this sequence, these sums are best built up
starting with i = n − 1 and ending with i = 0.

– The sub-matrix in row and column i = k = 0 is the nor-

mal equation matrix ATPA def=
n−1∑
l=0

AT
l PlAl corresponding

to the parameter estimation problem without pseudo-sto-
chastic pulses (cf. Eq. 14).

– The sub-matrix in the first row and in column i > 0 is

obtained by multiplying the partial sum
n−1∑
l=i

AT
l PlAl with

matrix Bi (from the right) for i = 1, 2, . . . , n − 1.
– The sub-matrix in column i and row 0 < k ≤ i is then

obtained by multiplying the matrix in the first row of the
same column with BT

k (from the left).

The resulting full normal equation matrix is, by definition,
symmetric. Similarly, simple rules allow the efficient com-
putation of the right-hand side of the resulting full normal
equation system in Eq. 25.

As compared to the conventional process of setting up
the normal equation system (using Eq. 22 without consid-
ering the relationships between the coefficients) the saving
of processing time is most significant. The gain in efficiency
will be discussed in Sect. 10. We avoid, in essence, the mul-
tiplication of matrices of dimension (6 + 3(n − 1))nobs, the
dominant part of calculations when setting up the normal
equation system in the conventional way. The resulting nor-
mal equation system of course is of the (large) dimension
d = 6 + 3(n − 1) and has to be inverted.
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4.1 A priori weights on the pseudo-stochastic pulses

Here we deal with the issue of bringing in the a priori knowl-
edge of the parameters �vi in a LSQ environment. It is this
process that makes the result of a conventional LSQ adjust-
ment essentially identical with that of filters (in particular of
Bayesian type).

The pulses �vi , i = 1, 2, . . . , n − 1 were introduced
as empirical parameters. The attribute pseudo-stochastic is
justified, if a priori constraints are put on these parameters
(or on linear combinations of them). In the LSQ environ-
ment, additional knowledge is introduced through artificial
observations of these parameters, which constrain them to
zero with a certain weight defined by the weight matrix W.
This matrix is a user-defined input variable of the algorithm.
The actual choice is based (hopefully) on the knowledge of
the deficiencies of the force field. The artificial observations
referring to the epoch i read as

�vi = 0 . (26)

The weight matrix W associated with these observations
may be defined as the inverse of the variance–covariance
matrix associated with these parameters:

W def= σ 2
0 cov (�vi )

−1 def=





σ 2
0

σ 2
1

0 0

0
σ 2

0
σ 2

2
0

0 0
σ 2

0
σ 2

3




, (27)

where σ0 is the a priori RMS error of the (real) observation
of unit weight and where σk , k = 1, 2, 3, are the user-defined
RMS errors associated with the three components of �vi .
It is assumed here (but this is in principle not relevant) that
the weight matrices assigned to each of the pseudo-stochastic
pulses are identical. This is why the weight matrix W does
not require the subinterval index i . Note that it would be pos-
sible to assign a fully populated weight matrix to the artificial
observations related to the epoch i .

The weight matrix W simply has to be superimposed on
all diagonal matrices related to the pseudo-stochastic pulses
before the inversion of Eq. 25:

[
BT

i

n−1∑

l=i

AT
l PlAl Bi

]′

def= BT
i

n−1∑

l=i

AT
l PlAl Bi + W , i = 1, 2, . . . , n − 1. (28)

This superposition is not a time-consuming operation.
Let us note, as a side remark, that these artificial obser-

vations have to be treated like normal observations when
calculating the mean error m0 of the weight unit a posteri-
ori. The number of observations nobs,act to be considered by
the LSQ method therefore consists of the sum of “real” and
“artificial” observations:

nobs,act = nobs,real + 3(n − 1) , (29)

assuming that we always set up three pseudo-stochastic pulses
per epoch ti . The mean error a posteriori is thus computed as

m0 =

√√√√√√

n−1∑
i=0

ρT
i Pi ρi

nobs,act − np
, (30)

where ρi is the array of residuals in interval i and np the
total number of parameters (including the pseudo-stochastic
parameters). Remember that the numerator in the square root
may be calculated as the difference of the (weighted) sum of
the terms “observed minus computed” (replace ρi by �φi
in Eq. 30) and the scalar product of the array formed by the
right-hand side of Eq. 25 and the (total) solution vector.

With Eqs. 26 and 27 we have defined the simplest pos-
sible stochastic model for the pseudo-stochastic parameters
introduced, namely that of a white noise sequence. The con-
straints are “absolute” in the sense that the total deviation
of the resulting trajectory (not of the a priori trajectory) is
constrained to the “best fitting” deterministic orbit. If the
orbit is improved iteratively, the total velocity change (of all
iteration steps) and not only the increment estimated in the
current step have to be constrained. Otherwise, convergence
problems might occur.

We might also constrain the variation of the difference
between subsequent parameter sets by artificial observations.
We might call such parameters “relative constraints”. When
doing that, the resulting stochastic model for our parameters
would be closely related to that of a random walk. In this
paper, however, we will confine ourselves to the simplest
model represented by Eqs. 26 and 27.

4.2 The case of additional parameters

Here we deal with the important aim to generalize the orbit
determination problem, by allowing for more than six (deter-
ministic) orbit parameters, more than one satellite and other
(than orbit-related) parameter types. The problem is rather of
a technical and not of a fundamental character. Readers only
interested in the key elements of the efficient algorithms may
therefore proceed directly to Sect. 5.

Generalizations, which are either due to dynamical sys-
tems governed by differential equation systems of order
n �= 2, the dimension d �= 3, or which are due to additional
deterministic orbit parameters (e.g. associated with radiation
pressure or atmospheric drag models containing adjustable
parameters, in the simplest case scaling factors), are trivial
and need not be considered further.

The simple case considered so far is actually important in
practice. It occurs, e.g. when using the Cartesian coordinates
of LEO positions (e.g. established with kinematic methods)
as “observations” (Beutler 2005) or when analysing the GPS
code observations of a spaceborne receiver (after pre-elimi-
nation of the spaceborne receiver’s clock parameters).
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More general problems occur in practice, however. Our
algorithms, in order to be really useful, have to cope with
them. Let us mention two important cases:

– When estimating an orbit (parameterized with initial
osculating elements and pseudo-stochastic pulses) using
the GPS carrier-phase observations of the LEO receiver,
one has to cope with the ambiguity parameters (associated
with the phase measurements of the spaceborne receiver)
in addition to the orbit parameters. The number of ambi-
guity parameters may be considerable and outnumber the
other parameters.

– The situation becomes even more complicated if double-
difference GPS carrier-phase observations of the space-
borne GPS receiver are processed together with those of
a terrestrial network of GPS receivers. The ambiguity
parameters related to the entire ensemble of ground- and
space-based GPS receivers, the troposphere parameters
related to ground tracking sites, possibly even the coor-
dinates of these sites, etc. may appear in the observation
equations in addition to the deterministic and pseudo-sto-
chastic orbit parameters.

It is, in principle, simple to cope with such cases: the
additional parameters may formally be considered as deter-
ministic orbit parameters. This implies that the dimension
of the square matrices AT

i Pi Ai is no longer six, but (much)
larger. Depending on the specific problem, this may mean
that the “efficient” procedure outlined in Sect. 4 becomes
inefficient, because the efficiency really is due to the fact that
the dimension of the matrices related to the subintervals is
small.

The solution of the problem may be written in simple form
by introducing the following generalized array of parameters:

�ẼT def= (
�ET, p1, p2, . . . , pñ

)
, (31)

where ñ is the number of additional parameters pi (dynami-
cal orbit parameters and others, like ambiguity parameters),
and the generalized coefficient matrix

B̃m =





βm1,1 βm2,1 βm3,1
βm1,2 βm2,2 βm3,2
. . . . . . . . .
. . . . . . . . .

βm1,6 βm2,6 βm3,6
0 0 0

. . . . . . . . .

. . . . . . . . .
0 0 0





, (32)

where the number of “zero-rows” equals the number ñ of
additional parameters. With these definitions, the solution of
the general problem may be written in the form:





ÃTPÃ
n−1∑
i=1

Ñi B̃1 . . .
n−1∑

i=n−1
Ñi B̃n−1

. . . B̃T
1

n−1∑
i=1

Ñi B̃1 . . . B̃T
1

n−1∑
i=n−1

Ñi B̃n−1

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . B̃T
n−1

n−1∑
i=n−1

Ñi B̃n−1





·

·





�Ẽ
�v1
�v2
. . .
. . .

�vn−1




=





ÃTP�φ

B̃T
1

n−1∑
i=1

ÃT
i Pi · �φi

B̃T
2

n−1∑
i=2

ÃT
i Pi · �φi

. . .

. . .

B̃T
n−1

n−1∑
i=n−1

ÃT
i Pi · �φi





, (33)

where Ñi = ÃT
i Pi Ãi and the first design matrices ÃT

i con-
tain the matrices AT

i and the terms due to the new parameters
(partial derivatives w.r.t. the new parameters).

The efficient computation of Eq. 33 follows the same
pattern as in the simpler case in Eq. 25: the partial sums∑n−1

i=k ÃT
i Pi Ãi , k = n − 1, n − 2, . . . , 0 are calculated first,

then these sums are multiplied from the right with matrices
B̃k for k = 1, 2, . . . , n−1. These results are in turn multiplied
from the left with B̃T

l , l = 1, 2, . . . , k.
Whether or not the procedure is efficient depends on:

1. The dimensions of the terms of the partial sums
2. The dimensions of the partial sums
The dimensions of the terms of the partial sums and the
dimensions of all partial sums are the same if the newly
added parameters occur in each of the subintervals [ti , ti+1),
i = 0, 1, . . . , n−1. This is the case if only dynamical param-
eters (e.g. related to a radiation pressure model) have been
set up. In this case, and if the number of additional parame-
ters is large (of the order of the number of pseudo-stochastic
parameters), the algorithm inevitably becomes inefficient be-
cause the matrix operations are all related to matrices of large
dimensions.

Other parameters, e.g. the ambiguities, occur only during
comparatively short time intervals (individual ambiguities
only show up in few consecutive subintervals). Under these
circumstances, the dimensions of the terms in the partial sums
are much smaller than the dimension of the entire system. The
solution method is still very efficient, when compared to the
conventional method. We refer to Sect. 10 for quantitative
information on this statement.

5 Pseudo-stochastic pulses: efficient method 2

In this section, we develop a second, even more efficient
method than in Sect. 4, which avoids the setting up and inver-
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sion of the full normal equation matrix Eq. 25. The only
drawback resides in the fact that the full variance–covariance
matrix of this second solution is not available. The solutions
of methods 1 and 2 are, however, algebraically identical. The
variance–covariance matrix of the (usually six) deterministic
orbit parameters and of each of the pseudo-stochastic pulses
�vi is available and algebraically identical with the corre-
sponding information of the previous method. Those parts
of the full variance–covariance matrix, which describe either
the correlations between the initial osculating elements and
the pulses or the correlations between the pulses referring to
different epochs, are not available.

The development of the second method starts from Eq. 22,
where we only allow for the six deterministic and the 3(n−1)
pseudo-stochastic parameters. We do not consider more gen-
eral problems in this section in order not to overload the
formalism. For an observation performed at tl ∈ [ti , ti+1),
the observation equation reads:

6∑

k=1

∇ (o(r0(tl)))
T · zk(tl) ·

{
�Ek

+
i∑

m=1

3∑

j=1

βmj,k · �vmj

}
− �φl = ρl . (34)

The scalar term in the brackets {· · · } in Eq. 34 has a very
simple meaning: the element defined by Ei

k
def= E0

k + {· · · } is
the osculating element k at t0 defining the solution r(t) in the
subinterval [ti , ti+1). Therefore, Eq. 34 may also be written
as

6∑

k=1

∇ (o(r0(tl)))
T · zk(tl) · �Ei

k − �φl = ρl . (35)

Equation 35 states that the problem of determining an
orbit with six initial osculating elements E0

k + �Ek ,
k = 1, 2, . . . , 6 and (any number of) pseudo-stochastic
pulses �vmj may be parameterized within each of the subin-
tervals [ti , ti+1), i = 0, 1, . . . , n − 1 by only six quantities,
namely the osculating elements at t0 characterizing the tra-
jectory within the particular subinterval!

In order to exploit this important property, we have to per-
form the parameter transformation �Ei−1

k → �Ei
k at each

of the epochs ti (the subinterval boundaries), after having set
up the normal equation system containing all observations up
to the epoch ti . The change of the osculating elements from
interval [ti−1, ti ) to interval [ti , ti+1) is caused by the three
pulses �vi j , j = 1, 2, 3 at the epoch ti . In view of Eq. 19 we
may therefore write:

�Ei
k

def= �Ei−1
k +

3∑

j=1

βi j,k · �vi j , k = 1, 2, . . . , 6 . (36)

These transformation equations may be written in conve-
nient matrix form

�Ei
def= �Ei−1 + Bi · �vi , (37)

where �Ei−1 and �Ei are the column matrices containing
the elements �Ei−1

k and �Ei
k , k = 1, 2, . . . , 6, respectively.

Matrix Bi is defined by Eq. 24. Formally, the array �Ei−1
may thus be written as a function of the arrays �Ei and �vi :

�Ei−1 = (
I6 − Bi

) ·
(

�Ei
�vi

)
, (38)

where I6 is the unit matrix of dimension six.
Let us now assume that the normal equation system con-

taining the contributions of all observations made before ti
may be written in the following form:

Ni−1 · �Ei−1 = bi−1 , (39)

where

Ni−1
def= AT

i−1Pi−1Ai−1,

bi−1
def= AT

i−1Pi−1�φi−1 , i = 1, (40)

and

Ni−1
def= N∗

i−2 + AT
i−1Pi−1Ai−1 ,

bi−1
def= b∗

i−2 + AT
i−1Pi−1�φi−1 , i > 1 . (41)

For the precise definition of N∗
i−2 and b∗

i−2, see Eqs. 48
and 49.

We include here, for the sake of completeness, the update
procedure for the weighted sum of the terms “observed minus
computed”:

i−1∑

k=0

�φT
k Pk�φk

def= �φT
i−1Pi−1�φi−1 , i = 1 (42)

and

i−1∑

k=0

�φT
k Pk�φk

def=
(

i−2∑

k=0

�φT
k Pk�φk

)∗

+�φT
i−1Pi−1�φi−1 , i > 1 . (43)

Using Eq. 38, Eq. 39 may be transformed into a system in
the unknowns �Ei and �vi by replacing �Ei−1 on the left-
hand side by �Ei and �vi , and by multiplying (from the left)
both sides of Eq. 39 with the transpose of the transformation
matrix (I6 − Bi ) in Eq. 38:
(

Ni−1 −Ni−1Bi

−BT
i Ni−1 BT

i Ni−1Bi

)
·
(

�Ei
�vi

)
=

(
bi−1

−BT
i bi−1

)
.

(44)

The transformed normal equation system (Eq. 44) is the
key to the efficient solution of our orbit determination prob-
lem: Eq. (35) tells that the observations contained in the
interval [ti , ti+1) do not depend on the terms �vi explicitly—
their influence is already taken into account by the array of
osculating elements �Ei . As the same is true not only for
the interval [ti , ti+1), but also for all subsequent subinter-
vals [ti+k, ti+k+1), k = 1, 2, . . . , n − i − 1, we may as well
pre-eliminate the terms �vi at ti , immediately after having
set them up. Observe that the pre-elimination is not possible



Efficient satellite orbit modelling 361

without performing the parameter transformation defined in
Eq. 38.

Before doing that, we have to add the constraints related
to the pulses �vi to Eq. 44:
(

Ni−1 −Ni−1Bi

−BT
i Ni−1

[
BT

i Ni−1Bi
]′
)

·
(

�Ei
�vi

)
=

(
bi−1

−BT
i bi−1

)
,

(45)

where the term BT
i Ni−1Bi was modified in analogy to Eq. 28:

[
BT

i Ni−1Bi
]′ def= BT

i Ni−1Bi + W. (46)

We are now in a position to pre-eliminate the pulse �vi .
The result, uniquely derived from Eq. 45, may be written in
the form:

N∗
i−1 · �Ei = b∗

i−1 , (47)

where

N∗
i−1

def= Ni−1 − Ni−1Bi

([
BT

i Ni−1Bi
]′)−1

BT
i Ni−1 (48)

and

b∗
i−1

def= bi−1 − Ni−1Bi

([
BT

i Ni−1Bi
]′)−1

BT
i bi−1 (49)

are obtained by pre-eliminating the term �vi from Eq. 45.
The weighted sum of the terms “observed minus

computed” also has to be transformed:
(

i−1∑

k=0

�φT
k Pk�φk

)∗
def=

i−1∑

k=0

�φT
k Pk�φk

−bT
i−1Bi

([
BT

i Ni−1Bi
]′)−1

BT
i bi−1. (50)

Having updated the normal equation system in the last sub-
interval using Eq. 41 for i = n, we may invert the resulting
normal equation matrix Nn−1 and solve for the orbital ele-
ments �En−1 (note that it is neither necessary nor possible
to set up and pre-eliminate a pulse �vn at tn):

�Ei = N−1
i bi

def= Qi bi , i = n − 1 . (51)

Observe that there was no need to calculate the other ele-
ment sets �Ei , i = 0, 1, . . . , n − 2 explicitly in order to get
the set of elements �En−1, although this would have been
possible. The intermediate results would have been the filter
solutions based on all observations in the interval [t0, ti+1),
i = 0, 1, . . . , n − 1.

After having updated the weighted sum of the terms
“observed minus computed” for i = n using Eq. 43, we
may compute the mean error a posteriori as

m0 =

√√√√√√

n−1∑
k=0

�φT
k Pk�φk − �ET

n−1 · bn−1

nobs,act − (6 + 3(n − 1))
. (52)

The a posteriori estimate of the variance–covariance matrix
related to the osculating elements referring to the last interval
In−1

def= [tn−1, tn] is then calculated by

cov (�En−1) = m2
0 · N−1

n−1 = m2
0 · Qn−1. (53)

Having established �En−1 and the covariance matrix
associated with it, we may now invoke the back-substitu-
tion process. Equation 45, which was already used for the
pre-elimination process, is again at the center of interest. In
order to understand the back-substitution process, it is advis-
able to write down the normal equation system at the end
of the last subinterval [tn−1, tn], which would have resulted
without pre-elimination of the pulses �vn−1. This system is
easily obtained from Eq. 45 for i − 1 = n − 2 by updating
the first term Ni−1 on the left-hand side and the first term on
the right-hand side according to

Ñi−1
def= Ni−2 + AT

i−1Pi−1Ai−1 ,

b̃i−1
def= bi−2 + AT

i−1Pi−1�φi−1 , (54)

for i = n.
When comparing Eqs. 41 and 54, we see that the trans-

formation in Eqs. 48 and 49 need not be performed if the
pre-elimination is not performed. The resulting “full” nor-
mal equation system (with the term �vn−1) at the end of the
interval [tn−1, tn] therefore reads
(

Ñi −Ni−1Bi

−BT
i Ni−1

[
BT

i Ni−1Bi
]′
)

·
(

�Ei
�vi

)
=

(
b̃i

−BT
i bi−1

)
,

(55)

where i = n − 1.
By comparing Eqs. 55 and 45, we see that they only differ

in the terms Ñi (instead of Ni−1) and b̃i (instead of bi−1).
From Eq. 55, we may easily calculate the pseudo-stochastic
pulses (for i = n −1) with quantities that are known by now,
i.e. by circumventing the terms Ñi and b̃i :

�vi =
{[

BT
i Ni−1Bi

]′}−1 [
BT

i Ni−1�Ei − BT
i bi−1

]
. (56)

Observe that all terms in Eq. 56—except �Ei (which is
known from Eq. 51)—are those already calculated in the up-
date step for i = n − 1 (see Eq. 45).

In order to calculate the variance–covariance matrix asso-
ciated with the pulse �vi , we have to invert the normal equa-
tion matrix on the left-hand side of Eq. 55. Actually we do
not need to perform the inversion, because we already know
sub-matrix Qi for i = n − 1 after having solved the reduced
normal equation system by Eq. 51. We may therefore calcu-
late the full inverse of the normal equation matrix by
(

Ñi −Ni−1Bi

−BT
i Ni−1

[
BT

i Ni−1Bi
]′
)

·
(

Qi Qi,12
QT

i,12 Qi,22

)
=

(
I6 0
0 I3

)
,

(57)

where Ik , k = 3, 6 are the unit matrices of dimension k.
Making full use of the known sub-matrices in Eq. 57, we

easily obtain the missing elements of the full inverse matrix,
explicitly:

Qi,12 = Qi (Ni−1Bi )
{[

BT
i Ni−1Bi

]′}−1
(58)

and

Qi,22 =
{[

BT
i Ni−1Bi

]′}−1 {
I3 + BT

i Ni−1Qi,12
}
. (59)
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The variance–covariance matrix associated with pulse �vi
(for i = n − 1) may now be calculated as

cov (�vi ) = m2
0 · Qi,22 (60)

Having evaluated �vn−1 using Eq. 56 (with i = n − 1),
we may now calculate �En−2 using Eq. 38 for i = n − 1. In
view of Eq. 60, we obtain the associated variance–covariance
matrix by

cov (�Ei−1) = m2
0 · ( I6 −Bi

)

·
(

Qi Qi,12
QT

i,12 Qi,22

)
·
(

I6
−BT

i

)
, (61)

where i = n − 1.
With Eqs. 38 and 61, we have established the solution

vector �En−2 and the variance–covariance matrix associated
with it. This means that we may now calculate the remain-
ing sets of elements �Ei and pulses �vi using the above
equations with the appropriate indices i .

5.1 The case of additional parameters

In the development of our second method, we only took into
account osculating elements and pseudo-stochastic pulses as
parameters of the normal equation system. As already men-
tioned in Sect. 4.2, other parameter types (like ambiguity
parameters, troposphere parameters, etc.) may show up in a
“real” orbit determination environment.

The principles for the efficient solution remain the same.
The difference resides merely in the fact that Eq. 44 contains
additional parameters. The orbit determination process still
consists of (a) a parameter transformation and a pre-elimi-
nation process (where not only the pseudo-stochastic pulses,
but also other parameters, e.g. the ambiguities, which may or
may not be pre-eliminated at the end of the subintervals) and
(b) a back-substitution process.

This implies that we have to generalize Eq. 44 to con-
tain a parameter array �Ẽi that contains the array �Ei and
additional parameters (which will not be pre-eliminated) and
a parameter array �ṽi containing �vi and other parameters
(which will be pre-eliminated at ti ). The generalization of the
formulae related to our second method is of a purely formal
character and need not be further discussed here. In essence,
we have to keep track of subinterval-dependent parameter ar-
rays (with subinterval-dependent dimensions) �Ẽi and �ṽi
to be retained and eliminated, respectively, at the end of the
subinterval [ti , ti+1), respectively.

Whether or not the resulting algorithm is efficient depends
almost uniquely on the dimensions of the arrays �Ẽi (the
number of parameters not pre-eliminated at the ends of the
subintervals).

5.2 The full normal equation system for method 2

It is instructive to look at the full normal equation system
when using the parameterization with the osculating elements

En−1 and the pulses vi , i = 1, 2, . . . , n − 1. This system is
obtained by applying the parameter transformation specified
in Sect. 5.1, but not the pre-elimination at the epochs ti :




ATPA −
{

0∑
i=0

Ni

}
B1 . . . −

{
n−2∑
i=0

Ni

}
Bn−1

. . . BT
1

{
0∑

i=0
Ni

}
B1 . . . BT

1

{
0∑

i=0
Ni

}
Bn−1

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . BT
n−1

{
n−2∑
i=0

Ni

}
Bn−1





·





�En−1
�v1
�v2
. . .
. . .

�vn−1




=





ATP�φ

−BT
1

0∑
i=0

AT
i Pi · �φi

−BT
2

1∑
i=0

AT
i Pi · �φi

. . .

. . .

−BT
n−1

n−2∑
i=0

AT
i Pi · �φi





, (62)

where Ni = AT
i Pi Ai .

Equation 62 illustrates (once more) that it is indeed pos-
sible to pre-eliminate the parameter array �v1 after having
processed the observations in the interval [t0, t1], �v2 after
having processed those in the interval (t1, t2], etc. Observe
that this pre-elimination is only possible thanks to the trans-
formation Eq. 38.

Let us point out that (apart from the definition of the initial
osculating elements), Eq. 62 is equivalent to Eq. 25 referring
to the original, untransformed orbital elements.

6 Conventional estimation of piecewise constant
accelerations

The discontinuities of ṙ(t) encountered at the epochs ti , i =
1, 2, . . . , n − 1, which occur when modelling the orbits with
pseudo-stochastic pulses, are disadvantageous for certain
applications such as the orbit computation necessary for
atmospheric sounding using the GPS occultation method.
Therefore, Jäggi et al. (2004) showed how to replace these
pulses by piecewise constant accelerations. The arc (the inte-
gration interval) is subdivided into n subintervals—exactly
like in the case of pseudo-stochastic pulses. One set of (at
maximum) three constant accelerations in three pre-deter-
mined directions ei j (t) are set up within each of the subin-
tervals [ti , ti+1), i = 0, 1, . . . , n − 1.

The pre-determined directions may be chosen to be time-
independent in one coordinate system (e.g. defined by the
radial, along-track and out-of-plane directions) and therefore
usually time-dependent in the inertial coordinate system.
When modelling the orbit with piecewise constant accelera-
tions, the equation of motion reads
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r̈ = f (r, ṙ, t) +
3∑

j=1

�ai j ei j (t) ,

t ∈ [ti−1, ti ), i = 1, . . . n . (63)

where �ai j are the unknowns of the parameter estimation
process (together with the six initial osculating elements).

The partial derivative of the orbit w.r.t. the parameter �ai j
is governed by the following variational equation:

z̈i j = A0(t) zi j + A1(t) żi j +
{

ei j (t) t ∈ [ti−1, ti )

0 elsewhere
,

(64)

where the 3 × 3 matrices Ai (t) are the Jacobian matrices of
the deterministic functions f(t) def= f(r, ṙ, t) (the force per
mass unit acting on the satellite) w.r.t. r and ṙ, respectively,
and where

zi j (t)
def= ∂r0(t)

∂�ai j
. (65)

The homogeneous part of Eq. 64 is identical to Eq. 7. The
functions zi j (t) meet the following initial conditions (imply-
ing continuity of both the position and velocity vectors):

zi j (ti−1) = żi j (ti−1) = 0 . (66)

The initial value problem (Eqs. 64 and 66) is solved by a
linear combination of the solutions zk , k = 1, 2, . . . , 6 corre-
sponding to the initial osculating elements at t0. The coeffi-
cients of the linear combination are time-dependent within
the interval [ti−1, ti ), they are zero for previous intervals,
and non-zero, constant and identical for intervals [tk, tk+1],
k > i − 1:

zi j (t)
def=






0 t < ti−1

z̃i j (t) =
6∑

k=1
βi j,k(t) · zk(t) t ∈ [ti−1, ti )

6∑
k=1

βi j,k(ti ) · zk(t)
def=

6∑
k=1

βi j,k · zk(t) t ≥ ti

. (67)

The actual computation of the functions z̃i j (t) may be found
in Jäggi et al. (2004).

Equation 67 should be compared to Eq. 16, which is
the equivalent equation, when pulses instead of accelerations
are introduced . As opposed to the case of pulses, we have
to distinguish three regimes, namely one where the partial
derivatives are zero, one where they are a linear combina-
tion with time-dependent coefficients of the corresponding
six partial derivatives w.r.t. the initial osculating elements
and one where they are a linear combination with constant
coefficients of the same derivatives.

The constant coefficients of the linear combination in the
interval [ti , tn] are obtained as solutions of the following lin-
ear condition equations:

6∑

k=1

βi j,k · zk(ti ) = z̃i j (ti ) ;
6∑

k=1

βi j,k · żk(ti ) =˙̃zi j (ti ),

(68)

t0 t1 t2 tn-2 tn-1

Fig. 2 Activity intervals of piecewise constant accelerations. Blank
zones partial derivatives w.r.t. parameters are zero, mixed zones “|||”
partial derivatives are a linear combination of partial derivatives w.r.t.
initial elements with time-dependent coefficients, grey zones partial
derivatives are a linear combination of derivatives w.r.t. initial elements
with constant coefficients

which should be compared to Eq. 17, representing the con-
dition equations in the case of pulses.

The relationship between the two sets of condition equa-
tions becomes obvious if we approximate the solutions z̃i j (t)
by a Taylor series up to second order in t − ti :

6∑

k=1

βi j,k · zk(ti ) ≈ 1

2
�t2 ei j (ti ) ≈ 0,

6∑

k=1

βi j,k · żk(ti ) ≈ �t ei j (ti ) , (69)

where �t = ti+1 − ti . By comparing Eqs. 17 and 68, we
conclude that up to terms of the first order in �t we have

�vi j = �t �ai j . (70)

Figure 2 illustrates the three regimes for all stochastic
parameters set up. Blank zones indicate time intervals where
the partial derivatives w.r.t. the parameter are zero, zones
marked with “|||” indicate the time interval where the linear
combination has time-dependent coefficients, and grey zones
indicate time intervals where the partial derivatives may be
represented by a linear combination (of the partial derivatives
w.r.t. the initial osculating elements) with constant coeffi-
cients. Apart from that, Figs. 1 and 2 are identical. Note that
there is one more set of (at most three) constant accelera-
tions than pseudo-stochastic pulses. The number of active
(i.e. non-zero) parameters varies from 6 + 3 in subinterval
[t0, t1) to 6 + 3n in subinterval [tn−1, tn].

Like in the case of pseudo-stochastic pulses, we observe
a roughly linear growth of the number of active parameters
with time, implying a quadratic growth in the storage require-
ments and a cubic growth in processing time.
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7 Piecewise constant accelerations: efficient method 1

When modelling the orbit with pseudo-stochastic pulses, the
observation equations related to the subinterval [ti , ti+1)
could be written in the form of Eq. 23. When modelling the
orbit with piecewise constant accelerations, the observation
equations read

Ai · �E0 + Ai ·
i∑

m=1

Bm · �am

+Aca,i+1�ai+1 − �φi = ρi , (71)

where Aca,i+1 is the matrix containing the partial derivatives
of the observed functions w.r.t. the constant accelerations
pertaining to the current subinterval [ti , ti+1).

It is convenient to use the same designation for the coeffi-
cient matrices Bi for both types of modelling: the pseudo-
stochastic pulses and the piecewise constant accelerations.
One should, however, keep in mind that the coefficients are
defined in a different way (cf. Eqs. 17 and 68).

In Sect. 5 Eqs. 36 and 37, we pointed out that

�Ei
def= �E0 +

i∑

m=1

Bm · �vm (72)

represents the set of initial osculating elements solving Eq. 1
in the interval [ti , ti+1). The resulting orbit solves one and
the same set of equations of motion in each subinterval but
with different initial conditions.

When modelling the orbits with piecewise constant accel-
erations, the equation of motion is given by Eq. 63. Equa-
tion 63 thus changes from subinterval to subinterval and
each equation differs from Eq. 1 describing the underlying
deterministic problem. It is, however, still possible to define a
set of elements characterizing the initial conditions referring
to the subinterval [ti , ti+1) by

�Ei
def= �E0 +

i∑

m=1

Bm · �am, (73)

where the elements �Ei , defined by Eq. 73, represent the ini-
tial osculating elements (at time t0) of the particular solution,
which solves Eq. 63 in the subinterval [ti , ti+1).

In analogy to Sect. 4, here we analyze the structure of the
full normal equation system when parameterizing the orbit
with six initial osculating elements and n (not n − 1) piece-
wise constant accelerations. Let us define the vector of the
unknown parameters as

pT
ca

def= (
�ET

0 , �aT
1 , �aT

2 , . . . , �aT
n−1, �aT

n

)
, (74)

where �ai is the (column) array of three constant accelera-
tions �ai j , j = 1, 2, 3, referring to the subinterval [ti−1, ti ).

Let us write the full normal equation system as

Nca · pca = bca , (75)

where the matrices can be written as sums of two terms, the
first ones of which are (almost) identical with Eq. 25 obtained
in the case of the pseudo-stochastic pulses, and contributions

due to the piecewise constant accelerations stemming from
the subinterval that they refer to. The matrices in Eq. 75 may
thus be written:

Nca = Nps + �Nca , bca = bps + �bca. (76)

The matrix corresponding to the pseudo-stochastic pulses
reads

Nps =





ATPA
n−1∑
i=1

AT
i Pi Ai B1 . . .

. . .

[
BT

1

n−1∑
i=1

AT
i Pi Ai B1

]′
. . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
0 0 0

n−1∑
i=n−1

AT
i Pi Ai Bn−1 0

BT
1

n−1∑
i=n−1

AT
i Pi Ai Bn−1 0

. . . . . .

. . . . . .[
BT

n−1

n−1∑
i=n−1

AT
i Pi Ai Bn−1

]′
0

0 W





, (77)

and the corresponding matrix on the right-hand side of
Eq. (76) is

bps =





ATP�φ

BT
1

n−1∑
i=1

AT
i Pi · �φi

BT
2

n−1∑
i=2

AT
i Pi · �φi

. . .

. . .

BT
n−1

n−1∑
i=n−1

AT
i Pi · �φi

0





. (78)

The matrices in Eq. 77 are identical to the corresponding
matrices in Eq. 25 for the model based on pulses (after hav-
ing added the constraints; see Eq. 28, except for the last line
(and column), which corresponds to the acceleration �an of
the last subinterval [tn−1, tn])
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The terms that are due to the piecewise constant acceler-
ations in their subintervals read

�Nca =





0 AT
0 P0Aca,0 . . .

. . . AT
ca,0P0Aca,0 . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

AT
n−2Pn−2Aca,n−2 AT

n−1Pn−1Aca,n−1

BT
1 AT

n−2Pn−2Aca,n−2 BT
1 AT

n−1Pn−1Aca,n−1
. . . . . .
. . . . . .

AT
ca,n−2Pn−2Aca,n−2 BT

n−1AT
n−1Pn−1Aca,n−1

. . . AT
ca,n−1Pn−1Aca,n−1




(79)

and

�bca =





0
AT

ca,0P0 · �φ0
AT

ca,1P1 · �φ1
. . .
. . .

AT
ca,n−1Pn−1 · �φn−1




. (80)

We are now in a position to set up the full normal equa-
tion system in a very efficient way. From the algorithms’ point
of view, the differences w.r.t. the case of pseudo-stochastic
pulses are marginal (at least from the point of view of com-
putational efficiency). These differences may be summarized
as

– When setting up the normal equation contribution in the
subinterval [ti , ti+1), we have to take into account the par-
tial derivatives w.r.t. �ai+1. This means that these contri-
butions are described by matrices of dimension
d = 6 + 3 = 9 and not d = 6 as in the case of pseudo-
stochastic pulses.

– The coefficient matrices Bi are defined in a slightly differ-
ent way (cf. Eqs. 17 and 68).

– When setting up the full normal equation system, we have
to add the contributions �Nca and �bca (see Eqs. 79 and
80) to the matrices Nps and bps (see Eqs. 77 and 78).

8 Piecewise constant accelerations: efficient method 2

In view of the developments outlined in Sect. 7, it is clear that
the algorithm corresponding to our second method (Sect. 5)
may also be established easily. In essence, we have to modify
Eqs. 44 in order to take into account that the accelerations of
subinterval i are present when setting up the normal equation
contribution of interval i . After having added the weights, the
pre-elimination step may take place in the same way as in the
case of the pseudo-stochastic pulses.

When calculating the variance–covariance matrix asso-
ciated with the position vector r(t) for t ∈ [ti , ti+1), one has

to take into account that the orbit de facto is a function of the
set of elements �Ei and the accelerations �ai+1:

r(t) = r0(t) +
6∑

k=1

∂r0(t)

∂ Ei
k

· �Ei
k

+
3∑

j=1

∂r0(t)

∂�ai+1, j
· �ai+1, j . (81)

This is why the variance–covariance matrix (Eq. 57) asso-
ciated with �Ei and �ai+1 is needed to calculate the vari-
ance–covariance matrix associated with r(t). The orbit is thus
defined in each subinterval by nine parameters in the case of
piecewise constant accelerations (as opposed to six in the
case of pseudo-stochastic pulses). A similar statement holds
for the velocity vector ṙ(t) or for any function f (r(t), ṙ(t)).

9 Piecewise linear accelerations

When modelling an orbit with piecewise constant accelera-
tions, one has the “problem” of discontinuities in the second
derivatives of the position vector: the accelerations are dis-
continuous at the subinterval boundaries. There is, however,
no physical reason for such discontinuities. This is why Jäggi
et al. (2006) studied orbit modelling with piecewise linear
(and continuous) accelerations. By introducing this model,
the discontinuity problem is (again) transferred to the next
higher derivative (they do now occur on the level of the first
derivatives of the accelerations).

One might first think that the number of pseudo-stochas-
tic parameters would be doubled when replacing the piece-
wise constant by the piecewise linear accelerations because
we have to model the acceleration within each subinterval
by a straight line (polynomial of degree one with two adjust-
able parameters). By enforcing continuity at the subinterval
boundaries, the number of independent parameters is, how-
ever, reduced to roughly the same number as in the case of
piecewise constant accelerations. The “trick” resides in the
fact that the values of the accelerations at the subinterval
boundaries are introduced as the unknown parameters of the
orbit determination process (and not one offset and one drift
per interval).

According to Jäggi et al. (2006), the acceleration in a par-
ticular direction e(t) in a particular subinterval is modelled
by

�a(t) = t − ti−1

ti − ti−1
· �ai · e(t) + ti − t

ti − ti−1
· �ai−1 · e(t),

(82)
which automatically enforces continuity at the subinterval
boundaries. The variational equation for parameter �ai ,
i �= 0 and i �= n − 1 reads

z̈ai = A0 · zai +






(
t−ti−1
�i,i−1

)
e(t) ti−1 ≤ t < ti

(
ti+1−t
�i+1,i

)
e(t) ti ≤ t < ti+1

0 else

, (83)
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where �i, j
.= ti − t j . For i = 0 and i = n − 1 Eq. 83 is even

simpler, because the first or second of the above cases of the
inhomogeneous part of Eq. 83 do not occur, respectively.

The unknowns of the orbit determination process are �ai ,
i = 0, 1, . . . , n. A correct count of the unknowns reveals that
we only have one more set of (at most three) unknowns than
in the case of piecewise constant acceleration.

An inspection of Eq. 83 shows that accelerations of the
type ∼ t · e (i.e. proportional to time t) occur in its inho-
mogeneous part. This implies that we need the solution of
the six variational equations for the six initial osculating ele-
ments, the three constant accelerations in the three orthog-
onal directions and three linearly growing accelerations in
the same three orthogonal directions, in order to calculate all
the required partial derivatives. The partial derivatives w.r.t.
all �ai may thus be computed as a linear combination of
the mentioned 6 + 3 + 3 = 12 solutions of the variational
equations. For details, we refer to Jäggi et al. (2006).

From this point onwards, (the classic and) efficient solu-
tion of the orbit determination problem follows the same pat-
tern as that explained in Sect. 8. The differences (although at
times tricky in the fine detail of implementation) are minor
in nature and can be summarized as follows:

– There are two sets of accelerations, those referring to the
left and the right subinterval boundaries, active in each
subinterval (there is only one set active in the case of
piecewise constant accelerations, and none in the case of
pulses).

– The set of accelerations referring to the left interval
boundary may be pre-eliminated after having added the
last contribution to the normal equation system of the
current subinterval.

– For the pre-elimination and the back-substitution pro-
cesses, the set of accelerations referring to the left interval
boundary formally has to be considered as “normal” orbit
parameters in the current subinterval.

Having shown that the cases of piecewise constant and
piecewise linear accelerations are very closely related and
having pointed out the “major” differences (which are actu-
ally minor in nature), we will not further discuss the case of
piecewise linear accelerations in this article, which focuses
on the mathematical structure of the algorithms and on their
efficiency.

Let us point out that the achievable quality of orbits
parameterized with the three orbit models is a different is-
sue. We refer to Jäggi et al. (2006) for more information.

10 Tests with CHAMP and ground-based GPS
observations

10.1 Overview

The algorithms outlined above have been implemented into
a development version of the Bernese GPS software, Ver-
sion 5.1, (Hugentobler et al. 2005). This version allows it

to generate kinematic orbits (estimating one LEO position
per observation epoch) using code and/or carrier-phase zero
and/or double-difference observations, as well as reduced-
dynamic orbits, by setting up pseudo-stochastic parameters
in the classical way (see Sect. 3). Major parts were developed
in close cooperation with the Technical University of Munich
(e.g. Švehla and Rothacher 2002, 2003). Our developments
are almost entirely contained in one Fortran90 module con-
sisting of four subroutines.

One entire day of CHAMP data (day 198 of year 2002,
corresponding to July 17, 2002) is subsequently analyzed,
where we only focus on the efficiency of the parameter esti-
mation processes. The ionosphere-free linear combination
of the carrier-phase observations was used. The results of the
CODE analysis center (Hugentobler et al. 2003) of the Inter-
national GNSS Service (IGS) (Dow et al. 2005) were used to
perform the following three tests:

1. Analysis of CHAMP zero-difference code observations.
This example corresponds very closely to the theory
presented above, as there are “only” six deterministic
orbit parameters and the pseudo-stochastic parameters
involved in the analysis.

2. Analysis of CHAMP zero-difference carrier-phase obser-
vations. The example asks for a more general than the
usual “filter-type” environment, because the carrier-phase
ambiguity parameters also have to be taken into account.

3. Analysis of double-difference carrier-phase observations
of a large network of ground-based GPS receivers and the
spaceborne CHAMP receiver. This is the most ambitious
of the tests performed, as there is a large number (thou-
sands) of ambiguity parameters involved. The results of
the CODE analysis center (coordinates of the ground net-
work, troposphere parameters) were extensively used in
this case.

The tests were performed on an HP Compac nc6000 Busi-
ness Notebook with a 1.60 GHz processor. The program
runs were performed in a DOS-window of an XP profes-
sional Microsoft Windows environment. The RAM available
during runtime was limited to about 1.5 Gbytes.

10.2 Analysis of the LEO zero difference code observations

Code observations with a spacing of 30s on both the L1 and
the L2 carriers to all GPS satellites in view, gathered by
the LEO spaceborne GPS receiver, are available and were
analyzed in the test runs below. The ionosphere-free lin-
ear combination L3 was formed from the original L1 and
L2 observations (Teunissen and Kleusberg 1998). A total
of about 22,500 L3 code zero-difference observations were
accumulated by the CHAMP receiver on day 198 of year
2002. The following tests were performed each at 15, 12, 10,
8, 6, 5, 4, 3, 2, 1 and 0.5 min intervals:

– The classical method (not making use of any of the efficient
methods) was applied to the case of pseudo-stochastic
pulses.
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Fig. 3 CPU times for classical, filter methods 1 and 2. Code zero-
difference processing with pseudo-stochastic pulses

– Method 1 (setting up the normal equation system in an
efficient way, but inverting the full matrix) was applied to
the case of pseudo-stochastic pulses.

– Method 2 (using the pre-elimination, back-substitution ap-
proach) was applied to the case of pseudo-stochastic pulses
and to the case of accelerations.

As a day contains 1,440 min, the total number of param-
eters varies between 6 + 95 × 3 = 291 for 15 min intervals
(pseudo- stochastic pulses) and 6 + 2, 880 × 3 = 8, 646 for
30 sec intervals (piecewise constant accelerations). As a con-
sequence, the computation (CPU) times varies by orders of
magnitude with the length of the subintervals.

Figure 3 shows the total processing time (CPU time in
seconds) as a function of the subinterval length (which is
also indirectly proportional to the number of pulses) when
setting up pseudo-stochastic pulses. It takes 8s, 9 min 28s,
and 38 min 48s of CPU time to process the entire day of
code data when using method 2, method 1 and the classi-
cal method, respectively, when selecting a subinterval length
of 1 min. Obviously, method 2 is orders of magnitude more
efficient than the other two methods.

It is, however, remarkable that method 1, down to a sub-
interval length of 1 min is still feasible: a processing time of
less than 10 minutes (for a 1 min spacing between pulses)
may be acceptable, even in a routine computational envi-
ronment. The gain w.r.t. the classical method is a factor of
about four. If the full variance–covariance matrix is required,
method 1 is the best one available. Obviously, the classical
approach cannot be recommended in view of the efficiency
of the former two methods.

The growth of the CPU time as a function of the subinter-
val length differs substantially for the three methods (Fig. 3).
The processing time for method 1 is dominated by the time it
takes to invert the normal equation matrix for the subinterval
length �t → 0. Matrix inversion algorithms are proportional
to the cube of the dimension of the matrix (Press et al. 1996).
It seems that the asymptotic behaviour of the CPU time for
�t → 0 is “only” roughly proportional to �t2 in the case of
the classical method.
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Fig. 4 CPU times for data collection, pre-elimination and updating.
Analysis for 1 day of CHAMP data using method 2 with pseudo-sto-
chastic pulses

This is, however, not correct, because the growth seen in
Fig. 3 is still dominated by the process of setting up the normal
equation system and not by the matrix inversion. The asymp-
totic behaviour for the classical method must also contain
the �t3-term for �t → 0. The curves for the two methods
(classical and method 1) must become tangential, asymptot-
ically. It would, however, cost hours of CPU to “prove” this
statement.

Let us now analyze in more detail the processing time for
the two efficient methods 1 and 2. In Fig. 4, the CPU required
to read the data and set up the normal equation systems for
each time interval (this part of the required CPU is referred to
as “collect” in Fig. 4) is distinguished from the CPU required
by method 2, assuming that the normal equation systems are
available.

Figure 4 thus reveals that in the case of method 2, the total
CPU time (solid line) is almost entirely caused by the process
of setting up the normal equation contributions for the subin-
tervals (starting from the observation equations, resulting in
the normal equation contribution). The pre-elimination and
the back-substitution steps are almost “free of charge” com-
pared to the data collection part. For very long data spans
(several days and/or very high sampling rates), the algo-
rithm’s CPU requirements would eventually become dom-
inant w.r.t. to the CPU required by the collection part.

Figure 5 shows that in the case of method 1, the pro-
cessing time is dominated by the inversion of the full normal
equation system (term proportional to �t3). The processing
times become prohibitively long for the shortest subinterval
lengths.

The algorithms based on piecewise constant accelera-
tions are slightly less efficient than those based on pulses
(see Fig. 6 and compare it with Fig. 4). The slight growth of
processing time is caused by the fact that the contributions to
the full normal equation system referring to a particular sub-
interval contain one set of stochastic orbit parameters (instead
of none in the case of pulses). Also, the partial derivatives
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Fig. 5 CPU times for data collection, pre-elimination and updating.
Analysis for 1 day of CHAMP data using method 1 with pseudo-
stochastic pulses
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Fig. 6 CPU times for data collection, pre-elimination and updating.
Analysis for 1 day of CHAMP data using method 2 with piecewise
constant accelerations

w.r.t. the stochastic parameters set up at the beginning of the
subinterval have to be calculated for each observation.

The additional amount of work caused by selecting piece-
wise constant (or piecewise linear) accelerations (and not
pulses) to account for the stochastic part of the orbit merely
costs a few seconds of additional CPU in that part of the algo-
rithm dealing with the set up of the normal equation system
in the subintervals.

Jäggi et al. (2006) studied the performance of the algo-
rithms for applications related to gravity field determination.
There, the methods based on accelerations gave more accu-
rate results. For other applications, methods based on pulses,
however, may be preferable. As accuracy issues are not cen-
tral here and as the differences in efficiency for the methods
based on pulses and accelerations are marginal, we confine
ourselves to the documentation of the tests based on pulses
from now on.

10.3 Analysis of the LEO zero-difference carrier-phase
observations

The tests performed here are the same as to those performed
in Sect. 10.2, except that we do now process zero-difference
carrier-phase observations. The time-series of carrier-phase
observations gathered by the LEO receiver for one particu-
lar GPS satellite contains, in addition to the pseudo-range,
an unknown additional constant of initial phase ambiguity
parameter (Teunissen and Kleusberg 1998). The observable
is also referred to as biased pseudo-range. The parameter
is the same for all observation epochs, as long as the GPS
satellite is above the horizon of the receiving antenna, phase
lock is maintained, and cycle slips do not occur.

For ground-based geodetic observations, the number of
ambiguity parameters is usually small because the GPS sat-
ellites stay for several hours above the horizon of a stationary
GPS receiver. The situation is different for a spaceborne GPS
receiver: in general, one and the same GPS satellite will be
visible only for a few (let us say between 20 and 40) minutes
for the LEO antenna due to the rapid change of the observa-
tion geometry caused by the LEO orbital motion.

On day 198 of the year 2002, 475 initial phase ambiguity
parameters had to be set up. This means that in addition to
the initial osculating elements and the stochastic parameters,
we also have to solve for the ambiguity parameters.

The efficiency of the algorithms must decrease (compared
to the analysis of code observations) due to the additional 475
unknowns. The loss is not dramatic, however, because only
a much smaller number of ambiguities (depending on the
length of the subintervals) actually are present in a particular
subinterval (because the number of simultaneously visible
GPS satellites is limited by the number of channels of the
LEO GPS receiver). In the case of the Blackjack receiver
onboard the CHAMP satellite (and the software release used
at the time the observations were made), “only” ten GPS
satellites could be tracked simultaneously.

In order to get an overview of the performance of the new
and classical algorithms, we performed the same program
runs as in Sect. 10.2: for subinterval lengths ranging between
0.5 and 15 min, methods 1 and 2, as well as the classical
method, were applied to the set of carrier-phase observations.
More than 20, 000 zero-difference carrier-phase observations
were processed in every program run. In addition to the three
types of program runs mentioned (and already performed
in Sect. 10.2), a fourth type of analysis was performed: the
implementation allows for method 2 to keep the ambigu-
ity parameters in the analysis, i.e. not to pre-eliminate them
as soon as they no longer show up in the normal equation
contributions of the subintervals. Figure 7 compares the per-
formance of these four kinds of analysis.

The program runs were performed with pseudo-stochas-
tic pulses to account for the stochastic properties of the orbit.
Comparing the results in Fig. 7 with those in Fig. 3, we see
that the presence of ambiguity parameters only has a minor
impact on the performance. For subintervals of 1 min, a clas-
sical run now takes 40 min instead of 38 min; method 1 takes
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Fig. 7 CPU times for classical, method 1, and filter method 2 with
and without ambiguity pre-elimination. Carrier-phase zero-difference
processing with pseudo-stochastic pulses

13 min instead of 9 min; and method 2 (with pre-elimination
of ambiguities) takes 12 s instead of 8 s.

In less than 15 s of CPU time with method 2, one may per-
form a correct, least-squares, reduced-dynamic LEO solution
for a subinterval length of 1 min with about 4, 800 param-
eters (six initial osculating elements, 475 ambiguities and
about 3 × 1, 440 = 4, 320 pseudo-stochastic parameters).
Compare this to the 40 min needed for the classical method.
The only drawback is that the full variance-covariance matrix
is not available with method 2. (The mean errors of all param-
eters are, however, available and the covariance matrices of
satellite positions, velocities, accelerations, etc. may be cal-
culated correctly for each epoch.)

Should the full variance–covariance matrix need to be
analyzed, method 1 has to be selected, which, for 1 min sub-
intervals, establishes the solution within about 13 min. For
test purposes, it is important to have this option available.
Observe, however, that method 1 becomes increasingly ineffi-
cient as the number of subintervals (and thus the number of
stochastic parameters) grows.

Let us briefly comment on the fourth of the curves con-
tained in Fig. 7, i.e. the results for method 2 without pre-
eliminating the 475 ambiguities. There is no justification for
selecting this option when processing zero-difference carrier-
phase observations. When processing the double-difference
carrier-phase observations of LEOs flying in formation (e.g.
like GRACE A and B), one has roughly the same number of
ambiguity parameters. With this program option, it is possi-
ble to resolve the ambiguities in a very efficient way after the
update and before the back-substitution step using the full
covariance matrix of all the ambiguities and the (few) orbit
parameters of the last subinterval.

This method is, as expected, much less efficient than the
conventional method 2, but still much more efficient than
both the classical method and method 1. It requires much
larger storage arrays because dimensions of the intermediary
normal equation systems of the subintervals grow to almost
500. This is the solution with a subinterval length of �t =
1 min; 30 s was not computed for this method. Note that
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Fig. 8 CPU times for data collection, algorithm (method 2) and total.
Carrier-phase zero-difference processing with pseudo-stochastic pulses

method 2 without ambiguity pre-elimination requires more
CPU than method 1, if only few subintervals are set up, but
becomes more efficient with larger numbers of subintervals.
The break-even point is reached at about a subinterval length
of 6 min.

The distribution of the processing times in the case of
the most efficient method (method 2 with pre-elimination of
ambiguities) is shown in Fig. 8 and should be compared to
Fig. 4, which contains the corresponding information when
processing code observations. As in the case of code observa-
tions, the total processing time is almost uniquely caused by
the data collection part. Only for very long data spans and/or
very small subinterval lengths, the time spent in the update
and back-substitution steps starts to become important.

10.4 Analysis of the LEO double-difference carrier-phase
observations

The CHAMP observations of the same day 198 of 2002 were
also analyzed by including them into a double-difference
solution using a network of 30, 50 and 70 stationary receiv-
ers of the IGS global network. Here, each double difference
involves two observations of GPS satellites gathered by the
LEO receiver and one ground-based receiver.

The coordinates of the ground-based receivers, tropo-
sphere parameters and polar motion were assumed as known
in our analysis. This information was taken from the routine
analysis of the CODE analysis center of day 198 of year 2002.
Consequently, only three parameter types have to be con-
sidered, namely deterministic orbit parameters, ambiguity
parameters (on the double-difference level) and pseudo-sto-
chastic orbit parameters. Therefore, the mathematical struc-
ture of the problem is closely related to that of Sect. 10.3.
The main difference resides in the number of ambiguities.
This number was 3, 630 in the case of the 30-station net-
work, 6, 422 in the case of the 50-station network and 8, 998
in the case of the 70-station network. The number of
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Fig. 9 CPU times for carrier-phase double difference processing of
CHAMP data together with a global ground network of 70, 50, and
30 GPS stations for methods 1 and 2 and the classical method with
pseudo-stochastic pulses

double-difference observations was about 115, 000 in the
first, 200, 000 in the second and 280, 000 in the third case.

Figure 9 illustrates that the algorithms are still efficient,
in particular the algorithm underlying method 2: the solution
with 30, 50 and 70 ground stations is obtained within 88 s,
192 s, and 350 s, respectively, when selecting a subinterval
length of 1 min and using the same computer.

From Fig. 9, method 1 is much less efficient than method
2, but still much more efficient than the classical method. It
takes about 47 min of CPU to generate the solution with sub-
interval lengths of 1 min with method 1 (for the 30-station
ground network). It would probably take more than 10 h to
generate the same solution with the classical method. There-
fore both the classical method and method 1 are not good can-
didates for producing reduced-dynamic LEO solutions with
a high time resolution on a routine basis. Method 1 remains
an excellent choice for test purposes though.

Figure 10, showing the dimension of the normal equa-
tion systems for each subinterval resulting in the update (and
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Fig. 10 Dimension of normal equation systems in subintervals of 1 min
length (method 2, pre-elimination of ambiguities, ground network of 70
stations, pseudo-stochastic pulses)
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Fig. 11 CPU times for carrier-phase double-difference processing of
CHAMP data together with a global network of 50 ground stations:
time spent in data collection, algorithm (method 2), total, pseudo-
stochastic pulses

therefore also in the back-substitution) step for method 2
(70 sites with pre-elimination of ambiguities), indicates why
the method is highly efficient: whereas there are close to
9, 000 ambiguities in the full normal equation system, there
are hardly ever more than 300 ambiguities to be handled in
the subintervals.

This fact does not only reduce the processing time, but
also the storage requirements. A double-difference network
solution including 100–150 ground stations should be feasi-
ble even in a routine computing environment. In the case of
the GRACE satellites, it would also be possible to include
the space-baseline (between GRACE A and B) with resolved
ambiguities into the network solution.

Note that the periodicity of the dimension in Fig. 10 is
mainly a consequence of the inhomogeneous ground net-
work. Large dimensions occur if the satellite is flying over
regions with many receivers (e.g. over Europe) and small
dimensions if the satellite is flying over regions with few
receivers (e.g. over large oceans).

Figure 11 is the analogue to Figs. 4 and 8 when process-
ing the double-difference carrier-phase observations from the
spaceborne receiver and 50 ground-based receivers. Up to
about 5, 000 subintervals the data collection part dominates
the processing part if method 2 is used. Only for very long
data spans (several days) or a very small subinterval length
(few seconds), the time spent in the algorithm part would
become important.

11 Summary and outlook

This article is devoted to the development of efficient algo-
rithms for determining the orbits of LEOs in poorly known
force fields. The deficiencies of the force field are absorbed
either by pseudo-stochastic pulses, piecewise constant accel-
erations or piecewise linear and continuous accelerations.
The normal or “classical” way to deal with these parameters
was developed in Sect. 3. The key problem arising is the
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growing number of active parameters (see Figs. 1, 2), which
leads to very inefficient computations.

It was then shown (Sects. 4 and 5) that the full normal
equation system may be set up in a very efficient way, just
by making use of the fact that the partial derivatives w.r.t.
the orbit parameters may be written as linear combinations
of the partial derivatives w.r.t. the initial orbital elements.
Some additional terms could be easily accounted for in the
case of the piecewise constant and piecewise linear acceler-
ations. The resulting algorithms, called here method 1, still
have to invert the full normal equation matrix. Although we
showed in Sect. 10 that method 1 is much more efficient than
the classical method, it must become inefficient if many sto-
chastic parameters are set up because the time to invert a
matrix of dimension d grows proportionally to d3. Method 1
has, on the other hand, the advantage of making available the
full variance–covariance matrix associated with all parame-
ters (deterministic and stochastic orbit parameters, additional
parameters).

Method 2 is by far the most efficient of the methods devel-
oped here, at least if the number of stochastic parameters is
large. It makes use of the parameter transformation (Eq. 38),
which associates one set Ei of initial osculating elements
with each subinterval i . If piecewise constant accelerations
are used, the orbit within subinterval [ti , ti+1) may be param-
eterized by the subinterval-specific of elements Ei and the
corresponding acceleration �ai+1 (see Eq. 81). If piecewise
linear accelerations are used, the orbit is parameterized within
the same subinterval by Ei and the two accelerations �ai and
�ai+1.

The processing times associated with method 2 are re-
duced by about two orders of magnitude when compared to
the classical method, by about one order of magnitude when
compared to method 1 provided the number of stochastic
parameters is of the order of a few thousand. Method 2 there-
fore is an excellent candidate for high-accuracy orbit model-
ling in an operational environment. The only disadvantage of
method 2 (w.r.t. to the two alternatives) is the fact that the full
variance–covariance matrix is not available. The variance–
covariance matrix of the parameters active in one particular
subinterval is, however, available. This implies (for the three
modelling types) that the variance–covariance matrix for the
position-, velocity-, acceleration-, etc. vectors at any time t
within the arc considered may be easily calculated as well.

The algorithms associated with method 2 resemble a con-
ventional Bayesian filter. If the subinterval length is equal
to the data sampling interval, the results—not necessarily
the associated variances—become identical. Our method is,
however, more general because data sampling and the sub-
interval length associated with the stochastic parameteriza-
tion are clearly separated (and may in particular be different)
and because other non-orbit parameters may be easily and
efficiently incorporated. Also, all parameters have a clear
physical definition allowing it, e.g. to calculate the orbit and
its derivatives for any time argument.

The introduction of a priori information for the pseudo-
stochastic parameters follows the pattern well known in

least-squares adjustment, i.e. by introducing artificial obser-
vations in connection with a weight matrix. In this article, we
uniquely dealt with so-called absolute constraints, i.e. the
pseudo-stochastic parameters were constrained w.r.t. the
best-fitting (resulting) deterministic orbits. More elaborate
statistical information (which would, e.g. constrain the
pseudo-stochastic parameters relative to each other) might
be introduced, as well, at the price of a slightly more com-
plicated pre-elimination scheme.

Our introduction of pseudo-stochastic orbit parameters
avoids the introduction of the concept of stochastic differen-
tial equations: the three parameterizations model the orbit in
each subinterval as an ordinary differential equation. This is
the equation of motion (Eq. 1) reflecting the a priori force
field in the case of pseudo-stochastic pulses. It is Eq. 63 that
contains one additional (vectorial) term (constant accelera-
tion within the subinterval), in the case of piece-wise constant
accelerations.

The solution vector and the statistical information associ-
ated with it are the same for all methods outlined above. They
correspond to the correct least squares solution of the prob-
lem. In addition to the actual (or real) GPS observations, we
introduce artificial observations (or pseudo-observations) of
the type �vi = 0 with a user-defined weight matrix W asso-
ciated with the parameters �vi (the same procedure holds
for the accelerations). We treat these as “artificial” observa-
tions: They are contained in our observations’ statistics and
are taken into account for the calculation of the RMS of the
weight unit.

The values and the statistical properties of the resulting
parameters can therefore be interpreted in the framework of
the least-squares theory. The selection of W is of course crit-
ical. Symbolically speaking, we obtain the solution without
pseudo-stochastic orbit properties for W → ∞, we obtain
a solution very closely related to the kinematic solution for
W → 0 and if the length of the subintervals equals the spac-
ing between the observations.

We might have added, as a reference, the processing times
for kinematic methods. These methods are based on pre-
cise point positioning (PPP) using code and/or phase obser-
vations and completely disregard the force field, which is
known at least approximately. For the technicalities of the
PPP method, see Zumberge et al. (1997). Kinematic meth-
ods provide no estimate of satellite velocities. Velocities, if
calculated at all, have to be established a posteriori by fit-
ting a series of satellite positions by some base functions
when using kinematic methods. Let us mention, however,
that our method 2 is almost of the same efficiency as the kine-
matic method when analysing zero difference GPS obser-
vations, it is much more efficient than the kinematic case
when analysing the double-difference observations gathered
by LEOs and a large ground tracking network of GPS
receivers.
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