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Abstract. Arthropod assemblages were examined in Lama forest reserve, a protected area situated in

theDahomey gap, southernBenin, composedof plantations, degraded forest and remnants of natural

forest. The objectives were to compare assemblages in relation to forest type and use, to elucidate the

value of forest plantations for biodiversity conservation and to identify indicator species for specific

forest habitats. Arthropods were collected over an 11-month period, using standardized sets of traps

(pitfall, emergence,Malaise and flight intercept traps). Nine different habitats were studied, including

natural and degraded forest, forest plantations (Tectona grandis and Senna siamea) of different age,

and isolated forest fragments. Our analysis focused on detritivorous and xylophagous arthropods but

also included ground beetles and heteropterans, totalling 393 species. We found no differences in

species richness among natural and degraded forest habitats in the centre of the reserve (Noyau

central). Outside of theNoyau central, species richnesswas highest in old teak plantations and isolated

forest fragments and lowest in young teak and fuelwood plantations. Detrended correspondence

analysis (DCA) separated three main groups: (1) natural forest, (2) degraded forest and young

plantations, and (3) old plantations and isolated forest fragments.Multiple regression of DCA scores

of the first two axes on environmental variables identified one natural and three disturbance-related

predictors of arthropod assemblages in Lama forest: soil type (texture), canopy height, naturalness

(proportion of Guineo-Congolian plant species) and understorey vegetation cover. We identified 15

indicator species for six different forest habitats. The highest numbers were found in abandoned

settlements and old teak plantations. b-diversity was similar among the threeDCAordination groups

(degraded forest excluded). Values for b-diversitywere relatively high, suggesting that all major forest

habitats contribute significantly to regional species pools and should therefore be protected. To

enhance arthropod diversity, we propose that management practices in Lama forest should aim to

encourage the development of species-rich understorey vegetation of the Guineo-Congolian phyto-

geographical region.

Introduction

West African forests are listed among the 25 hotspots considered as priority
areas for biodiversity conservation (Myers et al. 2000). At the same time, there
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is consensus that secondary forests are becoming increasingly important for
biodiversity conservation (Zapfack et al. 2002; Gemerden et al. 2003), and that
the contribution of forest plantations to the conservation of tropical forests
must be evaluated.

Forest plantations are extending world-wide. Since 1990, the area planted
has quadrupled. In Africa, plantations account for only 1.2% of the total
forest cover (FAO 2000), but the proportion in Benin is relatively high
(4.2%). Forest plantations provide a range of forest products on a relatively
limited land surface, and can therefore contribute to reducing deforestation
and degradation of natural forests (FAO 2001). Being a man-made type of
forest, plantations are considered to support low biodiversity and hence be
of little interest for biodiversity research and conservation. Thus, only few
studies on the biodiversity in tropical forest plantations have been com-
pleted to date (e.g. Watt et al. 1997; Lawton et al. 1998; Davis et al. 2001).
These studies showed that forest plantations are not necessarily ‘biodiversity
deserts’ (Speight and Wylie 2001) but that they can support a rich and
varied fauna. The importance of tropical forest plantations for the conser-
vation of wildlife and as nuclei for natural forest regeneration has been
demonstrated in Madagascar (Goodman et al. 1996), Sri Lanka (Ashton
et al. 1993), Thailand (Elliott et al. 1998) and Australia (Tucker and
Murphy 1997).

Several authors studied the response of insects (ants, termites, moths, dung
and carrion beetles) to the degradation of tropical forests (e.g. Nummelin and
Hanski 1989; Holloway et al. 1992; Vasconcelos et al. 2000; Eggleton et al.
2002). These studies showed that the composition and species richness of
arthropod assemblages vary depending on disturbance levels, regional species
pools and the spatial and temporal scale of the study. However, little infor-
mation is available on the effects of different forest management regimes on the
composition of arthropod assemblages in West Africa.

As one of the last remnants of natural forest within the Dahomey gap
(Ballouche et al. 2000), and an important refuge for several endangered
plants and animals, Lama forest reserve is of key concern for biodiversity
conservation in Benin. Only few studies have been conducted so far, the
majority focusing on natural forest. Despite their larger size, degraded
forests and forest plantations have received little attention. With the
exception of litter-dwelling arthropods (Attignon et al. 2004) and butterflies
(Fermon et al. 2001), arthropod assemblages have not been well studied, let
alone surveyed in different habitat types and successional stages of forest in
the reserve.

The goal of the present study was to enhance the scientific understanding of
the Lama forest arthropod fauna as a basis for improved, conservation-ori-
ented forest management. The specific objectives were (1) to compare arthro-
pod diversity and assemblages in the principal forest types of Lama forest, (2)
to assess the value of forest plantations for biodiversity conservation and (3) to
identify indicator taxa for specific forest habitats.
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Materials and methods

Study site

The Lama forest reserve is situated about 80 km north of Cotonou (6�55.8¢ to
6�58.8¢N and 2�4.2¢ to 2�10.8¢E), covering an area of 16,250 ha in a shallow
depression between the Allada and Abomey plateaus. The forest is located in
the Dahomey gap, a low rainfall zone separating the western and eastern part
of the humid Guineo-Congolian evergreen and semi-evergreen forests of West
and West-central Africa (White 1983). The climate is relatively dry (ca.
1200 mm rainfall), with a pronounced dry season from November to March
(Sayer et al. 1992). The prevailing soils are hydromorphic vertisols rich
in nutrients and clay, as well as sandy ferralsols. The natural vegetation is a
semi-deciduous forest, belonging to the drier peripheral semi-evergreen
Guineo-Congolian rain forest system (White 1983).

Despite having been legally protected since 1946, deforestation for agricul-
ture in Lama forest continued until 1988, leading to the reduction of natural
forest cover from 11000 to 1900 ha. Since then, a central part covering
4800 ha, the so-called Noyau central, lies under strict protection. Peasants
living in the Noyau central were resettled in nearby agroforestry schemes.
Reflecting the traditional farming system, the Noyau central is composed of a
small-scale mosaic of natural and degraded forest patches of variable size and
successional stages (Specht 2002). The Noyau central is surrounded by young
and old teak plantations (7000 ha, Tectona grandis) and fuelwood plantations
(2400 ha, mainly Senna siamea, interspersed with T. grandis, and a few stands
of Acacia auriculiformis) (Figure 1). The present study focused on nine dif-
ferent forest types representing all major habitats within the reserve boundaries
plus a few forest remnants outside of the reserve. Five forest types were
situated within the Noyau central and four outside:
1. Semi-deciduous forest (1937 ha) is dominated by tree species such as Afzelia

africana, Ceiba pentandra, Dialium guineense, Diospyros mespiliformis,
Drypetes floribunda, Celtis brownii, Mimusops andongensis. The understorey
vegetation can be dense and canopy height reaches 16–21 m (Table 1).

2. Cynometra megalophylla lowland forest (<100 ha) grows in seasonally
flooded areas. This forest is characterized by C. megalophylla and other
plants adapted to seasonal flooding. The understorey vegetation is usually
less dense than in semi-deciduous forest.

3. Anogeissus leiocarpa dry forest (1222 ha) is a secondary forest developing on
former slash-and-burn patches. A. leiocarpus can reach 20 m in height and
promotes the establishment of shade-tolerant plants.

4. Abandoned settlements (166 ha) of the resettled population present a
characteristic vegetation type composed of cultivated trees such as oil palm
(Elaeis guineensis) and guava (Psidium guajava), and secondary regrowth.

5. Perennial Chromolaena odorata thicket (1452 ha) grows on former farm-
land. C. odorata is an alien, invasive species of neotropical origin
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encroaching open-canopy forest patches, clearings, as well as fallow land. It
is rapidly shaded out if the forest canopy cover exceeds about 40%.

6. Young teak plantations (7200 ha) were planted between 1985 and 1995 on
vertisol around the Noyau central.

7. Old teak plantations (2200 ha) were planted between 1955 and 1965 on
sandy ferralsol (transition between vertisols in the valley and ferralitic soils
on the surrounding plateaus).

8. Fuelwood plantations (2400 ha) were planted between 1988 and 1996. They
are composed of S. siamea, T. grandis and A. auriculiformis.

9. Most isolated forest fragments are located outside of the reserve. These
widely scattered sacred groves are embedded in a matrix of farmland and
degraded savannah. They are used as ceremonial places and remain in a
relatively natural state. The remnants are usually very small (1–2 ha).
Sampling sites were selected according to three criteria: (1) spatial repre-

sentativeness, (2) patch size and (3) accessibility. Each forest type was repre-
sented by four replicates. Thus, the total number of sites was 36 (Table 1).
Distances between sites of the same forest type ranged from 0.3 to 19.0 km.
A minimum distance of 20 m (small patches) or 50 m (large patches) was
maintained between sampling sites and patch borders.

Figure 1. Schematic view of Lama forest reserve. NC, Noyau central; T, Teak plantations; FP,

Fuelwood plantations; S, Settlements; IF, Isolated forest fragments (the latter not to scale).
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A botanical survey was also conducted within the scope of our study, using
the Braun–Blanquet system. Two hundred ninety plant species in 77 families
were sampled (unpublished data).

Sampling methods

On each site, we installed an equal number of sampling devices, comprising
(1) three funnel pitfall traps, each consisting of a collecting jar inside a
plastic sleeve, an 11 cm diameter funnel and a transparent plastic roof
20 cm in diameter (Southwood 1978), (2) one Malaise trap (after Townes
1972) with a 1.5 m2 black vertical mesh panel, (3) one flight intercept trap
intercepting insects flying between 1.0 and 1.5 m above the ground, con-
sisting of two crossed black vertical mesh panels, each measuring 0.25 m2

(0.5 · 0.5 m), and top and bottom funnels 50 cm in diameter (Wilkening
et al. 1981), and (4) one pyramid-shaped emergence trap (ground photo-
eclector) covering an area of 0.75 m2 (� 0.86 · 0.86 m), equipped with a
collecting jar on the top and one pitfall trap (Mühlenberg 1993). The traps
were spaced out along 30 m north–south transects. The placement design
was similar at all sites. We used formalin (0.5%) as a preservative, adding
some detergent to lower the surface tension. A preliminary 2-week sampling
was conducted in May 2001 to establish the methodology. The sampling
period for the present study was 1 week per month from June 2001 to April
2002. Specimens were sorted, counted, labelled and stored in alcohol (75%)
for later identification.

Sorting scope and identification

Among the wide range of invertebrates sampled, we focused on detritivorous
and xylophagous arthropods because of their important role in nutrient cycling
in forest ecosystems (Didham et al. 1996). These taxa comprised 14 coleopteran
families, as well as representatives of Isoptera, Diplopoda and Isopoda. We
also included epigeal predators (Carabidae and Chilopoda), omnivorous bee-
tles (Tenebrionidae) and both herbivorous and predatory bugs (Heteroptera).
These additional taxa were retained for a more comprehensive characterization
of arthropod assemblages and because some have been used as representative
indicators in previous biodiversity assessments (Duelli and Obrist 1998; Giulio
et al. 2001; Rainio and Niemelä 2003).

All arthropods were first sorted to ‘morphospecies’ (sensu New 1998) and
then taxonomically identified at the International Institute of Tropical
Agriculture (IITA) in Benin. Voucher specimens were deposited at the IITA
Biodiversity Center and partly at the Museum of Natural History, Basel,
Switzerland. The analysis was done at the morphospecies level for taxa with
difficult taxonomy (e.g. most Diplopoda).
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Environmental variables

Soils were classified according to the FAO system (FAO-UNESCO 1974), and
the percentage of clay (soil texture) was estimated by touch. Temperature (�C)
and relative humidity (RH) were recorded every hour from April 2002 to
March 2003, using one data logger (Hobo Pro RH/Temp) per forest type.
Loggers were attached to tree trunks about 1 m above ground level. The
naturalness (sensu Angermeier 1999) of the different forest types was calculated
based on the proportion of plant species belonging to the Guineo-Congolian
phytogeographical region. We also determined cover, height and species
richness of the main vegetation strata (Table 1). The nearest distance between
sampling sites and natural forest patches was measured with a geographic
information system (ArcView 3.1), using the vegetation map of Specht (2002)
(Table 1).

Measures of diversity

We used species richness as a measure of a-diversity (the number of species
within a habitat). b-diversity (the degree of change in species composition
between habitats) was evaluated for selected groups of forest habitats
according to Whittaker’s formula bw ¼ c=�a, where c is the species pool within a
group of habitats (c-diversity) and �a is the average number of species per site
(Whittaker 1960).

Data analysis

We used the total catch per taxon and per sampling site for statistical analyses.
This was done by pooling specimens from all sampling periods and traps within
sampling sites.

One-way analysis of variance (ANOVA) was conducted to test differences in
arthropod assemblages among forest types (Zar 1999), followed by Bonferroni
multiple comparison of means. In view of an unfavourable ratio between factor
levels (n = 9) and replicates (n = 4), we also performed a post hoc power
analysis (SPSS 12.0).

To determine the similarity of forest types based on their arthropod
assemblages, we performed detrended correspondence analysis (DCA) (Hill
and Gauch 1980), using PC-ORD 4.27 (McCune and Mefford 1999). Abun-
dances of species rarer than Fmax/5 (where Fmax is the frequency of the most
common species) were down-weighted in proportion to their frequency. Axes
were rescaled with a threshold of zero, and the number of segments was set to
26 (default). Reciprocal averaging (RA), also known as correspondence anal-
ysis, revealed the same grouping, but DCA was preferred because it squashed
the arch effect associated with RA and corrected the compression of the axis
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ends. The proportion of variance represented by the ordination axes was cal-
culated according to an after-the-fact method, using the relative Euclidean
distance (McCune and Mefford 1999). Stepwise multiple regression with for-
ward selection (SPSS 12.0) was conducted to relate DCA ordination scores of
the first two axes to the environmental variables listed in Table 1.

A hierarchical cluster analysis based on presence/absence data was employed
to distinguish groups of sites in the DCA ordination plot (SPSS, 12.0, settings:
Ward’s method, squared Euclidean distance). Clusters were grouped in prob-
ability ellipses whose axes are proportional in length to a specified percentage of
the x and y coordinates (Jennrich and Turner 1969). The inclusion probability
was set to p = 0.90. Computation of the ellipses was done with ArcView 3.1.

We used Mantel tests to evaluate the relationship between arthropod
assemblages and the distance to the nearest natural forest patch (Mantel 1967).
These tests were performed with PC-ORD 4.27 (McCune and Mefford 1999),
using binary data (Sørensen distance) and Monte Carlo randomization (1000
runs).

Indicator species

Indicator species for the different forest types were determined according to
Dufrêne and Legendre (1997). The method combines data on the frequency of
occurrence (faithfulness) and relative abundance (concentration) of species in a
particular habitat. The significance of indicator values was tested using Monte
Carlo randomization (1000 runs). The threshold level for the indicator value
was 25%. This implies that the frequency of occurrence of a species indicative
of a particular habitat must be ‡50%, and its relative abundance therein ‡50%
of its total abundance at all sites (Dufrêne and Legendre 1997). The signifi-
cance level was p £ 0.01, as proposed by the authors. The analysis was per-
formed with PC-ORD 4.27 (McCune and Mefford 1999). Note that indicator
organisms may include both species restricted to a certain habitat and those
more widely distributed yet especially abundant in a particular type of forest.

Estimation of true species richness

True species richness was estimated by computing the abundance-based cov-
erage estimator (ACE) and the incidence-based coverage estimator ICE (1000
runs) for the eleven collecting periods, using EstimateS 6.0 (Colwell 1997). The
ACE is based on species with £ 10 individuals in the sample (Chao et al. 1993).
The corresponding ICE, likewise, is based on species found in £ 10 sampling
sites (Lee and Chao 1994). These estimations were the most appropriate for our
data set which was characterized by a large number of singletons (species
occurring with one individual only) and uniques (species occurring in one
sample only).
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Results

A total of 9431 specimens belonged to the taxonomic groups examined in the
present study, representing 393 species (Appendix 1). More than one third of
all species were singletons, and only 14 were collected in all forest types.
Seventy one percent (ACE) and 66% (ICE) of the estimated true species
number were sampled.

Coleoptera

We collected 264 species in 16 families of Coleoptera, representing 67% of the
total number of species and 58% (5499 specimens) of the total number of
arthropods included in the analysis. Except for carabids, the high number of
specimens was due to a few very abundant species. Of 37 scarabaeid species, six
represented over 63% of all specimens. One of 17 species of Elateridae rep-
resented 97% of the total catch in this family, and one of 12 species of Sco-
lytidae 58% of the total catch. All but one scarabaeid species of the dominant
taxa were found in all forest types. Thirty eight percent of all coleopteran
species were singletons. Most coleopterans were collected in isolated forest
fragments (111 species, 42% of all coleopterans) and old teak plantations (94
species, 36%), and the smallest number in young teak plantations (64 species,
24%) and fuelwood plantations (59 species, 22%). Forest types within the
Noyau central had about the same number of coleopteran species, with an
average of 81 ± 1 species (mean ± SE).

Heteroptera

Within 15 families of Heteroptera, we found 75 species (19% of the total
number of arthropod species analyzed) and 558 specimens (6% of the total
catch analyzed). Forty-one percent of the Reduviidae (22 species) and 54% of
the Lygaeidae (17 species) were represented by three species only. One of five
species of Alydidae made up 95% of the total catch for this family. More than
41% of all heteropterans were singletons. Species numbers were highest in
isolated forest fragments (32 species) and lowest in semi-deciduous forest (13
species). The other forest types within the Noyau central presented an average
species number of 23 ± 1 (mean ± SE).

Chilopoda, Isopoda, Diplopoda and Isoptera

For the classes Isopoda, Diplopoda and Chilopoda and for the order Isoptera,
the analysis was performed at the morphospecies level. Forty eight percent of
all Diplopoda (27 species) were represented by only one species occurring in all

11



forest types. Two of 14 species of Isopoda made up 52% of the total catch
of this taxon. Only six species of Isoptera were sampled, with one species
representing 96% of all specimens.

Arthropod diversity

Despite the unfavourable ratio between factor levels and replicates, the sta-
tistical power of the analyses of variance was satisfactory (0.996). Differences
in species richness among forest types were significant at p < 0.001
(F8,27 = 5.76). Isolated forest fragments and old teak plantations showed the
highest number of species (Figure 2), with an average of 71 ± 5 and 67 ± 2
species, respectively (mean ± SE). Species richness was lowest in young teak
(40 ± 6) and fuelwood plantations (43 ± 6). Natural and degraded forest in
the Noyau central had intermediate levels of species richness, ranging from
50 ± 2 in C. megalophylla lowland forest to 57 ± 2 in abandoned settlements.
Statistically significant differences were found between young plantations (teak
and fuelwood) and old teak plantations or isolated forest fragments (Figure 2).

b-diversity of arthropod assemblages was computed for the three habitat
(site) groups obtained by the DCA ordination (see below). Two of these groups
(group one and three, Figure 3) contained two forest types each, including all
old-growth forests, and one group (group two) the remaining forest types. Of
these, we selected young teak and fuelwood plantations as representatives of
young-growth forest. Because some groups comprised only three of the four
replicate sites per forest type, we randomly excluded one replicate site of each
complete sample to achieve an equal number of sites per group which is a
prerequisite for comparing bw-diversity. Thus, each group contained three
replicate sites of two different forest types (n = 6). b-diversity was very similar
among these three groups of forest habitats, ranging from bw = 2.8 in group
three (old teak plantations and isolated forest fragments) and bw = 3.1 in

Figure 2. Species richness in nine different forest habitats in Lama forest. Bars show means ± SE

(n = 4). SF, Semi-deciduous forest; LF, C. megalophylla lowland forest; DF, A. leiocarpa dry

forest; AS, Abandoned settlements; CT, C. odorata thicket; YT, Young teak plantations; OT, Old

teak plantations; FP, Fuelwood plantations; IF, Isolated forest fragments. Means marked with

different letters are significantly different at p < 0.05.
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group two (young teak and fuelwood plantations) to bw = 3.2 in group one
(semi-deciduous forest and C. megalophylla lowland forest).

Arthropod assemblages

DCA of sampling sites in species space revealed three distinct groups of
forest habitats: (1) natural forest, comprising semi-deciduous forest and
C. megalophylla lowland forest, (2) degraded forest and young plantations,
including A. leiocarpa dry forest, abandoned settlements, C. odorata thicket,
young teak plantations (all but one site) and fuelwood plantations (all but one
site), and (3) old teak plantations and isolated forest fragments (all but one site)
(Figure 3).

The proportion of variance represented by the first axis of the DCA ordi-
nation was 0.45. Multiple regression identified two significant predictors of
DCA axis one scores, soil texture and canopy height (F2,33 = 76.6,

Figure 3. Detrended correspondence analysis (DCA) of sampling sites in species space proportion

of variance. Groups 1, 2 and 3 are defined by probability ellipses (p = 90%). 1, Semi-deciduous

forest; 2, C. megalophylla lowland forest; 3, A. leiocarpa dry forest; 4, Abandoned settlements; 5,

C. odorata thicket; 6, Young teak plantations; 7, Old teak plantations; 8, Fuelwood plantations;

9, Isolated forest fragments.
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R2 = 0.823, p < 0.001). The regression equation is:

Axis 1 ¼ 78:3� 1:6ðPCÞ þ 3:8ðCHÞ;

where PC = Percentage of clay and CH = Canopy height; t-values for the
partial regression coefficients were �9.0 (p < 0.001) and 3.6 (p = 0.001),
respectively, indicating that soil texture was the major explanatory variable in
this model.

The proportion of variance represented by the second axis was 0.10. DCA
axis two scores were also best predicted by two variables only, naturalness and
understorey cover (F2,33 = 49.7, R2 = 0.751, p < 0.001). For the second axis,
the regression equation is:

Axis 2 ¼ 26:8þ 2:3ðPGÞ � 0:6ðPUÞ;

where PG = Percentage of Guineo-Congolian plant species and PU = Per-
centage of understorey vegetation cover; t-values for the partial regression
coefficients were 10.0 (p < 0.001) and �3.3 (p = 0.002), respectively. Thus,
naturalness was the more important explanatory variable.

The remaining environmental variables listed in Table 1 had no significant
effect on the ordination scores.

Mantel tests revealed that arthropod assemblages of replicate sites within
young teak and fuelwood plantations were not correlated with the distance to
the nearest natural forest patches (rs = 0.436, p = 0.260 and rs=0.533,
p = 0.169, respectively).

Indicator species

We identified 15 indicator species for six different forest habitats, ranging from
one to five species per forest type (Table 2). No indicators were found for dry
forest, C. odorata thicket and young teak plantations. The indicators included
11 species of Coleoptera, two species of Isopoda and one species each
of Diplopoda and Heteroptera. Most indicator species were recorded for
abandoned settlements (n = 4) and old teak plantations (n = 5).

Discussion

Arthropod diversity

Against our expectations, a-diversity was similar among the different forest
types within the Noyau central. We would have expected lower species richness
in disturbed habitats such as C. odorata thicket. However, not only was species
richness similar, but the similarity in species composition was also high,
ranging from 38% (C. odorata thicket versus lowland forest) to 58%
(C. odorata thicket versus dry forest) species in common (Lachat, unpublished
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data). This suggests a high connectivity between natural, secondary and
degraded parts of the Noyau central whose spatial structure is characterized by
contiguous patches of variable size, sometimes covering less than 1 ha (Specht
2002). Moreover, forest cover was relatively high ( £ 45%) even in degraded
patches, which would be expected to facilitate movements between forest
habitats. This is corroborated by observations in the Amazon which showed
that secondary growth reduces the barrier effect of cleared forest for forest
dung and carrion beetles (Klein 1989).

Our results confirm those of other studies that found no major difference in
species richness of arthropod assemblages between primary forest and sec-
ondary and/or degraded (logged) forest (e.g., Nummelin and Hanski 1989;
Holloway et al. 1992; Kalif et al. 2001).

Significant differences in species richness were found only among forest
habitats outside of the Noyau central (Figure 2). Notably, species richness in
old teak plantations was as high as in forest fragments and in the Noyau
central, which demonstrates the importance of old teak for arthropod diversity
conservation. The low species richness in young teak and fuelwood plantations
came as no surprise. These forests are more exposed to silvicultural practices.

Table 2. Indicator species sensu Dufrêne and Legendre (1997) for Lama forest.

Indicator value (%) P

Semi-deciduous forest

Chlaenius (Chlaenites s.l.) sp.

(Carabidae, Chlaeniinae)

80.0 0.001

Scolytidae sp. 9 58.7 0.001

C. megalophylla lowland forest

Stenocoris southwoodi Ahmad, Alydidae 95.8 0.001

Abandoned settlement

Onthophagus sp. 1, Scarabaeidae 66.7 0.001

Onthophagus sp. 3, Scarabaeidae 54.8 0.003

Sisyphus sp. 1, Scarabaeidae 66.7 0.004

Elateridae sp. 3 31.1 0.007

Old teak plantations

Hoplolenus obesus (Murray, 1858)

(Carabidae, Oodini)

72.2 0.001

Trochalus sp. 1, Scarabaeidae 75.0 0.008

Trochalus sp. 2, Scarabaeidae 72.1 0.002

Tenebrionidae sp. 24 60.9 0.007

Diplopoda sp. 1 31.3 0.002

Fuelwood plantations

Isopoda, Eubelidae sp. 3 68.9 0.005

Isopoda, Eubelidae sp. 5 61.5 0.001

Isolated forest fragments

Tetragonoderus (s.str.)

quadrimaculatus Gory, 1833

(Carabidae, Cyclosomini)

87.5 0.001

No indicator species were found for A. leiocarpa dry forest, C. odorata thickets and young teak

plantations.
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Moreover, despite a fire exclusion strategy adopted by the forestry authorities,
agricultural fires sometimes escape into young teak and fuelwood plantations.

b-diversity was similar between the three groups obtained by the DCA-
ordination (natural forest, young plantations, old plantations and isolated
forest fragments). Furthermore, bw-values were relatively high (2.8–3.2),
compared to a theoretical minimum of bw = 1 (each species occurs on all sites)
and a maximum of bw = 6 (each species occurs on one site only) for n = 6
sites per group. b-diversity – hence species turnover – increases with increasing
spatial heterogeneity, resource selectivity and the diversity of refugia available
to rare species (Stanton 1979; Deshmukh 1986). From a conservation point of
view, high b-diversity implies that the preservation of diversity is most effective
if habitats are protected entirely.

The importance of plantations for biodiversity conservation

Several modifications to the design and management of tropical plantations
have been proposed that may enhance regional biodiversity without com-
promising economic benefits (reviewed in Lamb 1998). Among the various
approaches, two are pertinent to Lama forest: the establishment of planta-
tions in the vicinity of natural forest – which may act as a reservoir and
source of forest species – and the development of understorey vegetation. The
second option is only feasible for long-rotation sawlogs such as teak. The
growth of understorey vegetation and a concomitant increase in biodiversity
is enhanced by the selective harvesting of logs which creates gaps for plant
colonization. In Lama forest, this process seems to be supported by the fire
exclusion practice. Contrary to timber plantations, understorey development
is unlikely in short-rotation forests such as fuelwood plantations (Lamb
1998). Fuelwood in Lama forest is harvested at an age of 20 years or less.
These plantations obviously contribute less to biodiversity conservation, as
reflected by the low species richness found in our study. Even though, the
production of fuelwood itself may reduce the pressure on natural forest
resources.

The evidence provided in the present study shows that old teak plantations
are important habitats for forest species. This is supported by the presence of
typical forest specialists such as Paussus excavatus, P. liber and P. bicornis
(Carabidae, Paussinae). Similar observations were made in mature plantations
of endemic hardwood in Cameroon where butterfly assemblages were undis-
tinguishable from those found in natural forest (Stork et al. 2003). An elevated
arthropod diversity in old plantations may have consequences not only from a
biodiversity conservation but also from a pest management perspective. A high
degree of naturalness and/or close distance to natural forest may benefit
natural enemies of forest pests, thereby reducing the risk of infestations of
plantation forests (Speight and Wylie 2001).
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The distance between natural forest and sampling sites in young teak
plantations varied from 0.2 to 2.2 km, and the distance to sampling sites in
fuelwood plantations from 4.3 to 5.7 km. Thus, one might hypothesize that
assemblages within plantations differ depending on their distance to the nearest
natural forest patch. Yet, a border effect was dismissed on the basis of the
Mantel tests performed, suggesting that plantations adjacent to the Noyau
central may act as dispersal corridors. However, our study design was not
conceived to monitor movement pathways between forest patches.

Influence of environmental variables on arthropod assemblages

Arthropod assemblages in the different forest types were most strongly related
to soil type (DCA axis 1), a natural site character, and to naturalness of the
vegetation (DCA axis 2), an indicator of disturbance. The other two statisti-
cally significant explanatory variables were canopy height (DCA axis 1) and
understorey cover (DCA axis 2), representing disturbance indicators related to
land use and management.

Soil may have influenced arthropod assemblages in two ways. First, the pre-
vailing vertisols show distinct seasonal swelling–shrinking cycles. During the dry
season, they harden and form deep cracks. In the rainy season, they are saturated
with water, leading to flooding in depressions. This in turn might reduce the
habitat available to epigeal species not tolerating temporary flooding, forcing
themtoretreat tomoundsof the so-calledgilgaimicrorelief (irregular landsurface
with alternatingmounds and depressions in areas with vertisol). To the contrary,
physical properties of the sandy ferralsols in old teak plantations and isolated
forest fragments do not change dramatically between seasons, and the soil may
offer suitable habitats throughout the year. Second, soil influences arthropods
indirectly by affecting the vegetation.However, ordinationof our vegetation data
did not clearly segregate plant associations of forests stocking on vertisol and
ferralsol (Djego, unpublished data), suggesting that soil type had a more
pronounced influence on arthropod assemblages than on plant associations.

The importance of soil as a co-determinant of arthropod assemblages was
also evidenced by the sites plotted outside of the corresponding probability
ellipses in the DCA ordination (Figure 3). For example, the soil of one of the
fuelwood plantation sites (label 8) was a sandy vertisol. This site plotted next to
group three which also comprised sites on ferralsol. Likewise, the only isolated
forest fragment (label 9) located on vertisol – and being embedded in a matrix of
young teak plantations – was plotted together with group two sites, all of which
shared the same soil. The remaining environmental predictors of arthropod
assemblages in Lama forest (naturalness, canopy height, understorey vegetation
cover) are related to land use and silvicultural practices. Naturalness is an
indicator of human disturbance (clearing for agriculture, conversion to plan-
tation forests and other land uses). Highly disturbed parts of Lama forest have
a higher proportion of plant species with wide (sometimes pantropical)
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distribution, while Guineo-Congolian species dominate in less disturbed parts.
Naturalness increases not only from degraded to natural forest, but also from
young to old plantations. Unfortunately, little is known about the biogeogra-
phy of the arthropod species sampled, which makes it difficult to define
geographic types and to draw parallels with phytogeographic types.

Canopy height reflects a succession towards old-growth forest. The tallest
canopy trees were found in old teak plantations and isolated forest fragments
(cf., Table 1). The similarity in vegetation structure may have contributed to
the high similarity of arthropod assemblages among these forests.

The development of understorey vegetation is a characteristic of old-growth
stands (Lamb 1998). However, understorey cover in Lama forest was highly
variable within and among the different forest types (Table 1) and should
therefore be interpreted with caution. For example, disturbed, open-canopy
forests were often dominated by uniform C. odorata thicket, whereas a
diversity of native, shade-tolerant plants prevailed in closed-canopy forests
(Djego, unpublished data). Thus, understorey cover alone appears to be an
insufficient predictor of arthropod assemblages, but together with naturalness
it defines environmental conditions relevant to their composition.

Edge effects in old teak plantations and isolated forest fragments

In contrast to other studies (Didham et al. 1998; Barbosa and Marquet 2001),
the highest species richness was encountered in isolated forest fragments and
old teak. Moreover, the similarity of arthropod assemblages was high, despite
long distances among replicate sites (16–19 km).

Another common trait of these forest types – apart from soil type and
naturalness – is their adjacency to open country (degraded savannah and/or
cropland). Forest edges are likely to attract arthropods from open landscape as
well as forest, thereby increasing overall species richness (Laurance et al. 2002).
Some forest species may even increase in abundance near edges, in particular
those adapted to the microclimate prevailing in open forest or treefall gaps
(Kapos 1989; Laurance et al. 2002). Such edge effects – along with the com-
bined effect of the four environmental explanatory variables – may explain the
high diversity and distinctiveness of arthropod assemblages in old teak
plantations and isolated forest fragments.

Indicator species

Indicator species have been defined as taxa that ‘mirror changes in a wider
array of groups as a consequence of environmental change’ or that ‘reflect
overall diversity and complexity of an assemblage’ (New 1998). The idea to
focus on indicator species is also owed to limitations in processing and iden-
tifying the huge numbers of samples typically collected during invertebrate
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surveys. The four most important criteria for choosing invertebrate indicators
are that they have a well-known taxonomy and ecology, are accessible to
sampling and respond to environmental changes (New 1998). Strictly speaking,
none of the species identified in the present study fulfils all of these criteria. At
this initial stage of research, they are therefore simply considered as species
characteristic of certain forest habitats. Their role as indicators of successional
changes requires validation in future monitoring programmes.

Notably, the highest numbers of indicators were found in abandoned set-
tlements and old teak plantations. This can be interpreted as an indication of
the importance of these two forest types to regional biodiversity.

Taxonomically, most species belong to the family Scarabaeidae (chafers,
Melolonthinae, and dung beetles, Scarabaeinae). Dung beetles have often been
used as indicators because of their reliance on vertebrate dung or carrion and
their sensitivity to habitat disturbance (Klein 1989; Nummelin and Hanski
1989; Hill 1995). Carabidae are also well represented. While being common
indicators in temperate ecosystems, their suitability for tropical forests is as yet
not well established (Rainio and Niemelä 2003).

Conclusion

This study provides a first overview of the arthropod diversity in Lama forest
reserve, one of the last and largest vestiges of natural forest in southern Benin,
and highlights its importance for biodiversity conservation. No differences in
arthropod species richness were found among habitats within the Noyau
central, a small-scale mosaic of natural and degraded forest. However, great
differences were observed among forest plantations separating the Noyau
central from the matrix of agricultural land. We identified four environmental
variables as significant predictors of arthropod assemblages. Of these, soil type
is a natural factor promoting high species richness in old plantations and
isolated forest fragments. The remaining variables naturalness, understorey
cover and canopy height are related to silvicultural practices and are therefore
amenable to an improved, conservation-oriented forest management. To en-
hance arthropod diversity in Lama forest, we propose that management
practices should aim to encourage the development of species-rich understorey
vegetation of the Guineo-Congolian phytogeographical region. Animals higher
up the food chain, in particular insectivorous reptiles, birds and mammals, may
also benefit from increased arthropod diversity. In this respect, arthropod
conservation is not an end in itself but a contribution to overall biodiversity
conservation.
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support, especially M. Guedegbé, C. Houngbedji, L. Konetche and D. Weibel.
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Rainio J. and Niemelä J. 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiv.

Conserv. 12: 487–506.

21



Sayer J.A., Harcourt C.S. and Collins N.M. 1992. The Conservation Atlas of Tropical Forests.

Africa. IUCN, New York.

Southwood T.R.E. 1978. Ecological Methods: with Particular Reference to the Study of Insect

Population. Chapman and Hall, London, New-York.

Specht I. 2002. La forêt de la Lama, Bénin–SIG basé sur Landsat 7. Opuscula Biogeographica
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