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Abstract Endocannabinoids are endogenous bioactive lipid
mediators present both in the brain and various peripheral
tissues, which exert their biological effects via interaction
with specific G-protein-coupled cannabinoid receptors, the
CB1 and CB2. Pathological overactivation of the endocan-
nabinoid system (ECS) in various forms of shock and heart
failure may contribute to the underlying pathology and
cardiodepressive state by the activation of the cardiovascular
CB1 receptors. Furthermore, tonic activation of CB1 recep-
tors by endocannabinoids has also been implicated in the
development of various cardiovascular risk factors in
obesity/metabolic syndrome and diabetes, such as plasma
lipid alterations, abdominal obesity, hepatic steatosis, in-
flammation, and insulin and leptin resistance. In contrast,
activation of CB2 receptors in immune cells exerts various
immunomodulatory effects, and the CB2 receptors in
endothelial and inflammatory cells appear to limit the
endothelial inflammatory response, chemotaxis, and inflam-
matory cell adhesion and activation in atherosclerosis and
reperfusion injury. Here, we will overview the cardiovascular
actions of endocannabinoids and the growing body of
evidence implicating the dysregulation of the ECS in a
variety of cardiovascular diseases. We will also discuss the

therapeutic potential of the modulation of the ECS by
selective agonists/antagonists in various cardiovascular dis-
orders associated with inflammation and tissue injury,
ranging from myocardial infarction and heart failure to
atherosclerosis and cardiometabolic disorders.

Introduction

Endocannabinoids are endogenous lipid mediators with
wide range of biological effects similar to those of
marijuana. These lipid mediators can be generated in
virtually all cell types (both in the brain as well as in
various peripheral tissues) and along with their cellular
receptors and several proteins implicated in their synthesis,
release, transport, and degradation are parts of a novel
signaling system termed the endocannabinoid system
(ECS). The two most widely studied endocannabinoids
are arachidonoyl ethanolamide or anandamide (AEA) and
2-arachidonoylglycerol (2-AG) [1], but several other
similar endogenous substances have also been identified
[2, 3]. Endocannabinoids exert their biological effects via
two main G-protein-coupled cannabinoid receptors, the
CB1 and CB2 [2, 4]. Based on pharmacological evidence,
additional as yet unidentified cannabinoid receptor candi-
dates have also been proposed recently [5, 6]. The tissue
levels of endocannabinoids are determined by the balance
between their biosynthesis (involving phospholipase D- and
diacylglycerol lipase-dependent and other pathways),
cellular uptake, and degradation by fatty acid amide
hydrolase (FAAH) and/or monoacylglycerol lipases [2].
The detailed description of the pathways involved in the
biosynthesis and metabolism of endocannabinoids is beyond
the scope of this synopsis and we would like to refer readers
to several excellent recent overviews on this subject [7–9].
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Endocannabinoids bind to both CB1 and CB2 receptors.
Anandamide has higher affinity for CB1 and CB2 receptors,
whereas 2-AG has higher CB1 and CB2 efficacy than
anandamide. Endocannabinoids may also exert various CB-
receptor-independent effects (e.g., AEA may also bind to
vanilloid VR1 (TRPV1) receptors) [10]. Both CB2 and CB1

receptors are negatively coupled to adenylate cyclase
through Gi/o proteins; however, the cannabinoid receptor
signaling appears to be more complex than previously
thought. Depending on cell type, it may also involve
mitogen-activated protein kinases, protein kinase A and C,
and cyclooxygenase-2 pathway, just to name a few [2, 4, 8].
Previously, it was thought that CB2 receptors are mainly
expressed in immune and hematopoietic cells mediating
various immunomodulatory effects, while CB1 receptors
are primarily distributed in the central nervous system and
are responsible for psychoactive properties of cannabis.
However, recent studies have also demonstrated CB1

receptors in various peripheral tissues (e.g., myocardium)
[11–13], human coronary artery endothelial and smooth
muscle cells [14, 15], adipose tissue [16, 17], and the liver
[17–19]. The presence of CB2 receptors has also been
established in the myocardium [13], human coronary endo-
thelial and smooth muscle cells [14, 15], brain [20], and the
liver [19, 21]. It should also be noted that human peripheral
blood immune cells in addition to expressing CB2 receptors
(rank order for messenger RNA (mRNA): B cells>NK cells>
monocytes>polymorphonuclear neutrophils (PMNs)>T cells
[22]) also express CB1 receptors (B lymphocytes>natural
killer (NK) cells≥PMNs≥CD8 lymphocytes>monocytes>
CD4 lymphocytes). Importantly, the CB receptor expression
in immune cells can be modulated by various inflammatory
(e.g., bacterial lipopolysaccharide) and other stimuli resulting
in activation of these cells [22], which may also trigger
increased production of endocannabinoids (AEA and 2-AG)

via activation of various biosynthetic pathways and/or by
reducing expression of FAAH, the enzyme responsible for the
degradation of AEA (Table 1; overviewed in [23, 24]).

In the past decade, the ECS has been implicated in a
growing number of physiological functions of the nervous
system and various peripheral organs, and its modulation
turned out to hold tremendous therapeutic promise in a wide
range of disparate diseases and pathological conditions,
ranging from mood and anxiety disorders, movement disor-
ders, neuropathic pain, multiple sclerosis, and spinal cord
injury to cancer, glaucoma, osteoporosis, atherosclerosis,
myocardial infarction, stroke, hypertension, and obesity/
metabolic syndrome to name just a few [2, 25, 26]. Here,
we aim to overview the emerging role of endocannabinoid
system in cardiovascular regulation in health and disease. We
will specifically focus on its role in various cardiovascular
disorders/states associated with inflammation and cell death,
ranging from myocardial infarction and heart failure to
atherosclerosis and cardiovascular risk factors.

Cardiovascular effects of cannabinoids

Cannabinoids and their endogenous and synthetic analogs
exert a variety of cardiovascular effects both in vivo and in
vitro [27, 28]. In anesthetized rodents, AEA, Δ9-tetrahydro-
cannabinol (THC), as well as potent synthetic cannabinoid
ligands such as HU-210 evoke hypotension, bradycardia,
and depressed cardiac contractility [12, 27, 29–32]. These
hemodynamic effects are less pronounced/absent in con-
scious normotensive animals but are augmented in hyper-
tensive ones [12, 33, 34] (reviewed in [2, 35]). Acute use of
marijuana in humans usually causes tachycardia, whereas
chronic use may lead to bradycardia and hypotension [2].
The underlying mechanisms are multifaceted, involving

Table 1 Expression of cannabinoid receptors in the cardiovascular system, adipose tissue, and pancreas

Cell type or tissue Species Receptor Detection method References

Coronary artery endothelial cells Human CB1, CB2 IFL, WB, RT-PCR [14]

Coronary artery smooth muscle cells Human CB1, CB2 IFL, WB, RT-PCR [15, 58]

Heart Human, rat, mouse CB1, CB2 IFL, WB, RT-PCR,
real-time RT-PCR

[11–13, 59, 60, 90, 155]

Adipocytes Mouse, rat CB1 RT-PCR [16, 156]
Human CB1, CB2 IFL, WB, RT-PCR

Pancreas Mouse CB1, CB2 IFL, real-time RT-PCR [157]

Monocytes Human CB1, CB2 RT-PCR, FACS [14, 54, 155]

Macrophages Mouse CB1, CB2 RT-PCR, WB [158]

T lymphocytes Human CB2 FACS, WB, RT-PCR [159, 160]

Neutrophils Human CB2 IFL, FACS, RT-PCR [155, 161]

Platelets Human CB1, CB2 WB [162]

FACS, fluorescence activated cell sorting analysis; IFL, immunofluorescence; RT-PCR, reverse transcriptase polymerase chain reaction; WB,
western blot
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modulation of autonomic outflow through sites of action at
presynaptic autonomic nerve terminals [36–39] and in the
central [39, 40] nervous system, as well as direct effects on
the myocardium [11, 41, 42] and the vasculature [32, 43–
46]. As for endocannabinoids, these effects are complicated by
their rapid degradation to arachidonic acid that can further be
metabolized into multiple vasoactive prostanoids [2, 47, 48].
The vasodilatory effect of endocannabinoids and synthetic
cannabinoids in vitro displays tissue and interspecies differ-
ences and may involve CB1 and TRPV1 receptor- and NO-
mediated or NO-independent mechanisms, as well as yet
undefined endothelial site(s) of action. The detailed discus-
sion of these vasodilatory effects of endocannabinoids and
synthetic ligands is beyond the scope of this paper and can be
found in several more focused reviews on this subject [5, 47,
49–51]. Activation of CB2 receptors in human coronary
endothelial and various inflammatory cells (e.g., monocytes,
neutrophils, etc.) attenuates the tumor necrosis factor alpha
(TNF-α)- or other trigger-induced endothelial inflammatory
response, chemotaxis, and adhesion of inflammatory cells to

the activated endothelium and the consequent release of a
variety of proinflammatory mediators [14, 52–54] (key
processes involved both in the initiation and progression of
atherosclerosis and restenosis, as well as in mediating
reperfusion-induced tissue damage) [55, 56]. CB2 receptor
activation also attenuates the TNF-α-induced human coro-
nary artery smooth muscle cell proliferation (Fig. 1) [15]. As
already mentioned above, CB1 receptors are expressed in the
myocardium and anandamide, R-methanandamide (a stable
analog of AEA), likewise a potent synthetic analog HU-210,
all dose-dependently decrease contractile performance in
isolated electrically paced human atrial muscle, an effect
which can be blocked by the CB1 antagonist AM251,
implicating the existence of a CB1 receptor-dependent
negative inotropy in the myocardium [11]. Consistent with
in vitro CB1-mediated negative inotropy, HU-210 decreases
left ventricular developed pressure in isolated perfused rat
hearts most likely through CB1 receptor activation [41, 57]
and also decreases myocardial contractility in vivo (measured
by the analyses of the pressure–volume relations) without

Fig. 1 Therapeutic targets of CB2 receptor stimulation in ischemia/
reperfusion injury and atherosclerosis. CB2 agonists decrease endothelial
cell activation and inflammatory response, chemotaxis triggered by
inflammatory stimuli/chemokines, and adhesion of inflammatory cells
(lymphocytes, neutrophils, and/or monocytes) to activated endothelium,

transendothelial migration of inflammatory cells, attachment to paren-
chymal cells, and activation. In addition, CB2 activation may also
mediate direct protective effects in cardiomyocytes and decrease smooth
muscle cell proliferation/migration. Reproduced with permission from
American Heart Association from [35]
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major effect on the total peripheral resistance [51]. CB1

receptors may also play an important role in vascular smooth
muscle cell proliferation [58]. Despite evidence on the
presence of CB2 receptors in the myocardium [13, 59, 60]
and a few recent studies implicating this receptor in
myocardial cardioprotection [59, 60], its role in cardiomyo-
cytes is still elusive. The existence of a functional ECS in the
myocardium is further supported by the increased myocardial
AEA levels in FAAH knockout mice and by more prolonged
AEA-induced hypotensive response in FAAH knockouts
compared to their wild-type littermates [27], as well as by
elevated myocardial AEA levels in rats following the
treatment with an FAAH inhibitor [12]. However, despite
the presence of functional cannabinoid receptors, endocanna-
binoids and their metabolizing enzyme in cardiovascular
tissues/cells, and the above-mentioned complex cardiac and
vascular effects of endocannabinoids, the ECS appears to
play a limited role in cardiovascular regulation under normal
physiological conditions, which is also supported by the
normal blood pressure and myocardial contractility and
baroreflex sensitivity of FAAH knockout mice in spite of
the elevated myocardial AEA levels [27].

The endocannabinoid system in cardiac disease

Contrary to the described above, under numerous pathological
conditions (e.g., in experimental models of hemorrhagic,
endotoxic and septic shock, advanced liver cirrhosis, and heart
failure, just to name a few), the ECS may become over-
activated and may contribute to hypotension/cardiodepression
through cardiovascular CB1 receptors (overviewed in [2, 51,
61], and see also in parts below). Intriguingly, the ECS may
also be activated as a compensatory mechanism in various
forms of hypertension to limit pathologically increased blood
pressure and myocardial contractility, but the discussion of
this is beyond the scope of this synopsis and was recently
overviewed [35]. In this review, we will discuss the
accumulating evidence both from preclinical and clinical
studies forecasting therapeutic benefits of the modulation of
the ECS in various cardiovascular diseases/conditions
associated with inflammation and tissue injury, ranging from
myocardial ischemia–reperfusion and heart failure to athero-
sclerosis and cardiometabolic risk.

Myocardial ischemia/reperfusion syndrome

Acute myocardial infarction, due to the sudden thrombotic
occlusion of a coronary artery, is the leading cause of
morbidity and mortality in the adult population of developed
and developing nations. Themost common complication is the
occurrence of left ventricular dysfunction and heart failure. In
addition to cardiac overload and injury, an increasing number

of biomarkers, such as inflammatory factors, hormones, and
biologic substances, as well as genetic factors, appear to play a
crucial role in the development of heart failure [62].

Myocardial ischemia is characterized as a state of
insufficient oxygen supply, leading to irreversible tissue
damage within 20 to 40 min of sustained ischemia [63].
The most effective therapy after an acute myocardial
infarction is the rapid restoration of blood flow by
mechanical or pharmacological intervention [64]. The early
reperfusion is critical for reducing the size of myocardial
infarct and improving the clinical outcome. However,
reperfusion itself is responsible for myocardial injury which
is induced by the preceding ischemic episode, resulting in
cardiomyocyte death and increase in infarct size [65].
Potential mediators of reperfusion injury involve reactive
oxygen and nitrogen species (ROS/RNS), intracellular and
mitochondrial Ca2+ overload, complement activation, and the
accumulation of inflammatory cells in the infarcted myocar-
dial tissue. Inflammatory processes including leukocyte
recruitment play a major role in the extension of myocardial
damages after ischemia and reperfusion. Rapidly, after the
restoration of blood flow, leukocytes infiltrate the myocardi-
um in response to complement activation and massive
release of ROS/RNS. Neutrophils, monocytes, and lympho-
cytes are the principal immune cells implicated in this
process. Once recruited into the tissue, inflammatory cells
release proteolytic enzymes and ROS/RNS [66, 67] that
contribute to the development of injury.

An implication of the endocannabinoid system in the
cardioprotective mechanisms of preconditioning has been
initially described in isolated heart models [59, 68, 69]. In
these models, perfusion with agonists or antagonists was
initiated before the ischemic period and was kept until the
end of reperfusion. In the first two studies, blockade of CB2

receptors with CB2 antagonist SR144528 was shown to
abolish bacterial lipopolysaccharide (LPS) or heat-stress-
induced preconditioning against myocardial ischemia,
while the CB1 antagonist rimonabant had no effect in these
isolated rat heart models [68, 70]. These findings suggested
that LPS or heat shock increase endocannabinoid production,
presumably in inflammatory cells [71–73], which in turn
activate cardiac CB2 receptors. A subsequent study, however,
reported that preconditioning induced by short-term ischemia
could be blocked by either CB1 or CB2 antagonism [59].
Conversely, delayed cardioprotection induced by nitric oxide
was reversed by the CB1 antagonist AM251 but not the CB2

antagonist AM630 [74]. Increased tissue levels of the
endocannabinoid 2-AG were found in isolated hearts from
preconditioned rats, whereas anandamide levels remained
unchanged. In an in vivo rat model, endocannabinoid-
mediated activation of CB2 receptors has been recently
involved in the cardioprotective effects of remote ischemic
preconditioning, induced by mesenteric artery occlusion and
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reperfusion [75]. Systemic pretreatment with CB2 antagonist
AM630, but not the CB1 antagonist AM251, abolished the
cardioprotective effects of remote preconditioning on infarct
size and arrhythmias.

In addition, various studies have been performed, again
mainly in isolated rat heart models, to clarify the potential
cardioprotective role of endocannabinoid and anandamide-
related mediator signaling in ischemia/reperfusion injury.
Perfusion with palmitoylethanolamide (PEA) or 2-AG, but
not anandamide, decreased myocardial damage in isolated
rat hearts, while CB2 antagonism with SR144528 totally
abolished the beneficial effects of PEA and 2-AG [69]. The
CB1 antagonist rimonabant only partially blocked the effect
of 2-AG. However, selective agonists for both CB1 and
CB2 receptors, ACEA and JWH-015, also reduced the
infarct size in this isolated rat heart model of low-flow
ischemia and reperfusion. The effect of SR144528 on PEA-
mediated actions is surprising, since it is considered to act
through CB1- and CB2-independent pathways. Previous
findings may suggest that the CB2 antagonist SR144528
may also antagonize some of the effects mediated by
PPAR-α agonists. Indeed, it has been described that the
analgesic effects of PEA and other PPPAR-α ligands are
antagonized by SR144528 [76, 77]. The above-described
findings are somewhat conflicting with a subsequent study
published by Underdown and colleagues. In an isolated rat
heart model of no-flow ischemia and reperfusion, ananda-
mide perfusion reduced the infarct size, which could be
blocked by either CB1 or CB2 antagonism, using rimonabant
or SR144528, respectively [78]. However, CB1 and CB2

agonists (ACPA and JWH-133) could not mimic the effect of
anandamide.

Using a clinically more relevant in vivo mouse model of
myocardial ischemia/reperfusion, the synthetic cannabinoid
HU-210 decreased the incidence of ventricular arrhythmias
following ischemia/reperfusion in rats through activation of
CB2 receptors [79]. Again, in an in vivo mouse model, Di
Filippo and colleagues showed that preventive treatment
with the nonselective agonist WIN55,212-2 before ische-
mia significantly reduced the extent of infarct size [80]. The
CB2 antagonist AM630, but not the CB1 antagonist AM251
abolished the effect of WIN55,212-2. In support of the
cardioprotective role of CB2 receptor activation, recent
findings have demonstrated that a single dose of the CB2

agonist JWH-133 given shortly before reperfusion reduced
the infarct size in a mouse model of myocardial ischemia
and reperfusion [60]. In the myocardial ischemia/reperfusion
model, JWH-133 reduced superoxide generation, increased
ERK 1/2 and STAT-3 phosphorylation, and inhibited
neutrophil recruitment in the infarcted myocardium of
drug-treated mice compared to the sham-treated controls. In
vitro, JWH-133 inhibited the TNF-α-induced chemotaxis
and integrin CD18/CD11b (Mac-1) upregulation on human

neutrophils [60]. These data may suggest a direct cardiopro-
tective effect of CB2 activation on cardiomyocytes and an anti-
inflammatory effect on neutrophils. Consistently, selective
CB2 agonists exert potent anti-inflammatory effects in various
other models of ischemic–reperfusion injury [52, 53, 56].

Finally, the nonpsychoactive Cannabis component with
potent anti-inflammatory properties, cannabidiol (CBD),
has been shown to be protective in an in vivo rat model of
ischemia–reperfusion [81]. The infarct size was significantly
reduced in CBD-treated rats as determined after 7 days,
together with reduced myocardial inflammation and im-
proved left ventricular function. The cardioprotective effect
was absent in isolated hearts, supporting the crucial role of
systemic inflammatory processes which are modulated by
CBD in the in vivo model. However, the underlying
mechanisms of CBD signaling are not very clear. This
ligand exhibits only very weak binding activity at CB1 and
CB2 receptors but has been characterized as an antagonist for
the GPR55 receptor [82]. The biological effects of
cannabinoid-mediated GPR55 signaling, however, remain
to be investigated. On the other hand, a recent in vitro study
suggests that the anti-inflammatory effects of CBD may
involve enhanced adenosine signaling through inhibition of
its uptake in microglia [83]. Release of adenosine is an
endogenous mechanism of immunosuppression evoked
during cellular stress and inflammation, while uptake of
adenosine is a primary mechanism of terminating adenosine
signaling [84]. CBD potently decreased uptake of [3H]-
adenosine in murine microglia and RAW264.7 macrophages,
and binding studies confirmed that CBD efficiently binds to
the equilibrative nucleoside transporter 1 [83].

Heart failure and myocardial remodeling

Heart failure is a major health problem and may result from
different pathophysiologic conditions such as ischemic
cardiac injury, cardiomyopathies, myocarditis, pressure
overload, as well as genetic defects [62, 85–87]. Cardiac
injury and/or hemodynamic load in association with
neurohormonal activation, induced by one of these patho-
physiologic conditions, lead to a progressive remodeling
process with activation of secondary inflammatory path-
ways and increased ROS/RNS generation by which the
heart changes its size, shape, and function [86–88]. Patients
with major remodeling demonstrate progressive worsening
of clinical prognosis. Therefore, a major therapeutic goal in
order to reduce mortality and preserve cardiac function in
heart failure patients is to prevent the progression of
remodeling.

The activation of vascular and cardiac CB1 receptors by
endocannabinoids or synthetic ligands exhibits strong
cardiovascular effects (induction of hypotension and bra-
dycardia), which have been described in the previous
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chapter. In numerous experimental studies, the endocanna-
binoid system has been linked to hypotension associated
with various forms of circulatory shock and advanced liver
cirrhosis [51]. As demonstrated by Wagner and colleagues
in a rat model of acute myocardial infarction, increased
endocannabinoid production by inflammatory cells contrib-
utes to hypotension associated with cardiogenic shock [89].
Cardiogenic shock, characterized by inadequate cardiac
output, profound hypotension, and systemic hypoperfusion,
is a common complication of acute myocardial infarction,
associated with poor prognosis. In this study, anandamide
and 2-AG were measured in platelets and monocytes
isolated 30 min after left coronary artery occlusion in rats.
Injection of these isolated monocytes and platelets into rats
decreased mean arterial pressure, suggesting the direct
contribution of endocannabinoids in postmyocardial infarction
hypotension. Pretreatment with rimonabant reduced the mean
arterial pressure decline but increased mortality monitored at
2 h after myocardial infarction. In a subsequent study, the same
authors reported a deleterious effect of CB1 antagonism with
AM251 on cardiac function in a chronic myocardial
infarction model [90]. On the other hand, treatment with the
synthetic agonist HU-210 increased left ventricular end-
diastolic pressure but prevented endothelial dysfunction in
aortic rings isolated from treated rats. A possible explanation
for these in part conflicting findings in these two above-
described studies might be the involvement of non-CB1-
receptor-mediated effects, given the suboptimal doses of
agonists and antagonists used in these studies.

More recent evidence suggests a cardioprotective effect
of CB1 antagonism in doxorubicin-induced cardiotoxicity, a
major consequence of antitumor therapy, which may lead to
cardiomyopathy and heart failure [13]. The underlying
mechanisms of the heart failure involve increased oxidative/
nitrosative stress, proteolytic enzyme activity, and changes in
cardiomyocyte energetics [87, 91]. Five days after a single
doxorubicin injection in mice, hemodynamic measurements
revealed severe ventricular dysfunction, which was im-
proved by daily treatment with CB1 antagonists rimonabant
or AM281 [13]. CB1 antagonism also prevented the
doxorubicin-induced cell death in vitro in rat embryonic
ventricular myocardial-derived H9c2 cells, as well as in vivo
using heart lysates from treated mice. Treatment with
antagonists alone had no effect on measured hemodynamic
parameters or cell viability. Importantly, the protective effect
against doxorubicin-induced cell death was selectively
mediated by CB1 antagonists, since neither CB1 or CB2

agonists nor CB2 antagonists were protective. In addition,
the CB1 agonist by itself markedly increased cell death in
cardiomyocytes, which was additive in the presence of
doxorubicin. In line with these findings, a significant
doxorubicin-induced increase in cardiac endocannabinoid
anandamide levels was found, whereas 2-AG levels were not

altered. Doxorubicin had no effect on the expression of
myocardial CB1 and CB2 or on the expression of these
receptors in cells exposed to the compound. These findings
suggest that doxorubicin induces an activation of the
endocannabinoid system, resulting in increased signaling
via vascular and cardiac CB1 receptors which leads to
cardiodepression and cell death in cardiomyocytes. The
underlying cellular mechanisms of the cytoprotective effect
of CB1 antagonists in doxorubicin-induced cardiotoxicity,
however, remain to be clarified.

The endocannabinoid system in cardiometabolic risk

A growing body of evidence supports a role for the
endocannabinoid system in the regulation of cardiovascular
risk factors, i.e., obesity and obesity-related metabolic
disorders, including alterations in lipid profile and glucose
homeostasis [92–94]. The implication of the endocannabi-
noid system in the regulation of food intake and energy
metabolism has been well established in the past [92].
Overactivity of the endocannabinoid system promotes
excessive food intake and fat accumulation in animal models
and humans, suggesting its pharmacological modulation for
therapeutic use [92, 93]. Now, recent findings points to its
implication in the regulation of insulin sensitivity, glucose
homeostasis, and plasma lipid levels, which are closely
related to type 2 diabetes. Clinical trials have indicated
multiple therapeutic benefits of the pharmacological CB1

blockade in obesity and associated cardiometabolic disor-
ders, including obese subjects with metabolic syndrome and
type 2 diabetes (Fig. 2) [95–99]. However, serious recent
concerns have also been raised related to this class of
compound because of the increased incidence of anxiety and
depression in treated patients [100], see also below later.

Obesity

Obesity, characterized by an excess of adipose tissue mass,
is closely associated with an increase in cardiovascular
morbidity and mortality, including atherosclerosis. A cluster
of common disorders, e.g., hyperglycemia, hyperlipidemia,
and hypertension (described as metabolic syndrome), are
often found in obese individuals [101]. The adipose tissue
has been identified as a source of biologically active
substances known as adipokines or adipocytokines [101,
102]. In obesity, the adipose tissue is a source of local
inflammation, in which reduced levels of adiponectin (a
mediator with anti-inflammatory properties) and increased
levels of leptin (with proinflammatory actions) play crucial
roles. Reduced plasma levels of adiponectin, which are
found in obese patients, are closely associated with obesity-
related diseases, including atherosclerotic cardiovascular
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diseases, type 2 diabetes, hypertension, and dyslipidemia
[103]. There is emerging experimental evidence that
adiponectin mediates antiatherogenic and antithrombotic
effects through direct protective actions on endothelial
cells, smooth muscle cells, macrophages, T lymphocytes,
and platelets [101, 102, 104, 105].

The other major adipocytokine leptin, expressed by the ob
gene, also exhibits direct effects on immune cells, including
the promotion of T lymphocyte type 1 helper (Th1) response
[106]. Various studies reported that leptin deficiency is
protective in atherosclerotic mice, as demonstrated in the
low-density lipoprotein receptor knockout (LDLR−/−) or
apolipoprotein E (ApoE−/−) background [107–109]. However,
these mice have severe hypercholesterolemia, high triglyceride
levels, and insulin resistance. In a recent study, atherosclerotic
lesion development in leptin-deficient LDLR−/− mice was
compared to LDLR−/− mice with similar cholesterol levels
[110]. Here, leptin deficiency induced a strong reduction in
atherosclerotic lesion development. The authors suggest a role
for leptin in the modulation of the regulatory immune response
in this experimental model.

The endocannabinoid system is known to play a crucial
role in energy balance and substrate metabolism, which
involves central hypothalamic and leptin-regulated pathways
[92, 111]. In addition to central effects, the endocannabinoid
system also regulates food intake and metabolic factors
through peripheral CB1 receptors located at multiple sites
throughout the body [93]. Overactivity of the endocannabi-
noid system promotes excessive food intake and fat

accumulation in animal models and in humans [92, 93]. In
mice fed with high-fat diet for several weeks, 2-AG
endocannabinoid levels are upregulated in epididymal
adipose tissue, whereas anandamide and 2-AG levels
decrease in the subcutaneous fat [112–114]. In human obese
individuals, the abdominal, but not subcutaneous fat mass,
which is linked to several cardiometabolic risk factors [115],
directly correlates with high local and circulating 2-AG
levels, whereas no correlation with anandamide was found
[113, 116, 117]. The enzymes involved in endocannabinoid
synthesis and degradation are expressed in human and
mouse adipose tissue [114, 118]. Changes in their expression
levels were found to correlate with a decrease in subcutaneous
fat endocannabinoid concentrations in high-fat-diet-fed obese
mice [114]. Similarly, decreased mRNA levels of the
endocannabinoid-degrading enzyme FAAH and CB1 recep-
tors were found in human obese subcutaneous and visceral
adipose tissue [17, 116].

Insulin has recently been identified as a key regulator of
endocannabinoid synthesis in three T3-L1 adipocytes, a
regulatory mechanism which fails in insulin-resistant
adipocytes [112]. This pathway may explain the increased
endocannabinoid levels found in insulin-resistant obese
individuals. However, no evidence exists in humans to
directly indicate that insulin reduces endocannabinoid
levels in the blood or other tissues and therefore that
insulin resistance underlies part of the peripheral endocan-
nabinoid overactivity. In rodents, pharmacologic blockade
or genetic ablation of CB1 receptors reduces appetite and
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weight and prevents obesity, insulin resistance, and the
development of fatty liver [119–121]. The underlying
mechanisms which may explain the observed effects of
CB1 blockade may involve changes in endothelial nitric
oxide (eNOS) expression, which has been implicated in the
mitochondrial biogenesis and function in adipocytes [122],
though the expression of eNOS in adipocytes is still a
controversial issue requiring further clarification. Treatment
with CB1 antagonist rimonabant was found to increase
eNOS expression in murine white adipocytes, together with
an increase of mitochondrial mass and function. While
high-fat diet decreased eNOS expression in wild-type mice,
this effect was reversed by chronic rimonabant treatment
and absent in CB1-deficient mice. A recent experimental
study further demonstrated that the upregulation of CB1

expression, together with adipocyte differentiation, is
directly inhibited by PPAR-delta [123]. Exercise reduced
visceral fat mass, adipocyte size, and CB1 expression in this
rat model of high-fat-diet-induced obesity.

Clinical trials with rimonabant, a selective antagonist of
the CB1 receptor, have suggested a beneficial effect of this
drug in the management of obesity and cardiometabolic risk
factors in humans. The Rimonabant in Obesity (RIO) program
comprised four 1–2-year placebo-controlled randomized
clinical trials, recruiting more than 6,600 overweight/obese
patients [95–98]. Rimonabant (20 mg daily) consistently
reduced body weight, waist circumference, triglycerides,
blood pressure, insulin resistance, and C-reactive protein
levels and increased high-density lipoprotein (HDL) choles-
terol concentrations in both nondiabetic and type-2 diabetic
overweight/obese patients. Adiponectin levels were in-
creased, an effect that correlated with HDL cholesterol
augmentation, while small dense LDL cholesterol levels
were decreased in patients receiving rimonabant 20 mg
compared with those receiving placebo in RIO Lipids.

In addition, data from the ADAGIO Lipids study, a 1-year
trial which assessed the effect of rimonabant on cardiometa-
bolic risk factors and intra-abdominal (visceral) and liver fat in
803 obese patients, have been recently published [99]. This
study not only confirmed the well-documented properties of
rimonabant on several cardiometabolic risk factors but also
demonstrated significant effects of rimonabant (20 mg/day)
on visceral adiposity and liver fat content. Visceral and
liver fat were measured by computed tomography in a
subgroup of 231 patients, revealing a significant loss of
visceral fat accompanied by a decrease in liver fat in the
rimonabant-treated group. In addition to the previously
described favorable effects of rimonabant on lipid levels,
the ADAGIO Lipids study also revealed an improvement
in lipid “quality.” Rimonabant induced a shift in LDL
particle size, a reduction in apo B to apo A1 ratio, and an
increase in HDL2-C and HDL3-C levels as well as increased
HDL particle size.

These promising outcomes are contrasted by the safety
concerns related to the increased incidence of psychiatric
adverse events associated with this class of drugs [100, 124,
125]. Although available in Europe since 2006 for
overweight patients with associated risk factors, the
increasing incidence of psychiatric side effects led to the
recent temporary suspension of rimonabant from the market
in Europe. For similar reasons, rimonabant failed to secure
Food and Drug Administration approval in the US in 2007.
In the future, selective targeting of peripheral CB1 receptors
may overcome the safety problems associated with currently
available CB1 antagonists such as rimonabant [94, 126]. A
recently published experimental study conducted with diet-
induced obese rats supports the notion that selective
peripheral CB1 antagonism mediates metabolic benefits,
while also reducing food intake and body weight [127]. On
the other hand, specific central CB1 blockade predominantly
affected food intake and body weight in this study but had
no beneficial effect on peripheral lipid and glucose metab-
olism. A challenge for future studies will be to develop
peripherally restricted CB1 antagonists and to study if their
biological activity compares with the beneficial cardiometa-
bolic effects of rimonabant.

Diabetes

Emerging evidence suggests a crucial implication of the
endocannabinoid system in the regulation of insulin sensitivity,
glucose homeostasis, and lipid profile. The pathophysiology of
type 2 diabetes is closely related to these disorders. Two
clinical studies have been recently published that investigated
the glucose-lowering efficacy and safety of CB1 blocking with
rimonabant in type 2 diabetic patients. The RIO Diabetes
study enrolled 1,045 overweight subjects with type 2 diabetes
[97]. In this study, treatment with rimonabant (20 mg/day for
1 year) significantly reduced body weight and improved
glycemic control and HbA1C levels in comparison to placebo.
The Study Evaluating Rimonabant Efficacy in Drug-Naive
Diabetic Patients enrolled 278 patients. In this study,
treatment with 20 mg/day of rimonabant significantly
reduced the levels of HbA1C, also independently of weight
loss [128].

The endocannabinoid system in atherosclerosis

In the past few years, many different physiologic and
pathophysiologic regulatory actions have been attributed to
the endocannabinoid system. Changes in endocannabinoid
levels and/or receptor expression have been described in
pathophysiologic conditions such as circulatory shock,
doxorubicin-induced cardiotoxicity, advanced liver cirrhosis,
obesity, and allergic contact dermatitis, gastrointestinal
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inflammation, and many other inflammatory disorders [2,
13, 129, 130]. A growing body of evidence suggests that
endocannabinoids might also be involved in the pathogenesis
of atherogenesis; however, their precise role has still been
poorly investigated.

Endocannabinoids released from endothelial cells, mac-
rophages, or platelets reduced hypertension in rodents, a
major risk factor for atherosclerosis [12]. An experimental
study further suggested a possible protective role of
anandamide, or other lipid mediators metabolized by
FAAH, against age-associated decline of cardiac function
and changes in inflammatory gene expression as well as
TNF-α-induced monocyte adhesion to endothelial cells
[131]. PEA was reported to downregulate inflammatory
cytokine release from human peripheral blood mononuclear
cells [132] and to exhibit anti-inflammatory effects in
human and mouse adipocytes [133]. On the other hand,
endocannabinoids might also mediate proatherosclerotic
effects by inducing platelet activation [134, 135].

Clinical trials with rimonabant have revealed that block-
ing of CB1 receptors not only causes weight reduction but
reduces also several metabolic cardiovascular risk factors,
suggesting a potential benefit for atherosclerosis [95, 124].
This is supported by a recently published experimental
animal study, indicating a potential relevance for the
process of atherosclerosis [136]. In line with these findings,
latest results demonstrated a modulation of endocannabi-
noid levels in patients with coronary artery disease as well
as in atherosclerotic mice [137, 138]. In addition to CB1

receptors, targeting CB2 receptors might be a promising
therapeutic approach for atherosclerosis, given the well-
known immunomodulatory effects of CB2 activation. Treat-
ment with the plant-derived cannabinoid THC has been
shown to inhibit atherosclerotic plaque progression in mice,
whereas CB2 antagonism reversed the antiatherosclerotic
effect [139]. These anti-inflammatory effects may be very
important because of the increasing recognition of the role of
chronic inflammation in the development and progression of
atherosclerosis and other cardiovascular diseases [140].

Endocannabinoid levels

The first evidence for an activation of the endocannabinoid
system in human atherosclerosis has been recently pub-
lished by Sugamura and colleagues [137]. CB1 mRNA
levels in coronary atherectomy samples from a small group
of unstable versus stable angina patients were analyzed by
real-time reverse transcription polymerase chain reaction. A
significant increase of CB1 expression was reported in the
unstable angina group. The immunohistological CB1 stain-
ing was particular abundant in lipid-rich atheromatous
plaques. The authors reported higher blood levels of
endocannabinoids anandamide and 2-AG in coronary artery

disease (CAD) patients versus asymptomatic patients
without CAD. In vitro experiments revealed modulated
mRNA levels of enzymes involved in endocannabinoid
synthesis and degradation, NAPE-PLD and FAAH, together
with an upregulation of CB1 receptors, during monocyte to
macrophage differentiation. In addition, rimonabant was
found to reduce LPS-induced proinflammatory cytokine
and matrix metallopeptidase 9 expression in human macro-
phages. On the basis of experiments using CB1 receptor
antagonists AM251 and AM281, as well as CB1 receptor
knockdown with small interfering RNA, the authors
concluded that the observed anti-inflammatory effects in
macrophages were CB1 dependent [137].

A recent study has investigated the modulation of the
endocannabinoid levels during atherosclerosis development
in mice by comparing wild-type and apolipoprotein E
knockout (ApoE−/−) mice fed either normal chow or high-
cholesterol diet [138]. Increased levels of 2-AG in aortas
and visceral adipose tissue (VAT) of ApoE−/− mice fed on
high-cholesterol diet for 12 weeks were found, whereas no
significant difference in 2-AG levels was observed after
8 weeks of diet. No changes in anandamide levels were
found in any group. The levels of the anandamide-related
mediators with anti-inflammatory or antilipogenic properties,
PEA and oleoylethanolamide (OEA), were also investigated.
While PEA levels decreased in VAT of ApoE−/− mice fed on
high-cholesterol diet, OEA increased in aortas and VAT. The
observed changes in 2-AG, PEA, and OEA levels did not
appear to be a consequence of the high-cholesterol diet, since
they were not found in wild-type mice fed with the same
diet. The immunohistological analysis revealed that the
endocannabinoid and PEA/OEA-degrading enzymes FAAH
and MAGL were expressed by macrophages within mouse
atherosclerotic lesions. Additional in vitro experiments with
human monocytes and macrophages suggested that en-
hanced 2-AG and OEA levels in advanced atherosclerotic
lesions might trigger the inflammatory process by recruiting
more inflammatory cells and inducing extracellular matrix
degradation, mainly via CB2 receptors. On the other hand,
PEA was also found to induce monocyte migration but
counteracted the proinflammatory chemoattractant effects of
both 2-AG and OEA. However, in vivo treatment with CB2

antagonist SR144528 did not affect plaque progression in
ApoE−/− mice, which may depend on the experimental
protocol used in this study. Further experiments with genetic
CB2 deficiency in an atherosclerotic background may help to
clarify a possible causal role of endocannabinoid-mediated
CB2 signaling in atherosclerosis.

Role of CB1

The STRADIVARIUS trial studied the effect of rimonabant
on atherosclerosis progression in patients with abdominal
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obesity and coronary artery disease [124]. Patients received
20 mg/day rimonabant or placebo for 18 months, and
atherosclerosis progression was determined using intravas-
cular ultrasound. No statistical difference was observed in
the primary end point, the percent atheroma volume (PAV).
However, the total atheroma volume, a secondary end
point, was significantly improved. In the subgroup analy-
ses, rimonabant also significantly reduced PAV in patients
who were not under statin treatment and in those with high
baseline triglyceride levels (≥140 mg/ml) [141]. In addition,
the Atherosclerosis Underlying Development Assessed
by Intima-Media Thickness in Patients on Rimonabant
(AUDITOR) trial, an ongoing study which started in 2005,
aims to assess the effect of rimonabant on atherosclerosis
progression in carotid arteries (ClinicalTrials.gov Identifier:
NCT00228176).

Direct evidence for a causal role of endocannabinoid-
mediated CB1 activation in atherosclerosis has been
recently provided in an experimental mouse study. The
authors report antiatherosclerotic effects of the CB1

antagonist rimonabant in the low-density lipoprotein receptor
knockout (LDLR−/−) mouse model of atherosclerosis, fed a
Western-type diet for 3 months [136]. Rimonabant given at a
dose of 10 to 50 mg/kg per day in the diet resulted in a dose-
dependent inhibition of atherosclerotic lesion development in
aorta and aortic sinus, together with a decrease in body
weight. However, the observed antiatherosclerotic effect was
not related to inhibition of food intake, since the lesion size
in pair-fed mice was similar to that in unrestricted Western-
diet-fed control mice. A reduction of serum total cholesterol,
interleukin (IL)-12, and monocyte chemotactic protein 1
levels, together with increased adiponectin, was only found
at the high rimonabant dose (50 mg/kg per day), whereas
lower serum triglyceride and leptin levels were also observed
at low doses (10 and 30 mg/kg per day). In vitro, rimonabant
was shown to inhibit LPS-induced proinflammatory IL-6,
TNF-α, and CCL2 gene expression in mouse peritoneal
macrophages. Importantly, this effect was still observed
when cells from CB1−/− mice were used, suggesting a CB1-
independent anti-inflammatory effect of rimonabant. These
findings are in conflict with the above-discussed study from
Sugamara and colleagues, who reported that the anti-
inflammatory effects of rimonabant on LPS-induced IL-6
expression were abrogated by experimental CB1 knockdown
using interfering RNA [137]. These discrepancies might be
explained by the different experimental settings used in the
two studies. In conclusion, the observed antiatherosclerotic
effect of rimonabant at low dose (which is independent of
serum total cholesterol changes) may be related to reduced
inflammation [136]. This latter effect seems to be mediated
at least in part via CB1-independent mechanisms.

Vascular smooth muscle cell migration and proliferation
are pivotal events in the pathogenesis of atherosclerosis and

are directly implicated in the failure of clinical interventions
used to treat patients with coronary heart disease [142]. For
example, percutaneous transluminal angioplasty is an
invasive procedure aimed to repair a stenotic blood vessel,
which often fails with the time because of the development
of restenosis. Vascular smooth muscle cells are the principal
cell type in restenotic lesions and are also amajor component of
atherosclerotic lesions. As recently demonstrated in vitro, CB1

antagonism (with rimonabant) dose-dependently inhibited
PDGF-induced proliferation, migration and signal transduc-
tion of human coronary artery smooth muscle cells [58].

A recent in vitro study has highlighted a link between
the endocannabinoid system and the regulation of cellular
cholesterol accumulation in rodent macrophages. Oxidized
LDL, a key factor in atherosclerosis [143], increased 2-AG
and anandamide levels as well as CB1 and CB2 expression,
as shown in the mouse macrophage cell line RAW264.7
and rat peritoneal macrophages [144]. The synthetic
cannabinoid WIN55,212-2 triggered cholesterol accumula-
tion in RAW264.7 macrophages. This effect was associated
with an increase in CD36 and PPAR γ expression, whereas
adenosine-triphosphate-binding cassette protein A1 expres-
sion was reduced. The CB1 antagonist AM251 inhibited the
observed effects of WIN55,212-2.

In conclusion, an emerging body of in vitro and in vivo
findings supports a key role for endocannabinoid-mediated
CB1 signaling in the pathogenesis of atherosclerosis,
suggesting that CB1 antagonism may represent a promising
therapeutic strategy for the treatment of this life-threatening
disease.

Role of CB2

Cannabinoids are well known for their immunomodulatory
properties, which have been mainly attributed to CB2

receptors in the past. CB2 receptors have been implicated
in the modulation of immune cell migration, which is an
essential step in the development and progression of
atherosclerosis. The tethering, rolling, adhesion, and trans-
endothelial migration of leukocytes is triggered by local
production of chemokines and chemokine receptors as well
as adhesion molecules [145]. Cannabinoids have been
reported to inhibit chemokine-induced chemotaxis of various
cell types [146]. In addition, synthetic and endogenous
cannabinoids themselves are potent inducers of immune cell
migration, which raises the question if they may also
promote inflammation by recruiting immune cells to inflam-
matory sites [138, 146]. On the other hand, they may
reduce inflammation by interfering with the action of other
chemoattractants. Recent in vitro findings support this
hypothesis [54]. Human monocytes treated with the
synthetic CB2 agonist JWH-015 showed significantly
reduced migration versus chemokines CCL2 and CCL3
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via downregulation of their cognate receptors CCR2 and
CCR1, and inhibition of interferon-gamma-induced inter-
cellular adhesion molecule (ICAM)-1 upregulation. More-
over, JWH-015 cross-desensitized human monocytes for
migration in response to CCL2 and CCL3 by its own
chemoattractant properties. This may have physiological
relevance, as systemic administration of CB2 agonists
might inhibit leukocyte recruitment to local inflammatory
sites by desensitizing cells for migration versus chemokine
gradients.

The first in vivo evidence for a direct antiatherosclerotic
effect of CB2 receptor activation has been provided in the
ApoE−/− mouse model of atherosclerosis. Oral administra-
tion of THC resulted in the significant inhibition of plaque
development, an effect that could be inhibited by the CB2

antagonist SR144528 [139]. The antiatherosclerotic effect
was associated with reduced lesional macrophage infiltra-
tion as well as reduced proliferation and interferon gamma
release by splenocytes isolated from THC-treated mice. In
support of the antiatherosclerotic role of CB2 activation, in
vitro treatment with the synthetic CB2 agonists JWH-133
and HU-308 reduced the TNF-α-induced activation of
human coronary artery endothelial cells [14]. In particular,
CB2 stimulation attenuated the TNF-α-induced nuclear
factor kappa B (NF-κB) and RhoA activation, ICAM-1
and VCAM-1 upregulation, and CCL2 release, as well as
transendothelial migration and adhesion of THP-1 mono-
cytes. A recent in vitro study further demonstrated that CB2

activation with selective CB2 receptor agonists inhibited the
TNF-α-induced proliferation and migration of human
coronary artery smooth muscle cells [15]. As described
above, smooth muscle cells are crucially involved in the
pathogenesis of atherosclerosis and restenosis. Moreover,
there is evidence for a role of CB2 receptors in macrophage
apoptosis induced by oxidized LDL [147]. Oxidized LDL is
a well-known trigger for atherosclerosis, which accumu-
lates in macrophages within atherosclerotic lesions, result-
ing in foam cell formation [143]. The capacity of oxidized
LDL to induce macrophage apoptosis is likely to play an
important role in the progression of atherosclerosis and
atherosclerotic plaque stability [148]. Apoptosis of macro-
phages might be beneficial for plaque stability if apoptotic
bodies are removed. Indeed, it has been demonstrated that
impaired macrophage apoptosis triggers lesion formation in
mice [149]. In advanced lesions, however, apoptosis of
macrophage-derived foam cells promotes the formation of a
prothrombotic central lipid pool whose size correlates with
plaque instability. Thus, macrophage apoptosis, at least in
advanced lesions, could be considered as a proatherogenic
factor triggering plaque instability and rupture [150].
Freeman-Anderson and colleagues investigated the effect
of genetic CB2 deficiency on oxidized LDL-induced
apoptosis [147]. They found that the apoptosis rate was

significantly reduced in peritoneal macrophages from CB2

knockout mice as compared to wild-type animals. They
further provided evidence implicating the Akt survival
pathway in CB2-mediated signaling in their in vitro model.
However, the in vivo consequences of these findings in the
pathophysiology of atherosclerosis remain to be elucidated.

Finally, a recent large case control study enrolling 1,968
individuals addressed the involvement of the gene encoding
CB2, CNR2, in the development of myocardial infarction
and several cardiovascular risk factors. In particular, a
potential association of genetic variations with the devel-
opment of myocardial infarction and classic cardiovascular
risk factors, including arterial hypertension, obesity, hyper-
cholesterolemia, and diabetes mellitus, was investigated
[151]. However, none of the 13 investigated single-
nucleotide polymorphisms in the CNR2 gene was associ-
ated with myocardial infarction or any of the investigated
risk factors.

CB1- and CB2-independent cannabinoid effects

CBD is a nonpsychoactive Cannabis component with
potent anti-inflammatory and antioxidant properties and
low affinity for CB1 and CB2 receptors [82, 152]. A recent
study investigated the effect of CBD on high-glucose-
induced activation in human coronary artery endothelial
cells, as an in vitro model mimicking endothelial dysfunc-
tion in diabetic patients [153]. CBD inhibited all the
observed high-glucose-induced effects in endothelial cells,
including increased mitochondrial superoxide generation,
NF-κB activation and ICAM-1 and VCAM-1 upregulation,
as well as transendothelial migration and adhesion of THP-
1 monocytes. CBD also reversed the high-glucose-induced
decrease of endothelial barrier function. Neither CB1

antagonism (with rimonabant or AM281) nor CB2 antago-
nism (with SR144528 or AM630) inhibited the various
effects of CBD on the endothelial cells. These findings
suggest that CBD may have a therapeutic potential not only
for the treatment of diabetes [154] and diabetic complica-
tions but also for atherosclerosis. Future studies should help
to clarify the molecular mechanisms underlying the
beneficial effects of CBD.

Conclusion

Collectively, the above-mentioned accumulating evidence
suggests that the modulation of the endocannabinoid
system by selective agonists or antagonists may hold
tremendous therapeutic potential in various cardiovascular
disorders associated with inflammation and tissue injury,
ranging from myocardial infarction and heart failure to
atherosclerosis and cardiometabolic disorders.
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